8aae0e6d72927e2da2e38057d743d27ab95f9d05
[oota-llvm.git] / lib / Transforms / Scalar / RewriteStatepointsForGC.cpp
1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Rewrite an existing set of gc.statepoints such that they make potential
11 // relocations performed by the garbage collector explicit in the IR.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Pass.h"
16 #include "llvm/Analysis/CFG.h"
17 #include "llvm/ADT/SetOperations.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/ADT/DenseSet.h"
20 #include "llvm/IR/BasicBlock.h"
21 #include "llvm/IR/CallSite.h"
22 #include "llvm/IR/Dominators.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/IR/IRBuilder.h"
25 #include "llvm/IR/InstIterator.h"
26 #include "llvm/IR/Instructions.h"
27 #include "llvm/IR/Intrinsics.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/IR/Statepoint.h"
31 #include "llvm/IR/Value.h"
32 #include "llvm/IR/Verifier.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Transforms/Scalar.h"
36 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
37 #include "llvm/Transforms/Utils/Cloning.h"
38 #include "llvm/Transforms/Utils/Local.h"
39 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
40
41 #define DEBUG_TYPE "rewrite-statepoints-for-gc"
42
43 using namespace llvm;
44
45 // Print tracing output
46 static cl::opt<bool> TraceLSP("trace-rewrite-statepoints", cl::Hidden,
47                               cl::init(false));
48
49 // Print the liveset found at the insert location
50 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden,
51                                   cl::init(false));
52 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size",
53                                       cl::Hidden, cl::init(false));
54 // Print out the base pointers for debugging
55 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers",
56                                        cl::Hidden, cl::init(false));
57
58 namespace {
59 struct RewriteStatepointsForGC : public FunctionPass {
60   static char ID; // Pass identification, replacement for typeid
61
62   RewriteStatepointsForGC() : FunctionPass(ID) {
63     initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry());
64   }
65   bool runOnFunction(Function &F) override;
66
67   void getAnalysisUsage(AnalysisUsage &AU) const override {
68     // We add and rewrite a bunch of instructions, but don't really do much
69     // else.  We could in theory preserve a lot more analyses here.
70     AU.addRequired<DominatorTreeWrapperPass>();
71   }
72 };
73 } // namespace
74
75 char RewriteStatepointsForGC::ID = 0;
76
77 FunctionPass *llvm::createRewriteStatepointsForGCPass() {
78   return new RewriteStatepointsForGC();
79 }
80
81 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
82                       "Make relocations explicit at statepoints", false, false)
83 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
84 INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
85                     "Make relocations explicit at statepoints", false, false)
86
87 namespace {
88 // The type of the internal cache used inside the findBasePointers family
89 // of functions.  From the callers perspective, this is an opaque type and
90 // should not be inspected.
91 //
92 // In the actual implementation this caches two relations:
93 // - The base relation itself (i.e. this pointer is based on that one)
94 // - The base defining value relation (i.e. before base_phi insertion)
95 // Generally, after the execution of a full findBasePointer call, only the
96 // base relation will remain.  Internally, we add a mixture of the two
97 // types, then update all the second type to the first type
98 typedef DenseMap<Value *, Value *> DefiningValueMapTy;
99 typedef DenseSet<llvm::Value *> StatepointLiveSetTy;
100
101 struct PartiallyConstructedSafepointRecord {
102   /// The set of values known to be live accross this safepoint
103   StatepointLiveSetTy liveset;
104
105   /// Mapping from live pointers to a base-defining-value
106   DenseMap<llvm::Value *, llvm::Value *> PointerToBase;
107
108   /// Any new values which were added to the IR during base pointer analysis
109   /// for this safepoint
110   DenseSet<llvm::Value *> NewInsertedDefs;
111
112   /// The *new* gc.statepoint instruction itself.  This produces the token
113   /// that normal path gc.relocates and the gc.result are tied to.
114   Instruction *StatepointToken;
115
116   /// Instruction to which exceptional gc relocates are attached
117   /// Makes it easier to iterate through them during relocationViaAlloca.
118   Instruction *UnwindToken;
119 };
120 }
121
122 // TODO: Once we can get to the GCStrategy, this becomes
123 // Optional<bool> isGCManagedPointer(const Value *V) const override {
124
125 static bool isGCPointerType(const Type *T) {
126   if (const PointerType *PT = dyn_cast<PointerType>(T))
127     // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
128     // GC managed heap.  We know that a pointer into this heap needs to be
129     // updated and that no other pointer does.
130     return (1 == PT->getAddressSpace());
131   return false;
132 }
133
134 /// Return true if the Value is a gc reference type which is potentially used
135 /// after the instruction 'loc'.  This is only used with the edge reachability
136 /// liveness code.  Note: It is assumed the V dominates loc.
137 static bool isLiveGCReferenceAt(Value &V, Instruction *loc, DominatorTree &DT,
138                                 LoopInfo *LI) {
139   if (!isGCPointerType(V.getType()))
140     return false;
141
142   if (V.use_empty())
143     return false;
144
145   // Given assumption that V dominates loc, this may be live
146   return true;
147 }
148
149 #ifndef NDEBUG
150 static bool isAggWhichContainsGCPtrType(Type *Ty) {
151   if (VectorType *VT = dyn_cast<VectorType>(Ty))
152     return isGCPointerType(VT->getScalarType());
153   if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
154     return isGCPointerType(AT->getElementType()) ||
155            isAggWhichContainsGCPtrType(AT->getElementType());
156   if (StructType *ST = dyn_cast<StructType>(Ty))
157     return std::any_of(ST->subtypes().begin(), ST->subtypes().end(),
158                        [](Type *SubType) {
159                          return isGCPointerType(SubType) ||
160                                 isAggWhichContainsGCPtrType(SubType);
161                        });
162   return false;
163 }
164 #endif
165
166 // Conservatively identifies any definitions which might be live at the
167 // given instruction. The  analysis is performed immediately before the
168 // given instruction. Values defined by that instruction are not considered
169 // live.  Values used by that instruction are considered live.
170 //
171 // preconditions: valid IR graph, term is either a terminator instruction or
172 // a call instruction, pred is the basic block of term, DT, LI are valid
173 //
174 // side effects: none, does not mutate IR
175 //
176 //  postconditions: populates liveValues as discussed above
177 static void findLiveGCValuesAtInst(Instruction *term, BasicBlock *pred,
178                                    DominatorTree &DT, LoopInfo *LI,
179                                    StatepointLiveSetTy &liveValues) {
180   liveValues.clear();
181
182   assert(isa<CallInst>(term) || isa<InvokeInst>(term) || term->isTerminator());
183
184   Function *F = pred->getParent();
185
186   auto is_live_gc_reference =
187       [&](Value &V) { return isLiveGCReferenceAt(V, term, DT, LI); };
188
189   // Are there any gc pointer arguments live over this point?  This needs to be
190   // special cased since arguments aren't defined in basic blocks.
191   for (Argument &arg : F->args()) {
192     assert(!isAggWhichContainsGCPtrType(arg.getType()) &&
193            "support for FCA unimplemented");
194
195     if (is_live_gc_reference(arg)) {
196       liveValues.insert(&arg);
197     }
198   }
199
200   // Walk through all dominating blocks - the ones which can contain
201   // definitions used in this block - and check to see if any of the values
202   // they define are used in locations potentially reachable from the
203   // interesting instruction.
204   BasicBlock *BBI = pred;
205   while (true) {
206     if (TraceLSP) {
207       errs() << "[LSP] Looking at dominating block " << pred->getName() << "\n";
208     }
209     assert(DT.dominates(BBI, pred));
210     assert(isPotentiallyReachable(BBI, pred, &DT) &&
211            "dominated block must be reachable");
212
213     // Walk through the instructions in dominating blocks and keep any
214     // that have a use potentially reachable from the block we're
215     // considering putting the safepoint in
216     for (Instruction &inst : *BBI) {
217       if (TraceLSP) {
218         errs() << "[LSP] Looking at instruction ";
219         inst.dump();
220       }
221
222       if (pred == BBI && (&inst) == term) {
223         if (TraceLSP) {
224           errs() << "[LSP] stopped because we encountered the safepoint "
225                     "instruction.\n";
226         }
227
228         // If we're in the block which defines the interesting instruction,
229         // we don't want to include any values as live which are defined
230         // _after_ the interesting line or as part of the line itself
231         // i.e. "term" is the call instruction for a call safepoint, the
232         // results of the call should not be considered live in that stackmap
233         break;
234       }
235
236       assert(!isAggWhichContainsGCPtrType(inst.getType()) &&
237              "support for FCA unimplemented");
238
239       if (is_live_gc_reference(inst)) {
240         if (TraceLSP) {
241           errs() << "[LSP] found live value for this safepoint ";
242           inst.dump();
243           term->dump();
244         }
245         liveValues.insert(&inst);
246       }
247     }
248     if (!DT.getNode(BBI)->getIDom()) {
249       assert(BBI == &F->getEntryBlock() &&
250              "failed to find a dominator for something other than "
251              "the entry block");
252       break;
253     }
254     BBI = DT.getNode(BBI)->getIDom()->getBlock();
255   }
256 }
257
258 static bool order_by_name(llvm::Value *a, llvm::Value *b) {
259   if (a->hasName() && b->hasName()) {
260     return -1 == a->getName().compare(b->getName());
261   } else if (a->hasName() && !b->hasName()) {
262     return true;
263   } else if (!a->hasName() && b->hasName()) {
264     return false;
265   } else {
266     // Better than nothing, but not stable
267     return a < b;
268   }
269 }
270
271 /// Find the initial live set. Note that due to base pointer
272 /// insertion, the live set may be incomplete.
