a250a88c994730c0e498932ce5f3b9f2c3b786b3
[oota-llvm.git] / lib / Transforms / Scalar / LoopStrengthReduce.cpp
1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation analyzes and transforms the induction variables (and
11 // computations derived from them) into forms suitable for efficient execution
12 // on the target.
13 //
14 // This pass performs a strength reduction on array references inside loops that
15 // have as one or more of their components the loop induction variable, it
16 // rewrites expressions to take advantage of scaled-index addressing modes
17 // available on the target, and it performs a variety of other optimizations
18 // related to loop induction variables.
19 //
20 // Terminology note: this code has a lot of handling for "post-increment" or
21 // "post-inc" users. This is not talking about post-increment addressing modes;
22 // it is instead talking about code like this:
23 //
24 //   %i = phi [ 0, %entry ], [ %i.next, %latch ]
25 //   ...
26 //   %i.next = add %i, 1
27 //   %c = icmp eq %i.next, %n
28 //
29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
30 // it's useful to think about these as the same register, with some uses using
31 // the value of the register before the add and some using // it after. In this
32 // example, the icmp is a post-increment user, since it uses %i.next, which is
33 // the value of the induction variable after the increment. The other common
34 // case of post-increment users is users outside the loop.
35 //
36 // TODO: More sophistication in the way Formulae are generated and filtered.
37 //
38 // TODO: Handle multiple loops at a time.
39 //
40 // TODO: Should TargetLowering::AddrMode::BaseGV be changed to a ConstantExpr
41 //       instead of a GlobalValue?
42 //
43 // TODO: When truncation is free, truncate ICmp users' operands to make it a
44 //       smaller encoding (on x86 at least).
45 //
46 // TODO: When a negated register is used by an add (such as in a list of
47 //       multiple base registers, or as the increment expression in an addrec),
48 //       we may not actually need both reg and (-1 * reg) in registers; the
49 //       negation can be implemented by using a sub instead of an add. The
50 //       lack of support for taking this into consideration when making
51 //       register pressure decisions is partly worked around by the "Special"
52 //       use kind.
53 //
54 //===----------------------------------------------------------------------===//
55
56 #define DEBUG_TYPE "loop-reduce"
57 #include "llvm/Transforms/Scalar.h"
58 #include "llvm/Constants.h"
59 #include "llvm/Instructions.h"
60 #include "llvm/IntrinsicInst.h"
61 #include "llvm/DerivedTypes.h"
62 #include "llvm/Analysis/IVUsers.h"
63 #include "llvm/Analysis/Dominators.h"
64 #include "llvm/Analysis/LoopPass.h"
65 #include "llvm/Analysis/ScalarEvolutionExpander.h"
66 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
67 #include "llvm/Transforms/Utils/Local.h"
68 #include "llvm/ADT/SmallBitVector.h"
69 #include "llvm/ADT/SetVector.h"
70 #include "llvm/ADT/DenseSet.h"
71 #include "llvm/Support/Debug.h"
72 #include "llvm/Support/ValueHandle.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include "llvm/Target/TargetLowering.h"
75 #include <algorithm>
76 using namespace llvm;
77
78 namespace {
79
80 /// RegSortData - This class holds data which is used to order reuse candidates.
81 class RegSortData {
82 public:
83   /// UsedByIndices - This represents the set of LSRUse indices which reference
84   /// a particular register.
85   SmallBitVector UsedByIndices;
86
87   RegSortData() {}
88
89   void print(raw_ostream &OS) const;
90   void dump() const;
91 };
92
93 }
94
95 void RegSortData::print(raw_ostream &OS) const {
96   OS << "[NumUses=" << UsedByIndices.count() << ']';
97 }
98
99 void RegSortData::dump() const {
100   print(errs()); errs() << '\n';
101 }
102
103 namespace {
104
105 /// RegUseTracker - Map register candidates to information about how they are
106 /// used.
107 class RegUseTracker {
108   typedef DenseMap<const SCEV *, RegSortData> RegUsesTy;
109
110   RegUsesTy RegUsesMap;
111   SmallVector<const SCEV *, 16> RegSequence;
112
113 public:
114   void CountRegister(const SCEV *Reg, size_t LUIdx);
115   void DropRegister(const SCEV *Reg, size_t LUIdx);
116   void DropUse(size_t LUIdx);
117
118   bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
119
120   const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
121
122   void clear();
123
124   typedef SmallVectorImpl<const SCEV *>::iterator iterator;
125   typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator;
126   iterator begin() { return RegSequence.begin(); }
127   iterator end()   { return RegSequence.end(); }
128   const_iterator begin() const { return RegSequence.begin(); }
129   const_iterator end() const   { return RegSequence.end(); }
130 };
131
132 }
133
134 void
135 RegUseTracker::CountRegister(const SCEV *Reg, size_t LUIdx) {
136   std::pair<RegUsesTy::iterator, bool> Pair =
137     RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
138   RegSortData &RSD = Pair.first->second;
139   if (Pair.second)
140     RegSequence.push_back(Reg);
141   RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
142   RSD.UsedByIndices.set(LUIdx);
143 }
144
145 void
146 RegUseTracker::DropRegister(const SCEV *Reg, size_t LUIdx) {
147   RegUsesTy::iterator It = RegUsesMap.find(Reg);
148   assert(It != RegUsesMap.end());
149   RegSortData &RSD = It->second;
150   assert(RSD.UsedByIndices.size() > LUIdx);
151   RSD.UsedByIndices.reset(LUIdx);
152 }
153
154 void
155 RegUseTracker::DropUse(size_t LUIdx) {
156   // Remove the use index from every register's use list.
157   for (RegUsesTy::iterator I = RegUsesMap.begin(), E = RegUsesMap.end();
158        I != E; ++I)
159     I->second.UsedByIndices.reset(LUIdx);
160 }
161
162 bool
163 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
164   if (!RegUsesMap.count(Reg)) return false;
165   const SmallBitVector &UsedByIndices =
166     RegUsesMap.find(Reg)->second.UsedByIndices;
167   int i = UsedByIndices.find_first();
168   if (i == -1) return false;
169   if ((size_t)i != LUIdx) return true;
170   return UsedByIndices.find_next(i) != -1;
171 }
172
173 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
174   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
175   assert(I != RegUsesMap.end() && "Unknown register!");
176   return I->second.UsedByIndices;
177 }
178
179 void RegUseTracker::clear() {
180   RegUsesMap.clear();
181   RegSequence.clear();
182 }
183
184 namespace {
185
186 /// Formula - This class holds information that describes a formula for
187 /// computing satisfying a use. It may include broken-out immediates and scaled
188 /// registers.
189 struct Formula {
190   /// AM - This is used to represent complex addressing, as well as other kinds
191   /// of interesting uses.
192   TargetLowering::AddrMode AM;
193
194   /// BaseRegs - The list of "base" registers for this use. When this is
195   /// non-empty, AM.HasBaseReg should be set to true.
196   SmallVector<const SCEV *, 2> BaseRegs;
197
198   /// ScaledReg - The 'scaled' register for this use. This should be non-null
199   /// when AM.Scale is not zero.
200   const SCEV *ScaledReg;
201
202   Formula() : ScaledReg(0) {}
203
204   void InitialMatch(const SCEV *S, Loop *L,
205                     ScalarEvolution &SE, DominatorTree &DT);
206
207   unsigned getNumRegs() const;
208   const Type *getType() const;
209
210   void DeleteBaseReg(const SCEV *&S);
211
212   bool referencesReg(const SCEV *S) const;
213   bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
214                                   const RegUseTracker &RegUses) const;
215
216   void print(raw_ostream &OS) const;
217   void dump() const;
218 };
219
220 }
221
222 /// DoInitialMatch - Recursion helper for InitialMatch.
223 static void DoInitialMatch(const SCEV *S, Loop *L,
224                            SmallVectorImpl<const SCEV *> &Good,
225                            SmallVectorImpl<const SCEV *> &Bad,
226                            ScalarEvolution &SE, DominatorTree &DT) {
227   // Collect expressions which properly dominate the loop header.
228   if (S->properlyDominates(L->getHeader(), &DT)) {
229     Good.push_back(S);
230     return;
231   }
232
233   // Look at add operands.
234   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
235     for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
236          I != E; ++I)
237       DoInitialMatch(*I, L, Good, Bad, SE, DT);
238     return;
239   }
240
241   // Look at addrec operands.
242   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
243     if (!AR->getStart()->isZero()) {
244       DoInitialMatch(AR->getStart(), L, Good, Bad, SE, DT);
245       DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
246                                       AR->getStepRecurrence(SE),
247                                       AR->getLoop()),
248                      L, Good, Bad, SE, DT);
249       return;
250     }
251
252   // Handle a multiplication by -1 (negation) if it didn't fold.
253   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
254     if (Mul->getOperand(0)->isAllOnesValue()) {
255       SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
256       const SCEV *NewMul = SE.getMulExpr(Ops);
257
258       SmallVector<const SCEV *, 4> MyGood;
259       SmallVector<const SCEV *, 4> MyBad;
260       DoInitialMatch(NewMul, L, MyGood, MyBad, SE, DT);
261       const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
262         SE.getEffectiveSCEVType(NewMul->getType())));
263       for (SmallVectorImpl<const SCEV *>::const_iterator I = MyGood.begin(),
264            E = MyGood.end(); I != E; ++I)
265         Good.push_back(SE.getMulExpr(NegOne, *I));
266       for (SmallVectorImpl<const SCEV *>::const_iterator I = MyBad.begin(),
267            E = MyBad.end(); I != E; ++I)
268         Bad.push_back(SE.getMulExpr(NegOne, *I));
269       return;
270     }
271
272   // Ok, we can't do anything interesting. Just stuff the whole thing into a
273   // register and hope for the best.
274   Bad.push_back(S);
275 }
276
277 /// InitialMatch - Incorporate loop-variant parts of S into this Formula,
278 /// attempting to keep all loop-invariant and loop-computable values in a
279 /// single base register.
280 void Formula::InitialMatch(const SCEV *S, Loop *L,
281                            ScalarEvolution &SE, DominatorTree &DT) {
282   SmallVector<const SCEV *, 4> Good;
283   SmallVector<const SCEV *, 4> Bad;
284   DoInitialMatch(S, L, Good, Bad, SE, DT);
285   if (!Good.empty()) {
286     const SCEV *Sum = SE.getAddExpr(Good);
287     if (!Sum->isZero())
288       BaseRegs.push_back(Sum);
289     AM.HasBaseReg = true;
290   }
291   if (!Bad.empty()) {
292     const SCEV *Sum = SE.getAddExpr(Bad);
293     if (!Sum->isZero())
294       BaseRegs.push_back(Sum);
295     AM.HasBaseReg = true;
296   }
297 }
298
299 /// getNumRegs - Return the total number of register operands used by this
300 /// formula. This does not include register uses implied by non-constant
301 /// addrec strides.
302 unsigned Formula::getNumRegs() const {
303   return !!ScaledReg + BaseRegs.size();
304 }
305
306 /// getType - Return the type of this formula, if it has one, or null
307 /// otherwise. This type is meaningless except for the bit size.
308 const Type *Formula::getType() const {
309   return !BaseRegs.empty() ? BaseRegs.front()->getType() :
310          ScaledReg ? ScaledReg->getType() :
311          AM.BaseGV ? AM.BaseGV->getType() :
312          0;
313 }
314
315 /// DeleteBaseReg - Delete the given base reg from the BaseRegs list.
316 void Formula::DeleteBaseReg(const SCEV *&S) {
317   if (&S != &BaseRegs.back())
318     std::swap(S, BaseRegs.back());
319   BaseRegs.pop_back();
320 }
321
322 /// referencesReg - Test if this formula references the given register.
323 bool Formula::referencesReg(const SCEV *S) const {
324   return S == ScaledReg ||
325          std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end();
326 }
327
328 /// hasRegsUsedByUsesOtherThan - Test whether this formula uses registers
329 /// which are used by uses other than the use with the given index.
330 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
331                                          const RegUseTracker &RegUses) const {
332   if (ScaledReg)
333     if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
334       return true;
335   for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
336        E = BaseRegs.end(); I != E; ++I)
337     if (RegUses.isRegUsedByUsesOtherThan(*I, LUIdx))
338       return true;
339   return false;
340 }
341
342 void Formula::print(raw_ostream &OS) const {
343   bool First = true;
344   if (AM.BaseGV) {
345     if (!First) OS << " + "; else First = false;
346     WriteAsOperand(OS, AM.BaseGV, /*PrintType=*/false);
347   }
348   if (AM.BaseOffs != 0) {
349     if (!First) OS << " + "; else First = false;
350     OS << AM.BaseOffs;
351   }
352   for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
353        E = BaseRegs.end(); I != E; ++I) {
354     if (!First) OS << " + "; else First = false;
355     OS << "reg(" << **I << ')';
356   }
357   if (AM.HasBaseReg && BaseRegs.empty()) {
358     if (!First) OS << " + "; else First = false;
359     OS << "**error: HasBaseReg**";
360   } else if (!AM.HasBaseReg && !BaseRegs.empty()) {
361     if (!First) OS << " + "; else First = false;
362     OS << "**error: !HasBaseReg**";
363   }
364   if (AM.Scale != 0) {
365     if (!First) OS << " + "; else First = false;
366     OS << AM.Scale << "*reg(";
367     if (ScaledReg)
368       OS << *ScaledReg;
369     else
370       OS << "<unknown>";
371     OS << ')';
372   }
373 }
374
375 void Formula::dump() const {
376   print(errs()); errs() << '\n';
377 }
378
379 /// isAddRecSExtable - Return true if the given addrec can be sign-extended
380 /// without changing its value.
381 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
382   const Type *WideTy =
383     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
384   return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
385 }
386
387 /// isAddSExtable - Return true if the given add can be sign-extended
388 /// without changing its value.
389 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
390   const Type *WideTy =
391     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
392   return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
393 }
394
395 /// isMulSExtable - Return true if the given mul can be sign-extended
396 /// without changing its value.
397 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
398   const Type *WideTy =
399     IntegerType::get(SE.getContext(),
400                      SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
401   return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
402 }
403
404 /// getExactSDiv - Return an expression for LHS /s RHS, if it can be determined
405 /// and if the remainder is known to be zero,  or null otherwise. If
406 /// IgnoreSignificantBits is true, expressions like (X * Y) /s Y are simplified
407 /// to Y, ignoring that the multiplication may overflow, which is useful when
408 /// the result will be used in a context where the most significant bits are
409 /// ignored.
410 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
411                                 ScalarEvolution &SE,
412                                 bool IgnoreSignificantBits = false) {
413   // Handle the trivial case, which works for any SCEV type.
414   if (LHS == RHS)
415     return SE.getConstant(LHS->getType(), 1);
416
417   // Handle a few RHS special cases.
418   const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
419   if (RC) {
420     const APInt &RA = RC->getValue()->getValue();
421     // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
422     // some folding.
423     if (RA.isAllOnesValue())
424       return SE.getMulExpr(LHS, RC);
425     // Handle x /s 1 as x.
426     if (RA == 1)
427       return LHS;
428   }
429
430   // Check for a division of a constant by a constant.
431   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
432     if (!RC)
433       return 0;
434     const APInt &LA = C->getValue()->getValue();
435     const APInt &RA = RC->getValue()->getValue();
436     if (LA.srem(RA) != 0)
437       return 0;
438     return SE.getConstant(LA.sdiv(RA));
439   }
440
441   // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
442   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
443     if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) {
444       const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
445                                        IgnoreSignificantBits);
446       if (!Start) return 0;
447       const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
448                                       IgnoreSignificantBits);
449       if (!Step) return 0;
450       return SE.getAddRecExpr(Start, Step, AR->getLoop());
451     }
452     return 0;
453   }
454
455   // Distribute the sdiv over add operands, if the add doesn't overflow.
456   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
457     if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
458       SmallVector<const SCEV *, 8> Ops;
459       for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
460            I != E; ++I) {
461         const SCEV *Op = getExactSDiv(*I, RHS, SE,
462                                       IgnoreSignificantBits);
463         if (!Op) return 0;
464         Ops.push_back(Op);
465       }
466       return SE.getAddExpr(Ops);
467     }
468     return 0;
469   }
470
471   // Check for a multiply operand that we can pull RHS out of.
472   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
473     if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
474       SmallVector<const SCEV *, 4> Ops;
475       bool Found = false;
476       for (SCEVMulExpr::op_iterator I = Mul->op_begin(), E = Mul->op_end();
477            I != E; ++I) {
478         const SCEV *S = *I;
479         if (!Found)
480           if (const SCEV *Q = getExactSDiv(S, RHS, SE,
481                                            IgnoreSignificantBits)) {
482             S = Q;
483             Found = true;
484           }
485         Ops.push_back(S);
486       }
487       return Found ? SE.getMulExpr(Ops) : 0;
488     }
489     return 0;
490   }
491
492   // Otherwise we don't know.
493   return 0;
494 }
495
496 /// ExtractImmediate - If S involves the addition of a constant integer value,
497 /// return that integer value, and mutate S to point to a new SCEV with that
498 /// value excluded.
499 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
500   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
501     if (C->getValue()->getValue().getMinSignedBits() <= 64) {
502       S = SE.getConstant(C->getType(), 0);
503       return C->getValue()->getSExtValue();
504     }
505   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
506     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
507     int64_t Result = ExtractImmediate(NewOps.front(), SE);
508     S = SE.getAddExpr(NewOps);
509     return Result;
510   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
511     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
512     int64_t Result = ExtractImmediate(NewOps.front(), SE);
513     S = SE.getAddRecExpr(NewOps, AR->getLoop());
514     return Result;
515   }
516   return 0;
517 }
518
519 /// ExtractSymbol - If S involves the addition of a GlobalValue address,
520 /// return that symbol, and mutate S to point to a new SCEV with that
521 /// value excluded.
