cfc9a8e89fa09945ace2741afedf859ad9db4bfa
[oota-llvm.git] / lib / Transforms / Scalar / SCCP.cpp
1 //===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements sparse conditional constant propagation and merging:
11 //
12 // Specifically, this:
13 //   * Assumes values are constant unless proven otherwise
14 //   * Assumes BasicBlocks are dead unless proven otherwise
15 //   * Proves values to be constant, and replaces them with constants
16 //   * Proves conditional branches to be unconditional
17 //
18 //===----------------------------------------------------------------------===//
19
20 #include "llvm/Transforms/Scalar.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/DenseSet.h"
23 #include "llvm/ADT/PointerIntPair.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/Analysis/ConstantFolding.h"
28 #include "llvm/IR/CallSite.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/DerivedTypes.h"
32 #include "llvm/IR/InstVisitor.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/Pass.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/Target/TargetLibraryInfo.h"
39 #include "llvm/Transforms/IPO.h"
40 #include "llvm/Transforms/Utils/Local.h"
41 #include <algorithm>
42 using namespace llvm;
43
44 #define DEBUG_TYPE "sccp"
45
46 STATISTIC(NumInstRemoved, "Number of instructions removed");
47 STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable");
48
49 STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP");
50 STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP");
51 STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP");
52
53 namespace {
54 /// LatticeVal class - This class represents the different lattice values that
55 /// an LLVM value may occupy.  It is a simple class with value semantics.
56 ///
57 class LatticeVal {
58   enum LatticeValueTy {
59     /// undefined - This LLVM Value has no known value yet.
60     undefined,
61
62     /// constant - This LLVM Value has a specific constant value.
63     constant,
64
65     /// forcedconstant - This LLVM Value was thought to be undef until
66     /// ResolvedUndefsIn.  This is treated just like 'constant', but if merged
67     /// with another (different) constant, it goes to overdefined, instead of
68     /// asserting.
69     forcedconstant,
70
71     /// overdefined - This instruction is not known to be constant, and we know
72     /// it has a value.
73     overdefined
74   };
75
76   /// Val: This stores the current lattice value along with the Constant* for
77   /// the constant if this is a 'constant' or 'forcedconstant' value.
78   PointerIntPair<Constant *, 2, LatticeValueTy> Val;
79
80   LatticeValueTy getLatticeValue() const {
81     return Val.getInt();
82   }
83
84 public:
85   LatticeVal() : Val(nullptr, undefined) {}
86
87   bool isUndefined() const { return getLatticeValue() == undefined; }
88   bool isConstant() const {
89     return getLatticeValue() == constant || getLatticeValue() == forcedconstant;
90   }
91   bool isOverdefined() const { return getLatticeValue() == overdefined; }
92
93   Constant *getConstant() const {
94     assert(isConstant() && "Cannot get the constant of a non-constant!");
95     return Val.getPointer();
96   }
97
98   /// markOverdefined - Return true if this is a change in status.
99   bool markOverdefined() {
100     if (isOverdefined())
101       return false;
102
103     Val.setInt(overdefined);
104     return true;
105   }
106
107   /// markConstant - Return true if this is a change in status.
108   bool markConstant(Constant *V) {
109     if (getLatticeValue() == constant) { // Constant but not forcedconstant.
110       assert(getConstant() == V && "Marking constant with different value");
111       return false;
112     }
113
114     if (isUndefined()) {
115       Val.setInt(constant);
116       assert(V && "Marking constant with NULL");
117       Val.setPointer(V);
118     } else {
119       assert(getLatticeValue() == forcedconstant &&
120              "Cannot move from overdefined to constant!");
121       // Stay at forcedconstant if the constant is the same.
122       if (V == getConstant()) return false;
123
124       // Otherwise, we go to overdefined.  Assumptions made based on the
125       // forced value are possibly wrong.  Assuming this is another constant
126       // could expose a contradiction.
127       Val.setInt(overdefined);
128     }
129     return true;
130   }
131
132   /// getConstantInt - If this is a constant with a ConstantInt value, return it
133   /// otherwise return null.
134   ConstantInt *getConstantInt() const {
135     if (isConstant())
136       return dyn_cast<ConstantInt>(getConstant());
137     return nullptr;
138   }
139
140   void markForcedConstant(Constant *V) {
141     assert(isUndefined() && "Can't force a defined value!");
142     Val.setInt(forcedconstant);
143     Val.setPointer(V);
144   }
145 };
146 } // end anonymous namespace.
147
148
149 namespace {
150
151 //===----------------------------------------------------------------------===//
152 //
153 /// SCCPSolver - This class is a general purpose solver for Sparse Conditional
154 /// Constant Propagation.
155 ///
156 class SCCPSolver : public InstVisitor<SCCPSolver> {
157   const DataLayout *DL;
158   const TargetLibraryInfo *TLI;
159   SmallPtrSet<BasicBlock*, 8> BBExecutable; // The BBs that are executable.
160   DenseMap<Value*, LatticeVal> ValueState;  // The state each value is in.
161
162   /// StructValueState - This maintains ValueState for values that have
163   /// StructType, for example for formal arguments, calls, insertelement, etc.
164   ///
165   DenseMap<std::pair<Value*, unsigned>, LatticeVal> StructValueState;
166
167   /// GlobalValue - If we are tracking any values for the contents of a global
168   /// variable, we keep a mapping from the constant accessor to the element of
169   /// the global, to the currently known value.  If the value becomes
170   /// overdefined, it's entry is simply removed from this map.
171   DenseMap<GlobalVariable*, LatticeVal> TrackedGlobals;
172
173   /// TrackedRetVals - If we are tracking arguments into and the return
174   /// value out of a function, it will have an entry in this map, indicating
175   /// what the known return value for the function is.
176   DenseMap<Function*, LatticeVal> TrackedRetVals;
177
178   /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
179   /// that return multiple values.
180   DenseMap<std::pair<Function*, unsigned>, LatticeVal> TrackedMultipleRetVals;
181
182   /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is
183   /// represented here for efficient lookup.
184   SmallPtrSet<Function*, 16> MRVFunctionsTracked;
185
186   /// TrackingIncomingArguments - This is the set of functions for whose
187   /// arguments we make optimistic assumptions about and try to prove as
188   /// constants.
189   SmallPtrSet<Function*, 16> TrackingIncomingArguments;
190
191   /// The reason for two worklists is that overdefined is the lowest state
192   /// on the lattice, and moving things to overdefined as fast as possible
193   /// makes SCCP converge much faster.
194   ///
195   /// By having a separate worklist, we accomplish this because everything
196   /// possibly overdefined will become overdefined at the soonest possible
197   /// point.
198   SmallVector<Value*, 64> OverdefinedInstWorkList;
199   SmallVector<Value*, 64> InstWorkList;
200
201
202   SmallVector<BasicBlock*, 64>  BBWorkList;  // The BasicBlock work list
203
204   /// KnownFeasibleEdges - Entries in this set are edges which have already had
205   /// PHI nodes retriggered.
206   typedef std::pair<BasicBlock*, BasicBlock*> Edge;
207   DenseSet<Edge> KnownFeasibleEdges;
208 public:
209   SCCPSolver(const DataLayout *DL, const TargetLibraryInfo *tli)
210     : DL(DL), TLI(tli) {}
211
212   /// MarkBlockExecutable - This method can be used by clients to mark all of
213   /// the blocks that are known to be intrinsically live in the processed unit.
214   ///
215   /// This returns true if the block was not considered live before.
216   bool MarkBlockExecutable(BasicBlock *BB) {
217     if (!BBExecutable.insert(BB).second)
218       return false;
219     DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << '\n');
220     BBWorkList.push_back(BB);  // Add the block to the work list!
221     return true;
222   }
223
224   /// TrackValueOfGlobalVariable - Clients can use this method to
225   /// inform the SCCPSolver that it should track loads and stores to the
226   /// specified global variable if it can.  This is only legal to call if
227   /// performing Interprocedural SCCP.
228   void TrackValueOfGlobalVariable(GlobalVariable *GV) {
229     // We only track the contents of scalar globals.
230     if (GV->getType()->getElementType()->isSingleValueType()) {
231       LatticeVal &IV = TrackedGlobals[GV];
232       if (!isa<UndefValue>(GV->getInitializer()))
233         IV.markConstant(GV->getInitializer());
234     }
235   }
236
237   /// AddTrackedFunction - If the SCCP solver is supposed to track calls into
238   /// and out of the specified function (which cannot have its address taken),
239   /// this method must be called.
240   void AddTrackedFunction(Function *F) {
241     // Add an entry, F -> undef.
242     if (StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
243       MRVFunctionsTracked.insert(F);
244       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
245         TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i),
246                                                      LatticeVal()));
247     } else
248       TrackedRetVals.insert(std::make_pair(F, LatticeVal()));
249   }
250
251   void AddArgumentTrackedFunction(Function *F) {
252     TrackingIncomingArguments.insert(F);
253   }
254
255   /// Solve - Solve for constants and executable blocks.
256   ///
257   void Solve();
258
259   /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
260   /// that branches on undef values cannot reach any of their successors.