273 static void
274 analyzeParsePointLiveness(DominatorTree &DT, const CallSite &CS,
275                           PartiallyConstructedSafepointRecord &result) {
276   Instruction *inst = CS.getInstruction();
277
278   BasicBlock *BB = inst->getParent();
279   StatepointLiveSetTy liveset;
280   findLiveGCValuesAtInst(inst, BB, DT, nullptr, liveset);
281
282   if (PrintLiveSet) {
283     // Note: This output is used by several of the test cases
284     // The order of elemtns in a set is not stable, put them in a vec and sort
285     // by name
286     SmallVector<Value *, 64> temp;
287     temp.insert(temp.end(), liveset.begin(), liveset.end());
288     std::sort(temp.begin(), temp.end(), order_by_name);
289     errs() << "Live Variables:\n";
290     for (Value *V : temp) {
291       errs() << " " << V->getName(); // no newline
292       V->dump();
293     }
294   }
295   if (PrintLiveSetSize) {
296     errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n";
297     errs() << "Number live values: " << liveset.size() << "\n";
298   }
299   result.liveset = liveset;
300 }
301
302 /// True iff this value is the null pointer constant (of any pointer type)
303 static bool isNullConstant(Value *V) {
304   return isa<Constant>(V) && isa<PointerType>(V->getType()) &&
305          cast<Constant>(V)->isNullValue();
306 }
307
308 /// Helper function for findBasePointer - Will return a value which either a)
309 /// defines the base pointer for the input or b) blocks the simple search
310 /// (i.e. a PHI or Select of two derived pointers)
311 static Value *findBaseDefiningValue(Value *I) {
312   assert(I->getType()->isPointerTy() &&
313          "Illegal to ask for the base pointer of a non-pointer type");
314
315   // There are instructions which can never return gc pointer values.  Sanity
316   // check
317   // that this is actually true.
318   assert(!isa<InsertElementInst>(I) && !isa<ExtractElementInst>(I) &&
319          !isa<ShuffleVectorInst>(I) && "Vector types are not gc pointers");
320   assert((!isa<Instruction>(I) || isa<InvokeInst>(I) ||
321           !cast<Instruction>(I)->isTerminator()) &&
322          "With the exception of invoke terminators don't define values");
323   assert(!isa<StoreInst>(I) && !isa<FenceInst>(I) &&
324          "Can't be definitions to start with");
325   assert(!isa<ICmpInst>(I) && !isa<FCmpInst>(I) &&
326          "Comparisons don't give ops");
327   // There's a bunch of instructions which just don't make sense to apply to
328   // a pointer.  The only valid reason for this would be pointer bit
329   // twiddling which we're just not going to support.
330   assert((!isa<Instruction>(I) || !cast<Instruction>(I)->isBinaryOp()) &&
331          "Binary ops on pointer values are meaningless.  Unless your "
332          "bit-twiddling which we don't support");
333
334   if (Argument *Arg = dyn_cast<Argument>(I)) {
335     // An incoming argument to the function is a base pointer
336     // We should have never reached here if this argument isn't an gc value
337     assert(Arg->getType()->isPointerTy() &&
338            "Base for pointer must be another pointer");
339     return Arg;
340   }
341
342   if (GlobalVariable *global = dyn_cast<GlobalVariable>(I)) {
343     // base case
344     assert(global->getType()->isPointerTy() &&
345            "Base for pointer must be another pointer");
346     return global;
347   }
348
349   // inlining could possibly introduce phi node that contains
350   // undef if callee has multiple returns
351   if (UndefValue *undef = dyn_cast<UndefValue>(I)) {
352     assert(undef->getType()->isPointerTy() &&
353            "Base for pointer must be another pointer");
354     return undef; // utterly meaningless, but useful for dealing with
355                   // partially optimized code.
356   }
357
358   // Due to inheritance, this must be _after_ the global variable and undef
359   // checks
360   if (Constant *con = dyn_cast<Constant>(I)) {
361     assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) &&
362            "order of checks wrong!");
363     // Note: Finding a constant base for something marked for relocation
364     // doesn't really make sense.  The most likely case is either a) some
365     // screwed up the address space usage or b) your validating against
366     // compiled C++ code w/o the proper separation.  The only real exception
367     // is a null pointer.  You could have generic code written to index of
368     // off a potentially null value and have proven it null.  We also use
369     // null pointers in dead paths of relocation phis (which we might later
370     // want to find a base pointer for).
371     assert(con->getType()->isPointerTy() &&
372            "Base for pointer must be another pointer");
373     assert(con->isNullValue() && "null is the only case which makes sense");
374     return con;
375   }
376
377   if (CastInst *CI = dyn_cast<CastInst>(I)) {
378     Value *def = CI->stripPointerCasts();
379     assert(def->getType()->isPointerTy() &&
380            "Base for pointer must be another pointer");
381     // If we find a cast instruction here, it means we've found a cast which is
382     // not simply a pointer cast (i.e. an inttoptr).  We don't know how to
383     // handle int->ptr conversion.
384     assert(!isa<CastInst>(def) && "shouldn't find another cast here");
385     return findBaseDefiningValue(def);
386   }
387
388   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
389     if (LI->getType()->isPointerTy()) {
390       Value *Op = LI->getOperand(0);
391       (void)Op;
392       // Has to be a pointer to an gc object, or possibly an array of such?
393       assert(Op->getType()->isPointerTy());
394       return LI; // The value loaded is an gc base itself
395     }
396   }
397   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
398     Value *Op = GEP->getOperand(0);
399     if (Op->getType()->isPointerTy()) {
400       return findBaseDefiningValue(Op); // The base of this GEP is the base
401     }
402   }
403
404   if (AllocaInst *alloc = dyn_cast<AllocaInst>(I)) {
405     // An alloca represents a conceptual stack slot.  It's the slot itself
406     // that the GC needs to know about, not the value in the slot.
407     assert(alloc->getType()->isPointerTy() &&
408            "Base for pointer must be another pointer");
409     return alloc;
410   }
411
412   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
413     switch (II->getIntrinsicID()) {
414     default:
415       // fall through to general call handling
416       break;
417     case Intrinsic::experimental_gc_statepoint:
418     case Intrinsic::experimental_gc_result_float:
419     case Intrinsic::experimental_gc_result_int:
420       llvm_unreachable("these don't produce pointers");
421     case Intrinsic::experimental_gc_result_ptr:
422       // This is just a special case of the CallInst check below to handle a
423       // statepoint with deopt args which hasn't been rewritten for GC yet.
424       // TODO: Assert that the statepoint isn't rewritten yet.
425       return II;
426     case Intrinsic::experimental_gc_relocate: {
427       // Rerunning safepoint insertion after safepoints are already
428       // inserted is not supported.  It could probably be made to work,
429       // but why are you doing this?  There's no good reason.
430       llvm_unreachable("repeat safepoint insertion is not supported");
431     }
432     case Intrinsic::gcroot:
433       // Currently, this mechanism hasn't been extended to work with gcroot.
434       // There's no reason it couldn't be, but I haven't thought about the
435       // implications much.
436       llvm_unreachable(
437           "interaction with the gcroot mechanism is not supported");
438     }
439   }
440   // We assume that functions in the source language only return base
441   // pointers.  This should probably be generalized via attributes to support
442   // both source language and internal functions.
443   if (CallInst *call = dyn_cast<CallInst>(I)) {
444     assert(call->getType()->isPointerTy() &&
445            "Base for pointer must be another pointer");
446     return call;
447   }
448   if (InvokeInst *invoke = dyn_cast<InvokeInst>(I)) {
449     assert(invoke->getType()->isPointerTy() &&
450            "Base for pointer must be another pointer");
451     return invoke;
452   }
453
454   // I have absolutely no idea how to implement this part yet.  It's not
455   // neccessarily hard, I just haven't really looked at it yet.
456   assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented");
457
458   if (AtomicCmpXchgInst *cas = dyn_cast<AtomicCmpXchgInst>(I)) {
459     // A CAS is effectively a atomic store and load combined under a
460     // predicate.  From the perspective of base pointers, we just treat it
461     // like a load.  We loaded a pointer from a address in memory, that value
462     // had better be a valid base pointer.
463     return cas->getPointerOperand();
464   }
465   if (AtomicRMWInst *atomic = dyn_cast<AtomicRMWInst>(I)) {
466     assert(AtomicRMWInst::Xchg == atomic->getOperation() &&
467            "All others are binary ops which don't apply to base pointers");
468     // semantically, a load, store pair.  Treat it the same as a standard load
469     return atomic->getPointerOperand();
470   }
471
472   // The aggregate ops.  Aggregates can either be in the heap or on the
473   // stack, but in either case, this is simply a field load.  As a result,
474   // this is a defining definition of the base just like a load is.
475   if (ExtractValueInst *ev = dyn_cast<ExtractValueInst>(I)) {
476     return ev;
477   }
478
479   // We should never see an insert vector since that would require we be
480   // tracing back a struct value not a pointer value.
481   assert(!isa<InsertValueInst>(I) &&
482          "Base pointer for a struct is meaningless");
483
484   // The last two cases here don't return a base pointer.  Instead, they
485   // return a value which dynamically selects from amoung several base
486   // derived pointers (each with it's own base potentially).  It's the job of
487   // the caller to resolve these.
488   if (SelectInst *select = dyn_cast<SelectInst>(I)) {
489     return select;
490   }
491
492   return cast<PHINode>(I);
493 }
494
495 /// Returns the base defining value for this value.
496 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &cache) {
497   Value *&Cached = cache[I];
498   if (!Cached) {
499     Cached = findBaseDefiningValue(I);
500   }
501   assert(cache[I] != nullptr);
502
503   if (TraceLSP) {
504     errs() << "fBDV-cached: " << I->getName() << " -> " << Cached->getName()
505            << "\n";
506   }
507   return Cached;
508 }
509
510 /// Return a base pointer for this value if known.  Otherwise, return it's
511 /// base defining value.