522 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
523   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
524     if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
525       S = SE.getConstant(GV->getType(), 0);
526       return GV;
527     }
528   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
529     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
530     GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
531     S = SE.getAddExpr(NewOps);
532     return Result;
533   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
534     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
535     GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
536     S = SE.getAddRecExpr(NewOps, AR->getLoop());
537     return Result;
538   }
539   return 0;
540 }
541
542 /// isAddressUse - Returns true if the specified instruction is using the
543 /// specified value as an address.
544 static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
545   bool isAddress = isa<LoadInst>(Inst);
546   if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
547     if (SI->getOperand(1) == OperandVal)
548       isAddress = true;
549   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
550     // Addressing modes can also be folded into prefetches and a variety
551     // of intrinsics.
552     switch (II->getIntrinsicID()) {
553       default: break;
554       case Intrinsic::prefetch:
555       case Intrinsic::x86_sse2_loadu_dq:
556       case Intrinsic::x86_sse2_loadu_pd:
557       case Intrinsic::x86_sse_loadu_ps:
558       case Intrinsic::x86_sse_storeu_ps:
559       case Intrinsic::x86_sse2_storeu_pd:
560       case Intrinsic::x86_sse2_storeu_dq:
561       case Intrinsic::x86_sse2_storel_dq:
562         if (II->getArgOperand(0) == OperandVal)
563           isAddress = true;
564         break;
565     }
566   }
567   return isAddress;
568 }
569
570 /// getAccessType - Return the type of the memory being accessed.
571 static const Type *getAccessType(const Instruction *Inst) {
572   const Type *AccessTy = Inst->getType();
573   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst))
574     AccessTy = SI->getOperand(0)->getType();
575   else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
576     // Addressing modes can also be folded into prefetches and a variety
577     // of intrinsics.
578     switch (II->getIntrinsicID()) {
579     default: break;
580     case Intrinsic::x86_sse_storeu_ps:
581     case Intrinsic::x86_sse2_storeu_pd:
582     case Intrinsic::x86_sse2_storeu_dq:
583     case Intrinsic::x86_sse2_storel_dq:
584       AccessTy = II->getArgOperand(0)->getType();
585       break;
586     }
587   }
588
589   // All pointers have the same requirements, so canonicalize them to an
590   // arbitrary pointer type to minimize variation.
591   if (const PointerType *PTy = dyn_cast<PointerType>(AccessTy))
592     AccessTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
593                                 PTy->getAddressSpace());
594
595   return AccessTy;
596 }
597
598 /// DeleteTriviallyDeadInstructions - If any of the instructions is the
599 /// specified set are trivially dead, delete them and see if this makes any of
600 /// their operands subsequently dead.
601 static bool
602 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) {
603   bool Changed = false;
604
605   while (!DeadInsts.empty()) {
606     Instruction *I = dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val());
607
608     if (I == 0 || !isInstructionTriviallyDead(I))
609       continue;
610
611     for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
612       if (Instruction *U = dyn_cast<Instruction>(*OI)) {
613         *OI = 0;
614         if (U->use_empty())
615           DeadInsts.push_back(U);
616       }
617
618     I->eraseFromParent();
619     Changed = true;
620   }
621
622   return Changed;
623 }
624
625 namespace {
626
627 /// Cost - This class is used to measure and compare candidate formulae.
628 class Cost {
629   /// TODO: Some of these could be merged. Also, a lexical ordering
630   /// isn't always optimal.
631   unsigned NumRegs;
632   unsigned AddRecCost;
633   unsigned NumIVMuls;
634   unsigned NumBaseAdds;
635   unsigned ImmCost;
636   unsigned SetupCost;
637
638 public:
639   Cost()
640     : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0),
641       SetupCost(0) {}
642
643   unsigned getNumRegs() const { return NumRegs; }
644
645   bool operator<(const Cost &Other) const;
646
647   void Loose();
648
649   void RateFormula(const Formula &F,
650                    SmallPtrSet<const SCEV *, 16> &Regs,
651                    const DenseSet<const SCEV *> &VisitedRegs,
652                    const Loop *L,
653                    const SmallVectorImpl<int64_t> &Offsets,
654                    ScalarEvolution &SE, DominatorTree &DT);
655
656   void print(raw_ostream &OS) const;
657   void dump() const;
658
659 private:
660   void RateRegister(const SCEV *Reg,
661                     SmallPtrSet<const SCEV *, 16> &Regs,
662                     const Loop *L,
663                     ScalarEvolution &SE, DominatorTree &DT);
664   void RatePrimaryRegister(const SCEV *Reg,
665                            SmallPtrSet<const SCEV *, 16> &Regs,
666                            const Loop *L,
667                            ScalarEvolution &SE, DominatorTree &DT);
668 };
669
670 }
671
672 /// RateRegister - Tally up interesting quantities from the given register.
673 void Cost::RateRegister(const SCEV *Reg,
674                         SmallPtrSet<const SCEV *, 16> &Regs,
675                         const Loop *L,
676                         ScalarEvolution &SE, DominatorTree &DT) {
677   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
678     if (AR->getLoop() == L)
679       AddRecCost += 1; /// TODO: This should be a function of the stride.
680
681     // If this is an addrec for a loop that's already been visited by LSR,
682     // don't second-guess its addrec phi nodes. LSR isn't currently smart
683     // enough to reason about more than one loop at a time. Consider these
684     // registers free and leave them alone.
685     else if (L->contains(AR->getLoop()) ||
686              (!AR->getLoop()->contains(L) &&
687               DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))) {
688       for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin();
689            PHINode *PN = dyn_cast<PHINode>(I); ++I)
690         if (SE.isSCEVable(PN->getType()) &&
691             (SE.getEffectiveSCEVType(PN->getType()) ==
692              SE.getEffectiveSCEVType(AR->getType())) &&
693             SE.getSCEV(PN) == AR)
694           return;
695
696       // If this isn't one of the addrecs that the loop already has, it
697       // would require a costly new phi and add. TODO: This isn't
698       // precisely modeled right now.
699       ++NumBaseAdds;
700       if (!Regs.count(AR->getStart()))
701         RateRegister(AR->getStart(), Regs, L, SE, DT);
702     }
703
704     // Add the step value register, if it needs one.
705     // TODO: The non-affine case isn't precisely modeled here.
706     if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1)))
707       if (!Regs.count(AR->getStart()))
708         RateRegister(AR->getOperand(1), Regs, L, SE, DT);
709   }
710   ++NumRegs;
711
712   // Rough heuristic; favor registers which don't require extra setup
713   // instructions in the preheader.
714   if (!isa<SCEVUnknown>(Reg) &&
715       !isa<SCEVConstant>(Reg) &&
716       !(isa<SCEVAddRecExpr>(Reg) &&
717         (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) ||
718          isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart()))))
719     ++SetupCost;
720 }
721
722 /// RatePrimaryRegister - Record this register in the set. If we haven't seen it
723 /// before, rate it.
724 void Cost::RatePrimaryRegister(const SCEV *Reg,
725                                SmallPtrSet<const SCEV *, 16> &Regs,
726                                const Loop *L,
727                                ScalarEvolution &SE, DominatorTree &DT) {
728   if (Regs.insert(Reg))
729     RateRegister(Reg, Regs, L, SE, DT);
730 }
731
732 void Cost::RateFormula(const Formula &F,
733                        SmallPtrSet<const SCEV *, 16> &Regs,
734                        const DenseSet<const SCEV *> &VisitedRegs,
735                        const Loop *L,
736                        const SmallVectorImpl<int64_t> &Offsets,
737                        ScalarEvolution &SE, DominatorTree &DT) {
738   // Tally up the registers.
739   if (const SCEV *ScaledReg = F.ScaledReg) {
740     if (VisitedRegs.count(ScaledReg)) {
741       Loose();
742       return;
743     }
744     RatePrimaryRegister(ScaledReg, Regs, L, SE, DT);
745   }
746   for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
747        E = F.BaseRegs.end(); I != E; ++I) {
748     const SCEV *BaseReg = *I;
749     if (VisitedRegs.count(BaseReg)) {
750       Loose();
751       return;
752     }
753     RatePrimaryRegister(BaseReg, Regs, L, SE, DT);
754
755     NumIVMuls += isa<SCEVMulExpr>(BaseReg) &&
756                  BaseReg->hasComputableLoopEvolution(L);
757   }
758
759   if (F.BaseRegs.size() > 1)
760     NumBaseAdds += F.BaseRegs.size() - 1;
761
762   // Tally up the non-zero immediates.
763   for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
764        E = Offsets.end(); I != E; ++I) {
765     int64_t Offset = (uint64_t)*I + F.AM.BaseOffs;
766     if (F.AM.BaseGV)
767       ImmCost += 64; // Handle symbolic values conservatively.
768                      // TODO: This should probably be the pointer size.
769     else if (Offset != 0)
770       ImmCost += APInt(64, Offset, true).getMinSignedBits();
771   }
772 }
773
774 /// Loose - Set this cost to a loosing value.
775 void Cost::Loose() {
776   NumRegs = ~0u;
777   AddRecCost = ~0u;
778   NumIVMuls = ~0u;
779   NumBaseAdds = ~0u;
780   ImmCost = ~0u;
781   SetupCost = ~0u;
782 }
783
784 /// operator< - Choose the lower cost.
785 bool Cost::operator<(const Cost &Other) const {
786   if (NumRegs != Other.NumRegs)
787     return NumRegs < Other.NumRegs;
788   if (AddRecCost != Other.AddRecCost)
789     return AddRecCost < Other.AddRecCost;
790   if (NumIVMuls != Other.NumIVMuls)
791     return NumIVMuls < Other.NumIVMuls;
792   if (NumBaseAdds != Other.NumBaseAdds)
793     return NumBaseAdds < Other.NumBaseAdds;
794   if (ImmCost != Other.ImmCost)
795     return ImmCost < Other.ImmCost;
796   if (SetupCost != Other.SetupCost)
797     return SetupCost < Other.SetupCost;
798   return false;
799 }
800
801 void Cost::print(raw_ostream &OS) const {
802   OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s");
803   if (AddRecCost != 0)
804     OS << ", with addrec cost " << AddRecCost;
805   if (NumIVMuls != 0)
806     OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s");
807   if (NumBaseAdds != 0)
808     OS << ", plus " << NumBaseAdds << " base add"
809        << (NumBaseAdds == 1 ? "" : "s");
810   if (ImmCost != 0)
811     OS << ", plus " << ImmCost << " imm cost";
812   if (SetupCost != 0)
813     OS << ", plus " << SetupCost << " setup cost";
814 }
815
816 void Cost::dump() const {
817   print(errs()); errs() << '\n';
818 }
819
820 namespace {
821
822 /// LSRFixup - An operand value in an instruction which is to be replaced
823 /// with some equivalent, possibly strength-reduced, replacement.
824 struct LSRFixup {
825   /// UserInst - The instruction which will be updated.
826   Instruction *UserInst;
827
828   /// OperandValToReplace - The operand of the instruction which will
829   /// be replaced. The operand may be used more than once; every instance
830   /// will be replaced.
831   Value *OperandValToReplace;
832
833   /// PostIncLoops - If this user is to use the post-incremented value of an
834   /// induction variable, this variable is non-null and holds the loop
835   /// associated with the induction variable.
836   PostIncLoopSet PostIncLoops;
837
838   /// LUIdx - The index of the LSRUse describing the expression which
839   /// this fixup needs, minus an offset (below).
840   size_t LUIdx;
841
842   /// Offset - A constant offset to be added to the LSRUse expression.
843   /// This allows multiple fixups to share the same LSRUse with different
844   /// offsets, for example in an unrolled loop.
845   int64_t Offset;
846
847   bool isUseFullyOutsideLoop(const Loop *L) const;
848
849   LSRFixup();
850
851   void print(raw_ostream &OS) const;
852   void dump() const;
853 };
854
855 }
856
857 LSRFixup::LSRFixup()
858   : UserInst(0), OperandValToReplace(0), LUIdx(~size_t(0)), Offset(0) {}
859
860 /// isUseFullyOutsideLoop - Test whether this fixup always uses its
861 /// value outside of the given loop.
862 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
863   // PHI nodes use their value in their incoming blocks.
864   if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
865     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
866       if (PN->getIncomingValue(i) == OperandValToReplace &&
867           L->contains(PN->getIncomingBlock(i)))
868         return false;
869     return true;
870   }
871
872   return !L->contains(UserInst);
873 }
874
875 void LSRFixup::print(raw_ostream &OS) const {
876   OS << "UserInst=";
877   // Store is common and interesting enough to be worth special-casing.
878   if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
879     OS << "store ";
880     WriteAsOperand(OS, Store->getOperand(0), /*PrintType=*/false);
881   } else if (UserInst->getType()->isVoidTy())
882     OS << UserInst->getOpcodeName();
883   else
884     WriteAsOperand(OS, UserInst, /*PrintType=*/false);
885
886   OS << ", OperandValToReplace=";
887   WriteAsOperand(OS, OperandValToReplace, /*PrintType=*/false);
888
889   for (PostIncLoopSet::const_iterator I = PostIncLoops.begin(),
890        E = PostIncLoops.end(); I != E; ++I) {
891     OS << ", PostIncLoop=";
892     WriteAsOperand(OS, (*I)->getHeader(), /*PrintType=*/false);
893   }
894
895   if (LUIdx != ~size_t(0))
896     OS << ", LUIdx=" << LUIdx;
897
898   if (Offset != 0)
899     OS << ", Offset=" << Offset;
900 }
901
902 void LSRFixup::dump() const {
903   print(errs()); errs() << '\n';
904 }
905
906 namespace {
907
908 /// UniquifierDenseMapInfo - A DenseMapInfo implementation for holding
909 /// DenseMaps and DenseSets of sorted SmallVectors of const SCEV*.
910 struct UniquifierDenseMapInfo {
911   static SmallVector<const SCEV *, 2> getEmptyKey() {
912     SmallVector<const SCEV *, 2> V;
913     V.push_back(reinterpret_cast<const SCEV *>(-1));
914     return V;
915   }
916
917   static SmallVector<const SCEV *, 2> getTombstoneKey() {
918     SmallVector<const SCEV *, 2> V;
919     V.push_back(reinterpret_cast<const SCEV *>(-2));
920     return V;
921   }
922
923   static unsigned getHashValue(const SmallVector<const SCEV *, 2> &V) {
924     unsigned Result = 0;
925     for (SmallVectorImpl<const SCEV *>::const_iterator I = V.begin(),
926          E = V.end(); I != E; ++I)
927       Result ^= DenseMapInfo<const SCEV *>::getHashValue(*I);
928     return Result;
929   }
930
931   static bool isEqual(const SmallVector<const SCEV *, 2> &LHS,
932                       const SmallVector<const SCEV *, 2> &RHS) {
933     return LHS == RHS;
934   }
935 };
936
937 /// LSRUse - This class holds the state that LSR keeps for each use in
938 /// IVUsers, as well as uses invented by LSR itself. It includes information
939 /// about what kinds of things can be folded into the user, information about
940 /// the user itself, and information about how the use may be satisfied.
941 /// TODO: Represent multiple users of the same expression in common?
942 class LSRUse {
943   DenseSet<SmallVector<const SCEV *, 2>, UniquifierDenseMapInfo> Uniquifier;
944
945 public:
946   /// KindType - An enum for a kind of use, indicating what types of
947   /// scaled and immediate operands it might support.
948   enum KindType {
949     Basic,   ///< A normal use, with no folding.
950     Special, ///< A special case of basic, allowing -1 scales.
951     Address, ///< An address use; folding according to TargetLowering
952     ICmpZero ///< An equality icmp with both operands folded into one.
953     // TODO: Add a generic icmp too?
954   };
955
956   KindType Kind;
957   const Type *AccessTy;
958
959   SmallVector<int64_t, 8> Offsets;
960   int64_t MinOffset;
961   int64_t MaxOffset;
962
963   /// AllFixupsOutsideLoop - This records whether all of the fixups using this
964   /// LSRUse are outside of the loop, in which case some special-case heuristics
965   /// may be used.
966   bool AllFixupsOutsideLoop;
967
968   /// Formulae - A list of ways to build a value that can satisfy this user.
969   /// After the list is populated, one of these is selected heuristically and
970   /// used to formulate a replacement for OperandValToReplace in UserInst.
971   SmallVector<Formula, 12> Formulae;
972
973   /// Regs - The set of register candidates used by all formulae in this LSRUse.
974   SmallPtrSet<const SCEV *, 4> Regs;
975
976   LSRUse(KindType K, const Type *T) : Kind(K), AccessTy(T),
977                                       MinOffset(INT64_MAX),
978                                       MaxOffset(INT64_MIN),
979                                       AllFixupsOutsideLoop(true) {}
980
981   bool HasFormulaWithSameRegs(const Formula &F) const;
982   bool InsertFormula(const Formula &F);
983   void DeleteFormula(Formula &F);
984   void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
985
986   void check() const;
987
988   void print(raw_ostream &OS) const;
989   void dump() const;
990 };
991
992 }
993
994 /// HasFormula - Test whether this use as a formula which has the same
995 /// registers as the given formula.
996 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
997   SmallVector<const SCEV *, 2> Key = F.BaseRegs;
998   if (F.ScaledReg) Key.push_back(F.ScaledReg);
999   // Unstable sort by host order ok, because this is only used for uniquifying.
