3f810cdf5a25820342c0a7b5ed3acab4fd8c2eb7
[oota-llvm.git] / lib / Transforms / Scalar / IndVarSimplify.cpp
1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation analyzes and transforms the induction variables (and
11 // computations derived from them) into simpler forms suitable for subsequent
12 // analysis and transformation.
13 //
14 // This transformation makes the following changes to each loop with an
15 // identifiable induction variable:
16 //   1. All loops are transformed to have a SINGLE canonical induction variable
17 //      which starts at zero and steps by one.
18 //   2. The canonical induction variable is guaranteed to be the first PHI node
19 //      in the loop header block.
20 //   3. The canonical induction variable is guaranteed to be in a wide enough
21 //      type so that IV expressions need not be (directly) zero-extended or
22 //      sign-extended.
23 //   4. Any pointer arithmetic recurrences are raised to use array subscripts.
24 //
25 // If the trip count of a loop is computable, this pass also makes the following
26 // changes:
27 //   1. The exit condition for the loop is canonicalized to compare the
28 //      induction value against the exit value.  This turns loops like:
29 //        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
30 //   2. Any use outside of the loop of an expression derived from the indvar
31 //      is changed to compute the derived value outside of the loop, eliminating
32 //      the dependence on the exit value of the induction variable.  If the only
33 //      purpose of the loop is to compute the exit value of some derived
34 //      expression, this transformation will make the loop dead.
35 //
36 // This transformation should be followed by strength reduction after all of the
37 // desired loop transformations have been performed.
38 //
39 //===----------------------------------------------------------------------===//
40
41 #define DEBUG_TYPE "indvars"
42 #include "llvm/Transforms/Scalar.h"
43 #include "llvm/BasicBlock.h"
44 #include "llvm/Constants.h"
45 #include "llvm/Instructions.h"
46 #include "llvm/IntrinsicInst.h"
47 #include "llvm/LLVMContext.h"
48 #include "llvm/Type.h"
49 #include "llvm/Analysis/Dominators.h"
50 #include "llvm/Analysis/IVUsers.h"
51 #include "llvm/Analysis/ScalarEvolutionExpander.h"
52 #include "llvm/Analysis/LoopInfo.h"
53 #include "llvm/Analysis/LoopPass.h"
54 #include "llvm/Support/CFG.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include "llvm/Transforms/Utils/Local.h"
59 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
60 #include "llvm/Target/TargetData.h"
61 #include "llvm/ADT/DenseMap.h"
62 #include "llvm/ADT/SmallVector.h"
63 #include "llvm/ADT/Statistic.h"
64 #include "llvm/ADT/STLExtras.h"
65 using namespace llvm;
66
67 STATISTIC(NumRemoved     , "Number of aux indvars removed");
68 STATISTIC(NumWidened     , "Number of indvars widened");
69 STATISTIC(NumInserted    , "Number of canonical indvars added");
70 STATISTIC(NumReplaced    , "Number of exit values replaced");
71 STATISTIC(NumLFTR        , "Number of loop exit tests replaced");
72 STATISTIC(NumElimIdentity, "Number of IV identities eliminated");
73 STATISTIC(NumElimExt     , "Number of IV sign/zero extends eliminated");
74 STATISTIC(NumElimRem     , "Number of IV remainder operations eliminated");
75 STATISTIC(NumElimCmp     , "Number of IV comparisons eliminated");
76 STATISTIC(NumElimIV      , "Number of congruent IVs eliminated");
77
78 static cl::opt<bool> DisableIVRewrite(
79   "disable-iv-rewrite", cl::Hidden,
80   cl::desc("Disable canonical induction variable rewriting"));
81
82 // Temporary flag for use with -disable-iv-rewrite to force a canonical IV for
83 // LFTR purposes.