512 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &cache) {
513   Value *def = findBaseDefiningValueCached(I, cache);
514   auto Found = cache.find(def);
515   if (Found != cache.end()) {
516     // Either a base-of relation, or a self reference.  Caller must check.
517     return Found->second;
518   }
519   // Only a BDV available
520   return def;
521 }
522
523 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV,
524 /// is it known to be a base pointer?  Or do we need to continue searching.
525 static bool isKnownBaseResult(Value *v) {
526   if (!isa<PHINode>(v) && !isa<SelectInst>(v)) {
527     // no recursion possible
528     return true;
529   }
530   if (cast<Instruction>(v)->getMetadata("is_base_value")) {
531     // This is a previously inserted base phi or select.  We know
532     // that this is a base value.
533     return true;
534   }
535
536   // We need to keep searching
537   return false;
538 }
539
540 // TODO: find a better name for this
541 namespace {
542 class PhiState {
543 public:
544   enum Status { Unknown, Base, Conflict };
545
546   PhiState(Status s, Value *b = nullptr) : status(s), base(b) {
547     assert(status != Base || b);
548   }
549   PhiState(Value *b) : status(Base), base(b) {}
550   PhiState() : status(Unknown), base(nullptr) {}
551   PhiState(const PhiState &other) : status(other.status), base(other.base) {
552     assert(status != Base || base);
553   }
554
555   Status getStatus() const { return status; }
556   Value *getBase() const { return base; }
557
558   bool isBase() const { return getStatus() == Base; }
559   bool isUnknown() const { return getStatus() == Unknown; }
560   bool isConflict() const { return getStatus() == Conflict; }
561
562   bool operator==(const PhiState &other) const {
563     return base == other.base && status == other.status;
564   }
565
566   bool operator!=(const PhiState &other) const { return !(*this == other); }
567
568   void dump() {
569     errs() << status << " (" << base << " - "
570            << (base ? base->getName() : "nullptr") << "): ";
571   }
572
573 private:
574   Status status;
575   Value *base; // non null only if status == base
576 };
577
578 typedef DenseMap<Value *, PhiState> ConflictStateMapTy;
579 // Values of type PhiState form a lattice, and this is a helper
580 // class that implementes the meet operation.  The meat of the meet
581 // operation is implemented in MeetPhiStates::pureMeet
582 class MeetPhiStates {
583 public:
584   // phiStates is a mapping from PHINodes and SelectInst's to PhiStates.
585   explicit MeetPhiStates(const ConflictStateMapTy &phiStates)
586       : phiStates(phiStates) {}
587
588   // Destructively meet the current result with the base V.  V can
589   // either be a merge instruction (SelectInst / PHINode), in which
590   // case its status is looked up in the phiStates map; or a regular
591   // SSA value, in which case it is assumed to be a base.
592   void meetWith(Value *V) {
593     PhiState otherState = getStateForBDV(V);
594     assert((MeetPhiStates::pureMeet(otherState, currentResult) ==
595             MeetPhiStates::pureMeet(currentResult, otherState)) &&
596            "math is wrong: meet does not commute!");
597     currentResult = MeetPhiStates::pureMeet(otherState, currentResult);
598   }
599
600   PhiState getResult() const { return currentResult; }
601
602 private:
603   const ConflictStateMapTy &phiStates;
604   PhiState currentResult;
605
606   /// Return a phi state for a base defining value.  We'll generate a new
607   /// base state for known bases and expect to find a cached state otherwise
608   PhiState getStateForBDV(Value *baseValue) {
609     if (isKnownBaseResult(baseValue)) {
610       return PhiState(baseValue);
611     } else {
612       return lookupFromMap(baseValue);
613     }
614   }
615
616   PhiState lookupFromMap(Value *V) {
617     auto I = phiStates.find(V);
618     assert(I != phiStates.end() && "lookup failed!");
619     return I->second;
620   }
621
622   static PhiState pureMeet(const PhiState &stateA, const PhiState &stateB) {
623     switch (stateA.getStatus()) {
624     case PhiState::Unknown:
625       return stateB;
626
627     case PhiState::Base:
628       assert(stateA.getBase() && "can't be null");
629       if (stateB.isUnknown())
630         return stateA;
631
632       if (stateB.isBase()) {
633         if (stateA.getBase() == stateB.getBase()) {
634           assert(stateA == stateB && "equality broken!");
635           return stateA;
636         }
637         return PhiState(PhiState::Conflict);
638       }
639       assert(stateB.isConflict() && "only three states!");
640       return PhiState(PhiState::Conflict);
641
642     case PhiState::Conflict:
643       return stateA;
644     }
645     llvm_unreachable("only three states!");
646   }
647 };
648 }
649 /// For a given value or instruction, figure out what base ptr it's derived
650 /// from.  For gc objects, this is simply itself.  On success, returns a value
651 /// which is the base pointer.  (This is reliable and can be used for
652 /// relocation.)  On failure, returns nullptr.
653 static Value *findBasePointer(Value *I, DefiningValueMapTy &cache,
654                               DenseSet<llvm::Value *> &NewInsertedDefs) {
655   Value *def = findBaseOrBDV(I, cache);
656
657   if (isKnownBaseResult(def)) {
658     return def;
659   }
660
661   // Here's the rough algorithm:
662   // - For every SSA value, construct a mapping to either an actual base
663   //   pointer or a PHI which obscures the base pointer.
664   // - Construct a mapping from PHI to unknown TOP state.  Use an
665   //   optimistic algorithm to propagate base pointer information.  Lattice
666   //   looks like:
667   //   UNKNOWN
668   //   b1 b2 b3 b4
669   //   CONFLICT
670   //   When algorithm terminates, all PHIs will either have a single concrete
671   //   base or be in a conflict state.
672   // - For every conflict, insert a dummy PHI node without arguments.  Add
673   //   these to the base[Instruction] = BasePtr mapping.  For every
674   //   non-conflict, add the actual base.
675   //  - For every conflict, add arguments for the base[a] of each input
676   //   arguments.
677   //
678   // Note: A simpler form of this would be to add the conflict form of all
679   // PHIs without running the optimistic algorithm.  This would be
680   // analougous to pessimistic data flow and would likely lead to an
681   // overall worse solution.
682
683   ConflictStateMapTy states;
684   states[def] = PhiState();
685   // Recursively fill in all phis & selects reachable from the initial one
686   // for which we don't already know a definite base value for
687   // PERF: Yes, this is as horribly inefficient as it looks.
688   bool done = false;
689   while (!done) {
690     done = true;
691     for (auto Pair : states) {
692       Value *v = Pair.first;
693       assert(!isKnownBaseResult(v) && "why did it get added?");
694       if (PHINode *phi = dyn_cast<PHINode>(v)) {
695         assert(phi->getNumIncomingValues() > 0 &&
696                "zero input phis are illegal");
697         for (Value *InVal : phi->incoming_values()) {
698           Value *local = findBaseOrBDV(InVal, cache);
699           if (!isKnownBaseResult(local) && states.find(local) == states.end()) {
700             states[local] = PhiState();
701             done = false;
702           }
703         }
704       } else if (SelectInst *sel = dyn_cast<SelectInst>(v)) {
705         Value *local = findBaseOrBDV(sel->getTrueValue(), cache);
706         if (!isKnownBaseResult(local) && states.find(local) == states.end()) {
707           states[local] = PhiState();
708           done = false;
709         }
710         local = findBaseOrBDV(sel->getFalseValue(), cache);
711         if (!isKnownBaseResult(local) && states.find(local) == states.end()) {
712           states[local] = PhiState();
713           done = false;
714         }
715       }
716     }
717   }
718
719   if (TraceLSP) {
720     errs() << "States after initialization:\n";
721     for (auto Pair : states) {
722       Instruction *v = cast<Instruction>(Pair.first);
723       PhiState state = Pair.second;
724       state.dump();
725       v->dump();
726     }
727   }
728
729   // TODO: come back and revisit the state transitions around inputs which
730   // have reached conflict state.  The current version seems too conservative.