261   /// However, this is not a safe assumption.  After we solve dataflow, this
262   /// method should be use to handle this.  If this returns true, the solver
263   /// should be rerun.
264   bool ResolvedUndefsIn(Function &F);
265
266   bool isBlockExecutable(BasicBlock *BB) const {
267     return BBExecutable.count(BB);
268   }
269
270   LatticeVal getLatticeValueFor(Value *V) const {
271     DenseMap<Value*, LatticeVal>::const_iterator I = ValueState.find(V);
272     assert(I != ValueState.end() && "V is not in valuemap!");
273     return I->second;
274   }
275
276   /// getTrackedRetVals - Get the inferred return value map.
277   ///
278   const DenseMap<Function*, LatticeVal> &getTrackedRetVals() {
279     return TrackedRetVals;
280   }
281
282   /// getTrackedGlobals - Get and return the set of inferred initializers for
283   /// global variables.
284   const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() {
285     return TrackedGlobals;
286   }
287
288   void markOverdefined(Value *V) {
289     assert(!V->getType()->isStructTy() && "Should use other method");
290     markOverdefined(ValueState[V], V);
291   }
292
293   /// markAnythingOverdefined - Mark the specified value overdefined.  This
294   /// works with both scalars and structs.
295   void markAnythingOverdefined(Value *V) {
296     if (StructType *STy = dyn_cast<StructType>(V->getType()))
297       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
298         markOverdefined(getStructValueState(V, i), V);
299     else
300       markOverdefined(V);
301   }
302
303 private:
304   // markConstant - Make a value be marked as "constant".  If the value
305   // is not already a constant, add it to the instruction work list so that
306   // the users of the instruction are updated later.
307   //
308   void markConstant(LatticeVal &IV, Value *V, Constant *C) {
309     if (!IV.markConstant(C)) return;
310     DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n');
311     if (IV.isOverdefined())
312       OverdefinedInstWorkList.push_back(V);
313     else
314       InstWorkList.push_back(V);
315   }
316
317   void markConstant(Value *V, Constant *C) {
318     assert(!V->getType()->isStructTy() && "Should use other method");
319     markConstant(ValueState[V], V, C);
320   }
321
322   void markForcedConstant(Value *V, Constant *C) {
323     assert(!V->getType()->isStructTy() && "Should use other method");
324     LatticeVal &IV = ValueState[V];
325     IV.markForcedConstant(C);
326     DEBUG(dbgs() << "markForcedConstant: " << *C << ": " << *V << '\n');
327     if (IV.isOverdefined())
328       OverdefinedInstWorkList.push_back(V);
329     else
330       InstWorkList.push_back(V);
331   }
332
333
334   // markOverdefined - Make a value be marked as "overdefined". If the
335   // value is not already overdefined, add it to the overdefined instruction
336   // work list so that the users of the instruction are updated later.
337   void markOverdefined(LatticeVal &IV, Value *V) {
338     if (!IV.markOverdefined()) return;
339
340     DEBUG(dbgs() << "markOverdefined: ";
341           if (Function *F = dyn_cast<Function>(V))
342             dbgs() << "Function '" << F->getName() << "'\n";
343           else
344             dbgs() << *V << '\n');
345     // Only instructions go on the work list
346     OverdefinedInstWorkList.push_back(V);
347   }
348
349   void mergeInValue(LatticeVal &IV, Value *V, LatticeVal MergeWithV) {
350     if (IV.isOverdefined() || MergeWithV.isUndefined())
351       return;  // Noop.
352     if (MergeWithV.isOverdefined())
353       markOverdefined(IV, V);
354     else if (IV.isUndefined())
355       markConstant(IV, V, MergeWithV.getConstant());
356     else if (IV.getConstant() != MergeWithV.getConstant())
357       markOverdefined(IV, V);
358   }
359
360   void mergeInValue(Value *V, LatticeVal MergeWithV) {
361     assert(!V->getType()->isStructTy() && "Should use other method");
362     mergeInValue(ValueState[V], V, MergeWithV);
363   }
364
365
366   /// getValueState - Return the LatticeVal object that corresponds to the
367   /// value.  This function handles the case when the value hasn't been seen yet
368   /// by properly seeding constants etc.
369   LatticeVal &getValueState(Value *V) {
370     assert(!V->getType()->isStructTy() && "Should use getStructValueState");
371
372     std::pair<DenseMap<Value*, LatticeVal>::iterator, bool> I =
373       ValueState.insert(std::make_pair(V, LatticeVal()));
374     LatticeVal &LV = I.first->second;
375
376     if (!I.second)
377       return LV;  // Common case, already in the map.
378
379     if (Constant *C = dyn_cast<Constant>(V)) {
380       // Undef values remain undefined.
381       if (!isa<UndefValue>(V))
382         LV.markConstant(C);          // Constants are constant
383     }
384
385     // All others are underdefined by default.
386     return LV;
387   }
388
389   /// getStructValueState - Return the LatticeVal object that corresponds to the
390   /// value/field pair.  This function handles the case when the value hasn't
391   /// been seen yet by properly seeding constants etc.
392   LatticeVal &getStructValueState(Value *V, unsigned i) {
393     assert(V->getType()->isStructTy() && "Should use getValueState");
394     assert(i < cast<StructType>(V->getType())->getNumElements() &&
395            "Invalid element #");
396
397     std::pair<DenseMap<std::pair<Value*, unsigned>, LatticeVal>::iterator,
398               bool> I = StructValueState.insert(
399                         std::make_pair(std::make_pair(V, i), LatticeVal()));
400     LatticeVal &LV = I.first->second;
401
402     if (!I.second)
403       return LV;  // Common case, already in the map.
404
405     if (Constant *C = dyn_cast<Constant>(V)) {
406       Constant *Elt = C->getAggregateElement(i);
407
408       if (!Elt)
409         LV.markOverdefined();      // Unknown sort of constant.
410       else if (isa<UndefValue>(Elt))
411         ; // Undef values remain undefined.
412       else
413         LV.markConstant(Elt);      // Constants are constant.
414     }
415
416     // All others are underdefined by default.
417     return LV;
418   }
419
420
421   /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
422   /// work list if it is not already executable.
423   void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
424     if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
425       return;  // This edge is already known to be executable!
426
427     if (!MarkBlockExecutable(Dest)) {
428       // If the destination is already executable, we just made an *edge*
429       // feasible that wasn't before.  Revisit the PHI nodes in the block
430       // because they have potentially new operands.
431       DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName()
432             << " -> " << Dest->getName() << '\n');
433
434       PHINode *PN;
435       for (BasicBlock::iterator I = Dest->begin();
436            (PN = dyn_cast<PHINode>(I)); ++I)
437         visitPHINode(*PN);
438     }
439   }
440
441   // getFeasibleSuccessors - Return a vector of booleans to indicate which
442   // successors are reachable from a given terminator instruction.
443   //
444   void getFeasibleSuccessors(TerminatorInst &TI, SmallVectorImpl<bool> &Succs);
445
446   // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
447   // block to the 'To' basic block is currently feasible.
448   //
449   bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);
450
451   // OperandChangedState - This method is invoked on all of the users of an
452   // instruction that was just changed state somehow.  Based on this
453   // information, we need to update the specified user of this instruction.
454   //
455   void OperandChangedState(Instruction *I) {
456     if (BBExecutable.count(I->getParent()))   // Inst is executable?
457       visit(*I);
458   }
459
460 private:
461   friend class InstVisitor<SCCPSolver>;
462
463   // visit implementations - Something changed in this instruction.  Either an
464   // operand made a transition, or the instruction is newly executable.  Change
465   // the value type of I to reflect these changes if appropriate.
466   void visitPHINode(PHINode &I);
467
468   // Terminators
469   void visitReturnInst(ReturnInst &I);
470   void visitTerminatorInst(TerminatorInst &TI);
471
472   void visitCastInst(CastInst &I);
473   void visitSelectInst(SelectInst &I);
474   void visitBinaryOperator(Instruction &I);
475   void visitCmpInst(CmpInst &I);
476   void visitExtractElementInst(ExtractElementInst &I);
477   void visitInsertElementInst(InsertElementInst &I);
478   void visitShuffleVectorInst(ShuffleVectorInst &I);
479   void visitExtractValueInst(ExtractValueInst &EVI);
480   void visitInsertValueInst(InsertValueInst &IVI);
481   void visitLandingPadInst(LandingPadInst &I) { markAnythingOverdefined(&I); }
482
483   // Instructions that cannot be folded away.
484   void visitStoreInst     (StoreInst &I);
485   void visitLoadInst      (LoadInst &I);
486   void visitGetElementPtrInst(GetElementPtrInst &I);
487   void visitCallInst      (CallInst &I) {
488     visitCallSite(&I);
489   }
490   void visitInvokeInst    (InvokeInst &II) {
491     visitCallSite(&II);
492     visitTerminatorInst(II);
493   }
494   void visitCallSite      (CallSite CS);
495   void visitResumeInst    (TerminatorInst &I) { /*returns void*/ }
496   void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ }
497   void visitFenceInst     (FenceInst &I) { /*returns void*/ }
498   void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) {
499     markAnythingOverdefined(&I);
500   }
501   void visitAtomicRMWInst (AtomicRMWInst &I) { markOverdefined(&I); }
502   void visitAllocaInst    (Instruction &I) { markOverdefined(&I); }
503   void visitVAArgInst     (Instruction &I) { markAnythingOverdefined(&I); }
504
505   void visitInstruction(Instruction &I) {
506     // If a new instruction is added to LLVM that we don't handle.