1000   std::sort(Key.begin(), Key.end());
1001   return Uniquifier.count(Key);
1002 }
1003
1004 /// InsertFormula - If the given formula has not yet been inserted, add it to
1005 /// the list, and return true. Return false otherwise.
1006 bool LSRUse::InsertFormula(const Formula &F) {
1007   SmallVector<const SCEV *, 2> Key = F.BaseRegs;
1008   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1009   // Unstable sort by host order ok, because this is only used for uniquifying.
1010   std::sort(Key.begin(), Key.end());
1011
1012   if (!Uniquifier.insert(Key).second)
1013     return false;
1014
1015   // Using a register to hold the value of 0 is not profitable.
1016   assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1017          "Zero allocated in a scaled register!");
1018 #ifndef NDEBUG
1019   for (SmallVectorImpl<const SCEV *>::const_iterator I =
1020        F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I)
1021     assert(!(*I)->isZero() && "Zero allocated in a base register!");
1022 #endif
1023
1024   // Add the formula to the list.
1025   Formulae.push_back(F);
1026
1027   // Record registers now being used by this use.
1028   if (F.ScaledReg) Regs.insert(F.ScaledReg);
1029   Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1030
1031   return true;
1032 }
1033
1034 /// DeleteFormula - Remove the given formula from this use's list.
1035 void LSRUse::DeleteFormula(Formula &F) {
1036   if (&F != &Formulae.back())
1037     std::swap(F, Formulae.back());
1038   Formulae.pop_back();
1039   assert(!Formulae.empty() && "LSRUse has no formulae left!");
1040 }
1041
1042 /// RecomputeRegs - Recompute the Regs field, and update RegUses.
1043 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1044   // Now that we've filtered out some formulae, recompute the Regs set.
1045   SmallPtrSet<const SCEV *, 4> OldRegs = Regs;
1046   Regs.clear();
1047   for (SmallVectorImpl<Formula>::const_iterator I = Formulae.begin(),
1048        E = Formulae.end(); I != E; ++I) {
1049     const Formula &F = *I;
1050     if (F.ScaledReg) Regs.insert(F.ScaledReg);
1051     Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1052   }
1053
1054   // Update the RegTracker.
1055   for (SmallPtrSet<const SCEV *, 4>::iterator I = OldRegs.begin(),
1056        E = OldRegs.end(); I != E; ++I)
1057     if (!Regs.count(*I))
1058       RegUses.DropRegister(*I, LUIdx);
1059 }
1060
1061 void LSRUse::print(raw_ostream &OS) const {
1062   OS << "LSR Use: Kind=";
1063   switch (Kind) {
1064   case Basic:    OS << "Basic"; break;
1065   case Special:  OS << "Special"; break;
1066   case ICmpZero: OS << "ICmpZero"; break;
1067   case Address:
1068     OS << "Address of ";
1069     if (AccessTy->isPointerTy())
1070       OS << "pointer"; // the full pointer type could be really verbose
1071     else
1072       OS << *AccessTy;
1073   }
1074
1075   OS << ", Offsets={";
1076   for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
1077        E = Offsets.end(); I != E; ++I) {
1078     OS << *I;
1079     if (next(I) != E)
1080       OS << ',';
1081   }
1082   OS << '}';
1083
1084   if (AllFixupsOutsideLoop)
1085     OS << ", all-fixups-outside-loop";
1086 }
1087
1088 void LSRUse::dump() const {
1089   print(errs()); errs() << '\n';
1090 }
1091
1092 /// isLegalUse - Test whether the use described by AM is "legal", meaning it can
1093 /// be completely folded into the user instruction at isel time. This includes
1094 /// address-mode folding and special icmp tricks.
1095 static bool isLegalUse(const TargetLowering::AddrMode &AM,
1096                        LSRUse::KindType Kind, const Type *AccessTy,
1097                        const TargetLowering *TLI) {
1098   switch (Kind) {
1099   case LSRUse::Address:
1100     // If we have low-level target information, ask the target if it can
1101     // completely fold this address.
1102     if (TLI) return TLI->isLegalAddressingMode(AM, AccessTy);
1103
1104     // Otherwise, just guess that reg+reg addressing is legal.
1105     return !AM.BaseGV && AM.BaseOffs == 0 && AM.Scale <= 1;
1106
1107   case LSRUse::ICmpZero:
1108     // There's not even a target hook for querying whether it would be legal to
1109     // fold a GV into an ICmp.
1110     if (AM.BaseGV)
1111       return false;
1112
1113     // ICmp only has two operands; don't allow more than two non-trivial parts.
1114     if (AM.Scale != 0 && AM.HasBaseReg && AM.BaseOffs != 0)
1115       return false;
1116
1117     // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1118     // putting the scaled register in the other operand of the icmp.
1119     if (AM.Scale != 0 && AM.Scale != -1)
1120       return false;
1121
1122     // If we have low-level target information, ask the target if it can fold an
1123     // integer immediate on an icmp.
1124     if (AM.BaseOffs != 0) {
1125       if (TLI) return TLI->isLegalICmpImmediate(-AM.BaseOffs);
1126       return false;
1127     }
1128
1129     return true;
1130
1131   case LSRUse::Basic:
1132     // Only handle single-register values.
1133     return !AM.BaseGV && AM.Scale == 0 && AM.BaseOffs == 0;
1134
1135   case LSRUse::Special:
1136     // Only handle -1 scales, or no scale.
1137     return AM.Scale == 0 || AM.Scale == -1;
1138   }
1139
1140   return false;
1141 }
1142
1143 static bool isLegalUse(TargetLowering::AddrMode AM,
1144                        int64_t MinOffset, int64_t MaxOffset,
1145                        LSRUse::KindType Kind, const Type *AccessTy,
1146                        const TargetLowering *TLI) {
1147   // Check for overflow.
1148   if (((int64_t)((uint64_t)AM.BaseOffs + MinOffset) > AM.BaseOffs) !=
1149       (MinOffset > 0))
1150     return false;
1151   AM.BaseOffs = (uint64_t)AM.BaseOffs + MinOffset;
1152   if (isLegalUse(AM, Kind, AccessTy, TLI)) {
1153     AM.BaseOffs = (uint64_t)AM.BaseOffs - MinOffset;
1154     // Check for overflow.
1155     if (((int64_t)((uint64_t)AM.BaseOffs + MaxOffset) > AM.BaseOffs) !=
1156         (MaxOffset > 0))
1157       return false;
1158     AM.BaseOffs = (uint64_t)AM.BaseOffs + MaxOffset;
1159     return isLegalUse(AM, Kind, AccessTy, TLI);
1160   }
1161   return false;
1162 }
1163
1164 static bool isAlwaysFoldable(int64_t BaseOffs,
1165                              GlobalValue *BaseGV,
1166                              bool HasBaseReg,
1167                              LSRUse::KindType Kind, const Type *AccessTy,
1168                              const TargetLowering *TLI) {
1169   // Fast-path: zero is always foldable.
1170   if (BaseOffs == 0 && !BaseGV) return true;
1171
1172   // Conservatively, create an address with an immediate and a
1173   // base and a scale.
1174   TargetLowering::AddrMode AM;
1175   AM.BaseOffs = BaseOffs;
1176   AM.BaseGV = BaseGV;
1177   AM.HasBaseReg = HasBaseReg;
1178   AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1179
1180   // Canonicalize a scale of 1 to a base register if the formula doesn't
1181   // already have a base register.
1182   if (!AM.HasBaseReg && AM.Scale == 1) {
1183     AM.Scale = 0;
1184     AM.HasBaseReg = true;
1185   }
1186
1187   return isLegalUse(AM, Kind, AccessTy, TLI);
1188 }
1189
1190 static bool isAlwaysFoldable(const SCEV *S,
1191                              int64_t MinOffset, int64_t MaxOffset,
1192                              bool HasBaseReg,
1193                              LSRUse::KindType Kind, const Type *AccessTy,
1194                              const TargetLowering *TLI,
1195                              ScalarEvolution &SE) {
1196   // Fast-path: zero is always foldable.
1197   if (S->isZero()) return true;
1198
1199   // Conservatively, create an address with an immediate and a
1200   // base and a scale.
1201   int64_t BaseOffs = ExtractImmediate(S, SE);
1202   GlobalValue *BaseGV = ExtractSymbol(S, SE);
1203
1204   // If there's anything else involved, it's not foldable.
1205   if (!S->isZero()) return false;
1206
1207   // Fast-path: zero is always foldable.
1208   if (BaseOffs == 0 && !BaseGV) return true;
1209
1210   // Conservatively, create an address with an immediate and a
1211   // base and a scale.
1212   TargetLowering::AddrMode AM;
1213   AM.BaseOffs = BaseOffs;
1214   AM.BaseGV = BaseGV;
1215   AM.HasBaseReg = HasBaseReg;
1216   AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1217
1218   return isLegalUse(AM, MinOffset, MaxOffset, Kind, AccessTy, TLI);
1219 }
1220
1221 namespace {
1222
1223 /// UseMapDenseMapInfo - A DenseMapInfo implementation for holding
1224 /// DenseMaps and DenseSets of pairs of const SCEV* and LSRUse::Kind.
1225 struct UseMapDenseMapInfo {
1226   static std::pair<const SCEV *, LSRUse::KindType> getEmptyKey() {
1227     return std::make_pair(reinterpret_cast<const SCEV *>(-1), LSRUse::Basic);
1228   }
1229
1230   static std::pair<const SCEV *, LSRUse::KindType> getTombstoneKey() {
1231     return std::make_pair(reinterpret_cast<const SCEV *>(-2), LSRUse::Basic);
1232   }
1233
1234   static unsigned
1235   getHashValue(const std::pair<const SCEV *, LSRUse::KindType> &V) {
1236     unsigned Result = DenseMapInfo<const SCEV *>::getHashValue(V.first);
1237     Result ^= DenseMapInfo<unsigned>::getHashValue(unsigned(V.second));
1238     return Result;
1239   }
1240
1241   static bool isEqual(const std::pair<const SCEV *, LSRUse::KindType> &LHS,
1242                       const std::pair<const SCEV *, LSRUse::KindType> &RHS) {
1243     return LHS == RHS;
1244   }
1245 };
1246
1247 /// FormulaSorter - This class implements an ordering for formulae which sorts
1248 /// the by their standalone cost.
1249 class FormulaSorter {
1250   /// These two sets are kept empty, so that we compute standalone costs.
1251   DenseSet<const SCEV *> VisitedRegs;
1252   SmallPtrSet<const SCEV *, 16> Regs;
1253   Loop *L;
1254   LSRUse *LU;
1255   ScalarEvolution &SE;
1256   DominatorTree &DT;
1257
1258 public:
1259   FormulaSorter(Loop *l, LSRUse &lu, ScalarEvolution &se, DominatorTree &dt)
1260     : L(l), LU(&lu), SE(se), DT(dt) {}
1261
1262   bool operator()(const Formula &A, const Formula &B) {
1263     Cost CostA;
1264     CostA.RateFormula(A, Regs, VisitedRegs, L, LU->Offsets, SE, DT);
1265     Regs.clear();
1266     Cost CostB;
1267     CostB.RateFormula(B, Regs, VisitedRegs, L, LU->Offsets, SE, DT);
1268     Regs.clear();
1269     return CostA < CostB;
1270   }
1271 };
1272
1273 /// LSRInstance - This class holds state for the main loop strength reduction
1274 /// logic.
1275 class LSRInstance {
1276   IVUsers &IU;
1277   ScalarEvolution &SE;
1278   DominatorTree &DT;
1279   LoopInfo &LI;
1280   const TargetLowering *const TLI;
1281   Loop *const L;
1282   bool Changed;
1283
1284   /// IVIncInsertPos - This is the insert position that the current loop's
1285   /// induction variable increment should be placed. In simple loops, this is
1286   /// the latch block's terminator. But in more complicated cases, this is a
1287   /// position which will dominate all the in-loop post-increment users.
1288   Instruction *IVIncInsertPos;
1289
1290   /// Factors - Interesting factors between use strides.
1291   SmallSetVector<int64_t, 8> Factors;
1292
1293   /// Types - Interesting use types, to facilitate truncation reuse.
1294   SmallSetVector<const Type *, 4> Types;
1295
1296   /// Fixups - The list of operands which are to be replaced.
1297   SmallVector<LSRFixup, 16> Fixups;
1298
1299   /// Uses - The list of interesting uses.
1300   SmallVector<LSRUse, 16> Uses;
1301
1302   /// RegUses - Track which uses use which register candidates.
1303   RegUseTracker RegUses;
1304
1305   void OptimizeShadowIV();
1306   bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1307   ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
1308   void OptimizeLoopTermCond();
1309
1310   void CollectInterestingTypesAndFactors();
1311   void CollectFixupsAndInitialFormulae();
1312
1313   LSRFixup &getNewFixup() {
1314     Fixups.push_back(LSRFixup());
1315     return Fixups.back();
1316   }
1317
1318   // Support for sharing of LSRUses between LSRFixups.
1319   typedef DenseMap<std::pair<const SCEV *, LSRUse::KindType>,
1320                    size_t,
1321                    UseMapDenseMapInfo> UseMapTy;
1322   UseMapTy UseMap;
1323
1324   bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
1325                           LSRUse::KindType Kind, const Type *AccessTy);
1326
1327   std::pair<size_t, int64_t> getUse(const SCEV *&Expr,
1328                                     LSRUse::KindType Kind,
1329                                     const Type *AccessTy);
1330
1331   void DeleteUse(LSRUse &LU);
1332
1333   LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
1334
1335 public:
1336   void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1337   void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1338   void CountRegisters(const Formula &F, size_t LUIdx);
1339   bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
1340
1341   void CollectLoopInvariantFixupsAndFormulae();
1342
1343   void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
1344                               unsigned Depth = 0);
1345   void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
1346   void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1347   void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1348   void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1349   void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1350   void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
1351   void GenerateCrossUseConstantOffsets();
1352   void GenerateAllReuseFormulae();
1353
1354   void FilterOutUndesirableDedicatedRegisters();
1355
1356   size_t EstimateSearchSpaceComplexity() const;
1357   void NarrowSearchSpaceUsingHeuristics();
1358
1359   void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
1360                     Cost &SolutionCost,
1361                     SmallVectorImpl<const Formula *> &Workspace,
1362                     const Cost &CurCost,
1363                     const SmallPtrSet<const SCEV *, 16> &CurRegs,
1364                     DenseSet<const SCEV *> &VisitedRegs) const;
1365   void Solve(SmallVectorImpl<const Formula *> &Solution) const;
1366
1367   BasicBlock::iterator
1368     HoistInsertPosition(BasicBlock::iterator IP,
1369                         const SmallVectorImpl<Instruction *> &Inputs) const;
1370   BasicBlock::iterator AdjustInsertPositionForExpand(BasicBlock::iterator IP,
1371                                                      const LSRFixup &LF,
1372                                                      const LSRUse &LU) const;
1373
1374   Value *Expand(const LSRFixup &LF,
1375                 const Formula &F,
1376                 BasicBlock::iterator IP,
1377                 SCEVExpander &Rewriter,
1378                 SmallVectorImpl<WeakVH> &DeadInsts) const;
1379   void RewriteForPHI(PHINode *PN, const LSRFixup &LF,
1380                      const Formula &F,
1381                      SCEVExpander &Rewriter,
1382                      SmallVectorImpl<WeakVH> &DeadInsts,
1383                      Pass *P) const;
1384   void Rewrite(const LSRFixup &LF,
1385                const Formula &F,
1386                SCEVExpander &Rewriter,
1387                SmallVectorImpl<WeakVH> &DeadInsts,
1388                Pass *P) const;
1389   void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
1390                          Pass *P);
1391
1392   LSRInstance(const TargetLowering *tli, Loop *l, Pass *P);
1393
1394   bool getChanged() const { return Changed; }
1395
1396   void print_factors_and_types(raw_ostream &OS) const;
1397   void print_fixups(raw_ostream &OS) const;
1398   void print_uses(raw_ostream &OS) const;
1399   void print(raw_ostream &OS) const;
1400   void dump() const;
1401 };
1402
1403 }
1404
1405 /// OptimizeShadowIV - If IV is used in a int-to-float cast
1406 /// inside the loop then try to eliminate the cast operation.
1407 void LSRInstance::OptimizeShadowIV() {
1408   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1409   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1410     return;
1411
1412   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
1413        UI != E; /* empty */) {
1414     IVUsers::const_iterator CandidateUI = UI;
1415     ++UI;
1416     Instruction *ShadowUse = CandidateUI->getUser();
1417     const Type *DestTy = NULL;
1418
1419     /* If shadow use is a int->float cast then insert a second IV
1420        to eliminate this cast.
1421
1422          for (unsigned i = 0; i < n; ++i)
1423            foo((double)i);
1424
1425        is transformed into
1426
1427          double d = 0.0;
1428          for (unsigned i = 0; i < n; ++i, ++d)
1429            foo(d);
1430     */
1431     if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser()))
1432       DestTy = UCast->getDestTy();
1433     else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser()))
1434       DestTy = SCast->getDestTy();
1435     if (!DestTy) continue;
1436
1437     if (TLI) {
1438       // If target does not support DestTy natively then do not apply
1439       // this transformation.