731
732   bool progress = true;
733   size_t oldSize = 0;
734   while (progress) {
735     oldSize = states.size();
736     progress = false;
737     for (auto Pair : states) {
738       MeetPhiStates calculateMeet(states);
739       Value *v = Pair.first;
740       assert(!isKnownBaseResult(v) && "why did it get added?");
741       if (SelectInst *select = dyn_cast<SelectInst>(v)) {
742         calculateMeet.meetWith(findBaseOrBDV(select->getTrueValue(), cache));
743         calculateMeet.meetWith(findBaseOrBDV(select->getFalseValue(), cache));
744       } else
745         for (Value *Val : cast<PHINode>(v)->incoming_values())
746           calculateMeet.meetWith(findBaseOrBDV(Val, cache));
747
748       PhiState oldState = states[v];
749       PhiState newState = calculateMeet.getResult();
750       if (oldState != newState) {
751         progress = true;
752         states[v] = newState;
753       }
754     }
755
756     assert(oldSize <= states.size());
757     assert(oldSize == states.size() || progress);
758   }
759
760   if (TraceLSP) {
761     errs() << "States after meet iteration:\n";
762     for (auto Pair : states) {
763       Instruction *v = cast<Instruction>(Pair.first);
764       PhiState state = Pair.second;
765       state.dump();
766       v->dump();
767     }
768   }
769
770   // Insert Phis for all conflicts
771   for (auto Pair : states) {
772     Instruction *v = cast<Instruction>(Pair.first);
773     PhiState state = Pair.second;
774     assert(!isKnownBaseResult(v) && "why did it get added?");
775     assert(!state.isUnknown() && "Optimistic algorithm didn't complete!");
776     if (state.isConflict()) {
777       if (isa<PHINode>(v)) {
778         int num_preds =
779             std::distance(pred_begin(v->getParent()), pred_end(v->getParent()));
780         assert(num_preds > 0 && "how did we reach here");
781         PHINode *phi = PHINode::Create(v->getType(), num_preds, "base_phi", v);
782         NewInsertedDefs.insert(phi);
783         // Add metadata marking this as a base value
784         auto *const_1 = ConstantInt::get(
785             Type::getInt32Ty(
786                 v->getParent()->getParent()->getParent()->getContext()),
787             1);
788         auto MDConst = ConstantAsMetadata::get(const_1);
789         MDNode *md = MDNode::get(
790             v->getParent()->getParent()->getParent()->getContext(), MDConst);
791         phi->setMetadata("is_base_value", md);
792         states[v] = PhiState(PhiState::Conflict, phi);
793       } else if (SelectInst *sel = dyn_cast<SelectInst>(v)) {
794         // The undef will be replaced later
795         UndefValue *undef = UndefValue::get(sel->getType());
796         SelectInst *basesel = SelectInst::Create(sel->getCondition(), undef,
797                                                  undef, "base_select", sel);
798         NewInsertedDefs.insert(basesel);
799         // Add metadata marking this as a base value
800         auto *const_1 = ConstantInt::get(
801             Type::getInt32Ty(
802                 v->getParent()->getParent()->getParent()->getContext()),
803             1);
804         auto MDConst = ConstantAsMetadata::get(const_1);
805         MDNode *md = MDNode::get(
806             v->getParent()->getParent()->getParent()->getContext(), MDConst);
807         basesel->setMetadata("is_base_value", md);
808         states[v] = PhiState(PhiState::Conflict, basesel);
809       } else
810         llvm_unreachable("unknown conflict type");
811     }
812   }
813
814   // Fixup all the inputs of the new PHIs
815   for (auto Pair : states) {
816     Instruction *v = cast<Instruction>(Pair.first);
817     PhiState state = Pair.second;
818
819     assert(!isKnownBaseResult(v) && "why did it get added?");
820     assert(!state.isUnknown() && "Optimistic algorithm didn't complete!");
821     if (state.isConflict()) {
822       if (PHINode *basephi = dyn_cast<PHINode>(state.getBase())) {
823         PHINode *phi = cast<PHINode>(v);
824         unsigned NumPHIValues = phi->getNumIncomingValues();
825         for (unsigned i = 0; i < NumPHIValues; i++) {
826           Value *InVal = phi->getIncomingValue(i);
827           BasicBlock *InBB = phi->getIncomingBlock(i);
828
829           // If we've already seen InBB, add the same incoming value
830           // we added for it earlier.  The IR verifier requires phi
831           // nodes with multiple entries from the same basic block
832           // to have the same incoming value for each of those
833           // entries.  If we don't do this check here and basephi
834           // has a different type than base, we'll end up adding two
835           // bitcasts (and hence two distinct values) as incoming
836           // values for the same basic block.
837
838           int blockIndex = basephi->getBasicBlockIndex(InBB);
839           if (blockIndex != -1) {
840             Value *oldBase = basephi->getIncomingValue(blockIndex);
841             basephi->addIncoming(oldBase, InBB);
842 #ifndef NDEBUG
843             Value *base = findBaseOrBDV(InVal, cache);
844             if (!isKnownBaseResult(base)) {
845               // Either conflict or base.
846               assert(states.count(base));
847               base = states[base].getBase();
848               assert(base != nullptr && "unknown PhiState!");
849               assert(NewInsertedDefs.count(base) &&
850                      "should have already added this in a prev. iteration!");
851             }
852
853             // In essense this assert states: the only way two
854             // values incoming from the same basic block may be
855             // different is by being different bitcasts of the same
856             // value.  A cleanup that remains TODO is changing
857             // findBaseOrBDV to return an llvm::Value of the correct
858             // type (and still remain pure).  This will remove the
859             // need to add bitcasts.
860             assert(base->stripPointerCasts() == oldBase->stripPointerCasts() &&
861                    "sanity -- findBaseOrBDV should be pure!");
862 #endif
863             continue;
864           }
865
866           // Find either the defining value for the PHI or the normal base for
867           // a non-phi node
868           Value *base = findBaseOrBDV(InVal, cache);
869           if (!isKnownBaseResult(base)) {
870             // Either conflict or base.
871             assert(states.count(base));
872             base = states[base].getBase();
873             assert(base != nullptr && "unknown PhiState!");
874           }
875           assert(base && "can't be null");
876           // Must use original input BB since base may not be Instruction
877           // The cast is needed since base traversal may strip away bitcasts
878           if (base->getType() != basephi->getType()) {
879             base = new BitCastInst(base, basephi->getType(), "cast",
880                                    InBB->getTerminator());
881             NewInsertedDefs.insert(base);
882           }
883           basephi->addIncoming(base, InBB);
884         }
885         assert(basephi->getNumIncomingValues() == NumPHIValues);
886       } else if (SelectInst *basesel = dyn_cast<SelectInst>(state.getBase())) {
887         SelectInst *sel = cast<SelectInst>(v);
888         // Operand 1 & 2 are true, false path respectively. TODO: refactor to
889         // something more safe and less hacky.
890         for (int i = 1; i <= 2; i++) {
891           Value *InVal = sel->getOperand(i);
892           // Find either the defining value for the PHI or the normal base for
893           // a non-phi node
894           Value *base = findBaseOrBDV(InVal, cache);
895           if (!isKnownBaseResult(base)) {
896             // Either conflict or base.
897             assert(states.count(base));
898             base = states[base].getBase();
899             assert(base != nullptr && "unknown PhiState!");
900           }
901           assert(base && "can't be null");
902           // Must use original input BB since base may not be Instruction
903           // The cast is needed since base traversal may strip away bitcasts
904           if (base->getType() != basesel->getType()) {
905             base = new BitCastInst(base, basesel->getType(), "cast", basesel);
906             NewInsertedDefs.insert(base);
907           }
908           basesel->setOperand(i, base);
909         }
910       } else
911         llvm_unreachable("unexpected conflict type");
912     }
913   }
914
915   // Cache all of our results so we can cheaply reuse them
916   // NOTE: This is actually two caches: one of the base defining value
917   // relation and one of the base pointer relation!  FIXME
918   for (auto item : states) {
919     Value *v = item.first;
920     Value *base = item.second.getBase();
921     assert(v && base);
922     assert(!isKnownBaseResult(v) && "why did it get added?");
923
924     if (TraceLSP) {
925       std::string fromstr =
926           cache.count(v) ? (cache[v]->hasName() ? cache[v]->getName() : "")
927                          : "none";
928       errs() << "Updating base value cache"
929              << " for: " << (v->hasName() ? v->getName() : "")
930              << " from: " << fromstr
931              << " to: " << (base->hasName() ? base->getName() : "") << "\n";
932     }
933
934     assert(isKnownBaseResult(base) &&
935            "must be something we 'know' is a base pointer");
936     if (cache.count(v)) {
937       // Once we transition from the BDV relation being store in the cache to
938       // the base relation being stored, it must be stable
939       assert((!isKnownBaseResult(cache[v]) || cache[v] == base) &&
940              "base relation should be stable");
941     }
942     cache[v] = base;
943   }
944   assert(cache.find(def) != cache.end());
945   return cache[def];
946 }
947
948 // For a set of live pointers (base and/or derived), identify the base
949 // pointer of the object which they are derived from.  This routine will
950 // mutate the IR graph as needed to make the 'base' pointer live at the
951 // definition site of 'derived'.  This ensures that any use of 'derived' can
952 // also use 'base'.  This may involve the insertion of a number of
953 // additional PHI nodes.
954 //
955 // preconditions: live is a set of pointer type Values
956 //
957 // side effects: may insert PHI nodes into the existing CFG, will preserve
958 // CFG, will not remove or mutate any existing nodes
959 //
960 // post condition: PointerToBase contains one (derived, base) pair for every
961 // pointer in live.  Note that derived can be equal to base if the original
962 // pointer was a base pointer.
963 static void findBasePointers(const StatepointLiveSetTy &live,
964                              DenseMap<llvm::Value *, llvm::Value *> &PointerToBase,
965                              DominatorTree *DT, DefiningValueMapTy &DVCache,
966                              DenseSet<llvm::Value *> &NewInsertedDefs) {
967   for (Value *ptr : live) {
968     Value *base = findBasePointer(ptr, DVCache, NewInsertedDefs);
969     assert(base && "failed to find base pointer");
970     PointerToBase[ptr] = base;
971     assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) ||
972             DT->dominates(cast<Instruction>(base)->getParent(),
973                           cast<Instruction>(ptr)->getParent())) &&
974            "The base we found better dominate the derived pointer");
975
976     // If you see this trip and like to live really dangerously, the code should
977     // be correct, just with idioms the verifier can't handle.  You can try
978     // disabling the verifier at your own substaintial risk.
979     assert(!isNullConstant(base) && "the relocation code needs adjustment to "
980                                     "handle the relocation of a null pointer "
981                                     "constant without causing false positives "
982                                     "in the safepoint ir verifier.");
983   }
984 }
985
986 /// Find the required based pointers (and adjust the live set) for the given
987 /// parse point.
