65cb0086753b7dba9f420a5d48cfcfbb7ad67c79
[oota-llvm.git] / lib / Transforms / Scalar / ScalarReplAggregates.cpp
1 //===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation implements the well known scalar replacement of
11 // aggregates transformation.  This xform breaks up alloca instructions of
12 // aggregate type (structure or array) into individual alloca instructions for
13 // each member (if possible).  Then, if possible, it transforms the individual
14 // alloca instructions into nice clean scalar SSA form.
15 //
16 // This combines a simple SRoA algorithm with the Mem2Reg algorithm because they
17 // often interact, especially for C++ programs.  As such, iterating between
18 // SRoA, then Mem2Reg until we run out of things to promote works well.
19 //
20 //===----------------------------------------------------------------------===//
21
22 #include "llvm/Transforms/Scalar.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/Analysis/AssumptionCache.h"
27 #include "llvm/Analysis/Loads.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/IR/CallSite.h"
30 #include "llvm/IR/Constants.h"
31 #include "llvm/IR/DIBuilder.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/DebugInfo.h"
34 #include "llvm/IR/DerivedTypes.h"
35 #include "llvm/IR/Dominators.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/GetElementPtrTypeIterator.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/IRBuilder.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/LLVMContext.h"
43 #include "llvm/IR/Module.h"
44 #include "llvm/IR/Operator.h"
45 #include "llvm/Pass.h"
46 #include "llvm/Support/Debug.h"
47 #include "llvm/Support/ErrorHandling.h"
48 #include "llvm/Support/MathExtras.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include "llvm/Transforms/Utils/Local.h"
51 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
52 #include "llvm/Transforms/Utils/SSAUpdater.h"
53 using namespace llvm;
54
55 #define DEBUG_TYPE "scalarrepl"
56
57 STATISTIC(NumReplaced,  "Number of allocas broken up");
58 STATISTIC(NumPromoted,  "Number of allocas promoted");
59 STATISTIC(NumAdjusted,  "Number of scalar allocas adjusted to allow promotion");
60 STATISTIC(NumConverted, "Number of aggregates converted to scalar");
61
62 namespace {
63   struct SROA : public FunctionPass {
64     SROA(int T, bool hasDT, char &ID, int ST, int AT, int SLT)
65       : FunctionPass(ID), HasDomTree(hasDT) {
66       if (T == -1)
67         SRThreshold = 128;
68       else
69         SRThreshold = T;
70       if (ST == -1)
71         StructMemberThreshold = 32;
72       else
73         StructMemberThreshold = ST;
74       if (AT == -1)
75         ArrayElementThreshold = 8;
76       else
77         ArrayElementThreshold = AT;
78       if (SLT == -1)
79         // Do not limit the scalar integer load size if no threshold is given.
80         ScalarLoadThreshold = -1;
81       else
82         ScalarLoadThreshold = SLT;
83     }
84
85     bool runOnFunction(Function &F) override;
86
87     bool performScalarRepl(Function &F);
88     bool performPromotion(Function &F);
89
90   private:
91     bool HasDomTree;
92
93     /// DeadInsts - Keep track of instructions we have made dead, so that
94     /// we can remove them after we are done working.
95     SmallVector<Value*, 32> DeadInsts;
96
97     /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
98     /// information about the uses.  All these fields are initialized to false
99     /// and set to true when something is learned.
100     struct AllocaInfo {
101       /// The alloca to promote.
102       AllocaInst *AI;
103
104       /// CheckedPHIs - This is a set of verified PHI nodes, to prevent infinite
105       /// looping and avoid redundant work.
106       SmallPtrSet<PHINode*, 8> CheckedPHIs;
107
108       /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
109       bool isUnsafe : 1;
110
111       /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
112       bool isMemCpySrc : 1;
113
114       /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
115       bool isMemCpyDst : 1;
116
117       /// hasSubelementAccess - This is true if a subelement of the alloca is
118       /// ever accessed, or false if the alloca is only accessed with mem
119       /// intrinsics or load/store that only access the entire alloca at once.
120       bool hasSubelementAccess : 1;
121
122       /// hasALoadOrStore - This is true if there are any loads or stores to it.
123       /// The alloca may just be accessed with memcpy, for example, which would
124       /// not set this.
125       bool hasALoadOrStore : 1;
126
127       explicit AllocaInfo(AllocaInst *ai)
128         : AI(ai), isUnsafe(false), isMemCpySrc(false), isMemCpyDst(false),
129           hasSubelementAccess(false), hasALoadOrStore(false) {}
130     };
131
132     /// SRThreshold - The maximum alloca size to considered for SROA.
133     unsigned SRThreshold;
134
135     /// StructMemberThreshold - The maximum number of members a struct can
136     /// contain to be considered for SROA.
137     unsigned StructMemberThreshold;
138
139     /// ArrayElementThreshold - The maximum number of elements an array can
140     /// have to be considered for SROA.
141     unsigned ArrayElementThreshold;
142
143     /// ScalarLoadThreshold - The maximum size in bits of scalars to load when
144     /// converting to scalar
145     unsigned ScalarLoadThreshold;
146
147     void MarkUnsafe(AllocaInfo &I, Instruction *User) {
148       I.isUnsafe = true;
149       DEBUG(dbgs() << "  Transformation preventing inst: " << *User << '\n');
150     }
151
152     bool isSafeAllocaToScalarRepl(AllocaInst *AI);
153
154     void isSafeForScalarRepl(Instruction *I, uint64_t Offset, AllocaInfo &Info);
155     void isSafePHISelectUseForScalarRepl(Instruction *User, uint64_t Offset,
156                                          AllocaInfo &Info);
157     void isSafeGEP(GetElementPtrInst *GEPI, uint64_t &Offset, AllocaInfo &Info);
158     void isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
159                          Type *MemOpType, bool isStore, AllocaInfo &Info,
160                          Instruction *TheAccess, bool AllowWholeAccess);
161     bool TypeHasComponent(Type *T, uint64_t Offset, uint64_t Size,
162                           const DataLayout &DL);
163     uint64_t FindElementAndOffset(Type *&T, uint64_t &Offset, Type *&IdxTy,
164                                   const DataLayout &DL);
165
166     void DoScalarReplacement(AllocaInst *AI,
167                              std::vector<AllocaInst*> &WorkList);
168     void DeleteDeadInstructions();
169
170     void RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
171                               SmallVectorImpl<AllocaInst *> &NewElts);
172     void RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
173                         SmallVectorImpl<AllocaInst *> &NewElts);
174     void RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
175                     SmallVectorImpl<AllocaInst *> &NewElts);
176     void RewriteLifetimeIntrinsic(IntrinsicInst *II, AllocaInst *AI,
177                                   uint64_t Offset,
178                                   SmallVectorImpl<AllocaInst *> &NewElts);
179     void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
180                                       AllocaInst *AI,
181                                       SmallVectorImpl<AllocaInst *> &NewElts);
182     void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
183                                        SmallVectorImpl<AllocaInst *> &NewElts);
184     void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
185                                       SmallVectorImpl<AllocaInst *> &NewElts);
186     bool ShouldAttemptScalarRepl(AllocaInst *AI);
187   };
188
189   // SROA_DT - SROA that uses DominatorTree.
190   struct SROA_DT : public SROA {
191     static char ID;
192   public:
193     SROA_DT(int T = -1, int ST = -1, int AT = -1, int SLT = -1) :
194         SROA(T, true, ID, ST, AT, SLT) {
195       initializeSROA_DTPass(*PassRegistry::getPassRegistry());
196     }
197
198     // getAnalysisUsage - This pass does not require any passes, but we know it
199     // will not alter the CFG, so say so.
200     void getAnalysisUsage(AnalysisUsage &AU) const override {
201       AU.addRequired<AssumptionCacheTracker>();
202       AU.addRequired<DominatorTreeWrapperPass>();
203       AU.setPreservesCFG();
204     }
205   };
206
207   // SROA_SSAUp - SROA that uses SSAUpdater.
208   struct SROA_SSAUp : public SROA {
209     static char ID;
210   public:
211     SROA_SSAUp(int T = -1, int ST = -1, int AT = -1, int SLT = -1) :
212         SROA(T, false, ID, ST, AT, SLT) {
213       initializeSROA_SSAUpPass(*PassRegistry::getPassRegistry());
214     }
215
216     // getAnalysisUsage - This pass does not require any passes, but we know it
217     // will not alter the CFG, so say so.
218     void getAnalysisUsage(AnalysisUsage &AU) const override {
219       AU.addRequired<AssumptionCacheTracker>();
220       AU.setPreservesCFG();
221     }
222   };
223
224 }
225
226 char SROA_DT::ID = 0;
227 char SROA_SSAUp::ID = 0;
228
229 INITIALIZE_PASS_BEGIN(SROA_DT, "scalarrepl",
230                 "Scalar Replacement of Aggregates (DT)", false, false)
231 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
232 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
233 INITIALIZE_PASS_END(SROA_DT, "scalarrepl",
234                 "Scalar Replacement of Aggregates (DT)", false, false)
235
236 INITIALIZE_PASS_BEGIN(SROA_SSAUp, "scalarrepl-ssa",
237                       "Scalar Replacement of Aggregates (SSAUp)", false, false)
238 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
239 INITIALIZE_PASS_END(SROA_SSAUp, "scalarrepl-ssa",
240                     "Scalar Replacement of Aggregates (SSAUp)", false, false)
241
242 // Public interface to the ScalarReplAggregates pass
243 FunctionPass *llvm::createScalarReplAggregatesPass(int Threshold,
244                                                    bool UseDomTree,
245                                                    int StructMemberThreshold,
246                                                    int ArrayElementThreshold,
247                                                    int ScalarLoadThreshold) {
248   if (UseDomTree)
249     return new SROA_DT(Threshold, StructMemberThreshold, ArrayElementThreshold,
250                        ScalarLoadThreshold);
251   return new SROA_SSAUp(Threshold, StructMemberThreshold,
252                         ArrayElementThreshold, ScalarLoadThreshold);
253 }
254
255
256 //===----------------------------------------------------------------------===//
257 // Convert To Scalar Optimization.
258 //===----------------------------------------------------------------------===//
259
260 namespace {
261 /// ConvertToScalarInfo - This class implements the "Convert To Scalar"
262 /// optimization, which scans the uses of an alloca and determines if it can
263 /// rewrite it in terms of a single new alloca that can be mem2reg'd.
264 class ConvertToScalarInfo {
265   /// AllocaSize - The size of the alloca being considered in bytes.
266   unsigned AllocaSize;
267   const DataLayout &DL;
268   unsigned ScalarLoadThreshold;
269
270   /// IsNotTrivial - This is set to true if there is some access to the object
271   /// which means that mem2reg can't promote it.
272   bool IsNotTrivial;
273
274   /// ScalarKind - Tracks the kind of alloca being considered for promotion,
275   /// computed based on the uses of the alloca rather than the LLVM type system.
276   enum {
277     Unknown,
278
279     // Accesses via GEPs that are consistent with element access of a vector
280     // type. This will not be converted into a vector unless there is a later
281     // access using an actual vector type.
282     ImplicitVector,
283
284     // Accesses via vector operations and GEPs that are consistent with the
285     // layout of a vector type.
286     Vector,
287
288     // An integer bag-of-bits with bitwise operations for insertion and
289     // extraction. Any combination of types can be converted into this kind
290     // of scalar.
291     Integer
292   } ScalarKind;
293
294   /// VectorTy - This tracks the type that we should promote the vector to if
295   /// it is possible to turn it into a vector.  This starts out null, and if it
296   /// isn't possible to turn into a vector type, it gets set to VoidTy.
297   VectorType *VectorTy;
298
299   /// HadNonMemTransferAccess - True if there is at least one access to the
300   /// alloca that is not a MemTransferInst.  We don't want to turn structs into
301   /// large integers unless there is some potential for optimization.
302   bool HadNonMemTransferAccess;
303
304   /// HadDynamicAccess - True if some element of this alloca was dynamic.
305   /// We don't yet have support for turning a dynamic access into a large
306   /// integer.
307   bool HadDynamicAccess;
308
309 public:
310   explicit ConvertToScalarInfo(unsigned Size, const DataLayout &DL,
311                                unsigned SLT)
312     : AllocaSize(Size), DL(DL), ScalarLoadThreshold(SLT), IsNotTrivial(false),
313     ScalarKind(Unknown), VectorTy(nullptr), HadNonMemTransferAccess(false),
314     HadDynamicAccess(false) { }
315
316   AllocaInst *TryConvert(AllocaInst *AI);
317
318 private:
319   bool CanConvertToScalar(Value *V, uint64_t Offset, Value* NonConstantIdx);
320   void MergeInTypeForLoadOrStore(Type *In, uint64_t Offset);
321   bool MergeInVectorType(VectorType *VInTy, uint64_t Offset);
322   void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset,
323                            Value *NonConstantIdx);
324
325   Value *ConvertScalar_ExtractValue(Value *NV, Type *ToType,
326                                     uint64_t Offset, Value* NonConstantIdx,
327                                     IRBuilder<> &Builder);
328   Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal,
329                                    uint64_t Offset, Value* NonConstantIdx,
330                                    IRBuilder<> &Builder);
331 };
332 } // end anonymous namespace.
333
334
335 /// TryConvert - Analyze the specified alloca, and if it is safe to do so,
336 /// rewrite it to be a new alloca which is mem2reg'able.  This returns the new
337 /// alloca if possible or null if not.
338 AllocaInst *ConvertToScalarInfo::TryConvert(AllocaInst *AI) {
339   // If we can't convert this scalar, or if mem2reg can trivially do it, bail
340   // out.