507     dbgs() << "SCCP: Don't know how to handle: " << I << '\n';
508     markAnythingOverdefined(&I);   // Just in case
509   }
510 };
511
512 } // end anonymous namespace
513
514
515 // getFeasibleSuccessors - Return a vector of booleans to indicate which
516 // successors are reachable from a given terminator instruction.
517 //
518 void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI,
519                                        SmallVectorImpl<bool> &Succs) {
520   Succs.resize(TI.getNumSuccessors());
521   if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
522     if (BI->isUnconditional()) {
523       Succs[0] = true;
524       return;
525     }
526
527     LatticeVal BCValue = getValueState(BI->getCondition());
528     ConstantInt *CI = BCValue.getConstantInt();
529     if (!CI) {
530       // Overdefined condition variables, and branches on unfoldable constant
531       // conditions, mean the branch could go either way.
532       if (!BCValue.isUndefined())
533         Succs[0] = Succs[1] = true;
534       return;
535     }
536
537     // Constant condition variables mean the branch can only go a single way.
538     Succs[CI->isZero()] = true;
539     return;
540   }
541
542   if (isa<InvokeInst>(TI)) {
543     // Invoke instructions successors are always executable.
544     Succs[0] = Succs[1] = true;
545     return;
546   }
547
548   if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) {
549     if (!SI->getNumCases()) {
550       Succs[0] = true;
551       return;
552     }
553     LatticeVal SCValue = getValueState(SI->getCondition());
554     ConstantInt *CI = SCValue.getConstantInt();
555
556     if (!CI) {   // Overdefined or undefined condition?
557       // All destinations are executable!
558       if (!SCValue.isUndefined())
559         Succs.assign(TI.getNumSuccessors(), true);
560       return;
561     }
562
563     Succs[SI->findCaseValue(CI).getSuccessorIndex()] = true;
564     return;
565   }
566
567   // TODO: This could be improved if the operand is a [cast of a] BlockAddress.
568   if (isa<IndirectBrInst>(&TI)) {
569     // Just mark all destinations executable!
570     Succs.assign(TI.getNumSuccessors(), true);
571     return;
572   }
573
574 #ifndef NDEBUG
575   dbgs() << "Unknown terminator instruction: " << TI << '\n';
576 #endif
577   llvm_unreachable("SCCP: Don't know how to handle this terminator!");
578 }
579
580
581 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
582 // block to the 'To' basic block is currently feasible.
583 //
584 bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
585   assert(BBExecutable.count(To) && "Dest should always be alive!");
586
587   // Make sure the source basic block is executable!!
588   if (!BBExecutable.count(From)) return false;
589
590   // Check to make sure this edge itself is actually feasible now.
591   TerminatorInst *TI = From->getTerminator();
592   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
593     if (BI->isUnconditional())
594       return true;
595
596     LatticeVal BCValue = getValueState(BI->getCondition());
597
598     // Overdefined condition variables mean the branch could go either way,
599     // undef conditions mean that neither edge is feasible yet.
600     ConstantInt *CI = BCValue.getConstantInt();
601     if (!CI)
602       return !BCValue.isUndefined();
603
604     // Constant condition variables mean the branch can only go a single way.
605     return BI->getSuccessor(CI->isZero()) == To;
606   }
607
608   // Invoke instructions successors are always executable.
609   if (isa<InvokeInst>(TI))
610     return true;
611
612   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
613     if (SI->getNumCases() < 1)
614       return true;
615
616     LatticeVal SCValue = getValueState(SI->getCondition());
617     ConstantInt *CI = SCValue.getConstantInt();
618
619     if (!CI)
620       return !SCValue.isUndefined();
621
622     return SI->findCaseValue(CI).getCaseSuccessor() == To;
623   }
624
625   // Just mark all destinations executable!
626   // TODO: This could be improved if the operand is a [cast of a] BlockAddress.
627   if (isa<IndirectBrInst>(TI))
628     return true;
629
630 #ifndef NDEBUG
631   dbgs() << "Unknown terminator instruction: " << *TI << '\n';
632 #endif
633   llvm_unreachable(nullptr);
634 }
635
636 // visit Implementations - Something changed in this instruction, either an
637 // operand made a transition, or the instruction is newly executable.  Change
638 // the value type of I to reflect these changes if appropriate.  This method
639 // makes sure to do the following actions:
640 //
641 // 1. If a phi node merges two constants in, and has conflicting value coming
642 //    from different branches, or if the PHI node merges in an overdefined
643 //    value, then the PHI node becomes overdefined.
644 // 2. If a phi node merges only constants in, and they all agree on value, the
645 //    PHI node becomes a constant value equal to that.
646 // 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
647 // 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
648 // 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
649 // 6. If a conditional branch has a value that is constant, make the selected
650 //    destination executable
651 // 7. If a conditional branch has a value that is overdefined, make all
652 //    successors executable.
653 //
654 void SCCPSolver::visitPHINode(PHINode &PN) {
655   // If this PN returns a struct, just mark the result overdefined.
656   // TODO: We could do a lot better than this if code actually uses this.
657   if (PN.getType()->isStructTy())
658     return markAnythingOverdefined(&PN);
659
660   if (getValueState(&PN).isOverdefined())
661     return;  // Quick exit
662
663   // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
664   // and slow us down a lot.  Just mark them overdefined.
665   if (PN.getNumIncomingValues() > 64)
666     return markOverdefined(&PN);
667
668   // Look at all of the executable operands of the PHI node.  If any of them
669   // are overdefined, the PHI becomes overdefined as well.  If they are all
670   // constant, and they agree with each other, the PHI becomes the identical
671   // constant.  If they are constant and don't agree, the PHI is overdefined.
672   // If there are no executable operands, the PHI remains undefined.
673   //
674   Constant *OperandVal = nullptr;
675   for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
676     LatticeVal IV = getValueState(PN.getIncomingValue(i));
677     if (IV.isUndefined()) continue;  // Doesn't influence PHI node.
678
679     if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent()))
680       continue;
681
682     if (IV.isOverdefined())    // PHI node becomes overdefined!
683       return markOverdefined(&PN);
684
685     if (!OperandVal) {   // Grab the first value.
686       OperandVal = IV.getConstant();
687       continue;
688     }
689
690     // There is already a reachable operand.  If we conflict with it,
691     // then the PHI node becomes overdefined.  If we agree with it, we
692     // can continue on.
693
694     // Check to see if there are two different constants merging, if so, the PHI
695     // node is overdefined.
696     if (IV.getConstant() != OperandVal)
697       return markOverdefined(&PN);
698   }
699
700   // If we exited the loop, this means that the PHI node only has constant
701   // arguments that agree with each other(and OperandVal is the constant) or
702   // OperandVal is null because there are no defined incoming arguments.  If
703   // this is the case, the PHI remains undefined.
704   //
705   if (OperandVal)
706     markConstant(&PN, OperandVal);      // Acquire operand value
707 }
708
709 void SCCPSolver::visitReturnInst(ReturnInst &I) {
710   if (I.getNumOperands() == 0) return;  // ret void
711
712   Function *F = I.getParent()->getParent();
713   Value *ResultOp = I.getOperand(0);
714
715   // If we are tracking the return value of this function, merge it in.
716   if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) {
717     DenseMap<Function*, LatticeVal>::iterator TFRVI =
718       TrackedRetVals.find(F);
719     if (TFRVI != TrackedRetVals.end()) {
720       mergeInValue(TFRVI->second, F, getValueState(ResultOp));
721       return;
722     }
723   }
724
725   // Handle functions that return multiple values.
726   if (!TrackedMultipleRetVals.empty()) {
727     if (StructType *STy = dyn_cast<StructType>(ResultOp->getType()))
728       if (MRVFunctionsTracked.count(F))
729         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
730           mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F,
731                        getStructValueState(ResultOp, i));
732
733   }
734 }
735
736 void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) {
737   SmallVector<bool, 16> SuccFeasible;
738   getFeasibleSuccessors(TI, SuccFeasible);
739
740   BasicBlock *BB = TI.getParent();
741
742   // Mark all feasible successors executable.
743   for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
744     if (SuccFeasible[i])
745       markEdgeExecutable(BB, TI.getSuccessor(i));
746 }
747
748 void SCCPSolver::visitCastInst(CastInst &I) {
749   LatticeVal OpSt = getValueState(I.getOperand(0));
750   if (OpSt.isOverdefined())          // Inherit overdefinedness of operand
751     markOverdefined(&I);
752   else if (OpSt.isConstant())        // Propagate constant value
753     markConstant(&I, ConstantExpr::getCast(I.getOpcode(),
754                                            OpSt.getConstant(), I.getType()));
755 }
756
757
758 void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) {
759   // If this returns a struct, mark all elements over defined, we don't track
760   // structs in structs.
