4971ab88ab46c332f0eb2414c58926591e598d95
[oota-llvm.git] / lib / Transforms / Scalar / LoopDeletion.cpp
1 //===- LoopDeletion.cpp - Dead Loop Deletion Pass ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Dead Loop Deletion Pass. This pass is responsible
11 // for eliminating loops with non-infinite computable trip counts that have no
12 // side effects or volatile instructions, and do not contribute to the
13 // computation of the function's return value.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "llvm/Transforms/Scalar.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/GlobalsModRef.h"
21 #include "llvm/Analysis/LoopPass.h"
22 #include "llvm/Analysis/ScalarEvolution.h"
23 #include "llvm/IR/Dominators.h"
24 using namespace llvm;
25
26 #define DEBUG_TYPE "loop-delete"
27
28 STATISTIC(NumDeleted, "Number of loops deleted");
29
30 namespace {
31   class LoopDeletion : public LoopPass {
32   public:
33     static char ID; // Pass ID, replacement for typeid
34     LoopDeletion() : LoopPass(ID) {
35       initializeLoopDeletionPass(*PassRegistry::getPassRegistry());
36     }
37
38     // Possibly eliminate loop L if it is dead.
39     bool runOnLoop(Loop *L, LPPassManager &LPM) override;
40
41     void getAnalysisUsage(AnalysisUsage &AU) const override {
42       AU.addRequired<DominatorTreeWrapperPass>();
43       AU.addRequired<LoopInfoWrapperPass>();
44       AU.addRequired<ScalarEvolutionWrapperPass>();
45       AU.addRequiredID(LoopSimplifyID);
46       AU.addRequiredID(LCSSAID);
47
48       AU.addPreserved<ScalarEvolutionWrapperPass>();
49       AU.addPreserved<DominatorTreeWrapperPass>();
50       AU.addPreserved<LoopInfoWrapperPass>();
51       AU.addPreserved<GlobalsAAWrapperPass>();
52       AU.addPreservedID(LoopSimplifyID);
53       AU.addPreservedID(LCSSAID);
54     }
55
56   private:
57     bool isLoopDead(Loop *L, SmallVectorImpl<BasicBlock *> &exitingBlocks,
58                     SmallVectorImpl<BasicBlock *> &exitBlocks,
59                     bool &Changed, BasicBlock *Preheader);
60
61   };
62 }
63
64 char LoopDeletion::ID = 0;
65 INITIALIZE_PASS_BEGIN(LoopDeletion, "loop-deletion",
66                 "Delete dead loops", false, false)
67 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
68 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
69 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
70 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
71 INITIALIZE_PASS_DEPENDENCY(LCSSA)
72 INITIALIZE_PASS_END(LoopDeletion, "loop-deletion",
73                 "Delete dead loops", false, false)
74
75 Pass *llvm::createLoopDeletionPass() {
76   return new LoopDeletion();
77 }
78
79 /// isLoopDead - Determined if a loop is dead.  This assumes that we've already
80 /// checked for unique exit and exiting blocks, and that the code is in LCSSA
81 /// form.
82 bool LoopDeletion::isLoopDead(Loop *L,
83                               SmallVectorImpl<BasicBlock *> &exitingBlocks,
84                               SmallVectorImpl<BasicBlock *> &exitBlocks,
85                               bool &Changed, BasicBlock *Preheader) {
86   BasicBlock *exitBlock = exitBlocks[0];
87
88   // Make sure that all PHI entries coming from the loop are loop invariant.
89   // Because the code is in LCSSA form, any values used outside of the loop
90   // must pass through a PHI in the exit block, meaning that this check is
91   // sufficient to guarantee that no loop-variant values are used outside
92   // of the loop.
93   BasicBlock::iterator BI = exitBlock->begin();
94   while (PHINode *P = dyn_cast<PHINode>(BI)) {
95     Value *incoming = P->getIncomingValueForBlock(exitingBlocks[0]);
96
97     // Make sure all exiting blocks produce the same incoming value for the exit
98     // block.  If there are different incoming values for different exiting
99     // blocks, then it is impossible to statically determine which value should
100     // be used.
101     for (unsigned i = 1, e = exitingBlocks.size(); i < e; ++i) {
102       if (incoming != P->getIncomingValueForBlock(exitingBlocks[i]))
103         return false;
104     }
105
106     if (Instruction *I = dyn_cast<Instruction>(incoming))
107       if (!L->makeLoopInvariant(I, Changed, Preheader->getTerminator()))
108         return false;
109
110     ++BI;
111   }
112
113   // Make sure that no instructions in the block have potential side-effects.
114   // This includes instructions that could write to memory, and loads that are
115   // marked volatile.  This could be made more aggressive by using aliasing
116   // information to identify readonly and readnone calls.
117   for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
118        LI != LE; ++LI) {
119     for (BasicBlock::iterator BI = (*LI)->begin(), BE = (*LI)->end();
120          BI != BE; ++BI) {
121       if (BI->mayHaveSideEffects())
122         return false;
123     }
124   }
125
126   return true;
127 }
128
129 /// runOnLoop - Remove dead loops, by which we mean loops that do not impact the
130 /// observable behavior of the program other than finite running time.  Note
131 /// we do ensure that this never remove a loop that might be infinite, as doing
132 /// so could change the halting/non-halting nature of a program.