84 static cl::opt<bool> ForceLFTR(
85   "force-lftr", cl::Hidden,
86   cl::desc("Enable forced linear function test replacement"));
87
88 namespace {
89   class IndVarSimplify : public LoopPass {
90     IVUsers         *IU;
91     LoopInfo        *LI;
92     ScalarEvolution *SE;
93     DominatorTree   *DT;
94     TargetData      *TD;
95
96     SmallVector<WeakVH, 16> DeadInsts;
97     bool Changed;
98   public:
99
100     static char ID; // Pass identification, replacement for typeid
101     IndVarSimplify() : LoopPass(ID), IU(0), LI(0), SE(0), DT(0), TD(0),
102                        Changed(false) {
103       initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry());
104     }
105
106     virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
107
108     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
109       AU.addRequired<DominatorTree>();
110       AU.addRequired<LoopInfo>();
111       AU.addRequired<ScalarEvolution>();
112       AU.addRequiredID(LoopSimplifyID);
113       AU.addRequiredID(LCSSAID);
114       if (!DisableIVRewrite)
115         AU.addRequired<IVUsers>();
116       AU.addPreserved<ScalarEvolution>();
117       AU.addPreservedID(LoopSimplifyID);
118       AU.addPreservedID(LCSSAID);
119       if (!DisableIVRewrite)
120         AU.addPreserved<IVUsers>();
121       AU.setPreservesCFG();
122     }
123
124   private:
125     virtual void releaseMemory() {
126       DeadInsts.clear();
127     }
128
129     bool isValidRewrite(Value *FromVal, Value *ToVal);
130
131     void HandleFloatingPointIV(Loop *L, PHINode *PH);
132     void RewriteNonIntegerIVs(Loop *L);
133
134     void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
135
136     void SimplifyIVUsers(SCEVExpander &Rewriter);
137     void SimplifyIVUsersNoRewrite(Loop *L, SCEVExpander &Rewriter);
138
139     bool EliminateIVUser(Instruction *UseInst, Instruction *IVOperand);
140     void EliminateIVComparison(ICmpInst *ICmp, Value *IVOperand);
141     void EliminateIVRemainder(BinaryOperator *Rem,
142                               Value *IVOperand,
143                               bool IsSigned);
144
145     void SimplifyCongruentIVs(Loop *L);
146
147     void RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter);
148
149     Value *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
150                                      PHINode *IndVar, SCEVExpander &Rewriter);
151
152     void SinkUnusedInvariants(Loop *L);
153   };
154 }
155
156 char IndVarSimplify::ID = 0;
157 INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars",
158                 "Induction Variable Simplification", false, false)
159 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
160 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
161 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
162 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
163 INITIALIZE_PASS_DEPENDENCY(LCSSA)
164 INITIALIZE_PASS_DEPENDENCY(IVUsers)
165 INITIALIZE_PASS_END(IndVarSimplify, "indvars",
166                 "Induction Variable Simplification", false, false)
167
168 Pass *llvm::createIndVarSimplifyPass() {
169   return new IndVarSimplify();
170 }
171
172 /// isValidRewrite - Return true if the SCEV expansion generated by the
173 /// rewriter can replace the original value. SCEV guarantees that it
174 /// produces the same value, but the way it is produced may be illegal IR.
175 /// Ideally, this function will only be called for verification.
176 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
177   // If an SCEV expression subsumed multiple pointers, its expansion could
178   // reassociate the GEP changing the base pointer. This is illegal because the
179   // final address produced by a GEP chain must be inbounds relative to its
180   // underlying object. Otherwise basic alias analysis, among other things,
181   // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
182   // producing an expression involving multiple pointers. Until then, we must
183   // bail out here.
184   //
185   // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
186   // because it understands lcssa phis while SCEV does not.