761   if (EVI.getType()->isStructTy())
762     return markAnythingOverdefined(&EVI);
763
764   // If this is extracting from more than one level of struct, we don't know.
765   if (EVI.getNumIndices() != 1)
766     return markOverdefined(&EVI);
767
768   Value *AggVal = EVI.getAggregateOperand();
769   if (AggVal->getType()->isStructTy()) {
770     unsigned i = *EVI.idx_begin();
771     LatticeVal EltVal = getStructValueState(AggVal, i);
772     mergeInValue(getValueState(&EVI), &EVI, EltVal);
773   } else {
774     // Otherwise, must be extracting from an array.
775     return markOverdefined(&EVI);
776   }
777 }
778
779 void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) {
780   StructType *STy = dyn_cast<StructType>(IVI.getType());
781   if (!STy)
782     return markOverdefined(&IVI);
783
784   // If this has more than one index, we can't handle it, drive all results to
785   // undef.
786   if (IVI.getNumIndices() != 1)
787     return markAnythingOverdefined(&IVI);
788
789   Value *Aggr = IVI.getAggregateOperand();
790   unsigned Idx = *IVI.idx_begin();
791
792   // Compute the result based on what we're inserting.
793   for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
794     // This passes through all values that aren't the inserted element.
795     if (i != Idx) {
796       LatticeVal EltVal = getStructValueState(Aggr, i);
797       mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal);
798       continue;
799     }
800
801     Value *Val = IVI.getInsertedValueOperand();
802     if (Val->getType()->isStructTy())
803       // We don't track structs in structs.
804       markOverdefined(getStructValueState(&IVI, i), &IVI);
805     else {
806       LatticeVal InVal = getValueState(Val);
807       mergeInValue(getStructValueState(&IVI, i), &IVI, InVal);
808     }
809   }
810 }
811
812 void SCCPSolver::visitSelectInst(SelectInst &I) {
813   // If this select returns a struct, just mark the result overdefined.
814   // TODO: We could do a lot better than this if code actually uses this.
815   if (I.getType()->isStructTy())
816     return markAnythingOverdefined(&I);
817
818   LatticeVal CondValue = getValueState(I.getCondition());
819   if (CondValue.isUndefined())
820     return;
821
822   if (ConstantInt *CondCB = CondValue.getConstantInt()) {
823     Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue();
824     mergeInValue(&I, getValueState(OpVal));
825     return;
826   }
827
828   // Otherwise, the condition is overdefined or a constant we can't evaluate.
829   // See if we can produce something better than overdefined based on the T/F
830   // value.
831   LatticeVal TVal = getValueState(I.getTrueValue());
832   LatticeVal FVal = getValueState(I.getFalseValue());
833
834   // select ?, C, C -> C.
835   if (TVal.isConstant() && FVal.isConstant() &&
836       TVal.getConstant() == FVal.getConstant())
837     return markConstant(&I, FVal.getConstant());
838
839   if (TVal.isUndefined())   // select ?, undef, X -> X.
840     return mergeInValue(&I, FVal);
841   if (FVal.isUndefined())   // select ?, X, undef -> X.
842     return mergeInValue(&I, TVal);
843   markOverdefined(&I);
844 }
845
846 // Handle Binary Operators.
847 void SCCPSolver::visitBinaryOperator(Instruction &I) {
848   LatticeVal V1State = getValueState(I.getOperand(0));
849   LatticeVal V2State = getValueState(I.getOperand(1));
850
851   LatticeVal &IV = ValueState[&I];
852   if (IV.isOverdefined()) return;
853
854   if (V1State.isConstant() && V2State.isConstant())
855     return markConstant(IV, &I,
856                         ConstantExpr::get(I.getOpcode(), V1State.getConstant(),
857                                           V2State.getConstant()));
858
859   // If something is undef, wait for it to resolve.
860   if (!V1State.isOverdefined() && !V2State.isOverdefined())
861     return;
862
863   // Otherwise, one of our operands is overdefined.  Try to produce something
864   // better than overdefined with some tricks.
865
866   // If this is an AND or OR with 0 or -1, it doesn't matter that the other
867   // operand is overdefined.
868   if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) {
869     LatticeVal *NonOverdefVal = nullptr;
870     if (!V1State.isOverdefined())
871       NonOverdefVal = &V1State;
872     else if (!V2State.isOverdefined())
873       NonOverdefVal = &V2State;
874
875     if (NonOverdefVal) {
876       if (NonOverdefVal->isUndefined()) {
877         // Could annihilate value.
878         if (I.getOpcode() == Instruction::And)
879           markConstant(IV, &I, Constant::getNullValue(I.getType()));
880         else if (VectorType *PT = dyn_cast<VectorType>(I.getType()))
881           markConstant(IV, &I, Constant::getAllOnesValue(PT));
882         else
883           markConstant(IV, &I,
884                        Constant::getAllOnesValue(I.getType()));
885         return;
886       }
887
888       if (I.getOpcode() == Instruction::And) {
889         // X and 0 = 0
890         if (NonOverdefVal->getConstant()->isNullValue())
891           return markConstant(IV, &I, NonOverdefVal->getConstant());
892       } else {
893         if (ConstantInt *CI = NonOverdefVal->getConstantInt())
894           if (CI->isAllOnesValue())     // X or -1 = -1
895             return markConstant(IV, &I, NonOverdefVal->getConstant());
896       }
897     }
898   }
899
900
901   markOverdefined(&I);
902 }
903
904 // Handle ICmpInst instruction.
905 void SCCPSolver::visitCmpInst(CmpInst &I) {
906   LatticeVal V1State = getValueState(I.getOperand(0));
907   LatticeVal V2State = getValueState(I.getOperand(1));
908
909   LatticeVal &IV = ValueState[&I];
910   if (IV.isOverdefined()) return;
911
912   if (V1State.isConstant() && V2State.isConstant())
913     return markConstant(IV, &I, ConstantExpr::getCompare(I.getPredicate(),
914                                                          V1State.getConstant(),
915                                                         V2State.getConstant()));
916
917   // If operands are still undefined, wait for it to resolve.
918   if (!V1State.isOverdefined() && !V2State.isOverdefined())
919     return;
920
921   markOverdefined(&I);
922 }
923
924 void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) {
925   // TODO : SCCP does not handle vectors properly.
926   return markOverdefined(&I);
927
928 #if 0
929   LatticeVal &ValState = getValueState(I.getOperand(0));
930   LatticeVal &IdxState = getValueState(I.getOperand(1));
931
932   if (ValState.isOverdefined() || IdxState.isOverdefined())
933     markOverdefined(&I);
934   else if(ValState.isConstant() && IdxState.isConstant())
935     markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(),
936                                                      IdxState.getConstant()));
937 #endif
938 }
939
940 void SCCPSolver::visitInsertElementInst(InsertElementInst &I) {
941   // TODO : SCCP does not handle vectors properly.
942   return markOverdefined(&I);
943 #if 0
944   LatticeVal &ValState = getValueState(I.getOperand(0));
945   LatticeVal &EltState = getValueState(I.getOperand(1));
946   LatticeVal &IdxState = getValueState(I.getOperand(2));
947
948   if (ValState.isOverdefined() || EltState.isOverdefined() ||
949       IdxState.isOverdefined())
950     markOverdefined(&I);
951   else if(ValState.isConstant() && EltState.isConstant() &&
952           IdxState.isConstant())
953     markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(),
954                                                     EltState.getConstant(),
955                                                     IdxState.getConstant()));
956   else if (ValState.isUndefined() && EltState.isConstant() &&
957            IdxState.isConstant())
958     markConstant(&I,ConstantExpr::getInsertElement(UndefValue::get(I.getType()),
959                                                    EltState.getConstant(),
960                                                    IdxState.getConstant()));
961 #endif
962 }
963
964 void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) {
965   // TODO : SCCP does not handle vectors properly.
966   return markOverdefined(&I);
967 #if 0
968   LatticeVal &V1State   = getValueState(I.getOperand(0));
969   LatticeVal &V2State   = getValueState(I.getOperand(1));
970   LatticeVal &MaskState = getValueState(I.getOperand(2));
971
972   if (MaskState.isUndefined() ||
973       (V1State.isUndefined() && V2State.isUndefined()))
974     return;  // Undefined output if mask or both inputs undefined.
975
976   if (V1State.isOverdefined() || V2State.isOverdefined() ||
977       MaskState.isOverdefined()) {
978     markOverdefined(&I);
979   } else {
980     // A mix of constant/undef inputs.
981     Constant *V1 = V1State.isConstant() ?
982         V1State.getConstant() : UndefValue::get(I.getType());
983     Constant *V2 = V2State.isConstant() ?
984         V2State.getConstant() : UndefValue::get(I.getType());
985     Constant *Mask = MaskState.isConstant() ?
986       MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType());
987     markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask));
988   }
989 #endif
990 }
991
992 // Handle getelementptr instructions.  If all operands are constants then we
993 // can turn this into a getelementptr ConstantExpr.