341   if (!CanConvertToScalar(AI, 0, nullptr) || !IsNotTrivial)
342     return nullptr;
343
344   // If an alloca has only memset / memcpy uses, it may still have an Unknown
345   // ScalarKind. Treat it as an Integer below.
346   if (ScalarKind == Unknown)
347     ScalarKind = Integer;
348
349   if (ScalarKind == Vector && VectorTy->getBitWidth() != AllocaSize * 8)
350     ScalarKind = Integer;
351
352   // If we were able to find a vector type that can handle this with
353   // insert/extract elements, and if there was at least one use that had
354   // a vector type, promote this to a vector.  We don't want to promote
355   // random stuff that doesn't use vectors (e.g. <9 x double>) because then
356   // we just get a lot of insert/extracts.  If at least one vector is
357   // involved, then we probably really do have a union of vector/array.
358   Type *NewTy;
359   if (ScalarKind == Vector) {
360     assert(VectorTy && "Missing type for vector scalar.");
361     DEBUG(dbgs() << "CONVERT TO VECTOR: " << *AI << "\n  TYPE = "
362           << *VectorTy << '\n');
363     NewTy = VectorTy;  // Use the vector type.
364   } else {
365     unsigned BitWidth = AllocaSize * 8;
366
367     // Do not convert to scalar integer if the alloca size exceeds the
368     // scalar load threshold.
369     if (BitWidth > ScalarLoadThreshold)
370       return nullptr;
371
372     if ((ScalarKind == ImplicitVector || ScalarKind == Integer) &&
373         !HadNonMemTransferAccess && !DL.fitsInLegalInteger(BitWidth))
374       return nullptr;
375     // Dynamic accesses on integers aren't yet supported.  They need us to shift
376     // by a dynamic amount which could be difficult to work out as we might not
377     // know whether to use a left or right shift.
378     if (ScalarKind == Integer && HadDynamicAccess)
379       return nullptr;
380
381     DEBUG(dbgs() << "CONVERT TO SCALAR INTEGER: " << *AI << "\n");
382     // Create and insert the integer alloca.
383     NewTy = IntegerType::get(AI->getContext(), BitWidth);
384   }
385   AllocaInst *NewAI =
386       new AllocaInst(NewTy, nullptr, "", &AI->getParent()->front());
387   ConvertUsesToScalar(AI, NewAI, 0, nullptr);
388   return NewAI;
389 }
390
391 /// MergeInTypeForLoadOrStore - Add the 'In' type to the accumulated vector type
392 /// (VectorTy) so far at the offset specified by Offset (which is specified in
393 /// bytes).
394 ///
395 /// There are two cases we handle here:
396 ///   1) A union of vector types of the same size and potentially its elements.
397 ///      Here we turn element accesses into insert/extract element operations.
398 ///      This promotes a <4 x float> with a store of float to the third element
399 ///      into a <4 x float> that uses insert element.
400 ///   2) A fully general blob of memory, which we turn into some (potentially
401 ///      large) integer type with extract and insert operations where the loads
402 ///      and stores would mutate the memory.  We mark this by setting VectorTy
403 ///      to VoidTy.
404 void ConvertToScalarInfo::MergeInTypeForLoadOrStore(Type *In,
405                                                     uint64_t Offset) {
406   // If we already decided to turn this into a blob of integer memory, there is
407   // nothing to be done.
408   if (ScalarKind == Integer)
409     return;
410
411   // If this could be contributing to a vector, analyze it.
412
413   // If the In type is a vector that is the same size as the alloca, see if it
414   // matches the existing VecTy.
415   if (VectorType *VInTy = dyn_cast<VectorType>(In)) {
416     if (MergeInVectorType(VInTy, Offset))
417       return;
418   } else if (In->isFloatTy() || In->isDoubleTy() ||
419              (In->isIntegerTy() && In->getPrimitiveSizeInBits() >= 8 &&
420               isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
421     // Full width accesses can be ignored, because they can always be turned
422     // into bitcasts.
423     unsigned EltSize = In->getPrimitiveSizeInBits()/8;
424     if (EltSize == AllocaSize)
425       return;
426
427     // If we're accessing something that could be an element of a vector, see
428     // if the implied vector agrees with what we already have and if Offset is
429     // compatible with it.
430     if (Offset % EltSize == 0 && AllocaSize % EltSize == 0 &&
431         (!VectorTy || EltSize == VectorTy->getElementType()
432                                          ->getPrimitiveSizeInBits()/8)) {
433       if (!VectorTy) {
434         ScalarKind = ImplicitVector;
435         VectorTy = VectorType::get(In, AllocaSize/EltSize);
436       }
437       return;
438     }
439   }
440
441   // Otherwise, we have a case that we can't handle with an optimized vector
442   // form.  We can still turn this into a large integer.
443   ScalarKind = Integer;
444 }
445
446 /// MergeInVectorType - Handles the vector case of MergeInTypeForLoadOrStore,
447 /// returning true if the type was successfully merged and false otherwise.
448 bool ConvertToScalarInfo::MergeInVectorType(VectorType *VInTy,
449                                             uint64_t Offset) {
450   if (VInTy->getBitWidth()/8 == AllocaSize && Offset == 0) {
451     // If we're storing/loading a vector of the right size, allow it as a
452     // vector.  If this the first vector we see, remember the type so that
453     // we know the element size. If this is a subsequent access, ignore it
454     // even if it is a differing type but the same size. Worst case we can
455     // bitcast the resultant vectors.
456     if (!VectorTy)
457       VectorTy = VInTy;
458     ScalarKind = Vector;
459     return true;
460   }
461
462   return false;
463 }
464
465 /// CanConvertToScalar - V is a pointer.  If we can convert the pointee and all
466 /// its accesses to a single vector type, return true and set VecTy to
467 /// the new type.  If we could convert the alloca into a single promotable
468 /// integer, return true but set VecTy to VoidTy.  Further, if the use is not a
469 /// completely trivial use that mem2reg could promote, set IsNotTrivial.  Offset
470 /// is the current offset from the base of the alloca being analyzed.
471 ///
472 /// If we see at least one access to the value that is as a vector type, set the
473 /// SawVec flag.
474 bool ConvertToScalarInfo::CanConvertToScalar(Value *V, uint64_t Offset,
475                                              Value* NonConstantIdx) {
476   for (User *U : V->users()) {
477     Instruction *UI = cast<Instruction>(U);
478
479     if (LoadInst *LI = dyn_cast<LoadInst>(UI)) {
480       // Don't break volatile loads.
481       if (!LI->isSimple())
482         return false;
483       // Don't touch MMX operations.
484       if (LI->getType()->isX86_MMXTy())
485         return false;
486       HadNonMemTransferAccess = true;
487       MergeInTypeForLoadOrStore(LI->getType(), Offset);
488       continue;
489     }
490
491     if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
492       // Storing the pointer, not into the value?
493       if (SI->getOperand(0) == V || !SI->isSimple()) return false;
494       // Don't touch MMX operations.
495       if (SI->getOperand(0)->getType()->isX86_MMXTy())
496         return false;
497       HadNonMemTransferAccess = true;
498       MergeInTypeForLoadOrStore(SI->getOperand(0)->getType(), Offset);
499       continue;
500     }
501
502     if (BitCastInst *BCI = dyn_cast<BitCastInst>(UI)) {
503       if (!onlyUsedByLifetimeMarkers(BCI))
504         IsNotTrivial = true;  // Can't be mem2reg'd.
505       if (!CanConvertToScalar(BCI, Offset, NonConstantIdx))
506         return false;
507       continue;
508     }
509
510     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UI)) {
511       // If this is a GEP with a variable indices, we can't handle it.
512       PointerType* PtrTy = dyn_cast<PointerType>(GEP->getPointerOperandType());
513       if (!PtrTy)
514         return false;
515
516       // Compute the offset that this GEP adds to the pointer.
517       SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
518       Value *GEPNonConstantIdx = nullptr;
519       if (!GEP->hasAllConstantIndices()) {
520         if (!isa<VectorType>(PtrTy->getElementType()))
521           return false;
522         if (NonConstantIdx)
523           return false;
524         GEPNonConstantIdx = Indices.pop_back_val();
525         if (!GEPNonConstantIdx->getType()->isIntegerTy(32))
526           return false;
527         HadDynamicAccess = true;
528       } else
529         GEPNonConstantIdx = NonConstantIdx;
530       uint64_t GEPOffset = DL.getIndexedOffset(PtrTy,
531                                                Indices);
532       // See if all uses can be converted.
533       if (!CanConvertToScalar(GEP, Offset+GEPOffset, GEPNonConstantIdx))
534         return false;
535       IsNotTrivial = true;  // Can't be mem2reg'd.
536       HadNonMemTransferAccess = true;
537       continue;
538     }
539
540     // If this is a constant sized memset of a constant value (e.g. 0) we can
541     // handle it.
542     if (MemSetInst *MSI = dyn_cast<MemSetInst>(UI)) {
543       // Store to dynamic index.
544       if (NonConstantIdx)
545         return false;
546       // Store of constant value.
547       if (!isa<ConstantInt>(MSI->getValue()))
548         return false;
549
550       // Store of constant size.
551       ConstantInt *Len = dyn_cast<ConstantInt>(MSI->getLength());
552       if (!Len)
553         return false;
554
555       // If the size differs from the alloca, we can only convert the alloca to
556       // an integer bag-of-bits.
557       // FIXME: This should handle all of the cases that are currently accepted
558       // as vector element insertions.
559       if (Len->getZExtValue() != AllocaSize || Offset != 0)
560         ScalarKind = Integer;
561
562       IsNotTrivial = true;  // Can't be mem2reg'd.
563       HadNonMemTransferAccess = true;
564       continue;
565     }
566
567     // If this is a memcpy or memmove into or out of the whole allocation, we
568     // can handle it like a load or store of the scalar type.
569     if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(UI)) {
570       // Store to dynamic index.
571       if (NonConstantIdx)
572         return false;
573       ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength());
574       if (!Len || Len->getZExtValue() != AllocaSize || Offset != 0)
575         return false;
576
577       IsNotTrivial = true;  // Can't be mem2reg'd.
578       continue;
579     }
580
581     // If this is a lifetime intrinsic, we can handle it.
582     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(UI)) {
583       if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
584           II->getIntrinsicID() == Intrinsic::lifetime_end) {
585         continue;
586       }
587     }
588
589     // Otherwise, we cannot handle this!
590     return false;
591   }
592
593   return true;
594 }
595
596 /// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
597 /// directly.  This happens when we are converting an "integer union" to a
598 /// single integer scalar, or when we are converting a "vector union" to a
599 /// vector with insert/extractelement instructions.
600 ///
601 /// Offset is an offset from the original alloca, in bits that need to be
602 /// shifted to the right.  By the end of this, there should be no uses of Ptr.
603 void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI,
604                                               uint64_t Offset,
605                                               Value* NonConstantIdx) {
606   while (!Ptr->use_empty()) {
607     Instruction *User = cast<Instruction>(Ptr->user_back());
608
609     if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
610       ConvertUsesToScalar(CI, NewAI, Offset, NonConstantIdx);
611       CI->eraseFromParent();
612       continue;
613     }
614
615     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
616       // Compute the offset that this GEP adds to the pointer.
617       SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
618       Value* GEPNonConstantIdx = nullptr;
619       if (!GEP->hasAllConstantIndices()) {
620         assert(!NonConstantIdx &&
621                "Dynamic GEP reading from dynamic GEP unsupported");
622         GEPNonConstantIdx = Indices.pop_back_val();
623       } else
624         GEPNonConstantIdx = NonConstantIdx;
625       uint64_t GEPOffset = DL.getIndexedOffset(GEP->getPointerOperandType(),
626                                                Indices);
627       ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8, GEPNonConstantIdx);
628       GEP->eraseFromParent();
629       continue;
630     }
631
632     IRBuilder<> Builder(User);
633
634     if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
635       // The load is a bit extract from NewAI shifted right by Offset bits.
636       Value *LoadedVal = Builder.CreateLoad(NewAI);
637       Value *NewLoadVal
638         = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset,
639                                      NonConstantIdx, Builder);
640       LI->replaceAllUsesWith(NewLoadVal);
641       LI->eraseFromParent();
642       continue;
643     }
644
645     if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
646       assert(SI->getOperand(0) != Ptr && "Consistency error!");
647       Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
648       Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset,
649                                              NonConstantIdx, Builder);
650       Builder.CreateStore(New, NewAI);
651       SI->eraseFromParent();
652
653       // If the load we just inserted is now dead, then the inserted store
654       // overwrote the entire thing.
655       if (Old->use_empty())
656         Old->eraseFromParent();
657       continue;
658     }
659
660     // If this is a constant sized memset of a constant value (e.g. 0) we can
661     // transform it into a store of the expanded constant value.
662     if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
663       assert(MSI->getRawDest() == Ptr && "Consistency error!");
664       assert(!NonConstantIdx && "Cannot replace dynamic memset with insert");
665       int64_t SNumBytes = cast<ConstantInt>(MSI->getLength())->getSExtValue();
666       if (SNumBytes > 0 && (SNumBytes >> 32) == 0) {
667         unsigned NumBytes = static_cast<unsigned>(SNumBytes);
668         unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
669
670         // Compute the value replicated the right number of times.
671         APInt APVal(NumBytes*8, Val);
672
673         // Splat the value if non-zero.
674         if (Val)
675           for (unsigned i = 1; i != NumBytes; ++i)
676             APVal |= APVal << 8;
677
678         Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
679         Value *New = ConvertScalar_InsertValue(
680                                     ConstantInt::get(User->getContext(), APVal),
681                                                Old, Offset, nullptr, Builder);
682         Builder.CreateStore(New, NewAI);
683
684         // If the load we just inserted is now dead, then the memset overwrote
685         // the entire thing.