187   Value *FromPtr = FromVal;
188   Value *ToPtr = ToVal;
189   if (GEPOperator *GEP = dyn_cast<GEPOperator>(FromVal)) {
190     FromPtr = GEP->getPointerOperand();
191   }
192   if (GEPOperator *GEP = dyn_cast<GEPOperator>(ToVal)) {
193     ToPtr = GEP->getPointerOperand();
194   }
195   if (FromPtr != FromVal || ToPtr != ToVal) {
196     // Quickly check the common case
197     if (FromPtr == ToPtr)
198       return true;
199
200     // SCEV may have rewritten an expression that produces the GEP's pointer
201     // operand. That's ok as long as the pointer operand has the same base
202     // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
203     // base of a recurrence. This handles the case in which SCEV expansion
204     // converts a pointer type recurrence into a nonrecurrent pointer base
205     // indexed by an integer recurrence.
206     const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
207     const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
208     if (FromBase == ToBase)
209       return true;
210
211     DEBUG(dbgs() << "INDVARS: GEP rewrite bail out "
212           << *FromBase << " != " << *ToBase << "\n");
213
214     return false;
215   }
216   return true;
217 }
218
219 /// Determine the insertion point for this user. By default, insert immediately
220 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the
221 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest
222 /// common dominator for the incoming blocks.
223 static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
224                                           DominatorTree *DT) {
225   PHINode *PHI = dyn_cast<PHINode>(User);
226   if (!PHI)
227     return User;
228
229   Instruction *InsertPt = 0;
230   for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
231     if (PHI->getIncomingValue(i) != Def)
232       continue;
233
234     BasicBlock *InsertBB = PHI->getIncomingBlock(i);
235     if (!InsertPt) {
236       InsertPt = InsertBB->getTerminator();
237       continue;
238     }
239     InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
240     InsertPt = InsertBB->getTerminator();
241   }
242   assert(InsertPt && "Missing phi operand");
243   assert((!isa<Instruction>(Def) ||
244           DT->dominates(cast<Instruction>(Def), InsertPt)) &&
245          "def does not dominate all uses");
246   return InsertPt;
247 }
248
249 //===----------------------------------------------------------------------===//
250 // RewriteNonIntegerIVs and helpers. Prefer integer IVs.
251 //===----------------------------------------------------------------------===//
252
253 /// ConvertToSInt - Convert APF to an integer, if possible.
254 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
255   bool isExact = false;
256   if (&APF.getSemantics() == &APFloat::PPCDoubleDouble)
257     return false;
258   // See if we can convert this to an int64_t
259   uint64_t UIntVal;
260   if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero,
261                            &isExact) != APFloat::opOK || !isExact)
262     return false;
263   IntVal = UIntVal;
264   return true;
265 }
266
267 /// HandleFloatingPointIV - If the loop has floating induction variable
268 /// then insert corresponding integer induction variable if possible.
269 /// For example,
270 /// for(double i = 0; i < 10000; ++i)
271 ///   bar(i)
272 /// is converted into
273 /// for(int i = 0; i < 10000; ++i)
274 ///   bar((double)i);
275 ///
276 void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) {
277   unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
278   unsigned BackEdge     = IncomingEdge^1;
279
280   // Check incoming value.
281   ConstantFP *InitValueVal =
282     dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
283
284   int64_t InitValue;
285   if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
286     return;
287
288   // Check IV increment. Reject this PN if increment operation is not
289   // an add or increment value can not be represented by an integer.
290   BinaryOperator *Incr =
291     dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
292   if (Incr == 0 || Incr->getOpcode() != Instruction::FAdd) return;
293
294   // If this is not an add of the PHI with a constantfp, or if the constant fp
295   // is not an integer, bail out.
296   ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
297   int64_t IncValue;
298   if (IncValueVal == 0 || Incr->getOperand(0) != PN ||
299       !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
300     return;
301
302   // Check Incr uses. One user is PN and the other user is an exit condition
303   // used by the conditional terminator.
304   Value::use_iterator IncrUse = Incr->use_begin();
305   Instruction *U1 = cast<Instruction>(*IncrUse++);
306   if (IncrUse == Incr->use_end()) return;
307   Instruction *U2 = cast<Instruction>(*IncrUse++);
308   if (IncrUse != Incr->use_end()) return;
309
310   // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't
311   // only used by a branch, we can't transform it.