994 //
995 void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) {
996   if (ValueState[&I].isOverdefined()) return;
997
998   SmallVector<Constant*, 8> Operands;
999   Operands.reserve(I.getNumOperands());
1000
1001   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1002     LatticeVal State = getValueState(I.getOperand(i));
1003     if (State.isUndefined())
1004       return;  // Operands are not resolved yet.
1005
1006     if (State.isOverdefined())
1007       return markOverdefined(&I);
1008
1009     assert(State.isConstant() && "Unknown state!");
1010     Operands.push_back(State.getConstant());
1011   }
1012
1013   Constant *Ptr = Operands[0];
1014   auto Indices = makeArrayRef(Operands.begin() + 1, Operands.end());
1015   markConstant(&I, ConstantExpr::getGetElementPtr(Ptr, Indices));
1016 }
1017
1018 void SCCPSolver::visitStoreInst(StoreInst &SI) {
1019   // If this store is of a struct, ignore it.
1020   if (SI.getOperand(0)->getType()->isStructTy())
1021     return;
1022
1023   if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
1024     return;
1025
1026   GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
1027   DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV);
1028   if (I == TrackedGlobals.end() || I->second.isOverdefined()) return;
1029
1030   // Get the value we are storing into the global, then merge it.
1031   mergeInValue(I->second, GV, getValueState(SI.getOperand(0)));
1032   if (I->second.isOverdefined())
1033     TrackedGlobals.erase(I);      // No need to keep tracking this!
1034 }
1035
1036
1037 // Handle load instructions.  If the operand is a constant pointer to a constant
1038 // global, we can replace the load with the loaded constant value!
1039 void SCCPSolver::visitLoadInst(LoadInst &I) {
1040   // If this load is of a struct, just mark the result overdefined.
1041   if (I.getType()->isStructTy())
1042     return markAnythingOverdefined(&I);
1043
1044   LatticeVal PtrVal = getValueState(I.getOperand(0));
1045   if (PtrVal.isUndefined()) return;   // The pointer is not resolved yet!
1046
1047   LatticeVal &IV = ValueState[&I];
1048   if (IV.isOverdefined()) return;
1049
1050   if (!PtrVal.isConstant() || I.isVolatile())
1051     return markOverdefined(IV, &I);
1052
1053   Constant *Ptr = PtrVal.getConstant();
1054
1055   // load null -> null
1056   if (isa<ConstantPointerNull>(Ptr) && I.getPointerAddressSpace() == 0)
1057     return markConstant(IV, &I, Constant::getNullValue(I.getType()));
1058
1059   // Transform load (constant global) into the value loaded.
1060   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
1061     if (!TrackedGlobals.empty()) {
1062       // If we are tracking this global, merge in the known value for it.
1063       DenseMap<GlobalVariable*, LatticeVal>::iterator It =
1064         TrackedGlobals.find(GV);
1065       if (It != TrackedGlobals.end()) {
1066         mergeInValue(IV, &I, It->second);
1067         return;
1068       }
1069     }
1070   }
1071
1072   // Transform load from a constant into a constant if possible.
1073   if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, DL))
1074     return markConstant(IV, &I, C);
1075
1076   // Otherwise we cannot say for certain what value this load will produce.
1077   // Bail out.
1078   markOverdefined(IV, &I);
1079 }
1080
1081 void SCCPSolver::visitCallSite(CallSite CS) {
1082   Function *F = CS.getCalledFunction();
1083   Instruction *I = CS.getInstruction();
1084
1085   // The common case is that we aren't tracking the callee, either because we
1086   // are not doing interprocedural analysis or the callee is indirect, or is
1087   // external.  Handle these cases first.
1088   if (!F || F->isDeclaration()) {
1089 CallOverdefined:
1090     // Void return and not tracking callee, just bail.
1091     if (I->getType()->isVoidTy()) return;
1092
1093     // Otherwise, if we have a single return value case, and if the function is
1094     // a declaration, maybe we can constant fold it.
1095     if (F && F->isDeclaration() && !I->getType()->isStructTy() &&
1096         canConstantFoldCallTo(F)) {
1097
1098       SmallVector<Constant*, 8> Operands;
1099       for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
1100            AI != E; ++AI) {
1101         LatticeVal State = getValueState(*AI);
1102
1103         if (State.isUndefined())
1104           return;  // Operands are not resolved yet.
1105         if (State.isOverdefined())
1106           return markOverdefined(I);
1107         assert(State.isConstant() && "Unknown state!");
1108         Operands.push_back(State.getConstant());
1109       }
1110
1111       if (getValueState(I).isOverdefined())
1112         return;
1113
1114       // If we can constant fold this, mark the result of the call as a
1115       // constant.
1116       if (Constant *C = ConstantFoldCall(F, Operands, TLI))
1117         return markConstant(I, C);
1118     }
1119
1120     // Otherwise, we don't know anything about this call, mark it overdefined.
1121     return markAnythingOverdefined(I);
1122   }
1123
1124   // If this is a local function that doesn't have its address taken, mark its
1125   // entry block executable and merge in the actual arguments to the call into
1126   // the formal arguments of the function.
1127   if (!TrackingIncomingArguments.empty() && TrackingIncomingArguments.count(F)){
1128     MarkBlockExecutable(F->begin());
1129
1130     // Propagate information from this call site into the callee.
1131     CallSite::arg_iterator CAI = CS.arg_begin();
1132     for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1133          AI != E; ++AI, ++CAI) {
1134       // If this argument is byval, and if the function is not readonly, there
1135       // will be an implicit copy formed of the input aggregate.
1136       if (AI->hasByValAttr() && !F->onlyReadsMemory()) {
1137         markOverdefined(AI);
1138         continue;
1139       }
1140
1141       if (StructType *STy = dyn_cast<StructType>(AI->getType())) {
1142         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1143           LatticeVal CallArg = getStructValueState(*CAI, i);
1144           mergeInValue(getStructValueState(AI, i), AI, CallArg);
1145         }
1146       } else {
1147         mergeInValue(AI, getValueState(*CAI));
1148       }
1149     }
1150   }
1151
1152   // If this is a single/zero retval case, see if we're tracking the function.
1153   if (StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
1154     if (!MRVFunctionsTracked.count(F))
1155       goto CallOverdefined;  // Not tracking this callee.
1156
1157     // If we are tracking this callee, propagate the result of the function
1158     // into this call site.
1159     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1160       mergeInValue(getStructValueState(I, i), I,
1161                    TrackedMultipleRetVals[std::make_pair(F, i)]);
1162   } else {
1163     DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F);
1164     if (TFRVI == TrackedRetVals.end())
1165       goto CallOverdefined;  // Not tracking this callee.
1166
1167     // If so, propagate the return value of the callee into this call result.
1168     mergeInValue(I, TFRVI->second);
1169   }
1170 }
1171
1172 void SCCPSolver::Solve() {
1173   // Process the work lists until they are empty!
1174   while (!BBWorkList.empty() || !InstWorkList.empty() ||
1175          !OverdefinedInstWorkList.empty()) {
1176     // Process the overdefined instruction's work list first, which drives other
1177     // things to overdefined more quickly.
1178     while (!OverdefinedInstWorkList.empty()) {
1179       Value *I = OverdefinedInstWorkList.pop_back_val();
1180
1181       DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n');
1182
1183       // "I" got into the work list because it either made the transition from
1184       // bottom to constant, or to overdefined.
1185       //
1186       // Anything on this worklist that is overdefined need not be visited
1187       // since all of its users will have already been marked as overdefined
1188       // Update all of the users of this instruction's value.
1189       //
1190       for (User *U : I->users())
1191         if (Instruction *UI = dyn_cast<Instruction>(U))
1192           OperandChangedState(UI);
1193     }
1194
1195     // Process the instruction work list.
1196     while (!InstWorkList.empty()) {
1197       Value *I = InstWorkList.pop_back_val();
1198
1199       DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n');
1200
1201       // "I" got into the work list because it made the transition from undef to
1202       // constant.
1203       //
1204       // Anything on this worklist that is overdefined need not be visited
1205       // since all of its users will have already been marked as overdefined.
1206       // Update all of the users of this instruction's value.
1207       //
1208       if (I->getType()->isStructTy() || !getValueState(I).isOverdefined())
1209         for (User *U : I->users())
1210           if (Instruction *UI = dyn_cast<Instruction>(U))
1211             OperandChangedState(UI);
1212     }
1213
1214     // Process the basic block work list.
1215     while (!BBWorkList.empty()) {
1216       BasicBlock *BB = BBWorkList.back();
1217       BBWorkList.pop_back();
1218
1219       DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n');
1220
1221       // Notify all instructions in this basic block that they are newly
1222       // executable.
1223       visit(BB);
1224     }
1225   }
1226 }
1227
1228 /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
1229 /// that branches on undef values cannot reach any of their successors.
1230 /// However, this is not a safe assumption.  After we solve dataflow, this
1231 /// method should be use to handle this.  If this returns true, the solver
1232 /// should be rerun.
1233 ///
1234 /// This method handles this by finding an unresolved branch and marking it one
1235 /// of the edges from the block as being feasible, even though the condition
1236 /// doesn't say it would otherwise be.  This allows SCCP to find the rest of the
1237 /// CFG and only slightly pessimizes the analysis results (by marking one,
1238 /// potentially infeasible, edge feasible).  This cannot usefully modify the
1239 /// constraints on the condition of the branch, as that would impact other users
1240 /// of the value.