686         if (Old->use_empty())
687           Old->eraseFromParent();
688       }
689       MSI->eraseFromParent();
690       continue;
691     }
692
693     // If this is a memcpy or memmove into or out of the whole allocation, we
694     // can handle it like a load or store of the scalar type.
695     if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
696       assert(Offset == 0 && "must be store to start of alloca");
697       assert(!NonConstantIdx && "Cannot replace dynamic transfer with insert");
698
699       // If the source and destination are both to the same alloca, then this is
700       // a noop copy-to-self, just delete it.  Otherwise, emit a load and store
701       // as appropriate.
702       AllocaInst *OrigAI = cast<AllocaInst>(GetUnderlyingObject(Ptr, DL, 0));
703
704       if (GetUnderlyingObject(MTI->getSource(), DL, 0) != OrigAI) {
705         // Dest must be OrigAI, change this to be a load from the original
706         // pointer (bitcasted), then a store to our new alloca.
707         assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
708         Value *SrcPtr = MTI->getSource();
709         PointerType* SPTy = cast<PointerType>(SrcPtr->getType());
710         PointerType* AIPTy = cast<PointerType>(NewAI->getType());
711         if (SPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
712           AIPTy = PointerType::get(AIPTy->getElementType(),
713                                    SPTy->getAddressSpace());
714         }
715         SrcPtr = Builder.CreateBitCast(SrcPtr, AIPTy);
716
717         LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
718         SrcVal->setAlignment(MTI->getAlignment());
719         Builder.CreateStore(SrcVal, NewAI);
720       } else if (GetUnderlyingObject(MTI->getDest(), DL, 0) != OrigAI) {
721         // Src must be OrigAI, change this to be a load from NewAI then a store
722         // through the original dest pointer (bitcasted).
723         assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
724         LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval");
725
726         PointerType* DPTy = cast<PointerType>(MTI->getDest()->getType());
727         PointerType* AIPTy = cast<PointerType>(NewAI->getType());
728         if (DPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
729           AIPTy = PointerType::get(AIPTy->getElementType(),
730                                    DPTy->getAddressSpace());
731         }
732         Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), AIPTy);
733
734         StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr);
735         NewStore->setAlignment(MTI->getAlignment());
736       } else {
737         // Noop transfer. Src == Dst
738       }
739
740       MTI->eraseFromParent();
741       continue;
742     }
743
744     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
745       if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
746           II->getIntrinsicID() == Intrinsic::lifetime_end) {
747         // There's no need to preserve these, as the resulting alloca will be
748         // converted to a register anyways.
749         II->eraseFromParent();
750         continue;
751       }
752     }
753
754     llvm_unreachable("Unsupported operation!");
755   }
756 }
757
758 /// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
759 /// or vector value FromVal, extracting the bits from the offset specified by
760 /// Offset.  This returns the value, which is of type ToType.
761 ///
762 /// This happens when we are converting an "integer union" to a single
763 /// integer scalar, or when we are converting a "vector union" to a vector with
764 /// insert/extractelement instructions.
765 ///
766 /// Offset is an offset from the original alloca, in bits that need to be
767 /// shifted to the right.
768 Value *ConvertToScalarInfo::
769 ConvertScalar_ExtractValue(Value *FromVal, Type *ToType,
770                            uint64_t Offset, Value* NonConstantIdx,
771                            IRBuilder<> &Builder) {
772   // If the load is of the whole new alloca, no conversion is needed.
773   Type *FromType = FromVal->getType();
774   if (FromType == ToType && Offset == 0)
775     return FromVal;
776
777   // If the result alloca is a vector type, this is either an element
778   // access or a bitcast to another vector type of the same size.
779   if (VectorType *VTy = dyn_cast<VectorType>(FromType)) {
780     unsigned FromTypeSize = DL.getTypeAllocSize(FromType);
781     unsigned ToTypeSize = DL.getTypeAllocSize(ToType);
782     if (FromTypeSize == ToTypeSize)
783         return Builder.CreateBitCast(FromVal, ToType);
784
785     // Otherwise it must be an element access.
786     unsigned Elt = 0;
787     if (Offset) {
788       unsigned EltSize = DL.getTypeAllocSizeInBits(VTy->getElementType());
789       Elt = Offset/EltSize;
790       assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
791     }
792     // Return the element extracted out of it.
793     Value *Idx;
794     if (NonConstantIdx) {
795       if (Elt)
796         Idx = Builder.CreateAdd(NonConstantIdx,
797                                 Builder.getInt32(Elt),
798                                 "dyn.offset");
799       else
800         Idx = NonConstantIdx;
801     } else
802       Idx = Builder.getInt32(Elt);
803     Value *V = Builder.CreateExtractElement(FromVal, Idx);
804     if (V->getType() != ToType)
805       V = Builder.CreateBitCast(V, ToType);
806     return V;
807   }
808
809   // If ToType is a first class aggregate, extract out each of the pieces and
810   // use insertvalue's to form the FCA.
811   if (StructType *ST = dyn_cast<StructType>(ToType)) {
812     assert(!NonConstantIdx &&
813            "Dynamic indexing into struct types not supported");
814     const StructLayout &Layout = *DL.getStructLayout(ST);
815     Value *Res = UndefValue::get(ST);
816     for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
817       Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
818                                         Offset+Layout.getElementOffsetInBits(i),
819                                               nullptr, Builder);
820       Res = Builder.CreateInsertValue(Res, Elt, i);
821     }
822     return Res;
823   }
824
825   if (ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
826     assert(!NonConstantIdx &&
827            "Dynamic indexing into array types not supported");
828     uint64_t EltSize = DL.getTypeAllocSizeInBits(AT->getElementType());
829     Value *Res = UndefValue::get(AT);
830     for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
831       Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
832                                               Offset+i*EltSize, nullptr,
833                                               Builder);
834       Res = Builder.CreateInsertValue(Res, Elt, i);
835     }
836     return Res;
837   }
838
839   // Otherwise, this must be a union that was converted to an integer value.
840   IntegerType *NTy = cast<IntegerType>(FromVal->getType());
841
842   // If this is a big-endian system and the load is narrower than the
843   // full alloca type, we need to do a shift to get the right bits.
844   int ShAmt = 0;
845   if (DL.isBigEndian()) {
846     // On big-endian machines, the lowest bit is stored at the bit offset
847     // from the pointer given by getTypeStoreSizeInBits.  This matters for
848     // integers with a bitwidth that is not a multiple of 8.
849     ShAmt = DL.getTypeStoreSizeInBits(NTy) -
850             DL.getTypeStoreSizeInBits(ToType) - Offset;
851   } else {
852     ShAmt = Offset;
853   }
854
855   // Note: we support negative bitwidths (with shl) which are not defined.
856   // We do this to support (f.e.) loads off the end of a structure where
857   // only some bits are used.
858   if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
859     FromVal = Builder.CreateLShr(FromVal,
860                                  ConstantInt::get(FromVal->getType(), ShAmt));
861   else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
862     FromVal = Builder.CreateShl(FromVal,
863                                 ConstantInt::get(FromVal->getType(), -ShAmt));
864
865   // Finally, unconditionally truncate the integer to the right width.
866   unsigned LIBitWidth = DL.getTypeSizeInBits(ToType);
867   if (LIBitWidth < NTy->getBitWidth())
868     FromVal =
869       Builder.CreateTrunc(FromVal, IntegerType::get(FromVal->getContext(),
870                                                     LIBitWidth));
871   else if (LIBitWidth > NTy->getBitWidth())
872     FromVal =
873        Builder.CreateZExt(FromVal, IntegerType::get(FromVal->getContext(),
874                                                     LIBitWidth));
875
876   // If the result is an integer, this is a trunc or bitcast.
877   if (ToType->isIntegerTy()) {
878     // Should be done.
879   } else if (ToType->isFloatingPointTy() || ToType->isVectorTy()) {
880     // Just do a bitcast, we know the sizes match up.
881     FromVal = Builder.CreateBitCast(FromVal, ToType);
882   } else {
883     // Otherwise must be a pointer.
884     FromVal = Builder.CreateIntToPtr(FromVal, ToType);
885   }
886   assert(FromVal->getType() == ToType && "Didn't convert right?");
887   return FromVal;
888 }
889
890 /// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
891 /// or vector value "Old" at the offset specified by Offset.
892 ///
893 /// This happens when we are converting an "integer union" to a
894 /// single integer scalar, or when we are converting a "vector union" to a
895 /// vector with insert/extractelement instructions.
896 ///
897 /// Offset is an offset from the original alloca, in bits that need to be
898 /// shifted to the right.
899 ///
900 /// NonConstantIdx is an index value if there was a GEP with a non-constant
901 /// index value.  If this is 0 then all GEPs used to find this insert address
902 /// are constant.
903 Value *ConvertToScalarInfo::
904 ConvertScalar_InsertValue(Value *SV, Value *Old,
905                           uint64_t Offset, Value* NonConstantIdx,
906                           IRBuilder<> &Builder) {
907   // Convert the stored type to the actual type, shift it left to insert
908   // then 'or' into place.
909   Type *AllocaType = Old->getType();
910   LLVMContext &Context = Old->getContext();
911
912   if (VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
913     uint64_t VecSize = DL.getTypeAllocSizeInBits(VTy);
914     uint64_t ValSize = DL.getTypeAllocSizeInBits(SV->getType());
915
916     // Changing the whole vector with memset or with an access of a different
917     // vector type?
918     if (ValSize == VecSize)
919         return Builder.CreateBitCast(SV, AllocaType);
920
921     // Must be an element insertion.
922     Type *EltTy = VTy->getElementType();
923     if (SV->getType() != EltTy)
924       SV = Builder.CreateBitCast(SV, EltTy);
925     uint64_t EltSize = DL.getTypeAllocSizeInBits(EltTy);
926     unsigned Elt = Offset/EltSize;
927     Value *Idx;
928     if (NonConstantIdx) {
929       if (Elt)
930         Idx = Builder.CreateAdd(NonConstantIdx,
931                                 Builder.getInt32(Elt),
932                                 "dyn.offset");
933       else
934         Idx = NonConstantIdx;
935     } else
936       Idx = Builder.getInt32(Elt);
937     return Builder.CreateInsertElement(Old, SV, Idx);
938   }
939
940   // If SV is a first-class aggregate value, insert each value recursively.
941   if (StructType *ST = dyn_cast<StructType>(SV->getType())) {
942     assert(!NonConstantIdx &&
943            "Dynamic indexing into struct types not supported");
944     const StructLayout &Layout = *DL.getStructLayout(ST);
945     for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
946       Value *Elt = Builder.CreateExtractValue(SV, i);
947       Old = ConvertScalar_InsertValue(Elt, Old,
948                                       Offset+Layout.getElementOffsetInBits(i),
949                                       nullptr, Builder);
950     }
951     return Old;
952   }
953
954   if (ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
955     assert(!NonConstantIdx &&
956            "Dynamic indexing into array types not supported");
957     uint64_t EltSize = DL.getTypeAllocSizeInBits(AT->getElementType());
958     for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
959       Value *Elt = Builder.CreateExtractValue(SV, i);
960       Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, nullptr,
961                                       Builder);
962     }
963     return Old;
964   }
965
966   // If SV is a float, convert it to the appropriate integer type.
967   // If it is a pointer, do the same.
968   unsigned SrcWidth = DL.getTypeSizeInBits(SV->getType());
969   unsigned DestWidth = DL.getTypeSizeInBits(AllocaType);
970   unsigned SrcStoreWidth = DL.getTypeStoreSizeInBits(SV->getType());
971   unsigned DestStoreWidth = DL.getTypeStoreSizeInBits(AllocaType);
972   if (SV->getType()->isFloatingPointTy() || SV->getType()->isVectorTy())
973     SV = Builder.CreateBitCast(SV, IntegerType::get(SV->getContext(),SrcWidth));
974   else if (SV->getType()->isPointerTy())
975     SV = Builder.CreatePtrToInt(SV, DL.getIntPtrType(SV->getType()));
976
977   // Zero extend or truncate the value if needed.
978   if (SV->getType() != AllocaType) {
979     if (SV->getType()->getPrimitiveSizeInBits() <
980              AllocaType->getPrimitiveSizeInBits())
981       SV = Builder.CreateZExt(SV, AllocaType);
982     else {
983       // Truncation may be needed if storing more than the alloca can hold
984       // (undefined behavior).
985       SV = Builder.CreateTrunc(SV, AllocaType);
986       SrcWidth = DestWidth;
987       SrcStoreWidth = DestStoreWidth;
988     }
989   }
990
991   // If this is a big-endian system and the store is narrower than the
992   // full alloca type, we need to do a shift to get the right bits.
993   int ShAmt = 0;
994   if (DL.isBigEndian()) {
995     // On big-endian machines, the lowest bit is stored at the bit offset
996     // from the pointer given by getTypeStoreSizeInBits.  This matters for
997     // integers with a bitwidth that is not a multiple of 8.
998     ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
999   } else {
1000     ShAmt = Offset;
1001   }
1002
1003   // Note: we support negative bitwidths (with shr) which are not defined.
1004   // We do this to support (f.e.) stores off the end of a structure where
1005   // only some bits in the structure are set.
1006   APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
1007   if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
1008     SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(), ShAmt));
1009     Mask <<= ShAmt;
1010   } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
1011     SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(), -ShAmt));
1012     Mask = Mask.lshr(-ShAmt);
1013   }
1014
1015   // Mask out the bits we are about to insert from the old value, and or
1016   // in the new bits.