988 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache,
989                              const CallSite &CS,
990                              PartiallyConstructedSafepointRecord &result) {
991   DenseMap<llvm::Value *, llvm::Value *> PointerToBase;
992   DenseSet<llvm::Value *> NewInsertedDefs;
993   findBasePointers(result.liveset, PointerToBase, &DT, DVCache, NewInsertedDefs);
994
995   if (PrintBasePointers) {
996     errs() << "Base Pairs (w/o Relocation):\n";
997     for (auto Pair : PointerToBase) {
998       errs() << " derived %" << Pair.first->getName() << " base %"
999              << Pair.second->getName() << "\n";
1000     }
1001   }
1002
1003   result.PointerToBase = PointerToBase;
1004   result.NewInsertedDefs = NewInsertedDefs;
1005 }
1006
1007 /// Check for liveness of items in the insert defs and add them to the live
1008 /// and base pointer sets
1009 static void fixupLiveness(DominatorTree &DT, const CallSite &CS,
1010                           const DenseSet<Value *> &allInsertedDefs,
1011                           PartiallyConstructedSafepointRecord &result) {
1012   Instruction *inst = CS.getInstruction();
1013
1014   auto liveset = result.liveset;
1015   auto PointerToBase = result.PointerToBase;
1016
1017   auto is_live_gc_reference =
1018       [&](Value &V) { return isLiveGCReferenceAt(V, inst, DT, nullptr); };
1019
1020   // For each new definition, check to see if a) the definition dominates the
1021   // instruction we're interested in, and b) one of the uses of that definition
1022   // is edge-reachable from the instruction we're interested in.  This is the
1023   // same definition of liveness we used in the intial liveness analysis
1024   for (Value *newDef : allInsertedDefs) {
1025     if (liveset.count(newDef)) {
1026       // already live, no action needed
1027       continue;
1028     }
1029
1030     // PERF: Use DT to check instruction domination might not be good for
1031     // compilation time, and we could change to optimal solution if this
1032     // turn to be a issue
1033     if (!DT.dominates(cast<Instruction>(newDef), inst)) {
1034       // can't possibly be live at inst
1035       continue;
1036     }
1037
1038     if (is_live_gc_reference(*newDef)) {
1039       // Add the live new defs into liveset and PointerToBase
1040       liveset.insert(newDef);
1041       PointerToBase[newDef] = newDef;
1042     }
1043   }
1044
1045   result.liveset = liveset;
1046   result.PointerToBase = PointerToBase;
1047 }
1048
1049 static void fixupLiveReferences(
1050     Function &F, DominatorTree &DT, Pass *P,
1051     const DenseSet<llvm::Value *> &allInsertedDefs,
1052     ArrayRef<CallSite> toUpdate,
1053     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
1054   for (size_t i = 0; i < records.size(); i++) {
1055     struct PartiallyConstructedSafepointRecord &info = records[i];
1056     const CallSite &CS = toUpdate[i];
1057     fixupLiveness(DT, CS, allInsertedDefs, info);
1058   }
1059 }
1060
1061 // Normalize basic block to make it ready to be target of invoke statepoint.
1062 // It means spliting it to have single predecessor. Return newly created BB
1063 // ready to be successor of invoke statepoint.
1064 static BasicBlock *normalizeBBForInvokeSafepoint(BasicBlock *BB,
1065                                                  BasicBlock *InvokeParent,
1066                                                  Pass *P) {
1067   BasicBlock *ret = BB;
1068
1069   if (!BB->getUniquePredecessor()) {
1070     ret = SplitBlockPredecessors(BB, InvokeParent, "");
1071   }
1072
1073   // Another requirement for such basic blocks is to not have any phi nodes.
1074   // Since we just ensured that new BB will have single predecessor,
1075   // all phi nodes in it will have one value. Here it would be naturall place
1076   // to
1077   // remove them all. But we can not do this because we are risking to remove
1078   // one of the values stored in liveset of another statepoint. We will do it
1079   // later after placing all safepoints.
1080
1081   return ret;
1082 }
1083
1084 static int find_index(ArrayRef<Value *> livevec, Value *val) {
1085   auto itr = std::find(livevec.begin(), livevec.end(), val);
1086   assert(livevec.end() != itr);
1087   size_t index = std::distance(livevec.begin(), itr);
1088   assert(index < livevec.size());
1089   return index;
1090 }
1091
1092 // Create new attribute set containing only attributes which can be transfered
1093 // from original call to the safepoint.
1094 static AttributeSet legalizeCallAttributes(AttributeSet AS) {
1095   AttributeSet ret;
1096
1097   for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) {
1098     unsigned index = AS.getSlotIndex(Slot);
1099
1100     if (index == AttributeSet::ReturnIndex ||
1101         index == AttributeSet::FunctionIndex) {
1102
1103       for (auto it = AS.begin(Slot), it_end = AS.end(Slot); it != it_end;
1104            ++it) {
1105         Attribute attr = *it;
1106
1107         // Do not allow certain attributes - just skip them
1108         // Safepoint can not be read only or read none.
1109         if (attr.hasAttribute(Attribute::ReadNone) ||
1110             attr.hasAttribute(Attribute::ReadOnly))
1111           continue;
1112
1113         ret = ret.addAttributes(
1114             AS.getContext(), index,
1115             AttributeSet::get(AS.getContext(), index, AttrBuilder(attr)));
1116       }
1117     }
1118
1119     // Just skip parameter attributes for now
1120   }
1121
1122   return ret;
1123 }
1124
1125 /// Helper function to place all gc relocates necessary for the given
1126 /// statepoint.
1127 /// Inputs:
1128 ///   liveVariables - list of variables to be relocated.
1129 ///   liveStart - index of the first live variable.
1130 ///   basePtrs - base pointers.
1131 ///   statepointToken - statepoint instruction to which relocates should be
1132 ///   bound.
1133 ///   Builder - Llvm IR builder to be used to construct new calls.
1134 void CreateGCRelocates(ArrayRef<llvm::Value *> liveVariables,
1135                        const int liveStart,
1136                        ArrayRef<llvm::Value *> basePtrs,
1137                        Instruction *statepointToken, IRBuilder<> Builder) {
1138
1139   SmallVector<Instruction *, 64> NewDefs;
1140   NewDefs.reserve(liveVariables.size());
1141
1142   Module *M = statepointToken->getParent()->getParent()->getParent();
1143
1144   for (unsigned i = 0; i < liveVariables.size(); i++) {
1145     // We generate a (potentially) unique declaration for every pointer type
1146     // combination.  This results is some blow up the function declarations in
1147     // the IR, but removes the need for argument bitcasts which shrinks the IR
1148     // greatly and makes it much more readable.
1149     SmallVector<Type *, 1> types;                    // one per 'any' type
1150     types.push_back(liveVariables[i]->getType()); // result type
1151     Value *gc_relocate_decl = Intrinsic::getDeclaration(
1152         M, Intrinsic::experimental_gc_relocate, types);
1153
1154     // Generate the gc.relocate call and save the result
1155     Value *baseIdx =
1156         ConstantInt::get(Type::getInt32Ty(M->getContext()),
1157                          liveStart + find_index(liveVariables, basePtrs[i]));
1158     Value *liveIdx = ConstantInt::get(
1159         Type::getInt32Ty(M->getContext()),
1160         liveStart + find_index(liveVariables, liveVariables[i]));
1161
1162     // only specify a debug name if we can give a useful one
1163     Value *reloc = Builder.CreateCall3(
1164         gc_relocate_decl, statepointToken, baseIdx, liveIdx,
1165         liveVariables[i]->hasName() ? liveVariables[i]->getName() + ".relocated"
1166                                     : "");
1167     // Trick CodeGen into thinking there are lots of free registers at this
1168     // fake call.
1169     cast<CallInst>(reloc)->setCallingConv(CallingConv::Cold);
1170
1171     NewDefs.push_back(cast<Instruction>(reloc));
1172   }
1173   assert(NewDefs.size() == liveVariables.size() &&
1174          "missing or extra redefinition at safepoint");
1175 }
1176
1177 static void
1178 makeStatepointExplicitImpl(const CallSite &CS, /* to replace */
1179                            const SmallVectorImpl<llvm::Value *> &basePtrs,
1180                            const SmallVectorImpl<llvm::Value *> &liveVariables,
1181                            Pass *P,
1182                            PartiallyConstructedSafepointRecord &result) {
1183   assert(basePtrs.size() == liveVariables.size());
1184   assert(isStatepoint(CS) &&
1185          "This method expects to be rewriting a statepoint");
1186
1187   BasicBlock *BB = CS.getInstruction()->getParent();
1188   assert(BB);
1189   Function *F = BB->getParent();
1190   assert(F && "must be set");
1191   Module *M = F->getParent();
1192   (void)M;
1193   assert(M && "must be set");
1194
1195   // We're not changing the function signature of the statepoint since the gc
1196   // arguments go into the var args section.
1197   Function *gc_statepoint_decl = CS.getCalledFunction();
1198
1199   // Then go ahead and use the builder do actually do the inserts.  We insert
1200   // immediately before the previous instruction under the assumption that all
1201   // arguments will be available here.  We can't insert afterwards since we may
1202   // be replacing a terminator.
1203   Instruction *insertBefore = CS.getInstruction();
1204   IRBuilder<> Builder(insertBefore);
1205   // Copy all of the arguments from the original statepoint - this includes the
1206   // target, call args, and deopt args
1207   SmallVector<llvm::Value *, 64> args;
1208   args.insert(args.end(), CS.arg_begin(), CS.arg_end());
1209   // TODO: Clear the 'needs rewrite' flag
1210
1211   // add all the pointers to be relocated (gc arguments)
1212   // Capture the start of the live variable list for use in the gc_relocates
1213   const int live_start = args.size();
1214   args.insert(args.end(), liveVariables.begin(), liveVariables.end());
1215
1216   // Create the statepoint given all the arguments
1217   Instruction *token = nullptr;
1218   AttributeSet return_attributes;
1219   if (CS.isCall()) {
1220     CallInst *toReplace = cast<CallInst>(CS.getInstruction());
1221     CallInst *call =
1222         Builder.CreateCall(gc_statepoint_decl, args, "safepoint_token");
1223     call->setTailCall(toReplace->isTailCall());
1224     call->setCallingConv(toReplace->getCallingConv());
1225
1226     // Currently we will fail on parameter attributes and on certain
1227     // function attributes.