312   FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
313   if (!Compare)
314     Compare = dyn_cast<FCmpInst>(U2);
315   if (Compare == 0 || !Compare->hasOneUse() ||
316       !isa<BranchInst>(Compare->use_back()))
317     return;
318
319   BranchInst *TheBr = cast<BranchInst>(Compare->use_back());
320
321   // We need to verify that the branch actually controls the iteration count
322   // of the loop.  If not, the new IV can overflow and no one will notice.
323   // The branch block must be in the loop and one of the successors must be out
324   // of the loop.
325   assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
326   if (!L->contains(TheBr->getParent()) ||
327       (L->contains(TheBr->getSuccessor(0)) &&
328        L->contains(TheBr->getSuccessor(1))))
329     return;
330
331
332   // If it isn't a comparison with an integer-as-fp (the exit value), we can't
333   // transform it.
334   ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
335   int64_t ExitValue;
336   if (ExitValueVal == 0 ||
337       !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
338     return;
339
340   // Find new predicate for integer comparison.
341   CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
342   switch (Compare->getPredicate()) {
343   default: return;  // Unknown comparison.
344   case CmpInst::FCMP_OEQ:
345   case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
346   case CmpInst::FCMP_ONE:
347   case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
348   case CmpInst::FCMP_OGT:
349   case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
350   case CmpInst::FCMP_OGE:
351   case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
352   case CmpInst::FCMP_OLT:
353   case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
354   case CmpInst::FCMP_OLE:
355   case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
356   }
357
358   // We convert the floating point induction variable to a signed i32 value if
359   // we can.  This is only safe if the comparison will not overflow in a way
360   // that won't be trapped by the integer equivalent operations.  Check for this
361   // now.
362   // TODO: We could use i64 if it is native and the range requires it.
363
364   // The start/stride/exit values must all fit in signed i32.
365   if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
366     return;
367
368   // If not actually striding (add x, 0.0), avoid touching the code.
369   if (IncValue == 0)
370     return;
371
372   // Positive and negative strides have different safety conditions.
373   if (IncValue > 0) {
374     // If we have a positive stride, we require the init to be less than the
375     // exit value and an equality or less than comparison.
376     if (InitValue >= ExitValue ||
377         NewPred == CmpInst::ICMP_SGT || NewPred == CmpInst::ICMP_SGE)
378       return;
379
380     uint32_t Range = uint32_t(ExitValue-InitValue);
381     if (NewPred == CmpInst::ICMP_SLE) {
382       // Normalize SLE -> SLT, check for infinite loop.
383       if (++Range == 0) return;  // Range overflows.
384     }
385
386     unsigned Leftover = Range % uint32_t(IncValue);
387
388     // If this is an equality comparison, we require that the strided value
389     // exactly land on the exit value, otherwise the IV condition will wrap
390     // around and do things the fp IV wouldn't.
391     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
392         Leftover != 0)
393       return;
394
395     // If the stride would wrap around the i32 before exiting, we can't
396     // transform the IV.
397     if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
398       return;
399
400   } else {
401     // If we have a negative stride, we require the init to be greater than the
402     // exit value and an equality or greater than comparison.
403     if (InitValue >= ExitValue ||
404         NewPred == CmpInst::ICMP_SLT || NewPred == CmpInst::ICMP_SLE)
405       return;
406
407     uint32_t Range = uint32_t(InitValue-ExitValue);
408     if (NewPred == CmpInst::ICMP_SGE) {
409       // Normalize SGE -> SGT, check for infinite loop.
410       if (++Range == 0) return;  // Range overflows.
411     }
412
413     unsigned Leftover = Range % uint32_t(-IncValue);
414
415     // If this is an equality comparison, we require that the strided value
416     // exactly land on the exit value, otherwise the IV condition will wrap
417     // around and do things the fp IV wouldn't.