1017   if (SrcWidth != DestWidth) {
1018     assert(DestWidth > SrcWidth);
1019     Old = Builder.CreateAnd(Old, ConstantInt::get(Context, ~Mask), "mask");
1020     SV = Builder.CreateOr(Old, SV, "ins");
1021   }
1022   return SV;
1023 }
1024
1025
1026 //===----------------------------------------------------------------------===//
1027 // SRoA Driver
1028 //===----------------------------------------------------------------------===//
1029
1030
1031 bool SROA::runOnFunction(Function &F) {
1032   if (skipOptnoneFunction(F))
1033     return false;
1034
1035   bool Changed = performPromotion(F);
1036
1037   while (1) {
1038     bool LocalChange = performScalarRepl(F);
1039     if (!LocalChange) break;   // No need to repromote if no scalarrepl
1040     Changed = true;
1041     LocalChange = performPromotion(F);
1042     if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
1043   }
1044
1045   return Changed;
1046 }
1047
1048 namespace {
1049 class AllocaPromoter : public LoadAndStorePromoter {
1050   AllocaInst *AI;
1051   DIBuilder *DIB;
1052   SmallVector<DbgDeclareInst *, 4> DDIs;
1053   SmallVector<DbgValueInst *, 4> DVIs;
1054 public:
1055   AllocaPromoter(ArrayRef<Instruction*> Insts, SSAUpdater &S,
1056                  DIBuilder *DB)
1057     : LoadAndStorePromoter(Insts, S), AI(nullptr), DIB(DB) {}
1058
1059   void run(AllocaInst *AI, const SmallVectorImpl<Instruction*> &Insts) {
1060     // Remember which alloca we're promoting (for isInstInList).
1061     this->AI = AI;
1062     if (auto *L = LocalAsMetadata::getIfExists(AI)) {
1063       if (auto *DINode = MetadataAsValue::getIfExists(AI->getContext(), L)) {
1064         for (User *U : DINode->users())
1065           if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U))
1066             DDIs.push_back(DDI);
1067           else if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U))
1068             DVIs.push_back(DVI);
1069       }
1070     }
1071
1072     LoadAndStorePromoter::run(Insts);
1073     AI->eraseFromParent();
1074     for (SmallVectorImpl<DbgDeclareInst *>::iterator I = DDIs.begin(),
1075            E = DDIs.end(); I != E; ++I) {
1076       DbgDeclareInst *DDI = *I;
1077       DDI->eraseFromParent();
1078     }
1079     for (SmallVectorImpl<DbgValueInst *>::iterator I = DVIs.begin(),
1080            E = DVIs.end(); I != E; ++I) {
1081       DbgValueInst *DVI = *I;
1082       DVI->eraseFromParent();
1083     }
1084   }
1085
1086   bool isInstInList(Instruction *I,
1087                     const SmallVectorImpl<Instruction*> &Insts) const override {
1088     if (LoadInst *LI = dyn_cast<LoadInst>(I))
1089       return LI->getOperand(0) == AI;
1090     return cast<StoreInst>(I)->getPointerOperand() == AI;
1091   }
1092
1093   void updateDebugInfo(Instruction *Inst) const override {
1094     for (SmallVectorImpl<DbgDeclareInst *>::const_iterator I = DDIs.begin(),
1095            E = DDIs.end(); I != E; ++I) {
1096       DbgDeclareInst *DDI = *I;
1097       if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
1098         ConvertDebugDeclareToDebugValue(DDI, SI, *DIB);
1099       else if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
1100         ConvertDebugDeclareToDebugValue(DDI, LI, *DIB);
1101     }
1102     for (SmallVectorImpl<DbgValueInst *>::const_iterator I = DVIs.begin(),
1103            E = DVIs.end(); I != E; ++I) {
1104       DbgValueInst *DVI = *I;
1105       Value *Arg = nullptr;
1106       if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
1107         // If an argument is zero extended then use argument directly. The ZExt
1108         // may be zapped by an optimization pass in future.
1109         if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
1110           Arg = dyn_cast<Argument>(ZExt->getOperand(0));
1111         if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
1112           Arg = dyn_cast<Argument>(SExt->getOperand(0));
1113         if (!Arg)
1114           Arg = SI->getOperand(0);
1115       } else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
1116         Arg = LI->getOperand(0);
1117       } else {
1118         continue;
1119       }
1120       DIB->insertDbgValueIntrinsic(Arg, 0, DVI->getVariable(),
1121                                    DVI->getExpression(), DVI->getDebugLoc(),
1122                                    Inst);
1123     }
1124   }
1125 };
1126 } // end anon namespace
1127
1128 /// isSafeSelectToSpeculate - Select instructions that use an alloca and are
1129 /// subsequently loaded can be rewritten to load both input pointers and then
1130 /// select between the result, allowing the load of the alloca to be promoted.
1131 /// From this:
1132 ///   %P2 = select i1 %cond, i32* %Alloca, i32* %Other
1133 ///   %V = load i32* %P2
1134 /// to:
1135 ///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1136 ///   %V2 = load i32* %Other
1137 ///   %V = select i1 %cond, i32 %V1, i32 %V2
1138 ///
1139 /// We can do this to a select if its only uses are loads and if the operand to
1140 /// the select can be loaded unconditionally.
1141 static bool isSafeSelectToSpeculate(SelectInst *SI) {
1142   const DataLayout &DL = SI->getModule()->getDataLayout();
1143   bool TDerefable = isDereferenceablePointer(SI->getTrueValue(), DL);
1144   bool FDerefable = isDereferenceablePointer(SI->getFalseValue(), DL);
1145
1146   for (User *U : SI->users()) {
1147     LoadInst *LI = dyn_cast<LoadInst>(U);
1148     if (!LI || !LI->isSimple()) return false;
1149
1150     // Both operands to the select need to be dereferencable, either absolutely
1151     // (e.g. allocas) or at this point because we can see other accesses to it.
1152     if (!TDerefable &&
1153         !isSafeToLoadUnconditionally(SI->getTrueValue(), LI,
1154                                      LI->getAlignment()))
1155       return false;
1156     if (!FDerefable &&
1157         !isSafeToLoadUnconditionally(SI->getFalseValue(), LI,
1158                                      LI->getAlignment()))
1159       return false;
1160   }
1161
1162   return true;
1163 }
1164
1165 /// isSafePHIToSpeculate - PHI instructions that use an alloca and are
1166 /// subsequently loaded can be rewritten to load both input pointers in the pred
1167 /// blocks and then PHI the results, allowing the load of the alloca to be
1168 /// promoted.
1169 /// From this:
1170 ///   %P2 = phi [i32* %Alloca, i32* %Other]
1171 ///   %V = load i32* %P2
1172 /// to:
1173 ///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1174 ///   ...
1175 ///   %V2 = load i32* %Other
1176 ///   ...
1177 ///   %V = phi [i32 %V1, i32 %V2]
1178 ///
1179 /// We can do this to a select if its only uses are loads and if the operand to
1180 /// the select can be loaded unconditionally.
1181 static bool isSafePHIToSpeculate(PHINode *PN) {
1182   // For now, we can only do this promotion if the load is in the same block as
1183   // the PHI, and if there are no stores between the phi and load.
1184   // TODO: Allow recursive phi users.
1185   // TODO: Allow stores.
1186   BasicBlock *BB = PN->getParent();
1187   unsigned MaxAlign = 0;
1188   for (User *U : PN->users()) {
1189     LoadInst *LI = dyn_cast<LoadInst>(U);
1190     if (!LI || !LI->isSimple()) return false;
1191
1192     // For now we only allow loads in the same block as the PHI.  This is a
1193     // common case that happens when instcombine merges two loads through a PHI.
1194     if (LI->getParent() != BB) return false;
1195
1196     // Ensure that there are no instructions between the PHI and the load that
1197     // could store.
1198     for (BasicBlock::iterator BBI(PN); &*BBI != LI; ++BBI)
1199       if (BBI->mayWriteToMemory())
1200         return false;
1201
1202     MaxAlign = std::max(MaxAlign, LI->getAlignment());
1203   }
1204
1205   const DataLayout &DL = PN->getModule()->getDataLayout();
1206
1207   // Okay, we know that we have one or more loads in the same block as the PHI.
1208   // We can transform this if it is safe to push the loads into the predecessor
1209   // blocks.  The only thing to watch out for is that we can't put a possibly
1210   // trapping load in the predecessor if it is a critical edge.
1211   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1212     BasicBlock *Pred = PN->getIncomingBlock(i);
1213     Value *InVal = PN->getIncomingValue(i);
1214
1215     // If the terminator of the predecessor has side-effects (an invoke),
1216     // there is no safe place to put a load in the predecessor.
1217     if (Pred->getTerminator()->mayHaveSideEffects())
1218       return false;
1219
1220     // If the value is produced by the terminator of the predecessor
1221     // (an invoke), there is no valid place to put a load in the predecessor.
1222     if (Pred->getTerminator() == InVal)
1223       return false;
1224
1225     // If the predecessor has a single successor, then the edge isn't critical.
1226     if (Pred->getTerminator()->getNumSuccessors() == 1)
1227       continue;
1228
1229     // If this pointer is always safe to load, or if we can prove that there is
1230     // already a load in the block, then we can move the load to the pred block.
1231     if (isDereferenceablePointer(InVal, DL) ||
1232         isSafeToLoadUnconditionally(InVal, Pred->getTerminator(), MaxAlign))
1233       continue;
1234
1235     return false;
1236   }
1237
1238   return true;
1239 }
1240
1241
1242 /// tryToMakeAllocaBePromotable - This returns true if the alloca only has
1243 /// direct (non-volatile) loads and stores to it.  If the alloca is close but
1244 /// not quite there, this will transform the code to allow promotion.  As such,
1245 /// it is a non-pure predicate.
1246 static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const DataLayout &DL) {
1247   SetVector<Instruction*, SmallVector<Instruction*, 4>,
1248             SmallPtrSet<Instruction*, 4> > InstsToRewrite;
1249   for (User *U : AI->users()) {
1250     if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1251       if (!LI->isSimple())
1252         return false;
1253       continue;
1254     }
1255
1256     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1257       if (SI->getOperand(0) == AI || !SI->isSimple())
1258         return false;   // Don't allow a store OF the AI, only INTO the AI.
1259       continue;
1260     }
1261
1262     if (SelectInst *SI = dyn_cast<SelectInst>(U)) {
1263       // If the condition being selected on is a constant, fold the select, yes
1264       // this does (rarely) happen early on.
1265       if (ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition())) {
1266         Value *Result = SI->getOperand(1+CI->isZero());
1267         SI->replaceAllUsesWith(Result);
1268         SI->eraseFromParent();
1269
1270         // This is very rare and we just scrambled the use list of AI, start
1271         // over completely.
1272         return tryToMakeAllocaBePromotable(AI, DL);
1273       }
1274
1275       // If it is safe to turn "load (select c, AI, ptr)" into a select of two
1276       // loads, then we can transform this by rewriting the select.
1277       if (!isSafeSelectToSpeculate(SI))
1278         return false;
1279
1280       InstsToRewrite.insert(SI);
1281       continue;
1282     }
1283
1284     if (PHINode *PN = dyn_cast<PHINode>(U)) {
1285       if (PN->use_empty()) {  // Dead PHIs can be stripped.
1286         InstsToRewrite.insert(PN);
1287         continue;
1288       }
1289
1290       // If it is safe to turn "load (phi [AI, ptr, ...])" into a PHI of loads
1291       // in the pred blocks, then we can transform this by rewriting the PHI.
1292       if (!isSafePHIToSpeculate(PN))
1293         return false;
1294
1295       InstsToRewrite.insert(PN);
1296       continue;
1297     }
1298
1299     if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
1300       if (onlyUsedByLifetimeMarkers(BCI)) {
1301         InstsToRewrite.insert(BCI);
1302         continue;
1303       }
1304     }
1305
1306     return false;
1307   }
1308
1309   // If there are no instructions to rewrite, then all uses are load/stores and
1310   // we're done!
1311   if (InstsToRewrite.empty())
1312     return true;
1313
1314   // If we have instructions that need to be rewritten for this to be promotable
1315   // take care of it now.
1316   for (unsigned i = 0, e = InstsToRewrite.size(); i != e; ++i) {
1317     if (BitCastInst *BCI = dyn_cast<BitCastInst>(InstsToRewrite[i])) {
1318       // This could only be a bitcast used by nothing but lifetime intrinsics.
1319       for (BitCastInst::user_iterator I = BCI->user_begin(), E = BCI->user_end();
1320            I != E;)
1321         cast<Instruction>(*I++)->eraseFromParent();
1322       BCI->eraseFromParent();
1323       continue;
1324     }
1325
1326     if (SelectInst *SI = dyn_cast<SelectInst>(InstsToRewrite[i])) {
1327       // Selects in InstsToRewrite only have load uses.  Rewrite each as two
1328       // loads with a new select.
1329       while (!SI->use_empty()) {
1330         LoadInst *LI = cast<LoadInst>(SI->user_back());
1331
1332         IRBuilder<> Builder(LI);
1333         LoadInst *TrueLoad =
1334           Builder.CreateLoad(SI->getTrueValue(), LI->getName()+".t");
1335         LoadInst *FalseLoad =
1336           Builder.CreateLoad(SI->getFalseValue(), LI->getName()+".f");
1337
1338         // Transfer alignment and AA info if present.
1339         TrueLoad->setAlignment(LI->getAlignment());
1340         FalseLoad->setAlignment(LI->getAlignment());
1341
1342         AAMDNodes Tags;
1343         LI->getAAMetadata(Tags);
1344         if (Tags) {
1345           TrueLoad->setAAMetadata(Tags);
1346           FalseLoad->setAAMetadata(Tags);
1347         }
1348
1349         Value *V = Builder.CreateSelect(SI->getCondition(), TrueLoad, FalseLoad);
1350         V->takeName(LI);
1351         LI->replaceAllUsesWith(V);
1352         LI->eraseFromParent();
1353       }
1354
1355       // Now that all the loads are gone, the select is gone too.