1228     AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes());
1229     // In case if we can handle this set of sttributes - set up function attrs
1230     // directly on statepoint and return attrs later for gc_result intrinsic.
1231     call->setAttributes(new_attrs.getFnAttributes());
1232     return_attributes = new_attrs.getRetAttributes();
1233
1234     token = call;
1235
1236     // Put the following gc_result and gc_relocate calls immediately after the
1237     // the old call (which we're about to delete)
1238     BasicBlock::iterator next(toReplace);
1239     assert(BB->end() != next && "not a terminator, must have next");
1240     next++;
1241     Instruction *IP = &*(next);
1242     Builder.SetInsertPoint(IP);
1243     Builder.SetCurrentDebugLocation(IP->getDebugLoc());
1244
1245   } else {
1246     InvokeInst *toReplace = cast<InvokeInst>(CS.getInstruction());
1247
1248     // Insert the new invoke into the old block.  We'll remove the old one in a
1249     // moment at which point this will become the new terminator for the
1250     // original block.
1251     InvokeInst *invoke = InvokeInst::Create(
1252         gc_statepoint_decl, toReplace->getNormalDest(),
1253         toReplace->getUnwindDest(), args, "", toReplace->getParent());
1254     invoke->setCallingConv(toReplace->getCallingConv());
1255
1256     // Currently we will fail on parameter attributes and on certain
1257     // function attributes.
1258     AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes());
1259     // In case if we can handle this set of sttributes - set up function attrs
1260     // directly on statepoint and return attrs later for gc_result intrinsic.
1261     invoke->setAttributes(new_attrs.getFnAttributes());
1262     return_attributes = new_attrs.getRetAttributes();
1263
1264     token = invoke;
1265
1266     // Generate gc relocates in exceptional path
1267     BasicBlock *unwindBlock = normalizeBBForInvokeSafepoint(
1268         toReplace->getUnwindDest(), invoke->getParent(), P);
1269
1270     Instruction *IP = &*(unwindBlock->getFirstInsertionPt());
1271     Builder.SetInsertPoint(IP);
1272     Builder.SetCurrentDebugLocation(toReplace->getDebugLoc());
1273
1274     // Extract second element from landingpad return value. We will attach
1275     // exceptional gc relocates to it.
1276     const unsigned idx = 1;
1277     Instruction *exceptional_token =
1278         cast<Instruction>(Builder.CreateExtractValue(
1279             unwindBlock->getLandingPadInst(), idx, "relocate_token"));
1280     result.UnwindToken = exceptional_token;
1281
1282     // Just throw away return value. We will use the one we got for normal
1283     // block.
1284     (void)CreateGCRelocates(liveVariables, live_start, basePtrs,
1285                             exceptional_token, Builder);
1286
1287     // Generate gc relocates and returns for normal block
1288     BasicBlock *normalDest = normalizeBBForInvokeSafepoint(
1289         toReplace->getNormalDest(), invoke->getParent(), P);
1290
1291     IP = &*(normalDest->getFirstInsertionPt());
1292     Builder.SetInsertPoint(IP);
1293
1294     // gc relocates will be generated later as if it were regular call
1295     // statepoint
1296   }
1297   assert(token);
1298
1299   // Take the name of the original value call if it had one.
1300   token->takeName(CS.getInstruction());
1301
1302   // The GCResult is already inserted, we just need to find it
1303   /* scope */ {
1304     Instruction *toReplace = CS.getInstruction();
1305     assert((toReplace->hasNUses(0) || toReplace->hasNUses(1)) &&
1306            "only valid use before rewrite is gc.result");
1307     if (toReplace->hasOneUse()) {
1308       Instruction *GCResult = cast<Instruction>(*toReplace->user_begin());
1309       assert(isGCResult(GCResult));
1310     }
1311   }
1312
1313   // Update the gc.result of the original statepoint (if any) to use the newly
1314   // inserted statepoint.  This is safe to do here since the token can't be
1315   // considered a live reference.
1316   CS.getInstruction()->replaceAllUsesWith(token);
1317
1318   result.StatepointToken = token;
1319
1320   // Second, create a gc.relocate for every live variable
1321   CreateGCRelocates(liveVariables, live_start, basePtrs, token, Builder);
1322
1323 }
1324
1325 namespace {
1326 struct name_ordering {
1327   Value *base;
1328   Value *derived;
1329   bool operator()(name_ordering const &a, name_ordering const &b) {
1330     return -1 == a.derived->getName().compare(b.derived->getName());
1331   }
1332 };
1333 }
1334 static void stablize_order(SmallVectorImpl<Value *> &basevec,
1335                            SmallVectorImpl<Value *> &livevec) {
1336   assert(basevec.size() == livevec.size());
1337
1338   SmallVector<name_ordering, 64> temp;
1339   for (size_t i = 0; i < basevec.size(); i++) {
1340     name_ordering v;
1341     v.base = basevec[i];
1342     v.derived = livevec[i];
1343     temp.push_back(v);
1344   }
1345   std::sort(temp.begin(), temp.end(), name_ordering());
1346   for (size_t i = 0; i < basevec.size(); i++) {
1347     basevec[i] = temp[i].base;
1348     livevec[i] = temp[i].derived;
1349   }
1350 }
1351
1352 // Replace an existing gc.statepoint with a new one and a set of gc.relocates
1353 // which make the relocations happening at this safepoint explicit.
1354 // 
1355 // WARNING: Does not do any fixup to adjust users of the original live
1356 // values.  That's the callers responsibility.
1357 static void
1358 makeStatepointExplicit(DominatorTree &DT, const CallSite &CS, Pass *P,
1359                        PartiallyConstructedSafepointRecord &result) {
1360   auto liveset = result.liveset;
1361   auto PointerToBase = result.PointerToBase;
1362
1363   // Convert to vector for efficient cross referencing.
1364   SmallVector<Value *, 64> basevec, livevec;
1365   livevec.reserve(liveset.size());
1366   basevec.reserve(liveset.size());
1367   for (Value *L : liveset) {
1368     livevec.push_back(L);
1369
1370     assert(PointerToBase.find(L) != PointerToBase.end());
1371     Value *base = PointerToBase[L];
1372     basevec.push_back(base);
1373   }
1374   assert(livevec.size() == basevec.size());
1375
1376   // To make the output IR slightly more stable (for use in diffs), ensure a
1377   // fixed order of the values in the safepoint (by sorting the value name).
1378   // The order is otherwise meaningless.
1379   stablize_order(basevec, livevec);
1380
1381   // Do the actual rewriting and delete the old statepoint
1382   makeStatepointExplicitImpl(CS, basevec, livevec, P, result);
1383   CS.getInstruction()->eraseFromParent();
1384 }
1385
1386 // Helper function for the relocationViaAlloca.
1387 // It receives iterator to the statepoint gc relocates and emits store to the
1388 // assigned
1389 // location (via allocaMap) for the each one of them.
1390 // Add visited values into the visitedLiveValues set we will later use them
1391 // for sanity check.
1392 static void
1393 insertRelocationStores(iterator_range<Value::user_iterator> gcRelocs,
1394                        DenseMap<Value *, Value *> &allocaMap,
1395                        DenseSet<Value *> &visitedLiveValues) {
1396
1397   for (User *U : gcRelocs) {
1398     if (!isa<IntrinsicInst>(U))
1399       continue;
1400
1401     IntrinsicInst *relocatedValue = cast<IntrinsicInst>(U);
1402
1403     // We only care about relocates
1404     if (relocatedValue->getIntrinsicID() !=
1405         Intrinsic::experimental_gc_relocate) {
1406       continue;
1407     }
1408
1409     GCRelocateOperands relocateOperands(relocatedValue);
1410     Value *originalValue = const_cast<Value *>(relocateOperands.derivedPtr());
1411     assert(allocaMap.count(originalValue));
1412     Value *alloca = allocaMap[originalValue];
1413
1414     // Emit store into the related alloca
1415     StoreInst *store = new StoreInst(relocatedValue, alloca);
1416     store->insertAfter(relocatedValue);
1417
1418 #ifndef NDEBUG
1419     visitedLiveValues.insert(originalValue);
1420 #endif
1421   }
1422 }
1423
1424 /// do all the relocation update via allocas and mem2reg
1425 static void relocationViaAlloca(
1426     Function &F, DominatorTree &DT, ArrayRef<Value *> live,
1427     ArrayRef<struct PartiallyConstructedSafepointRecord> records) {
1428 #ifndef NDEBUG
1429   int initialAllocaNum = 0;
1430
1431   // record initial number of allocas
1432   for (inst_iterator itr = inst_begin(F), end = inst_end(F); itr != end;
1433        itr++) {
1434     if (isa<AllocaInst>(*itr))
1435       initialAllocaNum++;
1436   }
1437 #endif
1438
1439   // TODO-PERF: change data structures, reserve
1440   DenseMap<Value *, Value *> allocaMap;
1441   SmallVector<AllocaInst *, 200> PromotableAllocas;
1442   PromotableAllocas.reserve(live.size());
1443
1444   // emit alloca for each live gc pointer
1445   for (unsigned i = 0; i < live.size(); i++) {
1446     Value *liveValue = live[i];
1447     AllocaInst *alloca = new AllocaInst(liveValue->getType(), "",
1448                                         F.getEntryBlock().getFirstNonPHI());
1449     allocaMap[liveValue] = alloca;
1450     PromotableAllocas.push_back(alloca);
1451   }
1452
1453   // The next two loops are part of the same conceptual operation.  We need to
1454   // insert a store to the alloca after the original def and at each
1455   // redefinition.  We need to insert a load before each use.  These are split
1456   // into distinct loops for performance reasons.