1440       EVT DVT = TLI->getValueType(DestTy);
1441       if (!TLI->isTypeLegal(DVT)) continue;
1442     }
1443
1444     PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
1445     if (!PH) continue;
1446     if (PH->getNumIncomingValues() != 2) continue;
1447
1448     const Type *SrcTy = PH->getType();
1449     int Mantissa = DestTy->getFPMantissaWidth();
1450     if (Mantissa == -1) continue;
1451     if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
1452       continue;
1453
1454     unsigned Entry, Latch;
1455     if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
1456       Entry = 0;
1457       Latch = 1;
1458     } else {
1459       Entry = 1;
1460       Latch = 0;
1461     }
1462
1463     ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
1464     if (!Init) continue;
1465     Constant *NewInit = ConstantFP::get(DestTy, Init->getZExtValue());
1466
1467     BinaryOperator *Incr =
1468       dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
1469     if (!Incr) continue;
1470     if (Incr->getOpcode() != Instruction::Add
1471         && Incr->getOpcode() != Instruction::Sub)
1472       continue;
1473
1474     /* Initialize new IV, double d = 0.0 in above example. */
1475     ConstantInt *C = NULL;
1476     if (Incr->getOperand(0) == PH)
1477       C = dyn_cast<ConstantInt>(Incr->getOperand(1));
1478     else if (Incr->getOperand(1) == PH)
1479       C = dyn_cast<ConstantInt>(Incr->getOperand(0));
1480     else
1481       continue;
1482
1483     if (!C) continue;
1484
1485     // Ignore negative constants, as the code below doesn't handle them
1486     // correctly. TODO: Remove this restriction.
1487     if (!C->getValue().isStrictlyPositive()) continue;
1488
1489     /* Add new PHINode. */
1490     PHINode *NewPH = PHINode::Create(DestTy, "IV.S.", PH);
1491
1492     /* create new increment. '++d' in above example. */
1493     Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
1494     BinaryOperator *NewIncr =
1495       BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
1496                                Instruction::FAdd : Instruction::FSub,
1497                              NewPH, CFP, "IV.S.next.", Incr);
1498
1499     NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
1500     NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
1501
1502     /* Remove cast operation */
1503     ShadowUse->replaceAllUsesWith(NewPH);
1504     ShadowUse->eraseFromParent();
1505     Changed = true;
1506     break;
1507   }
1508 }
1509
1510 /// FindIVUserForCond - If Cond has an operand that is an expression of an IV,
1511 /// set the IV user and stride information and return true, otherwise return
1512 /// false.
1513 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
1514   for (IVUsers::iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
1515     if (UI->getUser() == Cond) {
1516       // NOTE: we could handle setcc instructions with multiple uses here, but
1517       // InstCombine does it as well for simple uses, it's not clear that it
1518       // occurs enough in real life to handle.
1519       CondUse = UI;
1520       return true;
1521     }
1522   return false;
1523 }
1524
1525 /// OptimizeMax - Rewrite the loop's terminating condition if it uses
1526 /// a max computation.
1527 ///
1528 /// This is a narrow solution to a specific, but acute, problem. For loops
1529 /// like this:
1530 ///
1531 ///   i = 0;
1532 ///   do {
1533 ///     p[i] = 0.0;
1534 ///   } while (++i < n);
1535 ///
1536 /// the trip count isn't just 'n', because 'n' might not be positive. And
1537 /// unfortunately this can come up even for loops where the user didn't use
1538 /// a C do-while loop. For example, seemingly well-behaved top-test loops
1539 /// will commonly be lowered like this:
1540 //
1541 ///   if (n > 0) {
1542 ///     i = 0;
1543 ///     do {
1544 ///       p[i] = 0.0;
1545 ///     } while (++i < n);
1546 ///   }
1547 ///
1548 /// and then it's possible for subsequent optimization to obscure the if
1549 /// test in such a way that indvars can't find it.
1550 ///
1551 /// When indvars can't find the if test in loops like this, it creates a
1552 /// max expression, which allows it to give the loop a canonical
1553 /// induction variable:
1554 ///
1555 ///   i = 0;
1556 ///   max = n < 1 ? 1 : n;
1557 ///   do {
1558 ///     p[i] = 0.0;
1559 ///   } while (++i != max);
1560 ///
1561 /// Canonical induction variables are necessary because the loop passes
1562 /// are designed around them. The most obvious example of this is the
1563 /// LoopInfo analysis, which doesn't remember trip count values. It
1564 /// expects to be able to rediscover the trip count each time it is
1565 /// needed, and it does this using a simple analysis that only succeeds if
1566 /// the loop has a canonical induction variable.
1567 ///
1568 /// However, when it comes time to generate code, the maximum operation
1569 /// can be quite costly, especially if it's inside of an outer loop.
1570 ///
1571 /// This function solves this problem by detecting this type of loop and
1572 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
1573 /// the instructions for the maximum computation.
1574 ///
1575 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
1576   // Check that the loop matches the pattern we're looking for.
1577   if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
1578       Cond->getPredicate() != CmpInst::ICMP_NE)
1579     return Cond;
1580
1581   SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
1582   if (!Sel || !Sel->hasOneUse()) return Cond;
1583
1584   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1585   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1586     return Cond;
1587   const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
1588
1589   // Add one to the backedge-taken count to get the trip count.
1590   const SCEV *IterationCount = SE.getAddExpr(BackedgeTakenCount, One);
1591   if (IterationCount != SE.getSCEV(Sel)) return Cond;
1592
1593   // Check for a max calculation that matches the pattern. There's no check
1594   // for ICMP_ULE here because the comparison would be with zero, which
1595   // isn't interesting.
1596   CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1597   const SCEVNAryExpr *Max = 0;
1598   if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
1599     Pred = ICmpInst::ICMP_SLE;
1600     Max = S;
1601   } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
1602     Pred = ICmpInst::ICMP_SLT;
1603     Max = S;
1604   } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
1605     Pred = ICmpInst::ICMP_ULT;
1606     Max = U;
1607   } else {
1608     // No match; bail.
1609     return Cond;
1610   }
1611
1612   // To handle a max with more than two operands, this optimization would
1613   // require additional checking and setup.
1614   if (Max->getNumOperands() != 2)
1615     return Cond;
1616
1617   const SCEV *MaxLHS = Max->getOperand(0);
1618   const SCEV *MaxRHS = Max->getOperand(1);
1619
1620   // ScalarEvolution canonicalizes constants to the left. For < and >, look
1621   // for a comparison with 1. For <= and >=, a comparison with zero.
1622   if (!MaxLHS ||
1623       (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
1624     return Cond;
1625
1626   // Check the relevant induction variable for conformance to
1627   // the pattern.
1628   const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
1629   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
1630   if (!AR || !AR->isAffine() ||
1631       AR->getStart() != One ||
1632       AR->getStepRecurrence(SE) != One)
1633     return Cond;
1634
1635   assert(AR->getLoop() == L &&
1636          "Loop condition operand is an addrec in a different loop!");
1637
1638   // Check the right operand of the select, and remember it, as it will
1639   // be used in the new comparison instruction.
1640   Value *NewRHS = 0;
1641   if (ICmpInst::isTrueWhenEqual(Pred)) {
1642     // Look for n+1, and grab n.
1643     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
1644       if (isa<ConstantInt>(BO->getOperand(1)) &&
1645           cast<ConstantInt>(BO->getOperand(1))->isOne() &&
1646           SE.getSCEV(BO->getOperand(0)) == MaxRHS)
1647         NewRHS = BO->getOperand(0);
1648     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
1649       if (isa<ConstantInt>(BO->getOperand(1)) &&
1650           cast<ConstantInt>(BO->getOperand(1))->isOne() &&
1651           SE.getSCEV(BO->getOperand(0)) == MaxRHS)
1652         NewRHS = BO->getOperand(0);
1653     if (!NewRHS)
1654       return Cond;
1655   } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
1656     NewRHS = Sel->getOperand(1);
1657   else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
1658     NewRHS = Sel->getOperand(2);
1659   else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
1660     NewRHS = SU->getValue();
1661   else
1662     // Max doesn't match expected pattern.
1663     return Cond;
1664
1665   // Determine the new comparison opcode. It may be signed or unsigned,
1666   // and the original comparison may be either equality or inequality.
1667   if (Cond->getPredicate() == CmpInst::ICMP_EQ)
1668     Pred = CmpInst::getInversePredicate(Pred);
1669
1670   // Ok, everything looks ok to change the condition into an SLT or SGE and
1671   // delete the max calculation.
1672   ICmpInst *NewCond =
1673     new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
1674
1675   // Delete the max calculation instructions.
1676   Cond->replaceAllUsesWith(NewCond);
1677   CondUse->setUser(NewCond);
1678   Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
1679   Cond->eraseFromParent();
1680   Sel->eraseFromParent();
1681   if (Cmp->use_empty())
1682     Cmp->eraseFromParent();
1683   return NewCond;
1684 }
1685
1686 /// OptimizeLoopTermCond - Change loop terminating condition to use the
1687 /// postinc iv when possible.
1688 void
1689 LSRInstance::OptimizeLoopTermCond() {
1690   SmallPtrSet<Instruction *, 4> PostIncs;
1691
1692   BasicBlock *LatchBlock = L->getLoopLatch();
1693   SmallVector<BasicBlock*, 8> ExitingBlocks;
1694   L->getExitingBlocks(ExitingBlocks);
1695
1696   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
1697     BasicBlock *ExitingBlock = ExitingBlocks[i];
1698
1699     // Get the terminating condition for the loop if possible.  If we
1700     // can, we want to change it to use a post-incremented version of its
1701     // induction variable, to allow coalescing the live ranges for the IV into
1702     // one register value.
1703
1704     BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
1705     if (!TermBr)
1706       continue;
1707     // FIXME: Overly conservative, termination condition could be an 'or' etc..
1708     if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
1709       continue;
1710
1711     // Search IVUsesByStride to find Cond's IVUse if there is one.
1712     IVStrideUse *CondUse = 0;
1713     ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
1714     if (!FindIVUserForCond(Cond, CondUse))
1715       continue;
1716
1717     // If the trip count is computed in terms of a max (due to ScalarEvolution
1718     // being unable to find a sufficient guard, for example), change the loop
1719     // comparison to use SLT or ULT instead of NE.
1720     // One consequence of doing this now is that it disrupts the count-down
1721     // optimization. That's not always a bad thing though, because in such
1722     // cases it may still be worthwhile to avoid a max.
1723     Cond = OptimizeMax(Cond, CondUse);
1724
1725     // If this exiting block dominates the latch block, it may also use
1726     // the post-inc value if it won't be shared with other uses.
1727     // Check for dominance.
1728     if (!DT.dominates(ExitingBlock, LatchBlock))
1729       continue;
1730
1731     // Conservatively avoid trying to use the post-inc value in non-latch
1732     // exits if there may be pre-inc users in intervening blocks.
1733     if (LatchBlock != ExitingBlock)
1734       for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
1735         // Test if the use is reachable from the exiting block. This dominator
1736         // query is a conservative approximation of reachability.
1737         if (&*UI != CondUse &&
1738             !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
1739           // Conservatively assume there may be reuse if the quotient of their
1740           // strides could be a legal scale.
1741           const SCEV *A = IU.getStride(*CondUse, L);
1742           const SCEV *B = IU.getStride(*UI, L);
1743           if (!A || !B) continue;
1744           if (SE.getTypeSizeInBits(A->getType()) !=
1745               SE.getTypeSizeInBits(B->getType())) {
1746             if (SE.getTypeSizeInBits(A->getType()) >
1747                 SE.getTypeSizeInBits(B->getType()))
1748               B = SE.getSignExtendExpr(B, A->getType());
1749             else
1750               A = SE.getSignExtendExpr(A, B->getType());
1751           }
1752           if (const SCEVConstant *D =
1753                 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
1754             const ConstantInt *C = D->getValue();
1755             // Stride of one or negative one can have reuse with non-addresses.
1756             if (C->isOne() || C->isAllOnesValue())
1757               goto decline_post_inc;
1758             // Avoid weird situations.
1759             if (C->getValue().getMinSignedBits() >= 64 ||
1760                 C->getValue().isMinSignedValue())
1761               goto decline_post_inc;
1762             // Without TLI, assume that any stride might be valid, and so any
1763             // use might be shared.
1764             if (!TLI)
1765               goto decline_post_inc;
1766             // Check for possible scaled-address reuse.
1767             const Type *AccessTy = getAccessType(UI->getUser());
1768             TargetLowering::AddrMode AM;
1769             AM.Scale = C->getSExtValue();
1770             if (TLI->isLegalAddressingMode(AM, AccessTy))
1771               goto decline_post_inc;
1772             AM.Scale = -AM.Scale;
1773             if (TLI->isLegalAddressingMode(AM, AccessTy))
1774               goto decline_post_inc;
1775           }
1776         }
1777
1778     DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: "
1779                  << *Cond << '\n');
1780
1781     // It's possible for the setcc instruction to be anywhere in the loop, and
1782     // possible for it to have multiple users.  If it is not immediately before
1783     // the exiting block branch, move it.
1784     if (&*++BasicBlock::iterator(Cond) != TermBr) {
1785       if (Cond->hasOneUse()) {
1786         Cond->moveBefore(TermBr);
1787       } else {
1788         // Clone the terminating condition and insert into the loopend.
1789         ICmpInst *OldCond = Cond;
1790         Cond = cast<ICmpInst>(Cond->clone());
1791         Cond->setName(L->getHeader()->getName() + ".termcond");
1792         ExitingBlock->getInstList().insert(TermBr, Cond);
1793
1794         // Clone the IVUse, as the old use still exists!
1795         CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
1796         TermBr->replaceUsesOfWith(OldCond, Cond);
1797       }
1798     }
1799
1800     // If we get to here, we know that we can transform the setcc instruction to
1801     // use the post-incremented version of the IV, allowing us to coalesce the
1802     // live ranges for the IV correctly.
1803     CondUse->transformToPostInc(L);
1804     Changed = true;
1805
1806     PostIncs.insert(Cond);
1807   decline_post_inc:;
1808   }
1809
1810   // Determine an insertion point for the loop induction variable increment. It
1811   // must dominate all the post-inc comparisons we just set up, and it must
1812   // dominate the loop latch edge.
1813   IVIncInsertPos = L->getLoopLatch()->getTerminator();
1814   for (SmallPtrSet<Instruction *, 4>::const_iterator I = PostIncs.begin(),
1815        E = PostIncs.end(); I != E; ++I) {
1816     BasicBlock *BB =
1817       DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
1818                                     (*I)->getParent());
1819     if (BB == (*I)->getParent())
1820       IVIncInsertPos = *I;
1821     else if (BB != IVIncInsertPos->getParent())
1822       IVIncInsertPos = BB->getTerminator();
1823   }
1824 }
1825
1826 /// reconcileNewOffset - Determine if the given use can accomodate a fixup
1827 /// at the given offset and other details. If so, update the use and
1828 /// return true.
1829 bool
1830 LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
1831                                 LSRUse::KindType Kind, const Type *AccessTy) {
1832   int64_t NewMinOffset = LU.MinOffset;
1833   int64_t NewMaxOffset = LU.MaxOffset;
1834   const Type *NewAccessTy = AccessTy;
1835
1836   // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
1837   // something conservative, however this can pessimize in the case that one of
1838   // the uses will have all its uses outside the loop, for example.
1839   if (LU.Kind != Kind)
1840     return false;
1841   // Conservatively assume HasBaseReg is true for now.
1842   if (NewOffset < LU.MinOffset) {
1843     if (!isAlwaysFoldable(LU.MaxOffset - NewOffset, 0, HasBaseReg,
1844                           Kind, AccessTy, TLI))
1845       return false;
1846     NewMinOffset = NewOffset;
1847   } else if (NewOffset > LU.MaxOffset) {
1848     if (!isAlwaysFoldable(NewOffset - LU.MinOffset, 0, HasBaseReg,
1849                           Kind, AccessTy, TLI))
1850       return false;
1851     NewMaxOffset = NewOffset;
1852   }
1853   // Check for a mismatched access type, and fall back conservatively as needed.
1854   // TODO: Be less conservative when the type is similar and can use the same
1855   // addressing modes.
1856   if (Kind == LSRUse::Address && AccessTy != LU.AccessTy)
1857     NewAccessTy = Type::getVoidTy(AccessTy->getContext());
1858
1859   // Update the use.
1860   LU.MinOffset = NewMinOffset;
1861   LU.MaxOffset = NewMaxOffset;
1862   LU.AccessTy = NewAccessTy;
1863   if (NewOffset != LU.Offsets.back())
1864     LU.Offsets.push_back(NewOffset);
1865   return true;
1866 }
1867
1868 /// getUse - Return an LSRUse index and an offset value for a fixup which
1869 /// needs the given expression, with the given kind and optional access type.
1870 /// Either reuse an existing use or create a new one, as needed.
1871 std::pair<size_t, int64_t>
1872 LSRInstance::getUse(const SCEV *&Expr,
1873                     LSRUse::KindType Kind, const Type *AccessTy) {
1874   const SCEV *Copy = Expr;
1875   int64_t Offset = ExtractImmediate(Expr, SE);
1876
1877   // Basic uses can't accept any offset, for example.
1878   if (!isAlwaysFoldable(Offset, 0, /*HasBaseReg=*/true, Kind, AccessTy, TLI)) {
1879     Expr = Copy;
1880     Offset = 0;
1881   }
1882
1883   std::pair<UseMapTy::iterator, bool> P =
1884     UseMap.insert(std::make_pair(std::make_pair(Expr, Kind), 0));
1885   if (!P.second) {
1886     // A use already existed with this base.
1887     size_t LUIdx = P.first->second;
1888     LSRUse &LU = Uses[LUIdx];
1889     if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
1890       // Reuse this use.
1891       return std::make_pair(LUIdx, Offset);
1892   }
1893
1894   // Create a new use.