1356       SI->eraseFromParent();
1357       continue;
1358     }
1359
1360     // Otherwise, we have a PHI node which allows us to push the loads into the
1361     // predecessors.
1362     PHINode *PN = cast<PHINode>(InstsToRewrite[i]);
1363     if (PN->use_empty()) {
1364       PN->eraseFromParent();
1365       continue;
1366     }
1367
1368     Type *LoadTy = cast<PointerType>(PN->getType())->getElementType();
1369     PHINode *NewPN = PHINode::Create(LoadTy, PN->getNumIncomingValues(),
1370                                      PN->getName()+".ld", PN);
1371
1372     // Get the AA tags and alignment to use from one of the loads.  It doesn't
1373     // matter which one we get and if any differ, it doesn't matter.
1374     LoadInst *SomeLoad = cast<LoadInst>(PN->user_back());
1375
1376     AAMDNodes AATags;
1377     SomeLoad->getAAMetadata(AATags);
1378     unsigned Align = SomeLoad->getAlignment();
1379
1380     // Rewrite all loads of the PN to use the new PHI.
1381     while (!PN->use_empty()) {
1382       LoadInst *LI = cast<LoadInst>(PN->user_back());
1383       LI->replaceAllUsesWith(NewPN);
1384       LI->eraseFromParent();
1385     }
1386
1387     // Inject loads into all of the pred blocks.  Keep track of which blocks we
1388     // insert them into in case we have multiple edges from the same block.
1389     DenseMap<BasicBlock*, LoadInst*> InsertedLoads;
1390
1391     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1392       BasicBlock *Pred = PN->getIncomingBlock(i);
1393       LoadInst *&Load = InsertedLoads[Pred];
1394       if (!Load) {
1395         Load = new LoadInst(PN->getIncomingValue(i),
1396                             PN->getName() + "." + Pred->getName(),
1397                             Pred->getTerminator());
1398         Load->setAlignment(Align);
1399         if (AATags) Load->setAAMetadata(AATags);
1400       }
1401
1402       NewPN->addIncoming(Load, Pred);
1403     }
1404
1405     PN->eraseFromParent();
1406   }
1407
1408   ++NumAdjusted;
1409   return true;
1410 }
1411
1412 bool SROA::performPromotion(Function &F) {
1413   std::vector<AllocaInst*> Allocas;
1414   const DataLayout &DL = F.getParent()->getDataLayout();
1415   DominatorTree *DT = nullptr;
1416   if (HasDomTree)
1417     DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1418   AssumptionCache &AC =
1419       getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1420
1421   BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
1422   DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
1423   bool Changed = false;
1424   SmallVector<Instruction*, 64> Insts;
1425   while (1) {
1426     Allocas.clear();
1427
1428     // Find allocas that are safe to promote, by looking at all instructions in
1429     // the entry node
1430     for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
1431       if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
1432         if (tryToMakeAllocaBePromotable(AI, DL))
1433           Allocas.push_back(AI);
1434
1435     if (Allocas.empty()) break;
1436
1437     if (HasDomTree)
1438       PromoteMemToReg(Allocas, *DT, nullptr, &AC);
1439     else {
1440       SSAUpdater SSA;
1441       for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
1442         AllocaInst *AI = Allocas[i];
1443
1444         // Build list of instructions to promote.
1445         for (User *U : AI->users())
1446           Insts.push_back(cast<Instruction>(U));
1447         AllocaPromoter(Insts, SSA, &DIB).run(AI, Insts);
1448         Insts.clear();
1449       }
1450     }
1451     NumPromoted += Allocas.size();
1452     Changed = true;
1453   }
1454
1455   return Changed;
1456 }
1457
1458
1459 /// ShouldAttemptScalarRepl - Decide if an alloca is a good candidate for
1460 /// SROA.  It must be a struct or array type with a small number of elements.
1461 bool SROA::ShouldAttemptScalarRepl(AllocaInst *AI) {
1462   Type *T = AI->getAllocatedType();
1463   // Do not promote any struct that has too many members.
1464   if (StructType *ST = dyn_cast<StructType>(T))
1465     return ST->getNumElements() <= StructMemberThreshold;
1466   // Do not promote any array that has too many elements.
1467   if (ArrayType *AT = dyn_cast<ArrayType>(T))
1468     return AT->getNumElements() <= ArrayElementThreshold;
1469   return false;
1470 }
1471
1472 // performScalarRepl - This algorithm is a simple worklist driven algorithm,
1473 // which runs on all of the alloca instructions in the entry block, removing
1474 // them if they are only used by getelementptr instructions.
1475 //
1476 bool SROA::performScalarRepl(Function &F) {
1477   std::vector<AllocaInst*> WorkList;
1478   const DataLayout &DL = F.getParent()->getDataLayout();
1479
1480   // Scan the entry basic block, adding allocas to the worklist.
1481   BasicBlock &BB = F.getEntryBlock();
1482   for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
1483     if (AllocaInst *A = dyn_cast<AllocaInst>(I))
1484       WorkList.push_back(A);
1485
1486   // Process the worklist
1487   bool Changed = false;
1488   while (!WorkList.empty()) {
1489     AllocaInst *AI = WorkList.back();
1490     WorkList.pop_back();
1491
1492     // Handle dead allocas trivially.  These can be formed by SROA'ing arrays
1493     // with unused elements.
1494     if (AI->use_empty()) {
1495       AI->eraseFromParent();
1496       Changed = true;
1497       continue;
1498     }
1499
1500     // If this alloca is impossible for us to promote, reject it early.
1501     if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
1502       continue;
1503
1504     // Check to see if we can perform the core SROA transformation.  We cannot
1505     // transform the allocation instruction if it is an array allocation
1506     // (allocations OF arrays are ok though), and an allocation of a scalar
1507     // value cannot be decomposed at all.
1508     uint64_t AllocaSize = DL.getTypeAllocSize(AI->getAllocatedType());
1509
1510     // Do not promote [0 x %struct].
1511     if (AllocaSize == 0) continue;
1512
1513     // Do not promote any struct whose size is too big.
1514     if (AllocaSize > SRThreshold) continue;
1515
1516     // If the alloca looks like a good candidate for scalar replacement, and if
1517     // all its users can be transformed, then split up the aggregate into its
1518     // separate elements.
1519     if (ShouldAttemptScalarRepl(AI) && isSafeAllocaToScalarRepl(AI)) {
1520       DoScalarReplacement(AI, WorkList);
1521       Changed = true;
1522       continue;
1523     }
1524
1525     // If we can turn this aggregate value (potentially with casts) into a
1526     // simple scalar value that can be mem2reg'd into a register value.
1527     // IsNotTrivial tracks whether this is something that mem2reg could have
1528     // promoted itself.  If so, we don't want to transform it needlessly.  Note
1529     // that we can't just check based on the type: the alloca may be of an i32
1530     // but that has pointer arithmetic to set byte 3 of it or something.
1531     if (AllocaInst *NewAI =
1532             ConvertToScalarInfo((unsigned)AllocaSize, DL, ScalarLoadThreshold)
1533                 .TryConvert(AI)) {
1534       NewAI->takeName(AI);
1535       AI->eraseFromParent();
1536       ++NumConverted;
1537       Changed = true;
1538       continue;
1539     }
1540
1541     // Otherwise, couldn't process this alloca.
1542   }
1543
1544   return Changed;
1545 }
1546
1547 /// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
1548 /// predicate, do SROA now.
1549 void SROA::DoScalarReplacement(AllocaInst *AI,
1550                                std::vector<AllocaInst*> &WorkList) {
1551   DEBUG(dbgs() << "Found inst to SROA: " << *AI << '\n');
1552   SmallVector<AllocaInst*, 32> ElementAllocas;
1553   if (StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
1554     ElementAllocas.reserve(ST->getNumContainedTypes());
1555     for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
1556       AllocaInst *NA = new AllocaInst(ST->getContainedType(i), nullptr,
1557                                       AI->getAlignment(),
1558                                       AI->getName() + "." + Twine(i), AI);
1559       ElementAllocas.push_back(NA);
1560       WorkList.push_back(NA);  // Add to worklist for recursive processing
1561     }
1562   } else {
1563     ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
1564     ElementAllocas.reserve(AT->getNumElements());
1565     Type *ElTy = AT->getElementType();
1566     for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
1567       AllocaInst *NA = new AllocaInst(ElTy, nullptr, AI->getAlignment(),
1568                                       AI->getName() + "." + Twine(i), AI);
1569       ElementAllocas.push_back(NA);
1570       WorkList.push_back(NA);  // Add to worklist for recursive processing
1571     }
1572   }
1573
1574   // Now that we have created the new alloca instructions, rewrite all the
1575   // uses of the old alloca.
1576   RewriteForScalarRepl(AI, AI, 0, ElementAllocas);
1577
1578   // Now erase any instructions that were made dead while rewriting the alloca.
1579   DeleteDeadInstructions();
1580   AI->eraseFromParent();
1581
1582   ++NumReplaced;
1583 }
1584
1585 /// DeleteDeadInstructions - Erase instructions on the DeadInstrs list,
1586 /// recursively including all their operands that become trivially dead.
1587 void SROA::DeleteDeadInstructions() {
1588   while (!DeadInsts.empty()) {
1589     Instruction *I = cast<Instruction>(DeadInsts.pop_back_val());
1590
1591     for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
1592       if (Instruction *U = dyn_cast<Instruction>(*OI)) {
1593         // Zero out the operand and see if it becomes trivially dead.
1594         // (But, don't add allocas to the dead instruction list -- they are
1595         // already on the worklist and will be deleted separately.)
1596         *OI = nullptr;
1597         if (isInstructionTriviallyDead(U) && !isa<AllocaInst>(U))
1598           DeadInsts.push_back(U);
1599       }
1600
1601     I->eraseFromParent();
1602   }
1603 }
1604
1605 /// isSafeForScalarRepl - Check if instruction I is a safe use with regard to
1606 /// performing scalar replacement of alloca AI.  The results are flagged in
1607 /// the Info parameter.  Offset indicates the position within AI that is
1608 /// referenced by this instruction.
1609 void SROA::isSafeForScalarRepl(Instruction *I, uint64_t Offset,
1610                                AllocaInfo &Info) {
1611   const DataLayout &DL = I->getModule()->getDataLayout();
1612   for (Use &U : I->uses()) {
1613     Instruction *User = cast<Instruction>(U.getUser());
1614
1615     if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1616       isSafeForScalarRepl(BC, Offset, Info);
1617     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1618       uint64_t GEPOffset = Offset;
1619       isSafeGEP(GEPI, GEPOffset, Info);
1620       if (!Info.isUnsafe)
1621         isSafeForScalarRepl(GEPI, GEPOffset, Info);
1622     } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1623       ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1624       if (!Length || Length->isNegative())
1625         return MarkUnsafe(Info, User);
1626
1627       isSafeMemAccess(Offset, Length->getZExtValue(), nullptr,
1628                       U.getOperandNo() == 0, Info, MI,
1629                       true /*AllowWholeAccess*/);
1630     } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1631       if (!LI->isSimple())
1632         return MarkUnsafe(Info, User);
1633       Type *LIType = LI->getType();
1634       isSafeMemAccess(Offset, DL.getTypeAllocSize(LIType), LIType, false, Info,
1635                       LI, true /*AllowWholeAccess*/);
1636       Info.hasALoadOrStore = true;
1637
1638     } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1639       // Store is ok if storing INTO the pointer, not storing the pointer
1640       if (!SI->isSimple() || SI->getOperand(0) == I)
1641         return MarkUnsafe(Info, User);
1642
1643       Type *SIType = SI->getOperand(0)->getType();
1644       isSafeMemAccess(Offset, DL.getTypeAllocSize(SIType), SIType, true, Info,
1645                       SI, true /*AllowWholeAccess*/);
1646       Info.hasALoadOrStore = true;
1647     } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
1648       if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
1649           II->getIntrinsicID() != Intrinsic::lifetime_end)
1650         return MarkUnsafe(Info, User);
1651     } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
1652       isSafePHISelectUseForScalarRepl(User, Offset, Info);
1653     } else {
1654       return MarkUnsafe(Info, User);
1655     }
1656     if (Info.isUnsafe) return;
1657   }
1658 }
1659
1660
1661 /// isSafePHIUseForScalarRepl - If we see a PHI node or select using a pointer
1662 /// derived from the alloca, we can often still split the alloca into elements.
1663 /// This is useful if we have a large alloca where one element is phi'd
1664 /// together somewhere: we can SRoA and promote all the other elements even if
1665 /// we end up not being able to promote this one.
1666 ///
1667 /// All we require is that the uses of the PHI do not index into other parts of
1668 /// the alloca.  The most important use case for this is single load and stores
1669 /// that are PHI'd together, which can happen due to code sinking.
1670 void SROA::isSafePHISelectUseForScalarRepl(Instruction *I, uint64_t Offset,
1671                                            AllocaInfo &Info) {
1672   // If we've already checked this PHI, don't do it again.
1673   if (PHINode *PN = dyn_cast<PHINode>(I))
1674     if (!Info.CheckedPHIs.insert(PN).second)
1675       return;
1676
1677   const DataLayout &DL = I->getModule()->getDataLayout();
1678   for (User *U : I->users()) {
1679     Instruction *UI = cast<Instruction>(U);
1680
1681     if (BitCastInst *BC = dyn_cast<BitCastInst>(UI)) {
1682       isSafePHISelectUseForScalarRepl(BC, Offset, Info);
1683     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(UI)) {
1684       // Only allow "bitcast" GEPs for simplicity.  We could generalize this,
1685       // but would have to prove that we're staying inside of an element being
1686       // promoted.