1457
1458   // update gc pointer after each statepoint
1459   // either store a relocated value or null (if no relocated value found for
1460   // this gc pointer and it is not a gc_result)
1461   // this must happen before we update the statepoint with load of alloca
1462   // otherwise we lose the link between statepoint and old def
1463   for (size_t i = 0; i < records.size(); i++) {
1464     const struct PartiallyConstructedSafepointRecord &info = records[i];
1465     Value *Statepoint = info.StatepointToken;
1466
1467     // This will be used for consistency check
1468     DenseSet<Value *> visitedLiveValues;
1469
1470     // Insert stores for normal statepoint gc relocates
1471     insertRelocationStores(Statepoint->users(), allocaMap, visitedLiveValues);
1472
1473     // In case if it was invoke statepoint
1474     // we will insert stores for exceptional path gc relocates.
1475     if (isa<InvokeInst>(Statepoint)) {
1476       insertRelocationStores(info.UnwindToken->users(),
1477                              allocaMap, visitedLiveValues);
1478     }
1479
1480 #ifndef NDEBUG
1481     // As a debuging aid, pretend that an unrelocated pointer becomes null at
1482     // the gc.statepoint.  This will turn some subtle GC problems into slightly
1483     // easier to debug SEGVs
1484     SmallVector<AllocaInst *, 64> ToClobber;
1485     for (auto Pair : allocaMap) {
1486       Value *Def = Pair.first;
1487       AllocaInst *Alloca = cast<AllocaInst>(Pair.second);
1488
1489       // This value was relocated
1490       if (visitedLiveValues.count(Def)) {
1491         continue;
1492       }
1493       ToClobber.push_back(Alloca);
1494     }
1495
1496     auto InsertClobbersAt = [&](Instruction *IP) {
1497       for (auto *AI : ToClobber) {
1498         auto AIType = cast<PointerType>(AI->getType());
1499         auto PT = cast<PointerType>(AIType->getElementType());
1500         Constant *CPN = ConstantPointerNull::get(PT);
1501         StoreInst *store = new StoreInst(CPN, AI);
1502         store->insertBefore(IP);
1503       }
1504     };
1505
1506     // Insert the clobbering stores.  These may get intermixed with the
1507     // gc.results and gc.relocates, but that's fine.  
1508     if (auto II = dyn_cast<InvokeInst>(Statepoint)) {
1509       InsertClobbersAt(II->getNormalDest()->getFirstInsertionPt());
1510       InsertClobbersAt(II->getUnwindDest()->getFirstInsertionPt());
1511     } else {
1512       BasicBlock::iterator Next(cast<CallInst>(Statepoint));
1513       Next++;
1514       InsertClobbersAt(Next);
1515     }
1516 #endif
1517   }
1518   // update use with load allocas and add store for gc_relocated
1519   for (auto Pair : allocaMap) {
1520     Value *def = Pair.first;
1521     Value *alloca = Pair.second;
1522
1523     // we pre-record the uses of allocas so that we dont have to worry about
1524     // later update
1525     // that change the user information.
1526     SmallVector<Instruction *, 20> uses;
1527     // PERF: trade a linear scan for repeated reallocation
1528     uses.reserve(std::distance(def->user_begin(), def->user_end()));
1529     for (User *U : def->users()) {
1530       if (!isa<ConstantExpr>(U)) {
1531         // If the def has a ConstantExpr use, then the def is either a
1532         // ConstantExpr use itself or null.  In either case
1533         // (recursively in the first, directly in the second), the oop
1534         // it is ultimately dependent on is null and this particular
1535         // use does not need to be fixed up.
1536         uses.push_back(cast<Instruction>(U));
1537       }
1538     }
1539
1540     std::sort(uses.begin(), uses.end());
1541     auto last = std::unique(uses.begin(), uses.end());
1542     uses.erase(last, uses.end());
1543
1544     for (Instruction *use : uses) {
1545       if (isa<PHINode>(use)) {
1546         PHINode *phi = cast<PHINode>(use);
1547         for (unsigned i = 0; i < phi->getNumIncomingValues(); i++) {
1548           if (def == phi->getIncomingValue(i)) {
1549             LoadInst *load = new LoadInst(
1550                 alloca, "", phi->getIncomingBlock(i)->getTerminator());
1551             phi->setIncomingValue(i, load);
1552           }
1553         }
1554       } else {
1555         LoadInst *load = new LoadInst(alloca, "", use);
1556         use->replaceUsesOfWith(def, load);
1557       }
1558     }
1559
1560     // emit store for the initial gc value
1561     // store must be inserted after load, otherwise store will be in alloca's
1562     // use list and an extra load will be inserted before it
1563     StoreInst *store = new StoreInst(def, alloca);
1564     if (isa<Instruction>(def)) {
1565       store->insertAfter(cast<Instruction>(def));
1566     } else {
1567       assert((isa<Argument>(def) || isa<GlobalVariable>(def) ||
1568               (isa<Constant>(def) && cast<Constant>(def)->isNullValue())) &&
1569              "Must be argument or global");
1570       store->insertAfter(cast<Instruction>(alloca));
1571     }
1572   }
1573
1574   assert(PromotableAllocas.size() == live.size() &&
1575          "we must have the same allocas with lives");
1576   if (!PromotableAllocas.empty()) {
1577     // apply mem2reg to promote alloca to SSA
1578     PromoteMemToReg(PromotableAllocas, DT);
1579   }
1580
1581 #ifndef NDEBUG
1582   for (inst_iterator itr = inst_begin(F), end = inst_end(F); itr != end;
1583        itr++) {
1584     if (isa<AllocaInst>(*itr))
1585       initialAllocaNum--;
1586   }
1587   assert(initialAllocaNum == 0 && "We must not introduce any extra allocas");
1588 #endif
1589 }
1590
1591 /// Implement a unique function which doesn't require we sort the input
1592 /// vector.  Doing so has the effect of changing the output of a couple of
1593 /// tests in ways which make them less useful in testing fused safepoints.
1594 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) {
1595   DenseSet<T> Seen;
1596   SmallVector<T, 128> TempVec;
1597   TempVec.reserve(Vec.size());
1598   for (auto Element : Vec)
1599     TempVec.push_back(Element);
1600   Vec.clear();
1601   for (auto V : TempVec) {
1602     if (Seen.insert(V).second) {
1603       Vec.push_back(V);
1604     }
1605   }
1606 }
1607
1608 static Function *getUseHolder(Module &M) {
1609   FunctionType *ftype =
1610       FunctionType::get(Type::getVoidTy(M.getContext()), true);
1611   Function *Func = cast<Function>(M.getOrInsertFunction("__tmp_use", ftype));
1612   return Func;
1613 }
1614
1615 /// Insert holders so that each Value is obviously live through the entire
1616 /// liftetime of the call.
1617 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values,
1618                                  SmallVectorImpl<CallInst *> &holders) {
1619   Module *M = CS.getInstruction()->getParent()->getParent()->getParent();
1620   Function *Func = getUseHolder(*M);
1621   if (CS.isCall()) {
1622     // For call safepoints insert dummy calls right after safepoint
1623     BasicBlock::iterator next(CS.getInstruction());
1624     next++;
1625     CallInst *base_holder = CallInst::Create(Func, Values, "", next);
1626     holders.push_back(base_holder);
1627   } else if (CS.isInvoke()) {
1628     // For invoke safepooints insert dummy calls both in normal and
1629     // exceptional destination blocks
1630     InvokeInst *invoke = cast<InvokeInst>(CS.getInstruction());
1631     CallInst *normal_holder = CallInst::Create(
1632         Func, Values, "", invoke->getNormalDest()->getFirstInsertionPt());
1633     CallInst *unwind_holder = CallInst::Create(
1634         Func, Values, "", invoke->getUnwindDest()->getFirstInsertionPt());
1635     holders.push_back(normal_holder);
1636     holders.push_back(unwind_holder);
1637   } else
1638     llvm_unreachable("unsupported call type");
1639 }
1640
1641 static void findLiveReferences(
1642     Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate,
1643     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
1644   for (size_t i = 0; i < records.size(); i++) {
1645     struct PartiallyConstructedSafepointRecord &info = records[i];
1646     const CallSite &CS = toUpdate[i];
1647     analyzeParsePointLiveness(DT, CS, info);
1648   }
1649 }
1650
1651 static void addBasesAsLiveValues(StatepointLiveSetTy &liveset,
1652                                  DenseMap<Value *, Value *> &PointerToBase) {
1653   // Identify any base pointers which are used in this safepoint, but not
1654   // themselves relocated.  We need to relocate them so that later inserted
1655   // safepoints can get the properly relocated base register.
1656   DenseSet<Value *> missing;
1657   for (Value *L : liveset) {
1658     assert(PointerToBase.find(L) != PointerToBase.end());
1659     Value *base = PointerToBase[L];
1660     assert(base);
1661     if (liveset.find(base) == liveset.end()) {
1662       assert(PointerToBase.find(base) == PointerToBase.end());
1663       // uniqued by set insert
1664       missing.insert(base);
1665     }
1666   }
1667
1668   // Note that we want these at the end of the list, otherwise
1669   // register placement gets screwed up once we lower to STATEPOINT
1670   // instructions.  This is an utter hack, but there doesn't seem to be a
1671   // better one.