1895   size_t LUIdx = Uses.size();
1896   P.first->second = LUIdx;
1897   Uses.push_back(LSRUse(Kind, AccessTy));
1898   LSRUse &LU = Uses[LUIdx];
1899
1900   // We don't need to track redundant offsets, but we don't need to go out
1901   // of our way here to avoid them.
1902   if (LU.Offsets.empty() || Offset != LU.Offsets.back())
1903     LU.Offsets.push_back(Offset);
1904
1905   LU.MinOffset = Offset;
1906   LU.MaxOffset = Offset;
1907   return std::make_pair(LUIdx, Offset);
1908 }
1909
1910 /// DeleteUse - Delete the given use from the Uses list.
1911 void LSRInstance::DeleteUse(LSRUse &LU) {
1912   if (&LU != &Uses.back())
1913     std::swap(LU, Uses.back());
1914   Uses.pop_back();
1915 }
1916
1917 /// FindUseWithFormula - Look for a use distinct from OrigLU which is has
1918 /// a formula that has the same registers as the given formula.
1919 LSRUse *
1920 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
1921                                        const LSRUse &OrigLU) {
1922   // Search all uses for the formula. This could be more clever. Ignore
1923   // ICmpZero uses because they may contain formulae generated by
1924   // GenerateICmpZeroScales, in which case adding fixup offsets may
1925   // be invalid.
1926   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
1927     LSRUse &LU = Uses[LUIdx];
1928     if (&LU != &OrigLU &&
1929         LU.Kind != LSRUse::ICmpZero &&
1930         LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
1931         LU.HasFormulaWithSameRegs(OrigF)) {
1932       for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
1933            E = LU.Formulae.end(); I != E; ++I) {
1934         const Formula &F = *I;
1935         if (F.BaseRegs == OrigF.BaseRegs &&
1936             F.ScaledReg == OrigF.ScaledReg &&
1937             F.AM.BaseGV == OrigF.AM.BaseGV &&
1938             F.AM.Scale == OrigF.AM.Scale &&
1939             LU.Kind) {
1940           if (F.AM.BaseOffs == 0)
1941             return &LU;
1942           break;
1943         }
1944       }
1945     }
1946   }
1947
1948   return 0;
1949 }
1950
1951 void LSRInstance::CollectInterestingTypesAndFactors() {
1952   SmallSetVector<const SCEV *, 4> Strides;
1953
1954   // Collect interesting types and strides.
1955   SmallVector<const SCEV *, 4> Worklist;
1956   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
1957     const SCEV *Expr = IU.getExpr(*UI);
1958
1959     // Collect interesting types.
1960     Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
1961
1962     // Add strides for mentioned loops.
1963     Worklist.push_back(Expr);
1964     do {
1965       const SCEV *S = Worklist.pop_back_val();
1966       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
1967         Strides.insert(AR->getStepRecurrence(SE));
1968         Worklist.push_back(AR->getStart());
1969       } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
1970         Worklist.append(Add->op_begin(), Add->op_end());
1971       }
1972     } while (!Worklist.empty());
1973   }
1974
1975   // Compute interesting factors from the set of interesting strides.
1976   for (SmallSetVector<const SCEV *, 4>::const_iterator
1977        I = Strides.begin(), E = Strides.end(); I != E; ++I)
1978     for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
1979          next(I); NewStrideIter != E; ++NewStrideIter) {
1980       const SCEV *OldStride = *I;
1981       const SCEV *NewStride = *NewStrideIter;
1982
1983       if (SE.getTypeSizeInBits(OldStride->getType()) !=
1984           SE.getTypeSizeInBits(NewStride->getType())) {
1985         if (SE.getTypeSizeInBits(OldStride->getType()) >
1986             SE.getTypeSizeInBits(NewStride->getType()))
1987           NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
1988         else
1989           OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
1990       }
1991       if (const SCEVConstant *Factor =
1992             dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
1993                                                         SE, true))) {
1994         if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
1995           Factors.insert(Factor->getValue()->getValue().getSExtValue());
1996       } else if (const SCEVConstant *Factor =
1997                    dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
1998                                                                NewStride,
1999                                                                SE, true))) {
2000         if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
2001           Factors.insert(Factor->getValue()->getValue().getSExtValue());
2002       }
2003     }
2004
2005   // If all uses use the same type, don't bother looking for truncation-based
2006   // reuse.
2007   if (Types.size() == 1)
2008     Types.clear();
2009
2010   DEBUG(print_factors_and_types(dbgs()));
2011 }
2012
2013 void LSRInstance::CollectFixupsAndInitialFormulae() {
2014   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
2015     // Record the uses.
2016     LSRFixup &LF = getNewFixup();
2017     LF.UserInst = UI->getUser();
2018     LF.OperandValToReplace = UI->getOperandValToReplace();
2019     LF.PostIncLoops = UI->getPostIncLoops();
2020
2021     LSRUse::KindType Kind = LSRUse::Basic;
2022     const Type *AccessTy = 0;
2023     if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) {
2024       Kind = LSRUse::Address;
2025       AccessTy = getAccessType(LF.UserInst);
2026     }
2027
2028     const SCEV *S = IU.getExpr(*UI);
2029
2030     // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
2031     // (N - i == 0), and this allows (N - i) to be the expression that we work
2032     // with rather than just N or i, so we can consider the register
2033     // requirements for both N and i at the same time. Limiting this code to
2034     // equality icmps is not a problem because all interesting loops use
2035     // equality icmps, thanks to IndVarSimplify.
2036     if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst))
2037       if (CI->isEquality()) {
2038         // Swap the operands if needed to put the OperandValToReplace on the
2039         // left, for consistency.
2040         Value *NV = CI->getOperand(1);
2041         if (NV == LF.OperandValToReplace) {
2042           CI->setOperand(1, CI->getOperand(0));
2043           CI->setOperand(0, NV);
2044           NV = CI->getOperand(1);
2045           Changed = true;
2046         }
2047
2048         // x == y  -->  x - y == 0
2049         const SCEV *N = SE.getSCEV(NV);
2050         if (N->isLoopInvariant(L)) {
2051           Kind = LSRUse::ICmpZero;
2052           S = SE.getMinusSCEV(N, S);
2053         }
2054
2055         // -1 and the negations of all interesting strides (except the negation
2056         // of -1) are now also interesting.
2057         for (size_t i = 0, e = Factors.size(); i != e; ++i)
2058           if (Factors[i] != -1)
2059             Factors.insert(-(uint64_t)Factors[i]);
2060         Factors.insert(-1);
2061       }
2062
2063     // Set up the initial formula for this use.
2064     std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
2065     LF.LUIdx = P.first;
2066     LF.Offset = P.second;
2067     LSRUse &LU = Uses[LF.LUIdx];
2068     LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
2069
2070     // If this is the first use of this LSRUse, give it a formula.
2071     if (LU.Formulae.empty()) {
2072       InsertInitialFormula(S, LU, LF.LUIdx);
2073       CountRegisters(LU.Formulae.back(), LF.LUIdx);
2074     }
2075   }
2076
2077   DEBUG(print_fixups(dbgs()));
2078 }
2079
2080 /// InsertInitialFormula - Insert a formula for the given expression into
2081 /// the given use, separating out loop-variant portions from loop-invariant
2082 /// and loop-computable portions.
2083 void
2084 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
2085   Formula F;
2086   F.InitialMatch(S, L, SE, DT);
2087   bool Inserted = InsertFormula(LU, LUIdx, F);
2088   assert(Inserted && "Initial formula already exists!"); (void)Inserted;
2089 }
2090
2091 /// InsertSupplementalFormula - Insert a simple single-register formula for
2092 /// the given expression into the given use.
2093 void
2094 LSRInstance::InsertSupplementalFormula(const SCEV *S,
2095                                        LSRUse &LU, size_t LUIdx) {
2096   Formula F;
2097   F.BaseRegs.push_back(S);
2098   F.AM.HasBaseReg = true;
2099   bool Inserted = InsertFormula(LU, LUIdx, F);
2100   assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
2101 }
2102
2103 /// CountRegisters - Note which registers are used by the given formula,
2104 /// updating RegUses.
2105 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
2106   if (F.ScaledReg)
2107     RegUses.CountRegister(F.ScaledReg, LUIdx);
2108   for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
2109        E = F.BaseRegs.end(); I != E; ++I)
2110     RegUses.CountRegister(*I, LUIdx);
2111 }
2112
2113 /// InsertFormula - If the given formula has not yet been inserted, add it to
2114 /// the list, and return true. Return false otherwise.
2115 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
2116   if (!LU.InsertFormula(F))
2117     return false;
2118
2119   CountRegisters(F, LUIdx);
2120   return true;
2121 }
2122
2123 /// CollectLoopInvariantFixupsAndFormulae - Check for other uses of
2124 /// loop-invariant values which we're tracking. These other uses will pin these
2125 /// values in registers, making them less profitable for elimination.
2126 /// TODO: This currently misses non-constant addrec step registers.
2127 /// TODO: Should this give more weight to users inside the loop?
2128 void
2129 LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
2130   SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
2131   SmallPtrSet<const SCEV *, 8> Inserted;
2132
2133   while (!Worklist.empty()) {
2134     const SCEV *S = Worklist.pop_back_val();
2135
2136     if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
2137       Worklist.append(N->op_begin(), N->op_end());
2138     else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
2139       Worklist.push_back(C->getOperand());
2140     else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
2141       Worklist.push_back(D->getLHS());
2142       Worklist.push_back(D->getRHS());
2143     } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2144       if (!Inserted.insert(U)) continue;
2145       const Value *V = U->getValue();
2146       if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
2147         // Look for instructions defined outside the loop.
2148         if (L->contains(Inst)) continue;
2149       } else if (isa<UndefValue>(V))
2150         // Undef doesn't have a live range, so it doesn't matter.
2151         continue;
2152       for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end();
2153            UI != UE; ++UI) {
2154         const Instruction *UserInst = dyn_cast<Instruction>(*UI);
2155         // Ignore non-instructions.
2156         if (!UserInst)
2157           continue;
2158         // Ignore instructions in other functions (as can happen with
2159         // Constants).
2160         if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
2161           continue;
2162         // Ignore instructions not dominated by the loop.
2163         const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
2164           UserInst->getParent() :
2165           cast<PHINode>(UserInst)->getIncomingBlock(
2166             PHINode::getIncomingValueNumForOperand(UI.getOperandNo()));
2167         if (!DT.dominates(L->getHeader(), UseBB))
2168           continue;
2169         // Ignore uses which are part of other SCEV expressions, to avoid
2170         // analyzing them multiple times.
2171         if (SE.isSCEVable(UserInst->getType())) {
2172           const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
2173           // If the user is a no-op, look through to its uses.
2174           if (!isa<SCEVUnknown>(UserS))
2175             continue;
2176           if (UserS == U) {
2177             Worklist.push_back(
2178               SE.getUnknown(const_cast<Instruction *>(UserInst)));
2179             continue;
2180           }
2181         }
2182         // Ignore icmp instructions which are already being analyzed.
2183         if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
2184           unsigned OtherIdx = !UI.getOperandNo();
2185           Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
2186           if (SE.getSCEV(OtherOp)->hasComputableLoopEvolution(L))
2187             continue;
2188         }
2189
2190         LSRFixup &LF = getNewFixup();
2191         LF.UserInst = const_cast<Instruction *>(UserInst);
2192         LF.OperandValToReplace = UI.getUse();
2193         std::pair<size_t, int64_t> P = getUse(S, LSRUse::Basic, 0);
2194         LF.LUIdx = P.first;
2195         LF.Offset = P.second;
2196         LSRUse &LU = Uses[LF.LUIdx];
2197         LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
2198         InsertSupplementalFormula(U, LU, LF.LUIdx);
2199         CountRegisters(LU.Formulae.back(), Uses.size() - 1);
2200         break;
2201       }
2202     }
2203   }
2204 }
2205
2206 /// CollectSubexprs - Split S into subexpressions which can be pulled out into
2207 /// separate registers. If C is non-null, multiply each subexpression by C.
2208 static void CollectSubexprs(const SCEV *S, const SCEVConstant *C,
2209                             SmallVectorImpl<const SCEV *> &Ops,
2210                             SmallVectorImpl<const SCEV *> &UninterestingOps,
2211                             const Loop *L,
2212                             ScalarEvolution &SE) {
2213   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2214     // Break out add operands.
2215     for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
2216          I != E; ++I)
2217       CollectSubexprs(*I, C, Ops, UninterestingOps, L, SE);
2218     return;
2219   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2220     // Split a non-zero base out of an addrec.
2221     if (!AR->getStart()->isZero()) {
2222       CollectSubexprs(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
2223                                        AR->getStepRecurrence(SE),
2224                                        AR->getLoop()),
2225                       C, Ops, UninterestingOps, L, SE);
2226       CollectSubexprs(AR->getStart(), C, Ops, UninterestingOps, L, SE);
2227       return;
2228     }
2229   } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2230     // Break (C * (a + b + c)) into C*a + C*b + C*c.
2231     if (Mul->getNumOperands() == 2)
2232       if (const SCEVConstant *Op0 =
2233             dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
2234         CollectSubexprs(Mul->getOperand(1),
2235                         C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0,
2236                         Ops, UninterestingOps, L, SE);
2237         return;
2238       }
2239   }
2240
2241   // Otherwise use the value itself. Loop-variant "unknown" values are
2242   // uninteresting; we won't be able to do anything meaningful with them.
2243   if (!C && isa<SCEVUnknown>(S) && !S->isLoopInvariant(L))
2244     UninterestingOps.push_back(S);
2245   else
2246     Ops.push_back(C ? SE.getMulExpr(C, S) : S);
2247 }
2248
2249 /// GenerateReassociations - Split out subexpressions from adds and the bases of
2250 /// addrecs.
2251 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
2252                                          Formula Base,
2253                                          unsigned Depth) {
2254   // Arbitrarily cap recursion to protect compile time.
2255   if (Depth >= 3) return;
2256
2257   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
2258     const SCEV *BaseReg = Base.BaseRegs[i];
2259
2260     SmallVector<const SCEV *, 8> AddOps, UninterestingAddOps;
2261     CollectSubexprs(BaseReg, 0, AddOps, UninterestingAddOps, L, SE);
2262
2263     // Add any uninteresting values as one register, as we won't be able to
2264     // form any interesting reassociation opportunities with them. They'll
2265     // just have to be added inside the loop no matter what we do.
2266     if (!UninterestingAddOps.empty())
2267       AddOps.push_back(SE.getAddExpr(UninterestingAddOps));
2268
2269     if (AddOps.size() == 1) continue;
2270
2271     for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
2272          JE = AddOps.end(); J != JE; ++J) {
2273       // Don't pull a constant into a register if the constant could be folded
2274       // into an immediate field.
2275       if (isAlwaysFoldable(*J, LU.MinOffset, LU.MaxOffset,
2276                            Base.getNumRegs() > 1,
2277                            LU.Kind, LU.AccessTy, TLI, SE))
2278         continue;
2279
2280       // Collect all operands except *J.
2281       SmallVector<const SCEV *, 8> InnerAddOps
2282         (         ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
2283       InnerAddOps.append
2284         (next(J), ((const SmallVector<const SCEV *, 8> &)AddOps).end());
2285
2286       // Don't leave just a constant behind in a register if the constant could
2287       // be folded into an immediate field.
2288       if (InnerAddOps.size() == 1 &&
2289           isAlwaysFoldable(InnerAddOps[0], LU.MinOffset, LU.MaxOffset,
2290                            Base.getNumRegs() > 1,
2291                            LU.Kind, LU.AccessTy, TLI, SE))
2292         continue;
2293
2294       const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
2295       if (InnerSum->isZero())
2296         continue;
2297       Formula F = Base;
2298       F.BaseRegs[i] = InnerSum;
2299       F.BaseRegs.push_back(*J);
2300       if (InsertFormula(LU, LUIdx, F))
2301         // If that formula hadn't been seen before, recurse to find more like
2302         // it.
2303         GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth+1);
2304     }
2305   }
2306 }
2307
2308 /// GenerateCombinations - Generate a formula consisting of all of the
2309 /// loop-dominating registers added into a single register.
2310 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
2311                                        Formula Base) {
2312   // This method is only interesting on a plurality of registers.
2313   if (Base.BaseRegs.size() <= 1) return;
2314
2315   Formula F = Base;
2316   F.BaseRegs.clear();
2317   SmallVector<const SCEV *, 4> Ops;
2318   for (SmallVectorImpl<const SCEV *>::const_iterator
2319        I = Base.BaseRegs.begin(), E = Base.BaseRegs.end(); I != E; ++I) {
2320     const SCEV *BaseReg = *I;
2321     if (BaseReg->properlyDominates(L->getHeader(), &DT) &&
2322         !BaseReg->hasComputableLoopEvolution(L))
2323       Ops.push_back(BaseReg);
2324     else
2325       F.BaseRegs.push_back(BaseReg);
2326   }
2327   if (Ops.size() > 1) {
2328     const SCEV *Sum = SE.getAddExpr(Ops);
2329     // TODO: If Sum is zero, it probably means ScalarEvolution missed an
2330     // opportunity to fold something. For now, just ignore such cases
2331     // rather than proceed with zero in a register.
2332     if (!Sum->isZero()) {
2333       F.BaseRegs.push_back(Sum);
2334       (void)InsertFormula(LU, LUIdx, F);
2335     }
2336   }
2337 }
2338
2339 /// GenerateSymbolicOffsets - Generate reuse formulae using symbolic offsets.
2340 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
2341                                           Formula Base) {
2342   // We can't add a symbolic offset if the address already contains one.