418     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
419         Leftover != 0)
420       return;
421
422     // If the stride would wrap around the i32 before exiting, we can't
423     // transform the IV.
424     if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
425       return;
426   }
427
428   IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
429
430   // Insert new integer induction variable.
431   PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
432   NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
433                       PN->getIncomingBlock(IncomingEdge));
434
435   Value *NewAdd =
436     BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
437                               Incr->getName()+".int", Incr);
438   NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
439
440   ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
441                                       ConstantInt::get(Int32Ty, ExitValue),
442                                       Compare->getName());
443
444   // In the following deletions, PN may become dead and may be deleted.
445   // Use a WeakVH to observe whether this happens.
446   WeakVH WeakPH = PN;
447
448   // Delete the old floating point exit comparison.  The branch starts using the
449   // new comparison.
450   NewCompare->takeName(Compare);
451   Compare->replaceAllUsesWith(NewCompare);
452   RecursivelyDeleteTriviallyDeadInstructions(Compare);
453
454   // Delete the old floating point increment.
455   Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
456   RecursivelyDeleteTriviallyDeadInstructions(Incr);
457
458   // If the FP induction variable still has uses, this is because something else
459   // in the loop uses its value.  In order to canonicalize the induction
460   // variable, we chose to eliminate the IV and rewrite it in terms of an
461   // int->fp cast.
462   //
463   // We give preference to sitofp over uitofp because it is faster on most
464   // platforms.
465   if (WeakPH) {
466     Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
467                                  PN->getParent()->getFirstNonPHI());
468     PN->replaceAllUsesWith(Conv);
469     RecursivelyDeleteTriviallyDeadInstructions(PN);
470   }
471
472   // Add a new IVUsers entry for the newly-created integer PHI.
473   if (IU)
474     IU->AddUsersIfInteresting(NewPHI);
475 }
476
477 void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
478   // First step.  Check to see if there are any floating-point recurrences.
479   // If there are, change them into integer recurrences, permitting analysis by
480   // the SCEV routines.
481   //
482   BasicBlock *Header = L->getHeader();
483
484   SmallVector<WeakVH, 8> PHIs;
485   for (BasicBlock::iterator I = Header->begin();
486        PHINode *PN = dyn_cast<PHINode>(I); ++I)
487     PHIs.push_back(PN);
488
489   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
490     if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
491       HandleFloatingPointIV(L, PN);
492
493   // If the loop previously had floating-point IV, ScalarEvolution
494   // may not have been able to compute a trip count. Now that we've done some
495   // re-writing, the trip count may be computable.
496   if (Changed)
497     SE->forgetLoop(L);
498 }
499
500 //===----------------------------------------------------------------------===//
501 // RewriteLoopExitValues - Optimize IV users outside the loop.
502 // As a side effect, reduces the amount of IV processing within the loop.
503 //===----------------------------------------------------------------------===//
504
505 /// RewriteLoopExitValues - Check to see if this loop has a computable
506 /// loop-invariant execution count.  If so, this means that we can compute the
507 /// final value of any expressions that are recurrent in the loop, and
508 /// substitute the exit values from the loop into any instructions outside of
509 /// the loop that use the final values of the current expressions.
510 ///
511 /// This is mostly redundant with the regular IndVarSimplify activities that
512 /// happen later, except that it's more powerful in some cases, because it's
513 /// able to brute-force evaluate arbitrary instructions as long as they have
514 /// constant operands at the beginning of the loop.
515 void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
516   // Verify the input to the pass in already in LCSSA form.
517   assert(L->isLCSSAForm(*DT));
518
519   SmallVector<BasicBlock*, 8> ExitBlocks;
520   L->getUniqueExitBlocks(ExitBlocks);
521
522   // Find all values that are computed inside the loop, but used outside of it.
523   // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
524   // the exit blocks of the loop to find them.
525   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
526     BasicBlock *ExitBB = ExitBlocks[i];
527
528     // If there are no PHI nodes in this exit block, then no values defined
529     // inside the loop are used on this path, skip it.