1241 ///
1242 /// This scan also checks for values that use undefs, whose results are actually
1243 /// defined.  For example, 'zext i8 undef to i32' should produce all zeros
1244 /// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero,
1245 /// even if X isn't defined.
1246 bool SCCPSolver::ResolvedUndefsIn(Function &F) {
1247   for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
1248     if (!BBExecutable.count(BB))
1249       continue;
1250
1251     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1252       // Look for instructions which produce undef values.
1253       if (I->getType()->isVoidTy()) continue;
1254
1255       if (StructType *STy = dyn_cast<StructType>(I->getType())) {
1256         // Only a few things that can be structs matter for undef.
1257
1258         // Tracked calls must never be marked overdefined in ResolvedUndefsIn.
1259         if (CallSite CS = CallSite(I))
1260           if (Function *F = CS.getCalledFunction())
1261             if (MRVFunctionsTracked.count(F))
1262               continue;
1263
1264         // extractvalue and insertvalue don't need to be marked; they are
1265         // tracked as precisely as their operands.
1266         if (isa<ExtractValueInst>(I) || isa<InsertValueInst>(I))
1267           continue;
1268
1269         // Send the results of everything else to overdefined.  We could be
1270         // more precise than this but it isn't worth bothering.
1271         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1272           LatticeVal &LV = getStructValueState(I, i);
1273           if (LV.isUndefined())
1274             markOverdefined(LV, I);
1275         }
1276         continue;
1277       }
1278
1279       LatticeVal &LV = getValueState(I);
1280       if (!LV.isUndefined()) continue;
1281
1282       // extractvalue is safe; check here because the argument is a struct.
1283       if (isa<ExtractValueInst>(I))
1284         continue;
1285
1286       // Compute the operand LatticeVals, for convenience below.
1287       // Anything taking a struct is conservatively assumed to require
1288       // overdefined markings.
1289       if (I->getOperand(0)->getType()->isStructTy()) {
1290         markOverdefined(I);
1291         return true;
1292       }
1293       LatticeVal Op0LV = getValueState(I->getOperand(0));
1294       LatticeVal Op1LV;
1295       if (I->getNumOperands() == 2) {
1296         if (I->getOperand(1)->getType()->isStructTy()) {
1297           markOverdefined(I);
1298           return true;
1299         }
1300
1301         Op1LV = getValueState(I->getOperand(1));
1302       }
1303       // If this is an instructions whose result is defined even if the input is
1304       // not fully defined, propagate the information.
1305       Type *ITy = I->getType();
1306       switch (I->getOpcode()) {
1307       case Instruction::Add:
1308       case Instruction::Sub:
1309       case Instruction::Trunc:
1310       case Instruction::FPTrunc:
1311       case Instruction::BitCast:
1312         break; // Any undef -> undef
1313       case Instruction::FSub:
1314       case Instruction::FAdd:
1315       case Instruction::FMul:
1316       case Instruction::FDiv:
1317       case Instruction::FRem:
1318         // Floating-point binary operation: be conservative.
1319         if (Op0LV.isUndefined() && Op1LV.isUndefined())
1320           markForcedConstant(I, Constant::getNullValue(ITy));
1321         else
1322           markOverdefined(I);
1323         return true;
1324       case Instruction::ZExt:
1325       case Instruction::SExt:
1326       case Instruction::FPToUI:
1327       case Instruction::FPToSI:
1328       case Instruction::FPExt:
1329       case Instruction::PtrToInt:
1330       case Instruction::IntToPtr:
1331       case Instruction::SIToFP:
1332       case Instruction::UIToFP:
1333         // undef -> 0; some outputs are impossible
1334         markForcedConstant(I, Constant::getNullValue(ITy));
1335         return true;
1336       case Instruction::Mul:
1337       case Instruction::And:
1338         // Both operands undef -> undef
1339         if (Op0LV.isUndefined() && Op1LV.isUndefined())
1340           break;
1341         // undef * X -> 0.   X could be zero.
1342         // undef & X -> 0.   X could be zero.
1343         markForcedConstant(I, Constant::getNullValue(ITy));
1344         return true;
1345
1346       case Instruction::Or:
1347         // Both operands undef -> undef
1348         if (Op0LV.isUndefined() && Op1LV.isUndefined())
1349           break;
1350         // undef | X -> -1.   X could be -1.
1351         markForcedConstant(I, Constant::getAllOnesValue(ITy));
1352         return true;
1353
1354       case Instruction::Xor:
1355         // undef ^ undef -> 0; strictly speaking, this is not strictly
1356         // necessary, but we try to be nice to people who expect this
1357         // behavior in simple cases
1358         if (Op0LV.isUndefined() && Op1LV.isUndefined()) {
1359           markForcedConstant(I, Constant::getNullValue(ITy));
1360           return true;
1361         }
1362         // undef ^ X -> undef
1363         break;
1364
1365       case Instruction::SDiv:
1366       case Instruction::UDiv:
1367       case Instruction::SRem:
1368       case Instruction::URem:
1369         // X / undef -> undef.  No change.
1370         // X % undef -> undef.  No change.
1371         if (Op1LV.isUndefined()) break;
1372
1373         // undef / X -> 0.   X could be maxint.
1374         // undef % X -> 0.   X could be 1.
1375         markForcedConstant(I, Constant::getNullValue(ITy));
1376         return true;
1377
1378       case Instruction::AShr:
1379         // X >>a undef -> undef.
1380         if (Op1LV.isUndefined()) break;
1381
1382         // undef >>a X -> all ones
1383         markForcedConstant(I, Constant::getAllOnesValue(ITy));
1384         return true;
1385       case Instruction::LShr:
1386       case Instruction::Shl:
1387         // X << undef -> undef.
1388         // X >> undef -> undef.
1389         if (Op1LV.isUndefined()) break;
1390
1391         // undef << X -> 0
1392         // undef >> X -> 0
1393         markForcedConstant(I, Constant::getNullValue(ITy));
1394         return true;
1395       case Instruction::Select:
1396         Op1LV = getValueState(I->getOperand(1));
1397         // undef ? X : Y  -> X or Y.  There could be commonality between X/Y.
1398         if (Op0LV.isUndefined()) {
1399           if (!Op1LV.isConstant())  // Pick the constant one if there is any.
1400             Op1LV = getValueState(I->getOperand(2));
1401         } else if (Op1LV.isUndefined()) {
1402           // c ? undef : undef -> undef.  No change.
1403           Op1LV = getValueState(I->getOperand(2));
1404           if (Op1LV.isUndefined())
1405             break;
1406           // Otherwise, c ? undef : x -> x.
1407         } else {
1408           // Leave Op1LV as Operand(1)'s LatticeValue.
1409         }
1410
1411         if (Op1LV.isConstant())
1412           markForcedConstant(I, Op1LV.getConstant());
1413         else
1414           markOverdefined(I);
1415         return true;
1416       case Instruction::Load:
1417         // A load here means one of two things: a load of undef from a global,
1418         // a load from an unknown pointer.  Either way, having it return undef
1419         // is okay.
1420         break;
1421       case Instruction::ICmp:
1422         // X == undef -> undef.  Other comparisons get more complicated.
1423         if (cast<ICmpInst>(I)->isEquality())
1424           break;
1425         markOverdefined(I);
1426         return true;
1427       case Instruction::Call:
1428       case Instruction::Invoke: {
1429         // There are two reasons a call can have an undef result
1430         // 1. It could be tracked.
1431         // 2. It could be constant-foldable.
1432         // Because of the way we solve return values, tracked calls must
1433         // never be marked overdefined in ResolvedUndefsIn.
1434         if (Function *F = CallSite(I).getCalledFunction())
1435           if (TrackedRetVals.count(F))
1436             break;
1437
1438         // If the call is constant-foldable, we mark it overdefined because
1439         // we do not know what return values are valid.
1440         markOverdefined(I);
1441         return true;
1442       }
1443       default:
1444         // If we don't know what should happen here, conservatively mark it
1445         // overdefined.
1446         markOverdefined(I);
1447         return true;
1448       }
1449     }
1450
1451     // Check to see if we have a branch or switch on an undefined value.  If so
1452     // we force the branch to go one way or the other to make the successor
1453     // values live.  It doesn't really matter which way we force it.
1454     TerminatorInst *TI = BB->getTerminator();
1455     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1456       if (!BI->isConditional()) continue;
1457       if (!getValueState(BI->getCondition()).isUndefined())
1458         continue;
1459
1460       // If the input to SCCP is actually branch on undef, fix the undef to
1461       // false.
1462       if (isa<UndefValue>(BI->getCondition())) {
1463         BI->setCondition(ConstantInt::getFalse(BI->getContext()));
1464         markEdgeExecutable(BB, TI->getSuccessor(1));
1465         return true;
1466       }
1467
1468       // Otherwise, it is a branch on a symbolic value which is currently
1469       // considered to be undef.  Handle this by forcing the input value to the
1470       // branch to false.