133 /// NOTE: This entire process relies pretty heavily on LoopSimplify and LCSSA
134 /// in order to make various safety checks work.
135 bool LoopDeletion::runOnLoop(Loop *L, LPPassManager &LPM) {
136   if (skipOptnoneFunction(L))
137     return false;
138
139   // We can only remove the loop if there is a preheader that we can
140   // branch from after removing it.
141   BasicBlock *preheader = L->getLoopPreheader();
142   if (!preheader)
143     return false;
144
145   // If LoopSimplify form is not available, stay out of trouble.
146   if (!L->hasDedicatedExits())
147     return false;
148
149   // We can't remove loops that contain subloops.  If the subloops were dead,
150   // they would already have been removed in earlier executions of this pass.
151   if (L->begin() != L->end())
152     return false;
153
154   SmallVector<BasicBlock*, 4> exitingBlocks;
155   L->getExitingBlocks(exitingBlocks);
156
157   SmallVector<BasicBlock*, 4> exitBlocks;
158   L->getUniqueExitBlocks(exitBlocks);
159
160   // We require that the loop only have a single exit block.  Otherwise, we'd
161   // be in the situation of needing to be able to solve statically which exit
162   // block will be branched to, or trying to preserve the branching logic in
163   // a loop invariant manner.
164   if (exitBlocks.size() != 1)
165     return false;
166
167   // Finally, we have to check that the loop really is dead.
168   bool Changed = false;
169   if (!isLoopDead(L, exitingBlocks, exitBlocks, Changed, preheader))
170     return Changed;
171
172   // Don't remove loops for which we can't solve the trip count.
173   // They could be infinite, in which case we'd be changing program behavior.
174   ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
175   const SCEV *S = SE.getMaxBackedgeTakenCount(L);
176   if (isa<SCEVCouldNotCompute>(S))
177     return Changed;
178
179   // Now that we know the removal is safe, remove the loop by changing the
180   // branch from the preheader to go to the single exit block.
181   BasicBlock *exitBlock = exitBlocks[0];
182
183   // Because we're deleting a large chunk of code at once, the sequence in which
184   // we remove things is very important to avoid invalidation issues.  Don't
185   // mess with this unless you have good reason and know what you're doing.
186
187   // Tell ScalarEvolution that the loop is deleted. Do this before
188   // deleting the loop so that ScalarEvolution can look at the loop
189   // to determine what it needs to clean up.
190   SE.forgetLoop(L);
191
192   // Connect the preheader directly to the exit block.
193   TerminatorInst *TI = preheader->getTerminator();
194   TI->replaceUsesOfWith(L->getHeader(), exitBlock);
195
196   // Rewrite phis in the exit block to get their inputs from
197   // the preheader instead of the exiting block.
198   BasicBlock *exitingBlock = exitingBlocks[0];
199   BasicBlock::iterator BI = exitBlock->begin();
200   while (PHINode *P = dyn_cast<PHINode>(BI)) {
201     int j = P->getBasicBlockIndex(exitingBlock);
202     assert(j >= 0 && "Can't find exiting block in exit block's phi node!");
203     P->setIncomingBlock(j, preheader);
204     for (unsigned i = 1; i < exitingBlocks.size(); ++i)
205       P->removeIncomingValue(exitingBlocks[i]);
206     ++BI;
207   }
208
209   // Update the dominator tree and remove the instructions and blocks that will
210   // be deleted from the reference counting scheme.
211   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
212   SmallVector<DomTreeNode*, 8> ChildNodes;
213   for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
214        LI != LE; ++LI) {
215     // Move all of the block's children to be children of the preheader, which
216     // allows us to remove the domtree entry for the block.
217     ChildNodes.insert(ChildNodes.begin(), DT[*LI]->begin(), DT[*LI]->end());
218     for (SmallVectorImpl<DomTreeNode *>::iterator DI = ChildNodes.begin(),
219          DE = ChildNodes.end(); DI != DE; ++DI) {
220       DT.changeImmediateDominator(*DI, DT[preheader]);
221     }
222
223     ChildNodes.clear();
224     DT.eraseNode(*LI);
225
226     // Remove the block from the reference counting scheme, so that we can
227     // delete it freely later.
228     (*LI)->dropAllReferences();
229   }
230
231   // Erase the instructions and the blocks without having to worry
232   // about ordering because we already dropped the references.
233   // NOTE: This iteration is safe because erasing the block does not remove its
234   // entry from the loop's block list.  We do that in the next section.
235   for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
236        LI != LE; ++LI)
237     (*LI)->eraseFromParent();
238
239   // Finally, the blocks from loopinfo.  This has to happen late because
240   // otherwise our loop iterators won't work.
241   LoopInfo &loopInfo = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
242   SmallPtrSet<BasicBlock*, 8> blocks;
243   blocks.insert(L->block_begin(), L->block_end());
244   for (BasicBlock *BB : blocks)
245     loopInfo.removeBlock(BB);
246
247   // The last step is to inform the loop pass manager that we've
248   // eliminated this loop.
249   LPM.deleteLoopFromQueue(L);
250   Changed = true;
251
252   ++NumDeleted;
253
254   return Changed;
255 }