530     PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
531     if (!PN) continue;
532
533     unsigned NumPreds = PN->getNumIncomingValues();
534
535     // Iterate over all of the PHI nodes.
536     BasicBlock::iterator BBI = ExitBB->begin();
537     while ((PN = dyn_cast<PHINode>(BBI++))) {
538       if (PN->use_empty())
539         continue; // dead use, don't replace it
540
541       // SCEV only supports integer expressions for now.
542       if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy())
543         continue;
544
545       // It's necessary to tell ScalarEvolution about this explicitly so that
546       // it can walk the def-use list and forget all SCEVs, as it may not be
547       // watching the PHI itself. Once the new exit value is in place, there
548       // may not be a def-use connection between the loop and every instruction
549       // which got a SCEVAddRecExpr for that loop.
550       SE->forgetValue(PN);
551
552       // Iterate over all of the values in all the PHI nodes.
553       for (unsigned i = 0; i != NumPreds; ++i) {
554         // If the value being merged in is not integer or is not defined
555         // in the loop, skip it.
556         Value *InVal = PN->getIncomingValue(i);
557         if (!isa<Instruction>(InVal))
558           continue;
559
560         // If this pred is for a subloop, not L itself, skip it.
561         if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
562           continue; // The Block is in a subloop, skip it.
563
564         // Check that InVal is defined in the loop.
565         Instruction *Inst = cast<Instruction>(InVal);
566         if (!L->contains(Inst))
567           continue;
568
569         // Okay, this instruction has a user outside of the current loop
570         // and varies predictably *inside* the loop.  Evaluate the value it
571         // contains when the loop exits, if possible.
572         const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
573         if (!SE->isLoopInvariant(ExitValue, L))
574           continue;
575
576         Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
577
578         DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
579                      << "  LoopVal = " << *Inst << "\n");
580
581         if (!isValidRewrite(Inst, ExitVal)) {
582           DeadInsts.push_back(ExitVal);
583           continue;
584         }
585         Changed = true;
586         ++NumReplaced;
587
588         PN->setIncomingValue(i, ExitVal);
589
590         // If this instruction is dead now, delete it.
591         RecursivelyDeleteTriviallyDeadInstructions(Inst);
592
593         if (NumPreds == 1) {
594           // Completely replace a single-pred PHI. This is safe, because the
595           // NewVal won't be variant in the loop, so we don't need an LCSSA phi
596           // node anymore.
597           PN->replaceAllUsesWith(ExitVal);
598           RecursivelyDeleteTriviallyDeadInstructions(PN);
599         }
600       }
601       if (NumPreds != 1) {
602         // Clone the PHI and delete the original one. This lets IVUsers and
603         // any other maps purge the original user from their records.
604         PHINode *NewPN = cast<PHINode>(PN->clone());
605         NewPN->takeName(PN);
606         NewPN->insertBefore(PN);
607         PN->replaceAllUsesWith(NewPN);
608         PN->eraseFromParent();
609       }
610     }
611   }
612
613   // The insertion point instruction may have been deleted; clear it out
614   // so that the rewriter doesn't trip over it later.
615   Rewriter.clearInsertPoint();
616 }
617
618 //===----------------------------------------------------------------------===//
619 //  Rewrite IV users based on a canonical IV.
620 //  To be replaced by -disable-iv-rewrite.
621 //===----------------------------------------------------------------------===//
622
623 /// SimplifyIVUsers - Iteratively perform simplification on IVUsers within this
624 /// loop. IVUsers is treated as a worklist. Each successive simplification may
625 /// push more users which may themselves be candidates for simplification.
626 ///
627 /// This is the old approach to IV simplification to be replaced by
628 /// SimplifyIVUsersNoRewrite.