1687       if (!GEPI->hasAllZeroIndices())
1688         return MarkUnsafe(Info, UI);
1689       isSafePHISelectUseForScalarRepl(GEPI, Offset, Info);
1690     } else if (LoadInst *LI = dyn_cast<LoadInst>(UI)) {
1691       if (!LI->isSimple())
1692         return MarkUnsafe(Info, UI);
1693       Type *LIType = LI->getType();
1694       isSafeMemAccess(Offset, DL.getTypeAllocSize(LIType), LIType, false, Info,
1695                       LI, false /*AllowWholeAccess*/);
1696       Info.hasALoadOrStore = true;
1697
1698     } else if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1699       // Store is ok if storing INTO the pointer, not storing the pointer
1700       if (!SI->isSimple() || SI->getOperand(0) == I)
1701         return MarkUnsafe(Info, UI);
1702
1703       Type *SIType = SI->getOperand(0)->getType();
1704       isSafeMemAccess(Offset, DL.getTypeAllocSize(SIType), SIType, true, Info,
1705                       SI, false /*AllowWholeAccess*/);
1706       Info.hasALoadOrStore = true;
1707     } else if (isa<PHINode>(UI) || isa<SelectInst>(UI)) {
1708       isSafePHISelectUseForScalarRepl(UI, Offset, Info);
1709     } else {
1710       return MarkUnsafe(Info, UI);
1711     }
1712     if (Info.isUnsafe) return;
1713   }
1714 }
1715
1716 /// isSafeGEP - Check if a GEP instruction can be handled for scalar
1717 /// replacement.  It is safe when all the indices are constant, in-bounds
1718 /// references, and when the resulting offset corresponds to an element within
1719 /// the alloca type.  The results are flagged in the Info parameter.  Upon
1720 /// return, Offset is adjusted as specified by the GEP indices.
1721 void SROA::isSafeGEP(GetElementPtrInst *GEPI,
1722                      uint64_t &Offset, AllocaInfo &Info) {
1723   gep_type_iterator GEPIt = gep_type_begin(GEPI), E = gep_type_end(GEPI);
1724   if (GEPIt == E)
1725     return;
1726   bool NonConstant = false;
1727   unsigned NonConstantIdxSize = 0;
1728
1729   // Walk through the GEP type indices, checking the types that this indexes
1730   // into.
1731   for (; GEPIt != E; ++GEPIt) {
1732     // Ignore struct elements, no extra checking needed for these.
1733     if ((*GEPIt)->isStructTy())
1734       continue;
1735
1736     ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPIt.getOperand());
1737     if (!IdxVal)
1738       return MarkUnsafe(Info, GEPI);
1739   }
1740
1741   // Compute the offset due to this GEP and check if the alloca has a
1742   // component element at that offset.
1743   SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
1744   // If this GEP is non-constant then the last operand must have been a
1745   // dynamic index into a vector.  Pop this now as it has no impact on the
1746   // constant part of the offset.
1747   if (NonConstant)
1748     Indices.pop_back();
1749
1750   const DataLayout &DL = GEPI->getModule()->getDataLayout();
1751   Offset += DL.getIndexedOffset(GEPI->getPointerOperandType(), Indices);
1752   if (!TypeHasComponent(Info.AI->getAllocatedType(), Offset, NonConstantIdxSize,
1753                         DL))
1754     MarkUnsafe(Info, GEPI);
1755 }
1756
1757 /// isHomogeneousAggregate - Check if type T is a struct or array containing
1758 /// elements of the same type (which is always true for arrays).  If so,
1759 /// return true with NumElts and EltTy set to the number of elements and the
1760 /// element type, respectively.
1761 static bool isHomogeneousAggregate(Type *T, unsigned &NumElts,
1762                                    Type *&EltTy) {
1763   if (ArrayType *AT = dyn_cast<ArrayType>(T)) {
1764     NumElts = AT->getNumElements();
1765     EltTy = (NumElts == 0 ? nullptr : AT->getElementType());
1766     return true;
1767   }
1768   if (StructType *ST = dyn_cast<StructType>(T)) {
1769     NumElts = ST->getNumContainedTypes();
1770     EltTy = (NumElts == 0 ? nullptr : ST->getContainedType(0));
1771     for (unsigned n = 1; n < NumElts; ++n) {
1772       if (ST->getContainedType(n) != EltTy)
1773         return false;
1774     }
1775     return true;
1776   }
1777   return false;
1778 }
1779
1780 /// isCompatibleAggregate - Check if T1 and T2 are either the same type or are
1781 /// "homogeneous" aggregates with the same element type and number of elements.
1782 static bool isCompatibleAggregate(Type *T1, Type *T2) {
1783   if (T1 == T2)
1784     return true;
1785
1786   unsigned NumElts1, NumElts2;
1787   Type *EltTy1, *EltTy2;
1788   if (isHomogeneousAggregate(T1, NumElts1, EltTy1) &&
1789       isHomogeneousAggregate(T2, NumElts2, EltTy2) &&
1790       NumElts1 == NumElts2 &&
1791       EltTy1 == EltTy2)
1792     return true;
1793
1794   return false;
1795 }
1796
1797 /// isSafeMemAccess - Check if a load/store/memcpy operates on the entire AI
1798 /// alloca or has an offset and size that corresponds to a component element
1799 /// within it.  The offset checked here may have been formed from a GEP with a
1800 /// pointer bitcasted to a different type.
1801 ///
1802 /// If AllowWholeAccess is true, then this allows uses of the entire alloca as a
1803 /// unit.  If false, it only allows accesses known to be in a single element.
1804 void SROA::isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
1805                            Type *MemOpType, bool isStore,
1806                            AllocaInfo &Info, Instruction *TheAccess,
1807                            bool AllowWholeAccess) {
1808   const DataLayout &DL = TheAccess->getModule()->getDataLayout();
1809   // Check if this is a load/store of the entire alloca.
1810   if (Offset == 0 && AllowWholeAccess &&
1811       MemSize == DL.getTypeAllocSize(Info.AI->getAllocatedType())) {
1812     // This can be safe for MemIntrinsics (where MemOpType is 0) and integer
1813     // loads/stores (which are essentially the same as the MemIntrinsics with
1814     // regard to copying padding between elements).  But, if an alloca is
1815     // flagged as both a source and destination of such operations, we'll need
1816     // to check later for padding between elements.
1817     if (!MemOpType || MemOpType->isIntegerTy()) {
1818       if (isStore)
1819         Info.isMemCpyDst = true;
1820       else
1821         Info.isMemCpySrc = true;
1822       return;
1823     }
1824     // This is also safe for references using a type that is compatible with
1825     // the type of the alloca, so that loads/stores can be rewritten using
1826     // insertvalue/extractvalue.
1827     if (isCompatibleAggregate(MemOpType, Info.AI->getAllocatedType())) {
1828       Info.hasSubelementAccess = true;
1829       return;
1830     }
1831   }
1832   // Check if the offset/size correspond to a component within the alloca type.
1833   Type *T = Info.AI->getAllocatedType();
1834   if (TypeHasComponent(T, Offset, MemSize, DL)) {
1835     Info.hasSubelementAccess = true;
1836     return;
1837   }
1838
1839   return MarkUnsafe(Info, TheAccess);
1840 }
1841
1842 /// TypeHasComponent - Return true if T has a component type with the
1843 /// specified offset and size.  If Size is zero, do not check the size.
1844 bool SROA::TypeHasComponent(Type *T, uint64_t Offset, uint64_t Size,
1845                             const DataLayout &DL) {
1846   Type *EltTy;
1847   uint64_t EltSize;
1848   if (StructType *ST = dyn_cast<StructType>(T)) {
1849     const StructLayout *Layout = DL.getStructLayout(ST);
1850     unsigned EltIdx = Layout->getElementContainingOffset(Offset);
1851     EltTy = ST->getContainedType(EltIdx);
1852     EltSize = DL.getTypeAllocSize(EltTy);
1853     Offset -= Layout->getElementOffset(EltIdx);
1854   } else if (ArrayType *AT = dyn_cast<ArrayType>(T)) {
1855     EltTy = AT->getElementType();
1856     EltSize = DL.getTypeAllocSize(EltTy);
1857     if (Offset >= AT->getNumElements() * EltSize)
1858       return false;
1859     Offset %= EltSize;
1860   } else if (VectorType *VT = dyn_cast<VectorType>(T)) {
1861     EltTy = VT->getElementType();
1862     EltSize = DL.getTypeAllocSize(EltTy);
1863     if (Offset >= VT->getNumElements() * EltSize)
1864       return false;
1865     Offset %= EltSize;
1866   } else {
1867     return false;
1868   }
1869   if (Offset == 0 && (Size == 0 || EltSize == Size))
1870     return true;
1871   // Check if the component spans multiple elements.
1872   if (Offset + Size > EltSize)
1873     return false;
1874   return TypeHasComponent(EltTy, Offset, Size, DL);
1875 }
1876
1877 /// RewriteForScalarRepl - Alloca AI is being split into NewElts, so rewrite
1878 /// the instruction I, which references it, to use the separate elements.
1879 /// Offset indicates the position within AI that is referenced by this
1880 /// instruction.
1881 void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
1882                                 SmallVectorImpl<AllocaInst *> &NewElts) {
1883   const DataLayout &DL = I->getModule()->getDataLayout();
1884   for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E;) {
1885     Use &TheUse = *UI++;
1886     Instruction *User = cast<Instruction>(TheUse.getUser());
1887
1888     if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1889       RewriteBitCast(BC, AI, Offset, NewElts);
1890       continue;
1891     }
1892
1893     if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1894       RewriteGEP(GEPI, AI, Offset, NewElts);
1895       continue;
1896     }
1897
1898     if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1899       ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1900       uint64_t MemSize = Length->getZExtValue();
1901       if (Offset == 0 && MemSize == DL.getTypeAllocSize(AI->getAllocatedType()))
1902         RewriteMemIntrinUserOfAlloca(MI, I, AI, NewElts);
1903       // Otherwise the intrinsic can only touch a single element and the
1904       // address operand will be updated, so nothing else needs to be done.
1905       continue;
1906     }
1907
1908     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
1909       if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
1910           II->getIntrinsicID() == Intrinsic::lifetime_end) {
1911         RewriteLifetimeIntrinsic(II, AI, Offset, NewElts);
1912       }
1913       continue;
1914     }
1915
1916     if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1917       Type *LIType = LI->getType();
1918
1919       if (isCompatibleAggregate(LIType, AI->getAllocatedType())) {
1920         // Replace:
1921         //   %res = load { i32, i32 }* %alloc
1922         // with:
1923         //   %load.0 = load i32* %alloc.0
1924         //   %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
1925         //   %load.1 = load i32* %alloc.1
1926         //   %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
1927         // (Also works for arrays instead of structs)
1928         Value *Insert = UndefValue::get(LIType);
1929         IRBuilder<> Builder(LI);
1930         for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1931           Value *Load = Builder.CreateLoad(NewElts[i], "load");
1932           Insert = Builder.CreateInsertValue(Insert, Load, i, "insert");
1933         }
1934         LI->replaceAllUsesWith(Insert);
1935         DeadInsts.push_back(LI);
1936       } else if (LIType->isIntegerTy() &&
1937                  DL.getTypeAllocSize(LIType) ==
1938                      DL.getTypeAllocSize(AI->getAllocatedType())) {
1939         // If this is a load of the entire alloca to an integer, rewrite it.
1940         RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
1941       }
1942       continue;
1943     }
1944
1945     if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1946       Value *Val = SI->getOperand(0);
1947       Type *SIType = Val->getType();
1948       if (isCompatibleAggregate(SIType, AI->getAllocatedType())) {
1949         // Replace:
1950         //   store { i32, i32 } %val, { i32, i32 }* %alloc
1951         // with:
1952         //   %val.0 = extractvalue { i32, i32 } %val, 0
1953         //   store i32 %val.0, i32* %alloc.0
1954         //   %val.1 = extractvalue { i32, i32 } %val, 1
1955         //   store i32 %val.1, i32* %alloc.1
1956         // (Also works for arrays instead of structs)
1957         IRBuilder<> Builder(SI);
1958         for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1959           Value *Extract = Builder.CreateExtractValue(Val, i, Val->getName());
1960           Builder.CreateStore(Extract, NewElts[i]);
1961         }
1962         DeadInsts.push_back(SI);
1963       } else if (SIType->isIntegerTy() &&
1964                  DL.getTypeAllocSize(SIType) ==
1965                      DL.getTypeAllocSize(AI->getAllocatedType())) {
1966         // If this is a store of the entire alloca from an integer, rewrite it.
1967         RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
1968       }
1969       continue;
1970     }
1971
1972     if (isa<SelectInst>(User) || isa<PHINode>(User)) {
1973       // If we have a PHI user of the alloca itself (as opposed to a GEP or
1974       // bitcast) we have to rewrite it.  GEP and bitcast uses will be RAUW'd to
1975       // the new pointer.
1976       if (!isa<AllocaInst>(I)) continue;
1977
1978       assert(Offset == 0 && NewElts[0] &&
1979              "Direct alloca use should have a zero offset");
1980
1981       // If we have a use of the alloca, we know the derived uses will be
1982       // utilizing just the first element of the scalarized result.  Insert a
1983       // bitcast of the first alloca before the user as required.
1984       AllocaInst *NewAI = NewElts[0];
1985       BitCastInst *BCI = new BitCastInst(NewAI, AI->getType(), "", NewAI);
1986       NewAI->moveBefore(BCI);
1987       TheUse = BCI;
1988       continue;
1989     }
1990   }
1991 }
1992
1993 /// RewriteBitCast - Update a bitcast reference to the alloca being replaced
1994 /// and recursively continue updating all of its uses.