2343   if (Base.AM.BaseGV) return;
2344
2345   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
2346     const SCEV *G = Base.BaseRegs[i];
2347     GlobalValue *GV = ExtractSymbol(G, SE);
2348     if (G->isZero() || !GV)
2349       continue;
2350     Formula F = Base;
2351     F.AM.BaseGV = GV;
2352     if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
2353                     LU.Kind, LU.AccessTy, TLI))
2354       continue;
2355     F.BaseRegs[i] = G;
2356     (void)InsertFormula(LU, LUIdx, F);
2357   }
2358 }
2359
2360 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
2361 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
2362                                           Formula Base) {
2363   // TODO: For now, just add the min and max offset, because it usually isn't
2364   // worthwhile looking at everything inbetween.
2365   SmallVector<int64_t, 4> Worklist;
2366   Worklist.push_back(LU.MinOffset);
2367   if (LU.MaxOffset != LU.MinOffset)
2368     Worklist.push_back(LU.MaxOffset);
2369
2370   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
2371     const SCEV *G = Base.BaseRegs[i];
2372
2373     for (SmallVectorImpl<int64_t>::const_iterator I = Worklist.begin(),
2374          E = Worklist.end(); I != E; ++I) {
2375       Formula F = Base;
2376       F.AM.BaseOffs = (uint64_t)Base.AM.BaseOffs - *I;
2377       if (isLegalUse(F.AM, LU.MinOffset - *I, LU.MaxOffset - *I,
2378                      LU.Kind, LU.AccessTy, TLI)) {
2379         F.BaseRegs[i] = SE.getAddExpr(G, SE.getConstant(G->getType(), *I));
2380
2381         (void)InsertFormula(LU, LUIdx, F);
2382       }
2383     }
2384
2385     int64_t Imm = ExtractImmediate(G, SE);
2386     if (G->isZero() || Imm == 0)
2387       continue;
2388     Formula F = Base;
2389     F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Imm;
2390     if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
2391                     LU.Kind, LU.AccessTy, TLI))
2392       continue;
2393     F.BaseRegs[i] = G;
2394     (void)InsertFormula(LU, LUIdx, F);
2395   }
2396 }
2397
2398 /// GenerateICmpZeroScales - For ICmpZero, check to see if we can scale up
2399 /// the comparison. For example, x == y -> x*c == y*c.
2400 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
2401                                          Formula Base) {
2402   if (LU.Kind != LSRUse::ICmpZero) return;
2403
2404   // Determine the integer type for the base formula.
2405   const Type *IntTy = Base.getType();
2406   if (!IntTy) return;
2407   if (SE.getTypeSizeInBits(IntTy) > 64) return;
2408
2409   // Don't do this if there is more than one offset.
2410   if (LU.MinOffset != LU.MaxOffset) return;
2411
2412   assert(!Base.AM.BaseGV && "ICmpZero use is not legal!");
2413
2414   // Check each interesting stride.
2415   for (SmallSetVector<int64_t, 8>::const_iterator
2416        I = Factors.begin(), E = Factors.end(); I != E; ++I) {
2417     int64_t Factor = *I;
2418
2419     // Check that the multiplication doesn't overflow.
2420     if (Base.AM.BaseOffs == INT64_MIN && Factor == -1)
2421       continue;
2422     int64_t NewBaseOffs = (uint64_t)Base.AM.BaseOffs * Factor;
2423     if (NewBaseOffs / Factor != Base.AM.BaseOffs)
2424       continue;
2425
2426     // Check that multiplying with the use offset doesn't overflow.
2427     int64_t Offset = LU.MinOffset;
2428     if (Offset == INT64_MIN && Factor == -1)
2429       continue;
2430     Offset = (uint64_t)Offset * Factor;
2431     if (Offset / Factor != LU.MinOffset)
2432       continue;
2433
2434     Formula F = Base;
2435     F.AM.BaseOffs = NewBaseOffs;
2436
2437     // Check that this scale is legal.
2438     if (!isLegalUse(F.AM, Offset, Offset, LU.Kind, LU.AccessTy, TLI))
2439       continue;
2440
2441     // Compensate for the use having MinOffset built into it.
2442     F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Offset - LU.MinOffset;
2443
2444     const SCEV *FactorS = SE.getConstant(IntTy, Factor);
2445
2446     // Check that multiplying with each base register doesn't overflow.
2447     for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
2448       F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
2449       if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
2450         goto next;
2451     }
2452
2453     // Check that multiplying with the scaled register doesn't overflow.
2454     if (F.ScaledReg) {
2455       F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
2456       if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
2457         continue;
2458     }
2459
2460     // If we make it here and it's legal, add it.
2461     (void)InsertFormula(LU, LUIdx, F);
2462   next:;
2463   }
2464 }
2465
2466 /// GenerateScales - Generate stride factor reuse formulae by making use of
2467 /// scaled-offset address modes, for example.
2468 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
2469   // Determine the integer type for the base formula.
2470   const Type *IntTy = Base.getType();
2471   if (!IntTy) return;
2472
2473   // If this Formula already has a scaled register, we can't add another one.
2474   if (Base.AM.Scale != 0) return;
2475
2476   // Check each interesting stride.
2477   for (SmallSetVector<int64_t, 8>::const_iterator
2478        I = Factors.begin(), E = Factors.end(); I != E; ++I) {
2479     int64_t Factor = *I;
2480
2481     Base.AM.Scale = Factor;
2482     Base.AM.HasBaseReg = Base.BaseRegs.size() > 1;
2483     // Check whether this scale is going to be legal.
2484     if (!isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
2485                     LU.Kind, LU.AccessTy, TLI)) {
2486       // As a special-case, handle special out-of-loop Basic users specially.
2487       // TODO: Reconsider this special case.
2488       if (LU.Kind == LSRUse::Basic &&
2489           isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
2490                      LSRUse::Special, LU.AccessTy, TLI) &&
2491           LU.AllFixupsOutsideLoop)
2492         LU.Kind = LSRUse::Special;
2493       else
2494         continue;
2495     }
2496     // For an ICmpZero, negating a solitary base register won't lead to
2497     // new solutions.
2498     if (LU.Kind == LSRUse::ICmpZero &&
2499         !Base.AM.HasBaseReg && Base.AM.BaseOffs == 0 && !Base.AM.BaseGV)
2500       continue;
2501     // For each addrec base reg, apply the scale, if possible.
2502     for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
2503       if (const SCEVAddRecExpr *AR =
2504             dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) {
2505         const SCEV *FactorS = SE.getConstant(IntTy, Factor);
2506         if (FactorS->isZero())
2507           continue;
2508         // Divide out the factor, ignoring high bits, since we'll be
2509         // scaling the value back up in the end.
2510         if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
2511           // TODO: This could be optimized to avoid all the copying.
2512           Formula F = Base;
2513           F.ScaledReg = Quotient;
2514           F.DeleteBaseReg(F.BaseRegs[i]);
2515           (void)InsertFormula(LU, LUIdx, F);
2516         }
2517       }
2518   }
2519 }
2520
2521 /// GenerateTruncates - Generate reuse formulae from different IV types.
2522 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
2523   // This requires TargetLowering to tell us which truncates are free.
2524   if (!TLI) return;
2525
2526   // Don't bother truncating symbolic values.
2527   if (Base.AM.BaseGV) return;
2528
2529   // Determine the integer type for the base formula.
2530   const Type *DstTy = Base.getType();
2531   if (!DstTy) return;
2532   DstTy = SE.getEffectiveSCEVType(DstTy);
2533
2534   for (SmallSetVector<const Type *, 4>::const_iterator
2535        I = Types.begin(), E = Types.end(); I != E; ++I) {
2536     const Type *SrcTy = *I;
2537     if (SrcTy != DstTy && TLI->isTruncateFree(SrcTy, DstTy)) {
2538       Formula F = Base;
2539
2540       if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, *I);
2541       for (SmallVectorImpl<const SCEV *>::iterator J = F.BaseRegs.begin(),
2542            JE = F.BaseRegs.end(); J != JE; ++J)
2543         *J = SE.getAnyExtendExpr(*J, SrcTy);
2544
2545       // TODO: This assumes we've done basic processing on all uses and
2546       // have an idea what the register usage is.
2547       if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
2548         continue;
2549
2550       (void)InsertFormula(LU, LUIdx, F);
2551     }
2552   }
2553 }
2554
2555 namespace {
2556
2557 /// WorkItem - Helper class for GenerateCrossUseConstantOffsets. It's used to
2558 /// defer modifications so that the search phase doesn't have to worry about
2559 /// the data structures moving underneath it.
2560 struct WorkItem {
2561   size_t LUIdx;
2562   int64_t Imm;
2563   const SCEV *OrigReg;
2564
2565   WorkItem(size_t LI, int64_t I, const SCEV *R)
2566     : LUIdx(LI), Imm(I), OrigReg(R) {}
2567
2568   void print(raw_ostream &OS) const;
2569   void dump() const;
2570 };
2571
2572 }
2573
2574 void WorkItem::print(raw_ostream &OS) const {
2575   OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
2576      << " , add offset " << Imm;
2577 }
2578
2579 void WorkItem::dump() const {
2580   print(errs()); errs() << '\n';
2581 }
2582
2583 /// GenerateCrossUseConstantOffsets - Look for registers which are a constant
2584 /// distance apart and try to form reuse opportunities between them.
2585 void LSRInstance::GenerateCrossUseConstantOffsets() {
2586   // Group the registers by their value without any added constant offset.
2587   typedef std::map<int64_t, const SCEV *> ImmMapTy;
2588   typedef DenseMap<const SCEV *, ImmMapTy> RegMapTy;
2589   RegMapTy Map;
2590   DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
2591   SmallVector<const SCEV *, 8> Sequence;
2592   for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
2593        I != E; ++I) {
2594     const SCEV *Reg = *I;
2595     int64_t Imm = ExtractImmediate(Reg, SE);
2596     std::pair<RegMapTy::iterator, bool> Pair =
2597       Map.insert(std::make_pair(Reg, ImmMapTy()));
2598     if (Pair.second)
2599       Sequence.push_back(Reg);
2600     Pair.first->second.insert(std::make_pair(Imm, *I));
2601     UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(*I);
2602   }
2603
2604   // Now examine each set of registers with the same base value. Build up
2605   // a list of work to do and do the work in a separate step so that we're
2606   // not adding formulae and register counts while we're searching.
2607   SmallVector<WorkItem, 32> WorkItems;
2608   SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
2609   for (SmallVectorImpl<const SCEV *>::const_iterator I = Sequence.begin(),
2610        E = Sequence.end(); I != E; ++I) {
2611     const SCEV *Reg = *I;
2612     const ImmMapTy &Imms = Map.find(Reg)->second;
2613
2614     // It's not worthwhile looking for reuse if there's only one offset.
2615     if (Imms.size() == 1)
2616       continue;
2617
2618     DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
2619           for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
2620                J != JE; ++J)
2621             dbgs() << ' ' << J->first;
2622           dbgs() << '\n');
2623
2624     // Examine each offset.
2625     for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
2626          J != JE; ++J) {
2627       const SCEV *OrigReg = J->second;
2628
2629       int64_t JImm = J->first;
2630       const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
2631
2632       if (!isa<SCEVConstant>(OrigReg) &&
2633           UsedByIndicesMap[Reg].count() == 1) {
2634         DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n');
2635         continue;
2636       }
2637
2638       // Conservatively examine offsets between this orig reg a few selected
2639       // other orig regs.
2640       ImmMapTy::const_iterator OtherImms[] = {
2641         Imms.begin(), prior(Imms.end()),
2642         Imms.upper_bound((Imms.begin()->first + prior(Imms.end())->first) / 2)
2643       };
2644       for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
2645         ImmMapTy::const_iterator M = OtherImms[i];
2646         if (M == J || M == JE) continue;
2647
2648         // Compute the difference between the two.
2649         int64_t Imm = (uint64_t)JImm - M->first;
2650         for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1;
2651              LUIdx = UsedByIndices.find_next(LUIdx))
2652           // Make a memo of this use, offset, and register tuple.
2653           if (UniqueItems.insert(std::make_pair(LUIdx, Imm)))
2654             WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
2655       }
2656     }
2657   }
2658
2659   Map.clear();
2660   Sequence.clear();
2661   UsedByIndicesMap.clear();
2662   UniqueItems.clear();
2663
2664   // Now iterate through the worklist and add new formulae.
2665   for (SmallVectorImpl<WorkItem>::const_iterator I = WorkItems.begin(),
2666        E = WorkItems.end(); I != E; ++I) {
2667     const WorkItem &WI = *I;
2668     size_t LUIdx = WI.LUIdx;
2669     LSRUse &LU = Uses[LUIdx];
2670     int64_t Imm = WI.Imm;
2671     const SCEV *OrigReg = WI.OrigReg;
2672
2673     const Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
2674     const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
2675     unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
2676
2677     // TODO: Use a more targeted data structure.
2678     for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
2679       const Formula &F = LU.Formulae[L];
2680       // Use the immediate in the scaled register.
2681       if (F.ScaledReg == OrigReg) {
2682         int64_t Offs = (uint64_t)F.AM.BaseOffs +
2683                        Imm * (uint64_t)F.AM.Scale;
2684         // Don't create 50 + reg(-50).
2685         if (F.referencesReg(SE.getSCEV(
2686                    ConstantInt::get(IntTy, -(uint64_t)Offs))))
2687           continue;
2688         Formula NewF = F;
2689         NewF.AM.BaseOffs = Offs;
2690         if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
2691                         LU.Kind, LU.AccessTy, TLI))
2692           continue;
2693         NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
2694
2695         // If the new scale is a constant in a register, and adding the constant
2696         // value to the immediate would produce a value closer to zero than the
2697         // immediate itself, then the formula isn't worthwhile.
2698         if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
2699           if (C->getValue()->getValue().isNegative() !=
2700                 (NewF.AM.BaseOffs < 0) &&
2701               (C->getValue()->getValue().abs() * APInt(BitWidth, F.AM.Scale))
2702                 .ule(abs64(NewF.AM.BaseOffs)))
2703             continue;
2704
2705         // OK, looks good.
2706         (void)InsertFormula(LU, LUIdx, NewF);
2707       } else {
2708         // Use the immediate in a base register.
2709         for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
2710           const SCEV *BaseReg = F.BaseRegs[N];
2711           if (BaseReg != OrigReg)
2712             continue;
2713           Formula NewF = F;
2714           NewF.AM.BaseOffs = (uint64_t)NewF.AM.BaseOffs + Imm;
2715           if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
2716                           LU.Kind, LU.AccessTy, TLI))
2717             continue;
2718           NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
2719
2720           // If the new formula has a constant in a register, and adding the
2721           // constant value to the immediate would produce a value closer to
2722           // zero than the immediate itself, then the formula isn't worthwhile.
2723           for (SmallVectorImpl<const SCEV *>::const_iterator
2724                J = NewF.BaseRegs.begin(), JE = NewF.BaseRegs.end();
2725                J != JE; ++J)
2726             if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*J))
2727               if ((C->getValue()->getValue() + NewF.AM.BaseOffs).abs().slt(
2728                    abs64(NewF.AM.BaseOffs)) &&
2729                   (C->getValue()->getValue() +
2730                    NewF.AM.BaseOffs).countTrailingZeros() >=
2731                    CountTrailingZeros_64(NewF.AM.BaseOffs))
2732                 goto skip_formula;
2733
2734           // Ok, looks good.
2735           (void)InsertFormula(LU, LUIdx, NewF);
2736           break;
2737         skip_formula:;
2738         }
2739       }
2740     }
2741   }
2742 }
2743
2744 /// GenerateAllReuseFormulae - Generate formulae for each use.
2745 void
2746 LSRInstance::GenerateAllReuseFormulae() {
2747   // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
2748   // queries are more precise.
2749   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2750     LSRUse &LU = Uses[LUIdx];
2751     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2752       GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
2753     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2754       GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
2755   }
2756   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2757     LSRUse &LU = Uses[LUIdx];
2758     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2759       GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
2760     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2761       GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
2762     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2763       GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
2764     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2765       GenerateScales(LU, LUIdx, LU.Formulae[i]);
2766   }
2767   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2768     LSRUse &LU = Uses[LUIdx];
2769     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2770       GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
2771   }
2772
2773   GenerateCrossUseConstantOffsets();
2774 }
2775
2776 /// If their are multiple formulae with the same set of registers used
2777 /// by other uses, pick the best one and delete the others.
2778 void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
2779 #ifndef NDEBUG
2780   bool ChangedFormulae = false;
2781 #endif
2782
2783   // Collect the best formula for each unique set of shared registers. This
2784   // is reset for each use.
2785   typedef DenseMap<SmallVector<const SCEV *, 2>, size_t, UniquifierDenseMapInfo>
2786     BestFormulaeTy;
2787   BestFormulaeTy BestFormulae;
2788
2789   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2790     LSRUse &LU = Uses[LUIdx];
2791     FormulaSorter Sorter(L, LU, SE, DT);
2792     DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n');
2793
2794     bool Any = false;
2795     for (size_t FIdx = 0, NumForms = LU.Formulae.size();
2796          FIdx != NumForms; ++FIdx) {
2797       Formula &F = LU.Formulae[FIdx];
2798
2799       SmallVector<const SCEV *, 2> Key;
2800       for (SmallVectorImpl<const SCEV *>::const_iterator J = F.BaseRegs.begin(),
2801            JE = F.BaseRegs.end(); J != JE; ++J) {
2802         const SCEV *Reg = *J;
2803         if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
2804           Key.push_back(Reg);
2805       }
2806       if (F.ScaledReg &&
2807           RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
2808         Key.push_back(F.ScaledReg);
2809       // Unstable sort by host order ok, because this is only used for
2810       // uniquifying.