1672   for (Value *base : missing) {
1673     assert(base);
1674     liveset.insert(base);
1675     PointerToBase[base] = base;
1676   }
1677   assert(liveset.size() == PointerToBase.size());
1678 }
1679
1680 static bool insertParsePoints(Function &F, DominatorTree &DT, Pass *P,
1681                               SmallVectorImpl<CallSite> &toUpdate) {
1682 #ifndef NDEBUG
1683   // sanity check the input
1684   std::set<CallSite> uniqued;
1685   uniqued.insert(toUpdate.begin(), toUpdate.end());
1686   assert(uniqued.size() == toUpdate.size() && "no duplicates please!");
1687
1688   for (size_t i = 0; i < toUpdate.size(); i++) {
1689     CallSite &CS = toUpdate[i];
1690     assert(CS.getInstruction()->getParent()->getParent() == &F);
1691     assert(isStatepoint(CS) && "expected to already be a deopt statepoint");
1692   }
1693 #endif
1694
1695   // A list of dummy calls added to the IR to keep various values obviously
1696   // live in the IR.  We'll remove all of these when done.
1697   SmallVector<CallInst *, 64> holders;
1698
1699   // Insert a dummy call with all of the arguments to the vm_state we'll need
1700   // for the actual safepoint insertion.  This ensures reference arguments in
1701   // the deopt argument list are considered live through the safepoint (and
1702   // thus makes sure they get relocated.)
1703   for (size_t i = 0; i < toUpdate.size(); i++) {
1704     CallSite &CS = toUpdate[i];
1705     Statepoint StatepointCS(CS);
1706
1707     SmallVector<Value *, 64> DeoptValues;
1708     for (Use &U : StatepointCS.vm_state_args()) {
1709       Value *Arg = cast<Value>(&U);
1710       if (isGCPointerType(Arg->getType()))
1711         DeoptValues.push_back(Arg);
1712     }
1713     insertUseHolderAfter(CS, DeoptValues, holders);
1714   }
1715
1716   SmallVector<struct PartiallyConstructedSafepointRecord, 64> records;
1717   records.reserve(toUpdate.size());
1718   for (size_t i = 0; i < toUpdate.size(); i++) {
1719     struct PartiallyConstructedSafepointRecord info;
1720     records.push_back(info);
1721   }
1722   assert(records.size() == toUpdate.size());
1723
1724   // A) Identify all gc pointers which are staticly live at the given call
1725   // site.
1726   findLiveReferences(F, DT, P, toUpdate, records);
1727
1728   // B) Find the base pointers for each live pointer
1729   /* scope for caching */ {
1730     // Cache the 'defining value' relation used in the computation and
1731     // insertion of base phis and selects.  This ensures that we don't insert
1732     // large numbers of duplicate base_phis.
1733     DefiningValueMapTy DVCache;
1734
1735     for (size_t i = 0; i < records.size(); i++) {
1736       struct PartiallyConstructedSafepointRecord &info = records[i];
1737       CallSite &CS = toUpdate[i];
1738       findBasePointers(DT, DVCache, CS, info);
1739     }
1740   } // end of cache scope
1741
1742   // The base phi insertion logic (for any safepoint) may have inserted new
1743   // instructions which are now live at some safepoint.  The simplest such
1744   // example is:
1745   // loop:
1746   //   phi a  <-- will be a new base_phi here
1747   //   safepoint 1 <-- that needs to be live here
1748   //   gep a + 1
1749   //   safepoint 2
1750   //   br loop
1751   DenseSet<llvm::Value *> allInsertedDefs;
1752   for (size_t i = 0; i < records.size(); i++) {
1753     struct PartiallyConstructedSafepointRecord &info = records[i];
1754     allInsertedDefs.insert(info.NewInsertedDefs.begin(),
1755                            info.NewInsertedDefs.end());
1756   }
1757
1758   // We insert some dummy calls after each safepoint to definitely hold live
1759   // the base pointers which were identified for that safepoint.  We'll then
1760   // ask liveness for _every_ base inserted to see what is now live.  Then we
1761   // remove the dummy calls.
1762   holders.reserve(holders.size() + records.size());
1763   for (size_t i = 0; i < records.size(); i++) {
1764     struct PartiallyConstructedSafepointRecord &info = records[i];
1765     CallSite &CS = toUpdate[i];
1766
1767     SmallVector<Value *, 128> Bases;
1768     for (auto Pair : info.PointerToBase) {
1769       Bases.push_back(Pair.second);
1770     }
1771     insertUseHolderAfter(CS, Bases, holders);
1772   }
1773
1774   // Add the bases explicitly to the live vector set.  This may result in a few
1775   // extra relocations, but the base has to be available whenever a pointer
1776   // derived from it is used.  Thus, we need it to be part of the statepoint's
1777   // gc arguments list.  TODO: Introduce an explicit notion (in the following
1778   // code) of the GC argument list as seperate from the live Values at a
1779   // given statepoint.
1780   for (size_t i = 0; i < records.size(); i++) {
1781     struct PartiallyConstructedSafepointRecord &info = records[i];
1782     addBasesAsLiveValues(info.liveset, info.PointerToBase);
1783   }
1784
1785   // If we inserted any new values, we need to adjust our notion of what is
1786   // live at a particular safepoint.
1787   if (!allInsertedDefs.empty()) {
1788     fixupLiveReferences(F, DT, P, allInsertedDefs, toUpdate, records);
1789   }
1790   if (PrintBasePointers) {
1791     for (size_t i = 0; i < records.size(); i++) {
1792       struct PartiallyConstructedSafepointRecord &info = records[i];
1793       errs() << "Base Pairs: (w/Relocation)\n";
1794       for (auto Pair : info.PointerToBase) {
1795         errs() << " derived %" << Pair.first->getName() << " base %"
1796                << Pair.second->getName() << "\n";
1797       }
1798     }
1799   }
1800   for (size_t i = 0; i < holders.size(); i++) {
1801     holders[i]->eraseFromParent();
1802     holders[i] = nullptr;
1803   }
1804   holders.clear();
1805
1806   // Now run through and replace the existing statepoints with new ones with
1807   // the live variables listed.  We do not yet update uses of the values being
1808   // relocated. We have references to live variables that need to
1809   // survive to the last iteration of this loop.  (By construction, the
1810   // previous statepoint can not be a live variable, thus we can and remove
1811   // the old statepoint calls as we go.)
1812   for (size_t i = 0; i < records.size(); i++) {
1813     struct PartiallyConstructedSafepointRecord &info = records[i];
1814     CallSite &CS = toUpdate[i];
1815     makeStatepointExplicit(DT, CS, P, info);
1816   }
1817   toUpdate.clear(); // prevent accident use of invalid CallSites
1818
1819   // In case if we inserted relocates in a different basic block than the
1820   // original safepoint (this can happen for invokes). We need to be sure that
1821   // original values were not used in any of the phi nodes at the
1822   // beginning of basic block containing them. Because we know that all such
1823   // blocks will have single predecessor we can safely assume that all phi
1824   // nodes have single entry (because of normalizeBBForInvokeSafepoint).
1825   // Just remove them all here.
1826   for (size_t i = 0; i < records.size(); i++) {
1827     Instruction *I = records[i].StatepointToken;
1828
1829     if (InvokeInst *invoke = dyn_cast<InvokeInst>(I)) {
1830       FoldSingleEntryPHINodes(invoke->getNormalDest());
1831       assert(!isa<PHINode>(invoke->getNormalDest()->begin()));
1832
1833       FoldSingleEntryPHINodes(invoke->getUnwindDest());
1834       assert(!isa<PHINode>(invoke->getUnwindDest()->begin()));
1835     }
1836   }
1837
1838   // Do all the fixups of the original live variables to their relocated selves
1839   SmallVector<Value *, 128> live;
1840   for (size_t i = 0; i < records.size(); i++) {
1841     struct PartiallyConstructedSafepointRecord &info = records[i];
1842     // We can't simply save the live set from the original insertion.  One of
1843     // the live values might be the result of a call which needs a safepoint.
1844     // That Value* no longer exists and we need to use the new gc_result.
1845     // Thankfully, the liveset is embedded in the statepoint (and updated), so
1846     // we just grab that.
1847     Statepoint statepoint(info.StatepointToken);
1848     live.insert(live.end(), statepoint.gc_args_begin(),
1849                 statepoint.gc_args_end());
1850   }
1851   unique_unsorted(live);
1852
1853 #ifndef NDEBUG
1854   // sanity check
1855   for (auto ptr : live) {
1856     assert(isGCPointerType(ptr->getType()) && "must be a gc pointer type");
1857   }
1858 #endif
1859
1860   relocationViaAlloca(F, DT, live, records);
1861   return !records.empty();
1862 }
1863
1864 /// Returns true if this function should be rewritten by this pass.  The main
1865 /// point of this function is as an extension point for custom logic.
1866 static bool shouldRewriteStatepointsIn(Function &F) {
1867   // TODO: This should check the GCStrategy
1868   if (F.hasGC()) {
1869     const std::string StatepointExampleName("statepoint-example");
1870     return StatepointExampleName == F.getGC();
1871   } else
1872     return false;
1873 }
1874
1875 bool RewriteStatepointsForGC::runOnFunction(Function &F) {
1876   // Nothing to do for declarations.
1877   if (F.isDeclaration() || F.empty())
1878     return false;
1879
1880   // Policy choice says not to rewrite - the most common reason is that we're
1881   // compiling code without a GCStrategy.
1882   if (!shouldRewriteStatepointsIn(F))
1883     return false;
1884
1885   // Gather all the statepoints which need rewritten.
1886   SmallVector<CallSite, 64> ParsePointNeeded;
1887   for (Instruction &I : inst_range(F)) {
1888     // TODO: only the ones with the flag set!
1889     if (isStatepoint(I))
1890       ParsePointNeeded.push_back(CallSite(&I));
1891   }
1892
1893   // Return early if no work to do.
1894   if (ParsePointNeeded.empty())
1895     return false;
1896
1897   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1898   return insertParsePoints(F, DT, this, ParsePointNeeded);
1899 }