1995 void SROA::RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
1996                           SmallVectorImpl<AllocaInst *> &NewElts) {
1997   RewriteForScalarRepl(BC, AI, Offset, NewElts);
1998   if (BC->getOperand(0) != AI)
1999     return;
2000
2001   // The bitcast references the original alloca.  Replace its uses with
2002   // references to the alloca containing offset zero (which is normally at
2003   // index zero, but might not be in cases involving structs with elements
2004   // of size zero).
2005   Type *T = AI->getAllocatedType();
2006   uint64_t EltOffset = 0;
2007   Type *IdxTy;
2008   uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy,
2009                                       BC->getModule()->getDataLayout());
2010   Instruction *Val = NewElts[Idx];
2011   if (Val->getType() != BC->getDestTy()) {
2012     Val = new BitCastInst(Val, BC->getDestTy(), "", BC);
2013     Val->takeName(BC);
2014   }
2015   BC->replaceAllUsesWith(Val);
2016   DeadInsts.push_back(BC);
2017 }
2018
2019 /// FindElementAndOffset - Return the index of the element containing Offset
2020 /// within the specified type, which must be either a struct or an array.
2021 /// Sets T to the type of the element and Offset to the offset within that
2022 /// element.  IdxTy is set to the type of the index result to be used in a
2023 /// GEP instruction.
2024 uint64_t SROA::FindElementAndOffset(Type *&T, uint64_t &Offset, Type *&IdxTy,
2025                                     const DataLayout &DL) {
2026   uint64_t Idx = 0;
2027
2028   if (StructType *ST = dyn_cast<StructType>(T)) {
2029     const StructLayout *Layout = DL.getStructLayout(ST);
2030     Idx = Layout->getElementContainingOffset(Offset);
2031     T = ST->getContainedType(Idx);
2032     Offset -= Layout->getElementOffset(Idx);
2033     IdxTy = Type::getInt32Ty(T->getContext());
2034     return Idx;
2035   } else if (ArrayType *AT = dyn_cast<ArrayType>(T)) {
2036     T = AT->getElementType();
2037     uint64_t EltSize = DL.getTypeAllocSize(T);
2038     Idx = Offset / EltSize;
2039     Offset -= Idx * EltSize;
2040     IdxTy = Type::getInt64Ty(T->getContext());
2041     return Idx;
2042   }
2043   VectorType *VT = cast<VectorType>(T);
2044   T = VT->getElementType();
2045   uint64_t EltSize = DL.getTypeAllocSize(T);
2046   Idx = Offset / EltSize;
2047   Offset -= Idx * EltSize;
2048   IdxTy = Type::getInt64Ty(T->getContext());
2049   return Idx;
2050 }
2051
2052 /// RewriteGEP - Check if this GEP instruction moves the pointer across
2053 /// elements of the alloca that are being split apart, and if so, rewrite
2054 /// the GEP to be relative to the new element.
2055 void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
2056                       SmallVectorImpl<AllocaInst *> &NewElts) {
2057   uint64_t OldOffset = Offset;
2058   const DataLayout &DL = GEPI->getModule()->getDataLayout();
2059   SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
2060   // If the GEP was dynamic then it must have been a dynamic vector lookup.
2061   // In this case, it must be the last GEP operand which is dynamic so keep that
2062   // aside until we've found the constant GEP offset then add it back in at the
2063   // end.
2064   Value* NonConstantIdx = nullptr;
2065   if (!GEPI->hasAllConstantIndices())
2066     NonConstantIdx = Indices.pop_back_val();
2067   Offset += DL.getIndexedOffset(GEPI->getPointerOperandType(), Indices);
2068
2069   RewriteForScalarRepl(GEPI, AI, Offset, NewElts);
2070
2071   Type *T = AI->getAllocatedType();
2072   Type *IdxTy;
2073   uint64_t OldIdx = FindElementAndOffset(T, OldOffset, IdxTy, DL);
2074   if (GEPI->getOperand(0) == AI)
2075     OldIdx = ~0ULL; // Force the GEP to be rewritten.
2076
2077   T = AI->getAllocatedType();
2078   uint64_t EltOffset = Offset;
2079   uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy, DL);
2080
2081   // If this GEP does not move the pointer across elements of the alloca
2082   // being split, then it does not needs to be rewritten.
2083   if (Idx == OldIdx)
2084     return;
2085
2086   Type *i32Ty = Type::getInt32Ty(AI->getContext());
2087   SmallVector<Value*, 8> NewArgs;
2088   NewArgs.push_back(Constant::getNullValue(i32Ty));
2089   while (EltOffset != 0) {
2090     uint64_t EltIdx = FindElementAndOffset(T, EltOffset, IdxTy, DL);
2091     NewArgs.push_back(ConstantInt::get(IdxTy, EltIdx));
2092   }
2093   if (NonConstantIdx) {
2094     Type* GepTy = T;
2095     // This GEP has a dynamic index.  We need to add "i32 0" to index through
2096     // any structs or arrays in the original type until we get to the vector
2097     // to index.
2098     while (!isa<VectorType>(GepTy)) {
2099       NewArgs.push_back(Constant::getNullValue(i32Ty));
2100       GepTy = cast<CompositeType>(GepTy)->getTypeAtIndex(0U);
2101     }
2102     NewArgs.push_back(NonConstantIdx);
2103   }
2104   Instruction *Val = NewElts[Idx];
2105   if (NewArgs.size() > 1) {
2106     Val = GetElementPtrInst::CreateInBounds(Val, NewArgs, "", GEPI);
2107     Val->takeName(GEPI);
2108   }
2109   if (Val->getType() != GEPI->getType())
2110     Val = new BitCastInst(Val, GEPI->getType(), Val->getName(), GEPI);
2111   GEPI->replaceAllUsesWith(Val);
2112   DeadInsts.push_back(GEPI);
2113 }
2114
2115 /// RewriteLifetimeIntrinsic - II is a lifetime.start/lifetime.end. Rewrite it
2116 /// to mark the lifetime of the scalarized memory.
2117 void SROA::RewriteLifetimeIntrinsic(IntrinsicInst *II, AllocaInst *AI,
2118                                     uint64_t Offset,
2119                                     SmallVectorImpl<AllocaInst *> &NewElts) {
2120   ConstantInt *OldSize = cast<ConstantInt>(II->getArgOperand(0));
2121   // Put matching lifetime markers on everything from Offset up to
2122   // Offset+OldSize.
2123   Type *AIType = AI->getAllocatedType();
2124   const DataLayout &DL = II->getModule()->getDataLayout();
2125   uint64_t NewOffset = Offset;
2126   Type *IdxTy;
2127   uint64_t Idx = FindElementAndOffset(AIType, NewOffset, IdxTy, DL);
2128
2129   IRBuilder<> Builder(II);
2130   uint64_t Size = OldSize->getLimitedValue();
2131
2132   if (NewOffset) {
2133     // Splice the first element and index 'NewOffset' bytes in.  SROA will
2134     // split the alloca again later.
2135     unsigned AS = AI->getType()->getAddressSpace();
2136     Value *V = Builder.CreateBitCast(NewElts[Idx], Builder.getInt8PtrTy(AS));
2137     V = Builder.CreateGEP(Builder.getInt8Ty(), V, Builder.getInt64(NewOffset));
2138
2139     IdxTy = NewElts[Idx]->getAllocatedType();
2140     uint64_t EltSize = DL.getTypeAllocSize(IdxTy) - NewOffset;
2141     if (EltSize > Size) {
2142       EltSize = Size;
2143       Size = 0;
2144     } else {
2145       Size -= EltSize;
2146     }
2147     if (II->getIntrinsicID() == Intrinsic::lifetime_start)
2148       Builder.CreateLifetimeStart(V, Builder.getInt64(EltSize));
2149     else
2150       Builder.CreateLifetimeEnd(V, Builder.getInt64(EltSize));
2151     ++Idx;
2152   }
2153
2154   for (; Idx != NewElts.size() && Size; ++Idx) {
2155     IdxTy = NewElts[Idx]->getAllocatedType();
2156     uint64_t EltSize = DL.getTypeAllocSize(IdxTy);
2157     if (EltSize > Size) {
2158       EltSize = Size;
2159       Size = 0;
2160     } else {
2161       Size -= EltSize;
2162     }
2163     if (II->getIntrinsicID() == Intrinsic::lifetime_start)
2164       Builder.CreateLifetimeStart(NewElts[Idx],
2165                                   Builder.getInt64(EltSize));
2166     else
2167       Builder.CreateLifetimeEnd(NewElts[Idx],
2168                                 Builder.getInt64(EltSize));
2169   }
2170   DeadInsts.push_back(II);
2171 }
2172
2173 /// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
2174 /// Rewrite it to copy or set the elements of the scalarized memory.
2175 void
2176 SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
2177                                    AllocaInst *AI,
2178                                    SmallVectorImpl<AllocaInst *> &NewElts) {
2179   // If this is a memcpy/memmove, construct the other pointer as the
2180   // appropriate type.  The "Other" pointer is the pointer that goes to memory
2181   // that doesn't have anything to do with the alloca that we are promoting. For
2182   // memset, this Value* stays null.
2183   Value *OtherPtr = nullptr;
2184   unsigned MemAlignment = MI->getAlignment();
2185   if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
2186     if (Inst == MTI->getRawDest())
2187       OtherPtr = MTI->getRawSource();
2188     else {
2189       assert(Inst == MTI->getRawSource());
2190       OtherPtr = MTI->getRawDest();
2191     }
2192   }
2193
2194   // If there is an other pointer, we want to convert it to the same pointer
2195   // type as AI has, so we can GEP through it safely.
2196   if (OtherPtr) {
2197     unsigned AddrSpace =
2198       cast<PointerType>(OtherPtr->getType())->getAddressSpace();
2199
2200     // Remove bitcasts and all-zero GEPs from OtherPtr.  This is an
2201     // optimization, but it's also required to detect the corner case where
2202     // both pointer operands are referencing the same memory, and where
2203     // OtherPtr may be a bitcast or GEP that currently being rewritten.  (This
2204     // function is only called for mem intrinsics that access the whole
2205     // aggregate, so non-zero GEPs are not an issue here.)
2206     OtherPtr = OtherPtr->stripPointerCasts();
2207
2208     // Copying the alloca to itself is a no-op: just delete it.
2209     if (OtherPtr == AI || OtherPtr == NewElts[0]) {
2210       // This code will run twice for a no-op memcpy -- once for each operand.
2211       // Put only one reference to MI on the DeadInsts list.
2212       for (SmallVectorImpl<Value *>::const_iterator I = DeadInsts.begin(),
2213              E = DeadInsts.end(); I != E; ++I)
2214         if (*I == MI) return;
2215       DeadInsts.push_back(MI);
2216       return;
2217     }
2218
2219     // If the pointer is not the right type, insert a bitcast to the right
2220     // type.
2221     Type *NewTy =
2222       PointerType::get(AI->getType()->getElementType(), AddrSpace);
2223
2224     if (OtherPtr->getType() != NewTy)
2225       OtherPtr = new BitCastInst(OtherPtr, NewTy, OtherPtr->getName(), MI);
2226   }
2227
2228   // Process each element of the aggregate.
2229   bool SROADest = MI->getRawDest() == Inst;
2230
2231   Constant *Zero = Constant::getNullValue(Type::getInt32Ty(MI->getContext()));
2232   const DataLayout &DL = MI->getModule()->getDataLayout();
2233
2234   for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2235     // If this is a memcpy/memmove, emit a GEP of the other element address.
2236     Value *OtherElt = nullptr;
2237     unsigned OtherEltAlign = MemAlignment;
2238
2239     if (OtherPtr) {
2240       Value *Idx[2] = { Zero,
2241                       ConstantInt::get(Type::getInt32Ty(MI->getContext()), i) };
2242       OtherElt = GetElementPtrInst::CreateInBounds(OtherPtr, Idx,
2243                                               OtherPtr->getName()+"."+Twine(i),
2244                                                    MI);
2245       uint64_t EltOffset;
2246       PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
2247       Type *OtherTy = OtherPtrTy->getElementType();
2248       if (StructType *ST = dyn_cast<StructType>(OtherTy)) {
2249         EltOffset = DL.getStructLayout(ST)->getElementOffset(i);
2250       } else {
2251         Type *EltTy = cast<SequentialType>(OtherTy)->getElementType();
2252         EltOffset = DL.getTypeAllocSize(EltTy) * i;
2253       }
2254
2255       // The alignment of the other pointer is the guaranteed alignment of the
2256       // element, which is affected by both the known alignment of the whole
2257       // mem intrinsic and the alignment of the element.  If the alignment of
2258       // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the
2259       // known alignment is just 4 bytes.
2260       OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset);
2261     }
2262
2263     Value *EltPtr = NewElts[i];
2264     Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType();
2265
2266     // If we got down to a scalar, insert a load or store as appropriate.
2267     if (EltTy->isSingleValueType()) {
2268       if (isa<MemTransferInst>(MI)) {
2269         if (SROADest) {
2270           // From Other to Alloca.
2271           Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI);
2272           new StoreInst(Elt, EltPtr, MI);
2273         } else {
2274           // From Alloca to Other.
2275           Value *Elt = new LoadInst(EltPtr, "tmp", MI);
2276           new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI);
2277         }
2278         continue;
2279       }
2280       assert(isa<MemSetInst>(MI));
2281
2282       // If the stored element is zero (common case), just store a null
2283       // constant.
2284       Constant *StoreVal;
2285       if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getArgOperand(1))) {
2286         if (CI->isZero()) {
2287           StoreVal = Constant::getNullValue(EltTy);  // 0.0, null, 0, <0,0>
2288         } else {
2289           // If EltTy is a vector type, get the element type.
2290           Type *ValTy = EltTy->getScalarType();
2291
2292           // Construct an integer with the right value.