1471       markForcedConstant(BI->getCondition(),
1472                          ConstantInt::getFalse(TI->getContext()));
1473       return true;
1474     }
1475
1476     if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
1477       if (!SI->getNumCases())
1478         continue;
1479       if (!getValueState(SI->getCondition()).isUndefined())
1480         continue;
1481
1482       // If the input to SCCP is actually switch on undef, fix the undef to
1483       // the first constant.
1484       if (isa<UndefValue>(SI->getCondition())) {
1485         SI->setCondition(SI->case_begin().getCaseValue());
1486         markEdgeExecutable(BB, SI->case_begin().getCaseSuccessor());
1487         return true;
1488       }
1489
1490       markForcedConstant(SI->getCondition(), SI->case_begin().getCaseValue());
1491       return true;
1492     }
1493   }
1494
1495   return false;
1496 }
1497
1498
1499 namespace {
1500   //===--------------------------------------------------------------------===//
1501   //
1502   /// SCCP Class - This class uses the SCCPSolver to implement a per-function
1503   /// Sparse Conditional Constant Propagator.
1504   ///
1505   struct SCCP : public FunctionPass {
1506     void getAnalysisUsage(AnalysisUsage &AU) const override {
1507       AU.addRequired<TargetLibraryInfo>();
1508     }
1509     static char ID; // Pass identification, replacement for typeid
1510     SCCP() : FunctionPass(ID) {
1511       initializeSCCPPass(*PassRegistry::getPassRegistry());
1512     }
1513
1514     // runOnFunction - Run the Sparse Conditional Constant Propagation
1515     // algorithm, and return true if the function was modified.
1516     //
1517     bool runOnFunction(Function &F) override;
1518   };
1519 } // end anonymous namespace
1520
1521 char SCCP::ID = 0;
1522 INITIALIZE_PASS(SCCP, "sccp",
1523                 "Sparse Conditional Constant Propagation", false, false)
1524
1525 // createSCCPPass - This is the public interface to this file.
1526 FunctionPass *llvm::createSCCPPass() {
1527   return new SCCP();
1528 }
1529
1530 static void DeleteInstructionInBlock(BasicBlock *BB) {
1531   DEBUG(dbgs() << "  BasicBlock Dead:" << *BB);
1532   ++NumDeadBlocks;
1533
1534   // Check to see if there are non-terminating instructions to delete.
1535   if (isa<TerminatorInst>(BB->begin()))
1536     return;
1537
1538   // Delete the instructions backwards, as it has a reduced likelihood of having
1539   // to update as many def-use and use-def chains.
1540   Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
1541   while (EndInst != BB->begin()) {
1542     // Delete the next to last instruction.
1543     BasicBlock::iterator I = EndInst;
1544     Instruction *Inst = --I;
1545     if (!Inst->use_empty())
1546       Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
1547     if (isa<LandingPadInst>(Inst)) {
1548       EndInst = Inst;
1549       continue;
1550     }
1551     BB->getInstList().erase(Inst);
1552     ++NumInstRemoved;
1553   }
1554 }
1555
1556 // runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm,
1557 // and return true if the function was modified.
1558 //
1559 bool SCCP::runOnFunction(Function &F) {
1560   if (skipOptnoneFunction(F))
1561     return false;
1562
1563   DEBUG(dbgs() << "SCCP on function '" << F.getName() << "'\n");
1564   const DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
1565   const DataLayout *DL = DLP ? &DLP->getDataLayout() : nullptr;
1566   const TargetLibraryInfo *TLI = &getAnalysis<TargetLibraryInfo>();
1567   SCCPSolver Solver(DL, TLI);
1568
1569   // Mark the first block of the function as being executable.
1570   Solver.MarkBlockExecutable(F.begin());
1571
1572   // Mark all arguments to the function as being overdefined.
1573   for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;++AI)
1574     Solver.markAnythingOverdefined(AI);
1575
1576   // Solve for constants.
1577   bool ResolvedUndefs = true;
1578   while (ResolvedUndefs) {
1579     Solver.Solve();
1580     DEBUG(dbgs() << "RESOLVING UNDEFs\n");
1581     ResolvedUndefs = Solver.ResolvedUndefsIn(F);
1582   }
1583
1584   bool MadeChanges = false;
1585
1586   // If we decided that there are basic blocks that are dead in this function,
1587   // delete their contents now.  Note that we cannot actually delete the blocks,
1588   // as we cannot modify the CFG of the function.
1589
1590   for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
1591     if (!Solver.isBlockExecutable(BB)) {
1592       DeleteInstructionInBlock(BB);
1593       MadeChanges = true;
1594       continue;
1595     }
1596
1597     // Iterate over all of the instructions in a function, replacing them with
1598     // constants if we have found them to be of constant values.
1599     //
1600     for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
1601       Instruction *Inst = BI++;
1602       if (Inst->getType()->isVoidTy() || isa<TerminatorInst>(Inst))
1603         continue;
1604
1605       // TODO: Reconstruct structs from their elements.
1606       if (Inst->getType()->isStructTy())
1607         continue;
1608
1609       LatticeVal IV = Solver.getLatticeValueFor(Inst);
1610       if (IV.isOverdefined())
1611         continue;
1612
1613       Constant *Const = IV.isConstant()
1614         ? IV.getConstant() : UndefValue::get(Inst->getType());
1615       DEBUG(dbgs() << "  Constant: " << *Const << " = " << *Inst << '\n');
1616
1617       // Replaces all of the uses of a variable with uses of the constant.
1618       Inst->replaceAllUsesWith(Const);
1619
1620       // Delete the instruction.
1621       Inst->eraseFromParent();
1622
1623       // Hey, we just changed something!
1624       MadeChanges = true;
1625       ++NumInstRemoved;
1626     }
1627   }
1628
1629   return MadeChanges;
1630 }
1631
1632 namespace {
1633   //===--------------------------------------------------------------------===//
1634   //
1635   /// IPSCCP Class - This class implements interprocedural Sparse Conditional
1636   /// Constant Propagation.
1637   ///
1638   struct IPSCCP : public ModulePass {
1639     void getAnalysisUsage(AnalysisUsage &AU) const override {
1640       AU.addRequired<TargetLibraryInfo>();
1641     }
1642     static char ID;
1643     IPSCCP() : ModulePass(ID) {
1644       initializeIPSCCPPass(*PassRegistry::getPassRegistry());
1645     }
1646     bool runOnModule(Module &M) override;
1647   };
1648 } // end anonymous namespace
1649
1650 char IPSCCP::ID = 0;
1651 INITIALIZE_PASS_BEGIN(IPSCCP, "ipsccp",
1652                 "Interprocedural Sparse Conditional Constant Propagation",
1653                 false, false)
1654 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
1655 INITIALIZE_PASS_END(IPSCCP, "ipsccp",
1656                 "Interprocedural Sparse Conditional Constant Propagation",
1657                 false, false)
1658
1659 // createIPSCCPPass - This is the public interface to this file.
1660 ModulePass *llvm::createIPSCCPPass() {
1661   return new IPSCCP();
1662 }
1663
1664
1665 static bool AddressIsTaken(const GlobalValue *GV) {
1666   // Delete any dead constantexpr klingons.
1667   GV->removeDeadConstantUsers();
1668
1669   for (const Use &U : GV->uses()) {
1670     const User *UR = U.getUser();
1671     if (const StoreInst *SI = dyn_cast<StoreInst>(UR)) {
1672       if (SI->getOperand(0) == GV || SI->isVolatile())
1673         return true;  // Storing addr of GV.
1674     } else if (isa<InvokeInst>(UR) || isa<CallInst>(UR)) {
1675       // Make sure we are calling the function, not passing the address.
1676       ImmutableCallSite CS(cast<Instruction>(UR));
1677       if (!CS.isCallee(&U))
1678         return true;
1679     } else if (const LoadInst *LI = dyn_cast<LoadInst>(UR)) {
1680       if (LI->isVolatile())
1681         return true;
1682     } else if (isa<BlockAddress>(UR)) {
1683       // blockaddress doesn't take the address of the function, it takes addr
1684       // of label.
1685     } else {
1686       return true;
1687     }
1688   }
1689   return false;
1690 }
1691
1692 bool IPSCCP::runOnModule(Module &M) {
1693   DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
1694   const DataLayout *DL = DLP ? &DLP->getDataLayout() : nullptr;
1695   const TargetLibraryInfo *TLI = &getAnalysis<TargetLibraryInfo>();
1696   SCCPSolver Solver(DL, TLI);
1697
1698   // AddressTakenFunctions - This set keeps track of the address-taken functions
1699   // that are in the input.  As IPSCCP runs through and simplifies code,
1700   // functions that were address taken can end up losing their
1701   // address-taken-ness.  Because of this, we keep track of their addresses from
1702   // the first pass so we can use them for the later simplification pass.
1703   SmallPtrSet<Function*, 32> AddressTakenFunctions;
1704
1705   // Loop over all functions, marking arguments to those with their addresses
1706   // taken or that are external as overdefined.
1707   //
1708   for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
1709     if (F->isDeclaration())
1710       continue;
1711
1712     // If this is a strong or ODR definition of this function, then we can
1713     // propagate information about its result into callsites of it.