2811       std::sort(Key.begin(), Key.end());
2812
2813       std::pair<BestFormulaeTy::const_iterator, bool> P =
2814         BestFormulae.insert(std::make_pair(Key, FIdx));
2815       if (!P.second) {
2816         Formula &Best = LU.Formulae[P.first->second];
2817         if (Sorter.operator()(F, Best))
2818           std::swap(F, Best);
2819         DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
2820               dbgs() << "\n"
2821                         "    in favor of formula "; Best.print(dbgs());
2822               dbgs() << '\n');
2823 #ifndef NDEBUG
2824         ChangedFormulae = true;
2825 #endif
2826         LU.DeleteFormula(F);
2827         --FIdx;
2828         --NumForms;
2829         Any = true;
2830         continue;
2831       }
2832     }
2833
2834     // Now that we've filtered out some formulae, recompute the Regs set.
2835     if (Any)
2836       LU.RecomputeRegs(LUIdx, RegUses);
2837
2838     // Reset this to prepare for the next use.
2839     BestFormulae.clear();
2840   }
2841
2842   DEBUG(if (ChangedFormulae) {
2843           dbgs() << "\n"
2844                     "After filtering out undesirable candidates:\n";
2845           print_uses(dbgs());
2846         });
2847 }
2848
2849 // This is a rough guess that seems to work fairly well.
2850 static const size_t ComplexityLimit = UINT16_MAX;
2851
2852 /// EstimateSearchSpaceComplexity - Estimate the worst-case number of
2853 /// solutions the solver might have to consider. It almost never considers
2854 /// this many solutions because it prune the search space, but the pruning
2855 /// isn't always sufficient.
2856 size_t LSRInstance::EstimateSearchSpaceComplexity() const {
2857   uint32_t Power = 1;
2858   for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
2859        E = Uses.end(); I != E; ++I) {
2860     size_t FSize = I->Formulae.size();
2861     if (FSize >= ComplexityLimit) {
2862       Power = ComplexityLimit;
2863       break;
2864     }
2865     Power *= FSize;
2866     if (Power >= ComplexityLimit)
2867       break;
2868   }
2869   return Power;
2870 }
2871
2872 /// NarrowSearchSpaceUsingHeuristics - If there are an extraordinary number of
2873 /// formulae to choose from, use some rough heuristics to prune down the number
2874 /// of formulae. This keeps the main solver from taking an extraordinary amount
2875 /// of time in some worst-case scenarios.
2876 void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
2877   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
2878     DEBUG(dbgs() << "The search space is too complex.\n");
2879
2880     DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
2881                     "which use a superset of registers used by other "
2882                     "formulae.\n");
2883
2884     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2885       LSRUse &LU = Uses[LUIdx];
2886       bool Any = false;
2887       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
2888         Formula &F = LU.Formulae[i];
2889         // Look for a formula with a constant or GV in a register. If the use
2890         // also has a formula with that same value in an immediate field,
2891         // delete the one that uses a register.
2892         for (SmallVectorImpl<const SCEV *>::const_iterator
2893              I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
2894           if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
2895             Formula NewF = F;
2896             NewF.AM.BaseOffs += C->getValue()->getSExtValue();
2897             NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
2898                                 (I - F.BaseRegs.begin()));
2899             if (LU.HasFormulaWithSameRegs(NewF)) {
2900               DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
2901               LU.DeleteFormula(F);
2902               --i;
2903               --e;
2904               Any = true;
2905               break;
2906             }
2907           } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
2908             if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
2909               if (!F.AM.BaseGV) {
2910                 Formula NewF = F;
2911                 NewF.AM.BaseGV = GV;
2912                 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
2913                                     (I - F.BaseRegs.begin()));
2914                 if (LU.HasFormulaWithSameRegs(NewF)) {
2915                   DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
2916                         dbgs() << '\n');
2917                   LU.DeleteFormula(F);
2918                   --i;
2919                   --e;
2920                   Any = true;
2921                   break;
2922                 }
2923               }
2924           }
2925         }
2926       }
2927       if (Any)
2928         LU.RecomputeRegs(LUIdx, RegUses);
2929     }
2930
2931     DEBUG(dbgs() << "After pre-selection:\n";
2932           print_uses(dbgs()));
2933   }
2934
2935   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
2936     DEBUG(dbgs() << "The search space is too complex.\n");
2937
2938     DEBUG(dbgs() << "Narrowing the search space by assuming that uses "
2939                     "separated by a constant offset will use the same "
2940                     "registers.\n");
2941
2942     // This is especially useful for unrolled loops.
2943
2944     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2945       LSRUse &LU = Uses[LUIdx];
2946       for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
2947            E = LU.Formulae.end(); I != E; ++I) {
2948         const Formula &F = *I;
2949         if (F.AM.BaseOffs != 0 && F.AM.Scale == 0) {
2950           if (LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU)) {
2951             if (reconcileNewOffset(*LUThatHas, F.AM.BaseOffs,
2952                                    /*HasBaseReg=*/false,
2953                                    LU.Kind, LU.AccessTy)) {
2954               DEBUG(dbgs() << "  Deleting use "; LU.print(dbgs());
2955                     dbgs() << '\n');
2956
2957               LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
2958
2959               // Delete formulae from the new use which are no longer legal.
2960               bool Any = false;
2961               for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
2962                 Formula &F = LUThatHas->Formulae[i];
2963                 if (!isLegalUse(F.AM,
2964                                 LUThatHas->MinOffset, LUThatHas->MaxOffset,
2965                                 LUThatHas->Kind, LUThatHas->AccessTy, TLI)) {
2966                   DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
2967                         dbgs() << '\n');
2968                   LUThatHas->DeleteFormula(F);
2969                   --i;
2970                   --e;
2971                   Any = true;
2972                 }
2973               }
2974               if (Any)
2975                 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
2976
2977               // Update the relocs to reference the new use.
2978               for (SmallVectorImpl<LSRFixup>::iterator I = Fixups.begin(),
2979                    E = Fixups.end(); I != E; ++I) {
2980                 LSRFixup &Fixup = *I;
2981                 if (Fixup.LUIdx == LUIdx) {
2982                   Fixup.LUIdx = LUThatHas - &Uses.front();
2983                   Fixup.Offset += F.AM.BaseOffs;
2984                   DEBUG(errs() << "New fixup has offset "
2985                                << Fixup.Offset << '\n');
2986                 }
2987                 if (Fixup.LUIdx == NumUses-1)
2988                   Fixup.LUIdx = LUIdx;
2989               }
2990
2991               // Delete the old use.
2992               DeleteUse(LU);
2993               --LUIdx;
2994               --NumUses;
2995               break;
2996             }
2997           }
2998         }
2999       }
3000     }
3001
3002     DEBUG(dbgs() << "After pre-selection:\n";
3003           print_uses(dbgs()));
3004   }
3005
3006   // With all other options exhausted, loop until the system is simple
3007   // enough to handle.
3008   SmallPtrSet<const SCEV *, 4> Taken;
3009   while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
3010     // Ok, we have too many of formulae on our hands to conveniently handle.
3011     // Use a rough heuristic to thin out the list.
3012     DEBUG(dbgs() << "The search space is too complex.\n");
3013
3014     // Pick the register which is used by the most LSRUses, which is likely
3015     // to be a good reuse register candidate.
3016     const SCEV *Best = 0;
3017     unsigned BestNum = 0;
3018     for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
3019          I != E; ++I) {
3020       const SCEV *Reg = *I;
3021       if (Taken.count(Reg))
3022         continue;
3023       if (!Best)
3024         Best = Reg;
3025       else {
3026         unsigned Count = RegUses.getUsedByIndices(Reg).count();
3027         if (Count > BestNum) {
3028           Best = Reg;
3029           BestNum = Count;
3030         }
3031       }
3032     }
3033
3034     DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
3035                  << " will yield profitable reuse.\n");
3036     Taken.insert(Best);
3037
3038     // In any use with formulae which references this register, delete formulae
3039     // which don't reference it.
3040     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3041       LSRUse &LU = Uses[LUIdx];
3042       if (!LU.Regs.count(Best)) continue;
3043
3044       bool Any = false;
3045       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
3046         Formula &F = LU.Formulae[i];
3047         if (!F.referencesReg(Best)) {
3048           DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
3049           LU.DeleteFormula(F);
3050           --e;
3051           --i;
3052           Any = true;
3053           assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
3054           continue;
3055         }
3056       }
3057
3058       if (Any)
3059         LU.RecomputeRegs(LUIdx, RegUses);
3060     }
3061
3062     DEBUG(dbgs() << "After pre-selection:\n";
3063           print_uses(dbgs()));
3064   }
3065 }
3066
3067 /// SolveRecurse - This is the recursive solver.
3068 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
3069                                Cost &SolutionCost,
3070                                SmallVectorImpl<const Formula *> &Workspace,
3071                                const Cost &CurCost,
3072                                const SmallPtrSet<const SCEV *, 16> &CurRegs,
3073                                DenseSet<const SCEV *> &VisitedRegs) const {
3074   // Some ideas:
3075   //  - prune more:
3076   //    - use more aggressive filtering
3077   //    - sort the formula so that the most profitable solutions are found first
3078   //    - sort the uses too
3079   //  - search faster:
3080   //    - don't compute a cost, and then compare. compare while computing a cost
3081   //      and bail early.
3082   //    - track register sets with SmallBitVector
3083
3084   const LSRUse &LU = Uses[Workspace.size()];
3085
3086   // If this use references any register that's already a part of the
3087   // in-progress solution, consider it a requirement that a formula must
3088   // reference that register in order to be considered. This prunes out
3089   // unprofitable searching.
3090   SmallSetVector<const SCEV *, 4> ReqRegs;
3091   for (SmallPtrSet<const SCEV *, 16>::const_iterator I = CurRegs.begin(),
3092        E = CurRegs.end(); I != E; ++I)
3093     if (LU.Regs.count(*I))
3094       ReqRegs.insert(*I);
3095
3096   bool AnySatisfiedReqRegs = false;
3097   SmallPtrSet<const SCEV *, 16> NewRegs;
3098   Cost NewCost;
3099 retry:
3100   for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
3101        E = LU.Formulae.end(); I != E; ++I) {
3102     const Formula &F = *I;
3103
3104     // Ignore formulae which do not use any of the required registers.
3105     for (SmallSetVector<const SCEV *, 4>::const_iterator J = ReqRegs.begin(),
3106          JE = ReqRegs.end(); J != JE; ++J) {
3107       const SCEV *Reg = *J;
3108       if ((!F.ScaledReg || F.ScaledReg != Reg) &&
3109           std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) ==
3110           F.BaseRegs.end())
3111         goto skip;
3112     }
3113     AnySatisfiedReqRegs = true;
3114
3115     // Evaluate the cost of the current formula. If it's already worse than
3116     // the current best, prune the search at that point.
3117     NewCost = CurCost;
3118     NewRegs = CurRegs;
3119     NewCost.RateFormula(F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT);
3120     if (NewCost < SolutionCost) {
3121       Workspace.push_back(&F);
3122       if (Workspace.size() != Uses.size()) {
3123         SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
3124                      NewRegs, VisitedRegs);
3125         if (F.getNumRegs() == 1 && Workspace.size() == 1)
3126           VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
3127       } else {
3128         DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
3129               dbgs() << ". Regs:";
3130               for (SmallPtrSet<const SCEV *, 16>::const_iterator
3131                    I = NewRegs.begin(), E = NewRegs.end(); I != E; ++I)
3132                 dbgs() << ' ' << **I;
3133               dbgs() << '\n');
3134
3135         SolutionCost = NewCost;
3136         Solution = Workspace;
3137       }
3138       Workspace.pop_back();
3139     }
3140   skip:;
3141   }
3142
3143   // If none of the formulae had all of the required registers, relax the
3144   // constraint so that we don't exclude all formulae.
3145   if (!AnySatisfiedReqRegs) {
3146     assert(!ReqRegs.empty() && "Solver failed even without required registers");
3147     ReqRegs.clear();
3148     goto retry;
3149   }
3150 }
3151
3152 /// Solve - Choose one formula from each use. Return the results in the given
3153 /// Solution vector.
3154 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
3155   SmallVector<const Formula *, 8> Workspace;
3156   Cost SolutionCost;
3157   SolutionCost.Loose();
3158   Cost CurCost;
3159   SmallPtrSet<const SCEV *, 16> CurRegs;
3160   DenseSet<const SCEV *> VisitedRegs;
3161   Workspace.reserve(Uses.size());
3162
3163   // SolveRecurse does all the work.
3164   SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
3165                CurRegs, VisitedRegs);
3166
3167   // Ok, we've now made all our decisions.
3168   DEBUG(dbgs() << "\n"
3169                   "The chosen solution requires "; SolutionCost.print(dbgs());
3170         dbgs() << ":\n";
3171         for (size_t i = 0, e = Uses.size(); i != e; ++i) {
3172           dbgs() << "  ";
3173           Uses[i].print(dbgs());
3174           dbgs() << "\n"
3175                     "    ";
3176           Solution[i]->print(dbgs());
3177           dbgs() << '\n';
3178         });
3179
3180   assert(Solution.size() == Uses.size() && "Malformed solution!");
3181 }
3182
3183 /// HoistInsertPosition - Helper for AdjustInsertPositionForExpand. Climb up
3184 /// the dominator tree far as we can go while still being dominated by the
3185 /// input positions. This helps canonicalize the insert position, which
3186 /// encourages sharing.
3187 BasicBlock::iterator
3188 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
3189                                  const SmallVectorImpl<Instruction *> &Inputs)
3190                                                                          const {
3191   for (;;) {
3192     const Loop *IPLoop = LI.getLoopFor(IP->getParent());
3193     unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
3194
3195     BasicBlock *IDom;
3196     for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
3197       if (!Rung) return IP;
3198       Rung = Rung->getIDom();
3199       if (!Rung) return IP;
3200       IDom = Rung->getBlock();
3201
3202       // Don't climb into a loop though.
3203       const Loop *IDomLoop = LI.getLoopFor(IDom);
3204       unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
3205       if (IDomDepth <= IPLoopDepth &&
3206           (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
3207         break;
3208     }
3209
3210     bool AllDominate = true;
3211     Instruction *BetterPos = 0;
3212     Instruction *Tentative = IDom->getTerminator();
3213     for (SmallVectorImpl<Instruction *>::const_iterator I = Inputs.begin(),
3214          E = Inputs.end(); I != E; ++I) {
3215       Instruction *Inst = *I;
3216       if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
3217         AllDominate = false;
3218         break;
3219       }
3220       // Attempt to find an insert position in the middle of the block,
3221       // instead of at the end, so that it can be used for other expansions.
3222       if (IDom == Inst->getParent() &&
3223           (!BetterPos || DT.dominates(BetterPos, Inst)))
3224         BetterPos = llvm::next(BasicBlock::iterator(Inst));
3225     }
3226     if (!AllDominate)
3227       break;
3228     if (BetterPos)
3229       IP = BetterPos;
3230     else
3231       IP = Tentative;
3232   }
3233
3234   return IP;
3235 }
3236
3237 /// AdjustInsertPositionForExpand - Determine an input position which will be
3238 /// dominated by the operands and which will dominate the result.
3239 BasicBlock::iterator
3240 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator IP,
3241                                            const LSRFixup &LF,
3242                                            const LSRUse &LU) const {
3243   // Collect some instructions which must be dominated by the
3244   // expanding replacement. These must be dominated by any operands that
3245   // will be required in the expansion.
3246   SmallVector<Instruction *, 4> Inputs;
3247   if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
3248     Inputs.push_back(I);
3249   if (LU.Kind == LSRUse::ICmpZero)
3250     if (Instruction *I =
3251           dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
3252       Inputs.push_back(I);
3253   if (LF.PostIncLoops.count(L)) {
3254     if (LF.isUseFullyOutsideLoop(L))
3255       Inputs.push_back(L->getLoopLatch()->getTerminator());
3256     else
3257       Inputs.push_back(IVIncInsertPos);
3258   }
3259   // The expansion must also be dominated by the increment positions of any
3260   // loops it for which it is using post-inc mode.
3261   for (PostIncLoopSet::const_iterator I = LF.PostIncLoops.begin(),
3262        E = LF.PostIncLoops.end(); I != E; ++I) {
3263     const Loop *PIL = *I;
3264     if (PIL == L) continue;
3265
3266     // Be dominated by the loop exit.
3267     SmallVector<BasicBlock *, 4> ExitingBlocks;
3268     PIL->getExitingBlocks(ExitingBlocks);
3269     if (!ExitingBlocks.empty()) {
3270       BasicBlock *BB = ExitingBlocks[0];
3271       for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
3272         BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
3273       Inputs.push_back(BB->getTerminator());
3274     }
3275   }
3276
3277   // Then, climb up the immediate dominator tree as far as we can go while
3278   // still being dominated by the input positions.
3279   IP = HoistInsertPosition(IP, Inputs);
3280
3281   // Don't insert instructions before PHI nodes.
3282   while (isa<PHINode>(IP)) ++IP;
3283
3284   // Ignore debug intrinsics.
3285   while (isa<DbgInfoIntrinsic>(IP)) ++IP;
3286
3287   return IP;
3288 }
3289
3290 /// Expand - Emit instructions for the leading candidate expression for this
3291 /// LSRUse (this is called "expanding").
3292 Value *LSRInstance::Expand(const LSRFixup &LF,
3293                            const Formula &F,
3294                            BasicBlock::iterator IP,
3295                            SCEVExpander &Rewriter,
3296                            SmallVectorImpl<WeakVH> &DeadInsts) const {
3297   const LSRUse &LU = Uses[LF.LUIdx];
3298
3299   // Determine an input position which will be dominated by the operands and
3300   // which will dominate the result.