2293           unsigned EltSize = DL.getTypeSizeInBits(ValTy);
2294           APInt OneVal(EltSize, CI->getZExtValue());
2295           APInt TotalVal(OneVal);
2296           // Set each byte.
2297           for (unsigned i = 0; 8*i < EltSize; ++i) {
2298             TotalVal = TotalVal.shl(8);
2299             TotalVal |= OneVal;
2300           }
2301
2302           // Convert the integer value to the appropriate type.
2303           StoreVal = ConstantInt::get(CI->getContext(), TotalVal);
2304           if (ValTy->isPointerTy())
2305             StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
2306           else if (ValTy->isFloatingPointTy())
2307             StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
2308           assert(StoreVal->getType() == ValTy && "Type mismatch!");
2309
2310           // If the requested value was a vector constant, create it.
2311           if (EltTy->isVectorTy()) {
2312             unsigned NumElts = cast<VectorType>(EltTy)->getNumElements();
2313             StoreVal = ConstantVector::getSplat(NumElts, StoreVal);
2314           }
2315         }
2316         new StoreInst(StoreVal, EltPtr, MI);
2317         continue;
2318       }
2319       // Otherwise, if we're storing a byte variable, use a memset call for
2320       // this element.
2321     }
2322
2323     unsigned EltSize = DL.getTypeAllocSize(EltTy);
2324     if (!EltSize)
2325       continue;
2326
2327     IRBuilder<> Builder(MI);
2328
2329     // Finally, insert the meminst for this element.
2330     if (isa<MemSetInst>(MI)) {
2331       Builder.CreateMemSet(EltPtr, MI->getArgOperand(1), EltSize,
2332                            MI->isVolatile());
2333     } else {
2334       assert(isa<MemTransferInst>(MI));
2335       Value *Dst = SROADest ? EltPtr : OtherElt;  // Dest ptr
2336       Value *Src = SROADest ? OtherElt : EltPtr;  // Src ptr
2337
2338       if (isa<MemCpyInst>(MI))
2339         Builder.CreateMemCpy(Dst, Src, EltSize, OtherEltAlign,MI->isVolatile());
2340       else
2341         Builder.CreateMemMove(Dst, Src, EltSize,OtherEltAlign,MI->isVolatile());
2342     }
2343   }
2344   DeadInsts.push_back(MI);
2345 }
2346
2347 /// RewriteStoreUserOfWholeAlloca - We found a store of an integer that
2348 /// overwrites the entire allocation.  Extract out the pieces of the stored
2349 /// integer and store them individually.
2350 void
2351 SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
2352                                     SmallVectorImpl<AllocaInst *> &NewElts) {
2353   // Extract each element out of the integer according to its structure offset
2354   // and store the element value to the individual alloca.
2355   Value *SrcVal = SI->getOperand(0);
2356   Type *AllocaEltTy = AI->getAllocatedType();
2357   const DataLayout &DL = SI->getModule()->getDataLayout();
2358   uint64_t AllocaSizeBits = DL.getTypeAllocSizeInBits(AllocaEltTy);
2359
2360   IRBuilder<> Builder(SI);
2361
2362   // Handle tail padding by extending the operand
2363   if (DL.getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
2364     SrcVal = Builder.CreateZExt(SrcVal,
2365                             IntegerType::get(SI->getContext(), AllocaSizeBits));
2366
2367   DEBUG(dbgs() << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << '\n' << *SI
2368                << '\n');
2369
2370   // There are two forms here: AI could be an array or struct.  Both cases
2371   // have different ways to compute the element offset.
2372   if (StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
2373     const StructLayout *Layout = DL.getStructLayout(EltSTy);
2374
2375     for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2376       // Get the number of bits to shift SrcVal to get the value.
2377       Type *FieldTy = EltSTy->getElementType(i);
2378       uint64_t Shift = Layout->getElementOffsetInBits(i);
2379
2380       if (DL.isBigEndian())
2381         Shift = AllocaSizeBits - Shift - DL.getTypeAllocSizeInBits(FieldTy);
2382
2383       Value *EltVal = SrcVal;
2384       if (Shift) {
2385         Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
2386         EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
2387       }
2388
2389       // Truncate down to an integer of the right size.
2390       uint64_t FieldSizeBits = DL.getTypeSizeInBits(FieldTy);
2391
2392       // Ignore zero sized fields like {}, they obviously contain no data.
2393       if (FieldSizeBits == 0) continue;
2394
2395       if (FieldSizeBits != AllocaSizeBits)
2396         EltVal = Builder.CreateTrunc(EltVal,
2397                              IntegerType::get(SI->getContext(), FieldSizeBits));
2398       Value *DestField = NewElts[i];
2399       if (EltVal->getType() == FieldTy) {
2400         // Storing to an integer field of this size, just do it.
2401       } else if (FieldTy->isFloatingPointTy() || FieldTy->isVectorTy()) {
2402         // Bitcast to the right element type (for fp/vector values).
2403         EltVal = Builder.CreateBitCast(EltVal, FieldTy);
2404       } else {
2405         // Otherwise, bitcast the dest pointer (for aggregates).
2406         DestField = Builder.CreateBitCast(DestField,
2407                                      PointerType::getUnqual(EltVal->getType()));
2408       }
2409       new StoreInst(EltVal, DestField, SI);
2410     }
2411
2412   } else {
2413     ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
2414     Type *ArrayEltTy = ATy->getElementType();
2415     uint64_t ElementOffset = DL.getTypeAllocSizeInBits(ArrayEltTy);
2416     uint64_t ElementSizeBits = DL.getTypeSizeInBits(ArrayEltTy);
2417
2418     uint64_t Shift;
2419
2420     if (DL.isBigEndian())
2421       Shift = AllocaSizeBits-ElementOffset;
2422     else
2423       Shift = 0;
2424
2425     for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2426       // Ignore zero sized fields like {}, they obviously contain no data.
2427       if (ElementSizeBits == 0) continue;
2428
2429       Value *EltVal = SrcVal;
2430       if (Shift) {
2431         Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
2432         EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
2433       }
2434
2435       // Truncate down to an integer of the right size.
2436       if (ElementSizeBits != AllocaSizeBits)
2437         EltVal = Builder.CreateTrunc(EltVal,
2438                                      IntegerType::get(SI->getContext(),
2439                                                       ElementSizeBits));
2440       Value *DestField = NewElts[i];
2441       if (EltVal->getType() == ArrayEltTy) {
2442         // Storing to an integer field of this size, just do it.
2443       } else if (ArrayEltTy->isFloatingPointTy() ||
2444                  ArrayEltTy->isVectorTy()) {
2445         // Bitcast to the right element type (for fp/vector values).
2446         EltVal = Builder.CreateBitCast(EltVal, ArrayEltTy);
2447       } else {
2448         // Otherwise, bitcast the dest pointer (for aggregates).
2449         DestField = Builder.CreateBitCast(DestField,
2450                                      PointerType::getUnqual(EltVal->getType()));
2451       }
2452       new StoreInst(EltVal, DestField, SI);
2453
2454       if (DL.isBigEndian())
2455         Shift -= ElementOffset;
2456       else
2457         Shift += ElementOffset;
2458     }
2459   }
2460
2461   DeadInsts.push_back(SI);
2462 }
2463
2464 /// RewriteLoadUserOfWholeAlloca - We found a load of the entire allocation to
2465 /// an integer.  Load the individual pieces to form the aggregate value.
2466 void
2467 SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
2468                                    SmallVectorImpl<AllocaInst *> &NewElts) {
2469   // Extract each element out of the NewElts according to its structure offset
2470   // and form the result value.
2471   Type *AllocaEltTy = AI->getAllocatedType();
2472   const DataLayout &DL = LI->getModule()->getDataLayout();
2473   uint64_t AllocaSizeBits = DL.getTypeAllocSizeInBits(AllocaEltTy);
2474
2475   DEBUG(dbgs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
2476                << '\n');
2477
2478   // There are two forms here: AI could be an array or struct.  Both cases
2479   // have different ways to compute the element offset.
2480   const StructLayout *Layout = nullptr;
2481   uint64_t ArrayEltBitOffset = 0;
2482   if (StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
2483     Layout = DL.getStructLayout(EltSTy);
2484   } else {
2485     Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
2486     ArrayEltBitOffset = DL.getTypeAllocSizeInBits(ArrayEltTy);
2487   }
2488
2489   Value *ResultVal =
2490     Constant::getNullValue(IntegerType::get(LI->getContext(), AllocaSizeBits));
2491
2492   for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2493     // Load the value from the alloca.  If the NewElt is an aggregate, cast
2494     // the pointer to an integer of the same size before doing the load.
2495     Value *SrcField = NewElts[i];
2496     Type *FieldTy =
2497       cast<PointerType>(SrcField->getType())->getElementType();
2498     uint64_t FieldSizeBits = DL.getTypeSizeInBits(FieldTy);
2499
2500     // Ignore zero sized fields like {}, they obviously contain no data.
2501     if (FieldSizeBits == 0) continue;
2502
2503     IntegerType *FieldIntTy = IntegerType::get(LI->getContext(),
2504                                                      FieldSizeBits);
2505     if (!FieldTy->isIntegerTy() && !FieldTy->isFloatingPointTy() &&
2506         !FieldTy->isVectorTy())
2507       SrcField = new BitCastInst(SrcField,
2508                                  PointerType::getUnqual(FieldIntTy),
2509                                  "", LI);
2510     SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
2511
2512     // If SrcField is a fp or vector of the right size but that isn't an
2513     // integer type, bitcast to an integer so we can shift it.
2514     if (SrcField->getType() != FieldIntTy)
2515       SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
2516
2517     // Zero extend the field to be the same size as the final alloca so that
2518     // we can shift and insert it.
2519     if (SrcField->getType() != ResultVal->getType())
2520       SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
2521
2522     // Determine the number of bits to shift SrcField.
2523     uint64_t Shift;
2524     if (Layout) // Struct case.
2525       Shift = Layout->getElementOffsetInBits(i);
2526     else  // Array case.
2527       Shift = i*ArrayEltBitOffset;
2528
2529     if (DL.isBigEndian())
2530       Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
2531
2532     if (Shift) {
2533       Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
2534       SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
2535     }
2536
2537     // Don't create an 'or x, 0' on the first iteration.
2538     if (!isa<Constant>(ResultVal) ||
2539         !cast<Constant>(ResultVal)->isNullValue())
2540       ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
2541     else
2542       ResultVal = SrcField;
2543   }
2544
2545   // Handle tail padding by truncating the result
2546   if (DL.getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
2547     ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
2548
2549   LI->replaceAllUsesWith(ResultVal);
2550   DeadInsts.push_back(LI);
2551 }
2552
2553 /// HasPadding - Return true if the specified type has any structure or
2554 /// alignment padding in between the elements that would be split apart
2555 /// by SROA; return false otherwise.
2556 static bool HasPadding(Type *Ty, const DataLayout &DL) {
2557   if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
2558     Ty = ATy->getElementType();
2559     return DL.getTypeSizeInBits(Ty) != DL.getTypeAllocSizeInBits(Ty);
2560   }
2561
2562   // SROA currently handles only Arrays and Structs.
2563   StructType *STy = cast<StructType>(Ty);
2564   const StructLayout *SL = DL.getStructLayout(STy);
2565   unsigned PrevFieldBitOffset = 0;
2566   for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2567     unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
2568
2569     // Check to see if there is any padding between this element and the
2570     // previous one.
2571     if (i) {
2572       unsigned PrevFieldEnd =
2573         PrevFieldBitOffset+DL.getTypeSizeInBits(STy->getElementType(i-1));
2574       if (PrevFieldEnd < FieldBitOffset)
2575         return true;
2576     }
2577     PrevFieldBitOffset = FieldBitOffset;
2578   }
2579   // Check for tail padding.
2580   if (unsigned EltCount = STy->getNumElements()) {
2581     unsigned PrevFieldEnd = PrevFieldBitOffset +
2582       DL.getTypeSizeInBits(STy->getElementType(EltCount-1));
2583     if (PrevFieldEnd < SL->getSizeInBits())
2584       return true;
2585   }
2586   return false;
2587 }
2588
2589 /// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
2590 /// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
2591 /// or 1 if safe after canonicalization has been performed.
2592 bool SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) {
2593   // Loop over the use list of the alloca.  We can only transform it if all of
2594   // the users are safe to transform.
2595   AllocaInfo Info(AI);
2596
2597   isSafeForScalarRepl(AI, 0, Info);
2598   if (Info.isUnsafe) {
2599     DEBUG(dbgs() << "Cannot transform: " << *AI << '\n');
2600     return false;
2601   }
2602
2603   const DataLayout &DL = AI->getModule()->getDataLayout();
2604
2605   // Okay, we know all the users are promotable.  If the aggregate is a memcpy
2606   // source and destination, we have to be careful.  In particular, the memcpy
2607   // could be moving around elements that live in structure padding of the LLVM
2608   // types, but may actually be used.  In these cases, we refuse to promote the
2609   // struct.
2610   if (Info.isMemCpySrc && Info.isMemCpyDst &&
2611       HasPadding(AI->getAllocatedType(), DL))
2612     return false;
2613
2614   // If the alloca never has an access to just *part* of it, but is accessed
2615   // via loads and stores, then we should use ConvertToScalarInfo to promote
2616   // the alloca instead of promoting each piece at a time and inserting fission
2617   // and fusion code.
2618   if (!Info.hasSubelementAccess && Info.hasALoadOrStore) {
2619     // If the struct/array just has one element, use basic SRoA.
2620     if (StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
2621       if (ST->getNumElements() > 1) return false;
2622     } else {
2623       if (cast<ArrayType>(AI->getAllocatedType())->getNumElements() > 1)
2624         return false;
2625     }
2626   }
2627
2628   return true;
2629 }