1714     if (!F->mayBeOverridden())
1715       Solver.AddTrackedFunction(F);
1716
1717     // If this function only has direct calls that we can see, we can track its
1718     // arguments and return value aggressively, and can assume it is not called
1719     // unless we see evidence to the contrary.
1720     if (F->hasLocalLinkage()) {
1721       if (AddressIsTaken(F))
1722         AddressTakenFunctions.insert(F);
1723       else {
1724         Solver.AddArgumentTrackedFunction(F);
1725         continue;
1726       }
1727     }
1728
1729     // Assume the function is called.
1730     Solver.MarkBlockExecutable(F->begin());
1731
1732     // Assume nothing about the incoming arguments.
1733     for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1734          AI != E; ++AI)
1735       Solver.markAnythingOverdefined(AI);
1736   }
1737
1738   // Loop over global variables.  We inform the solver about any internal global
1739   // variables that do not have their 'addresses taken'.  If they don't have
1740   // their addresses taken, we can propagate constants through them.
1741   for (Module::global_iterator G = M.global_begin(), E = M.global_end();
1742        G != E; ++G)
1743     if (!G->isConstant() && G->hasLocalLinkage() && !AddressIsTaken(G))
1744       Solver.TrackValueOfGlobalVariable(G);
1745
1746   // Solve for constants.
1747   bool ResolvedUndefs = true;
1748   while (ResolvedUndefs) {
1749     Solver.Solve();
1750
1751     DEBUG(dbgs() << "RESOLVING UNDEFS\n");
1752     ResolvedUndefs = false;
1753     for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
1754       ResolvedUndefs |= Solver.ResolvedUndefsIn(*F);
1755   }
1756
1757   bool MadeChanges = false;
1758
1759   // Iterate over all of the instructions in the module, replacing them with
1760   // constants if we have found them to be of constant values.
1761   //
1762   SmallVector<BasicBlock*, 512> BlocksToErase;
1763
1764   for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
1765     if (Solver.isBlockExecutable(F->begin())) {
1766       for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1767            AI != E; ++AI) {
1768         if (AI->use_empty() || AI->getType()->isStructTy()) continue;
1769
1770         // TODO: Could use getStructLatticeValueFor to find out if the entire
1771         // result is a constant and replace it entirely if so.
1772
1773         LatticeVal IV = Solver.getLatticeValueFor(AI);
1774         if (IV.isOverdefined()) continue;
1775
1776         Constant *CST = IV.isConstant() ?
1777         IV.getConstant() : UndefValue::get(AI->getType());
1778         DEBUG(dbgs() << "***  Arg " << *AI << " = " << *CST <<"\n");
1779
1780         // Replaces all of the uses of a variable with uses of the
1781         // constant.
1782         AI->replaceAllUsesWith(CST);
1783         ++IPNumArgsElimed;
1784       }
1785     }
1786
1787     for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
1788       if (!Solver.isBlockExecutable(BB)) {
1789         DeleteInstructionInBlock(BB);
1790         MadeChanges = true;
1791
1792         TerminatorInst *TI = BB->getTerminator();
1793         for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1794           BasicBlock *Succ = TI->getSuccessor(i);
1795           if (!Succ->empty() && isa<PHINode>(Succ->begin()))
1796             TI->getSuccessor(i)->removePredecessor(BB);
1797         }
1798         if (!TI->use_empty())
1799           TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
1800         TI->eraseFromParent();
1801
1802         if (&*BB != &F->front())
1803           BlocksToErase.push_back(BB);
1804         else
1805           new UnreachableInst(M.getContext(), BB);
1806         continue;
1807       }
1808
1809       for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
1810         Instruction *Inst = BI++;
1811         if (Inst->getType()->isVoidTy() || Inst->getType()->isStructTy())
1812           continue;
1813
1814         // TODO: Could use getStructLatticeValueFor to find out if the entire
1815         // result is a constant and replace it entirely if so.
1816
1817         LatticeVal IV = Solver.getLatticeValueFor(Inst);
1818         if (IV.isOverdefined())
1819           continue;
1820
1821         Constant *Const = IV.isConstant()
1822           ? IV.getConstant() : UndefValue::get(Inst->getType());
1823         DEBUG(dbgs() << "  Constant: " << *Const << " = " << *Inst << '\n');
1824
1825         // Replaces all of the uses of a variable with uses of the
1826         // constant.
1827         Inst->replaceAllUsesWith(Const);
1828
1829         // Delete the instruction.
1830         if (!isa<CallInst>(Inst) && !isa<TerminatorInst>(Inst))
1831           Inst->eraseFromParent();
1832
1833         // Hey, we just changed something!
1834         MadeChanges = true;
1835         ++IPNumInstRemoved;
1836       }
1837     }
1838
1839     // Now that all instructions in the function are constant folded, erase dead
1840     // blocks, because we can now use ConstantFoldTerminator to get rid of
1841     // in-edges.
1842     for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) {
1843       // If there are any PHI nodes in this successor, drop entries for BB now.
1844       BasicBlock *DeadBB = BlocksToErase[i];
1845       for (Value::user_iterator UI = DeadBB->user_begin(),
1846                                 UE = DeadBB->user_end();
1847            UI != UE;) {
1848         // Grab the user and then increment the iterator early, as the user
1849         // will be deleted. Step past all adjacent uses from the same user.
1850         Instruction *I = dyn_cast<Instruction>(*UI);
1851         do { ++UI; } while (UI != UE && *UI == I);
1852
1853         // Ignore blockaddress users; BasicBlock's dtor will handle them.
1854         if (!I) continue;
1855
1856         bool Folded = ConstantFoldTerminator(I->getParent());
1857         if (!Folded) {
1858           // The constant folder may not have been able to fold the terminator
1859           // if this is a branch or switch on undef.  Fold it manually as a
1860           // branch to the first successor.
1861 #ifndef NDEBUG
1862           if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1863             assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) &&
1864                    "Branch should be foldable!");
1865           } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
1866             assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold");
1867           } else {
1868             llvm_unreachable("Didn't fold away reference to block!");
1869           }
1870 #endif
1871
1872           // Make this an uncond branch to the first successor.
1873           TerminatorInst *TI = I->getParent()->getTerminator();
1874           BranchInst::Create(TI->getSuccessor(0), TI);
1875
1876           // Remove entries in successor phi nodes to remove edges.
1877           for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i)
1878             TI->getSuccessor(i)->removePredecessor(TI->getParent());
1879
1880           // Remove the old terminator.
1881           TI->eraseFromParent();
1882         }
1883       }
1884
1885       // Finally, delete the basic block.
1886       F->getBasicBlockList().erase(DeadBB);
1887     }
1888     BlocksToErase.clear();
1889   }
1890
1891   // If we inferred constant or undef return values for a function, we replaced
1892   // all call uses with the inferred value.  This means we don't need to bother
1893   // actually returning anything from the function.  Replace all return
1894   // instructions with return undef.
1895   //
1896   // Do this in two stages: first identify the functions we should process, then
1897   // actually zap their returns.  This is important because we can only do this
1898   // if the address of the function isn't taken.  In cases where a return is the
1899   // last use of a function, the order of processing functions would affect
1900   // whether other functions are optimizable.
1901   SmallVector<ReturnInst*, 8> ReturnsToZap;
1902
1903   // TODO: Process multiple value ret instructions also.
1904   const DenseMap<Function*, LatticeVal> &RV = Solver.getTrackedRetVals();
1905   for (DenseMap<Function*, LatticeVal>::const_iterator I = RV.begin(),
1906        E = RV.end(); I != E; ++I) {
1907     Function *F = I->first;
1908     if (I->second.isOverdefined() || F->getReturnType()->isVoidTy())
1909       continue;
1910
1911     // We can only do this if we know that nothing else can call the function.
1912     if (!F->hasLocalLinkage() || AddressTakenFunctions.count(F))
1913       continue;
1914
1915     for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
1916       if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
1917         if (!isa<UndefValue>(RI->getOperand(0)))
1918           ReturnsToZap.push_back(RI);
1919   }
1920
1921   // Zap all returns which we've identified as zap to change.
1922   for (unsigned i = 0, e = ReturnsToZap.size(); i != e; ++i) {
1923     Function *F = ReturnsToZap[i]->getParent()->getParent();
1924     ReturnsToZap[i]->setOperand(0, UndefValue::get(F->getReturnType()));
1925   }
1926
1927   // If we inferred constant or undef values for globals variables, we can
1928   // delete the global and any stores that remain to it.
1929   const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals();
1930   for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(),
1931          E = TG.end(); I != E; ++I) {
1932     GlobalVariable *GV = I->first;
1933     assert(!I->second.isOverdefined() &&
1934            "Overdefined values should have been taken out of the map!");
1935     DEBUG(dbgs() << "Found that GV '" << GV->getName() << "' is constant!\n");
1936     while (!GV->use_empty()) {
1937       StoreInst *SI = cast<StoreInst>(GV->user_back());
1938       SI->eraseFromParent();
1939     }
1940     M.getGlobalList().erase(GV);
1941     ++IPNumGlobalConst;
1942   }
1943
1944   return MadeChanges;
1945 }