3301   IP = AdjustInsertPositionForExpand(IP, LF, LU);
3302
3303   // Inform the Rewriter if we have a post-increment use, so that it can
3304   // perform an advantageous expansion.
3305   Rewriter.setPostInc(LF.PostIncLoops);
3306
3307   // This is the type that the user actually needs.
3308   const Type *OpTy = LF.OperandValToReplace->getType();
3309   // This will be the type that we'll initially expand to.
3310   const Type *Ty = F.getType();
3311   if (!Ty)
3312     // No type known; just expand directly to the ultimate type.
3313     Ty = OpTy;
3314   else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
3315     // Expand directly to the ultimate type if it's the right size.
3316     Ty = OpTy;
3317   // This is the type to do integer arithmetic in.
3318   const Type *IntTy = SE.getEffectiveSCEVType(Ty);
3319
3320   // Build up a list of operands to add together to form the full base.
3321   SmallVector<const SCEV *, 8> Ops;
3322
3323   // Expand the BaseRegs portion.
3324   for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
3325        E = F.BaseRegs.end(); I != E; ++I) {
3326     const SCEV *Reg = *I;
3327     assert(!Reg->isZero() && "Zero allocated in a base register!");
3328
3329     // If we're expanding for a post-inc user, make the post-inc adjustment.
3330     PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
3331     Reg = TransformForPostIncUse(Denormalize, Reg,
3332                                  LF.UserInst, LF.OperandValToReplace,
3333                                  Loops, SE, DT);
3334
3335     Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, 0, IP)));
3336   }
3337
3338   // Flush the operand list to suppress SCEVExpander hoisting.
3339   if (!Ops.empty()) {
3340     Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
3341     Ops.clear();
3342     Ops.push_back(SE.getUnknown(FullV));
3343   }
3344
3345   // Expand the ScaledReg portion.
3346   Value *ICmpScaledV = 0;
3347   if (F.AM.Scale != 0) {
3348     const SCEV *ScaledS = F.ScaledReg;
3349
3350     // If we're expanding for a post-inc user, make the post-inc adjustment.
3351     PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
3352     ScaledS = TransformForPostIncUse(Denormalize, ScaledS,
3353                                      LF.UserInst, LF.OperandValToReplace,
3354                                      Loops, SE, DT);
3355
3356     if (LU.Kind == LSRUse::ICmpZero) {
3357       // An interesting way of "folding" with an icmp is to use a negated
3358       // scale, which we'll implement by inserting it into the other operand
3359       // of the icmp.
3360       assert(F.AM.Scale == -1 &&
3361              "The only scale supported by ICmpZero uses is -1!");
3362       ICmpScaledV = Rewriter.expandCodeFor(ScaledS, 0, IP);
3363     } else {
3364       // Otherwise just expand the scaled register and an explicit scale,
3365       // which is expected to be matched as part of the address.
3366       ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, 0, IP));
3367       ScaledS = SE.getMulExpr(ScaledS,
3368                               SE.getConstant(ScaledS->getType(), F.AM.Scale));
3369       Ops.push_back(ScaledS);
3370
3371       // Flush the operand list to suppress SCEVExpander hoisting.
3372       Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
3373       Ops.clear();
3374       Ops.push_back(SE.getUnknown(FullV));
3375     }
3376   }
3377
3378   // Expand the GV portion.
3379   if (F.AM.BaseGV) {
3380     Ops.push_back(SE.getUnknown(F.AM.BaseGV));
3381
3382     // Flush the operand list to suppress SCEVExpander hoisting.
3383     Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
3384     Ops.clear();
3385     Ops.push_back(SE.getUnknown(FullV));
3386   }
3387
3388   // Expand the immediate portion.
3389   int64_t Offset = (uint64_t)F.AM.BaseOffs + LF.Offset;
3390   if (Offset != 0) {
3391     if (LU.Kind == LSRUse::ICmpZero) {
3392       // The other interesting way of "folding" with an ICmpZero is to use a
3393       // negated immediate.
3394       if (!ICmpScaledV)
3395         ICmpScaledV = ConstantInt::get(IntTy, -Offset);
3396       else {
3397         Ops.push_back(SE.getUnknown(ICmpScaledV));
3398         ICmpScaledV = ConstantInt::get(IntTy, Offset);
3399       }
3400     } else {
3401       // Just add the immediate values. These again are expected to be matched
3402       // as part of the address.
3403       Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
3404     }
3405   }
3406
3407   // Emit instructions summing all the operands.
3408   const SCEV *FullS = Ops.empty() ?
3409                       SE.getConstant(IntTy, 0) :
3410                       SE.getAddExpr(Ops);
3411   Value *FullV = Rewriter.expandCodeFor(FullS, Ty, IP);
3412
3413   // We're done expanding now, so reset the rewriter.
3414   Rewriter.clearPostInc();
3415
3416   // An ICmpZero Formula represents an ICmp which we're handling as a
3417   // comparison against zero. Now that we've expanded an expression for that
3418   // form, update the ICmp's other operand.
3419   if (LU.Kind == LSRUse::ICmpZero) {
3420     ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
3421     DeadInsts.push_back(CI->getOperand(1));
3422     assert(!F.AM.BaseGV && "ICmp does not support folding a global value and "
3423                            "a scale at the same time!");
3424     if (F.AM.Scale == -1) {
3425       if (ICmpScaledV->getType() != OpTy) {
3426         Instruction *Cast =
3427           CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
3428                                                    OpTy, false),
3429                            ICmpScaledV, OpTy, "tmp", CI);
3430         ICmpScaledV = Cast;
3431       }
3432       CI->setOperand(1, ICmpScaledV);
3433     } else {
3434       assert(F.AM.Scale == 0 &&
3435              "ICmp does not support folding a global value and "
3436              "a scale at the same time!");
3437       Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
3438                                            -(uint64_t)Offset);
3439       if (C->getType() != OpTy)
3440         C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
3441                                                           OpTy, false),
3442                                   C, OpTy);
3443
3444       CI->setOperand(1, C);
3445     }
3446   }
3447
3448   return FullV;
3449 }
3450
3451 /// RewriteForPHI - Helper for Rewrite. PHI nodes are special because the use
3452 /// of their operands effectively happens in their predecessor blocks, so the
3453 /// expression may need to be expanded in multiple places.
3454 void LSRInstance::RewriteForPHI(PHINode *PN,
3455                                 const LSRFixup &LF,
3456                                 const Formula &F,
3457                                 SCEVExpander &Rewriter,
3458                                 SmallVectorImpl<WeakVH> &DeadInsts,
3459                                 Pass *P) const {
3460   DenseMap<BasicBlock *, Value *> Inserted;
3461   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
3462     if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
3463       BasicBlock *BB = PN->getIncomingBlock(i);
3464
3465       // If this is a critical edge, split the edge so that we do not insert
3466       // the code on all predecessor/successor paths.  We do this unless this
3467       // is the canonical backedge for this loop, which complicates post-inc
3468       // users.
3469       if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
3470           !isa<IndirectBrInst>(BB->getTerminator()) &&
3471           (PN->getParent() != L->getHeader() || !L->contains(BB))) {
3472         // Split the critical edge.
3473         BasicBlock *NewBB = SplitCriticalEdge(BB, PN->getParent(), P);
3474
3475         // If PN is outside of the loop and BB is in the loop, we want to
3476         // move the block to be immediately before the PHI block, not
3477         // immediately after BB.
3478         if (L->contains(BB) && !L->contains(PN))
3479           NewBB->moveBefore(PN->getParent());
3480
3481         // Splitting the edge can reduce the number of PHI entries we have.
3482         e = PN->getNumIncomingValues();
3483         BB = NewBB;
3484         i = PN->getBasicBlockIndex(BB);
3485       }
3486
3487       std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
3488         Inserted.insert(std::make_pair(BB, static_cast<Value *>(0)));
3489       if (!Pair.second)
3490         PN->setIncomingValue(i, Pair.first->second);
3491       else {
3492         Value *FullV = Expand(LF, F, BB->getTerminator(), Rewriter, DeadInsts);
3493
3494         // If this is reuse-by-noop-cast, insert the noop cast.
3495         const Type *OpTy = LF.OperandValToReplace->getType();
3496         if (FullV->getType() != OpTy)
3497           FullV =
3498             CastInst::Create(CastInst::getCastOpcode(FullV, false,
3499                                                      OpTy, false),
3500                              FullV, LF.OperandValToReplace->getType(),
3501                              "tmp", BB->getTerminator());
3502
3503         PN->setIncomingValue(i, FullV);
3504         Pair.first->second = FullV;
3505       }
3506     }
3507 }
3508
3509 /// Rewrite - Emit instructions for the leading candidate expression for this
3510 /// LSRUse (this is called "expanding"), and update the UserInst to reference
3511 /// the newly expanded value.
3512 void LSRInstance::Rewrite(const LSRFixup &LF,
3513                           const Formula &F,
3514                           SCEVExpander &Rewriter,
3515                           SmallVectorImpl<WeakVH> &DeadInsts,
3516                           Pass *P) const {
3517   // First, find an insertion point that dominates UserInst. For PHI nodes,
3518   // find the nearest block which dominates all the relevant uses.
3519   if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
3520     RewriteForPHI(PN, LF, F, Rewriter, DeadInsts, P);
3521   } else {
3522     Value *FullV = Expand(LF, F, LF.UserInst, Rewriter, DeadInsts);
3523
3524     // If this is reuse-by-noop-cast, insert the noop cast.
3525     const Type *OpTy = LF.OperandValToReplace->getType();
3526     if (FullV->getType() != OpTy) {
3527       Instruction *Cast =
3528         CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
3529                          FullV, OpTy, "tmp", LF.UserInst);
3530       FullV = Cast;
3531     }
3532
3533     // Update the user. ICmpZero is handled specially here (for now) because
3534     // Expand may have updated one of the operands of the icmp already, and
3535     // its new value may happen to be equal to LF.OperandValToReplace, in
3536     // which case doing replaceUsesOfWith leads to replacing both operands
3537     // with the same value. TODO: Reorganize this.
3538     if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero)
3539       LF.UserInst->setOperand(0, FullV);
3540     else
3541       LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
3542   }
3543
3544   DeadInsts.push_back(LF.OperandValToReplace);
3545 }
3546
3547 /// ImplementSolution - Rewrite all the fixup locations with new values,
3548 /// following the chosen solution.
3549 void
3550 LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
3551                                Pass *P) {
3552   // Keep track of instructions we may have made dead, so that
3553   // we can remove them after we are done working.
3554   SmallVector<WeakVH, 16> DeadInsts;
3555
3556   SCEVExpander Rewriter(SE);
3557   Rewriter.disableCanonicalMode();
3558   Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
3559
3560   // Expand the new value definitions and update the users.
3561   for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
3562        E = Fixups.end(); I != E; ++I) {
3563     const LSRFixup &Fixup = *I;
3564
3565     Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts, P);
3566
3567     Changed = true;
3568   }
3569
3570   // Clean up after ourselves. This must be done before deleting any
3571   // instructions.
3572   Rewriter.clear();
3573
3574   Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
3575 }
3576
3577 LSRInstance::LSRInstance(const TargetLowering *tli, Loop *l, Pass *P)
3578   : IU(P->getAnalysis<IVUsers>()),
3579     SE(P->getAnalysis<ScalarEvolution>()),
3580     DT(P->getAnalysis<DominatorTree>()),
3581     LI(P->getAnalysis<LoopInfo>()),
3582     TLI(tli), L(l), Changed(false), IVIncInsertPos(0) {
3583
3584   // If LoopSimplify form is not available, stay out of trouble.
3585   if (!L->isLoopSimplifyForm()) return;
3586
3587   // If there's no interesting work to be done, bail early.
3588   if (IU.empty()) return;
3589
3590   DEBUG(dbgs() << "\nLSR on loop ";
3591         WriteAsOperand(dbgs(), L->getHeader(), /*PrintType=*/false);
3592         dbgs() << ":\n");
3593
3594   // First, perform some low-level loop optimizations.
3595   OptimizeShadowIV();
3596   OptimizeLoopTermCond();
3597
3598   // Start collecting data and preparing for the solver.
3599   CollectInterestingTypesAndFactors();
3600   CollectFixupsAndInitialFormulae();
3601   CollectLoopInvariantFixupsAndFormulae();
3602
3603   DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
3604         print_uses(dbgs()));
3605
3606   // Now use the reuse data to generate a bunch of interesting ways
3607   // to formulate the values needed for the uses.
3608   GenerateAllReuseFormulae();
3609
3610   DEBUG(dbgs() << "\n"
3611                   "After generating reuse formulae:\n";
3612         print_uses(dbgs()));
3613
3614   FilterOutUndesirableDedicatedRegisters();
3615   NarrowSearchSpaceUsingHeuristics();
3616
3617   SmallVector<const Formula *, 8> Solution;
3618   Solve(Solution);
3619
3620   // Release memory that is no longer needed.
3621   Factors.clear();
3622   Types.clear();
3623   RegUses.clear();
3624
3625 #ifndef NDEBUG
3626   // Formulae should be legal.
3627   for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
3628        E = Uses.end(); I != E; ++I) {
3629      const LSRUse &LU = *I;
3630      for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
3631           JE = LU.Formulae.end(); J != JE; ++J)
3632         assert(isLegalUse(J->AM, LU.MinOffset, LU.MaxOffset,
3633                           LU.Kind, LU.AccessTy, TLI) &&
3634                "Illegal formula generated!");
3635   };
3636 #endif
3637
3638   // Now that we've decided what we want, make it so.
3639   ImplementSolution(Solution, P);
3640 }
3641
3642 void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
3643   if (Factors.empty() && Types.empty()) return;
3644
3645   OS << "LSR has identified the following interesting factors and types: ";
3646   bool First = true;
3647
3648   for (SmallSetVector<int64_t, 8>::const_iterator
3649        I = Factors.begin(), E = Factors.end(); I != E; ++I) {
3650     if (!First) OS << ", ";
3651     First = false;
3652     OS << '*' << *I;
3653   }
3654
3655   for (SmallSetVector<const Type *, 4>::const_iterator
3656        I = Types.begin(), E = Types.end(); I != E; ++I) {
3657     if (!First) OS << ", ";
3658     First = false;
3659     OS << '(' << **I << ')';
3660   }
3661   OS << '\n';
3662 }
3663
3664 void LSRInstance::print_fixups(raw_ostream &OS) const {
3665   OS << "LSR is examining the following fixup sites:\n";
3666   for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
3667        E = Fixups.end(); I != E; ++I) {
3668     dbgs() << "  ";
3669     I->print(OS);
3670     OS << '\n';
3671   }
3672 }
3673
3674 void LSRInstance::print_uses(raw_ostream &OS) const {
3675   OS << "LSR is examining the following uses:\n";
3676   for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
3677        E = Uses.end(); I != E; ++I) {
3678     const LSRUse &LU = *I;
3679     dbgs() << "  ";
3680     LU.print(OS);
3681     OS << '\n';
3682     for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
3683          JE = LU.Formulae.end(); J != JE; ++J) {
3684       OS << "    ";
3685       J->print(OS);
3686       OS << '\n';
3687     }
3688   }
3689 }
3690
3691 void LSRInstance::print(raw_ostream &OS) const {
3692   print_factors_and_types(OS);
3693   print_fixups(OS);
3694   print_uses(OS);
3695 }
3696
3697 void LSRInstance::dump() const {
3698   print(errs()); errs() << '\n';
3699 }
3700
3701 namespace {
3702
3703 class LoopStrengthReduce : public LoopPass {
3704   /// TLI - Keep a pointer of a TargetLowering to consult for determining
3705   /// transformation profitability.
3706   const TargetLowering *const TLI;
3707
3708 public:
3709   static char ID; // Pass ID, replacement for typeid
3710   explicit LoopStrengthReduce(const TargetLowering *tli = 0);
3711
3712 private:
3713   bool runOnLoop(Loop *L, LPPassManager &LPM);
3714   void getAnalysisUsage(AnalysisUsage &AU) const;
3715 };
3716
3717 }
3718
3719 char LoopStrengthReduce::ID = 0;
3720 static RegisterPass<LoopStrengthReduce>
3721 X("loop-reduce", "Loop Strength Reduction");
3722
3723 Pass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) {
3724   return new LoopStrengthReduce(TLI);
3725 }
3726
3727 LoopStrengthReduce::LoopStrengthReduce(const TargetLowering *tli)
3728   : LoopPass(&ID), TLI(tli) {}
3729
3730 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
3731   // We split critical edges, so we change the CFG.  However, we do update
3732   // many analyses if they are around.
3733   AU.addPreservedID(LoopSimplifyID);
3734   AU.addPreserved("domfrontier");
3735
3736   AU.addRequired<LoopInfo>();
3737   AU.addPreserved<LoopInfo>();
3738   AU.addRequiredID(LoopSimplifyID);
3739   AU.addRequired<DominatorTree>();
3740   AU.addPreserved<DominatorTree>();
3741   AU.addRequired<ScalarEvolution>();
3742   AU.addPreserved<ScalarEvolution>();
3743   AU.addRequired<IVUsers>();
3744   AU.addPreserved<IVUsers>();
3745 }
3746
3747 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
3748   bool Changed = false;
3749
3750   // Run the main LSR transformation.
3751   Changed |= LSRInstance(TLI, L, this).getChanged();
3752
3753   // At this point, it is worth checking to see if any recurrence PHIs are also
3754   // dead, so that we can remove them as well.
3755   Changed |= DeleteDeadPHIs(L->getHeader());
3756
3757   return Changed;
3758 }