629 ///
630 void IndVarSimplify::SimplifyIVUsers(SCEVExpander &Rewriter) {
631   // Each round of simplification involves a round of eliminating operations
632   // followed by a round of widening IVs. A single IVUsers worklist is used
633   // across all rounds. The inner loop advances the user. If widening exposes
634   // more uses, then another pass through the outer loop is triggered.
635   for (IVUsers::iterator I = IU->begin(); I != IU->end(); ++I) {
636     Instruction *UseInst = I->getUser();
637     Value *IVOperand = I->getOperandValToReplace();
638
639     if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
640       EliminateIVComparison(ICmp, IVOperand);
641       continue;
642     }
643     if (BinaryOperator *Rem = dyn_cast<BinaryOperator>(UseInst)) {
644       bool IsSigned = Rem->getOpcode() == Instruction::SRem;
645       if (IsSigned || Rem->getOpcode() == Instruction::URem) {
646         EliminateIVRemainder(Rem, IVOperand, IsSigned);
647         continue;
648       }
649     }
650   }
651 }
652
653 // FIXME: It is an extremely bad idea to indvar substitute anything more
654 // complex than affine induction variables.  Doing so will put expensive
655 // polynomial evaluations inside of the loop, and the str reduction pass
656 // currently can only reduce affine polynomials.  For now just disable
657 // indvar subst on anything more complex than an affine addrec, unless
658 // it can be expanded to a trivial value.
659 static bool isSafe(const SCEV *S, const Loop *L, ScalarEvolution *SE) {
660   // Loop-invariant values are safe.
661   if (SE->isLoopInvariant(S, L)) return true;
662
663   // Affine addrecs are safe. Non-affine are not, because LSR doesn't know how
664   // to transform them into efficient code.
665   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
666     return AR->isAffine();
667
668   // An add is safe it all its operands are safe.
669   if (const SCEVCommutativeExpr *Commutative = dyn_cast<SCEVCommutativeExpr>(S)) {
670     for (SCEVCommutativeExpr::op_iterator I = Commutative->op_begin(),
671          E = Commutative->op_end(); I != E; ++I)
672       if (!isSafe(*I, L, SE)) return false;
673     return true;
674   }
675
676   // A cast is safe if its operand is.
677   if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
678     return isSafe(C->getOperand(), L, SE);
679
680   // A udiv is safe if its operands are.
681   if (const SCEVUDivExpr *UD = dyn_cast<SCEVUDivExpr>(S))
682     return isSafe(UD->getLHS(), L, SE) &&
683            isSafe(UD->getRHS(), L, SE);
684
685   // SCEVUnknown is always safe.
686   if (isa<SCEVUnknown>(S))
687     return true;
688
689   // Nothing else is safe.
690   return false;
691 }
692
693 void IndVarSimplify::RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter) {
694   // Rewrite all induction variable expressions in terms of the canonical
695   // induction variable.
696   //
697   // If there were induction variables of other sizes or offsets, manually
698   // add the offsets to the primary induction variable and cast, avoiding
699   // the need for the code evaluation methods to insert induction variables
700   // of different sizes.
701   for (IVUsers::iterator UI = IU->begin(), E = IU->end(); UI != E; ++UI) {
702     Value *Op = UI->getOperandValToReplace();
703     Type *UseTy = Op->getType();
704     Instruction *User = UI->getUser();
705
706     // Compute the final addrec to expand into code.
707     const SCEV *AR = IU->getReplacementExpr(*UI);
708
709     // Evaluate the expression out of the loop, if possible.
710     if (!L->contains(UI->getUser())) {
711       const SCEV *ExitVal = SE->getSCEVAtScope(AR, L->getParentLoop());
712       if (SE->isLoopInvariant(ExitVal, L))
713         AR = ExitVal;
714     }
715
716     // FIXME: It is an extremely bad idea to indvar substitute anything more
717     // complex than affine induction variables.  Doing so will put expensive
718     // polynomial evaluations inside of the loop, and the str reduction pass
719     // currently can only reduce affine polynomials.  For now just disable
720     // indvar subst on anything more complex than an affine addrec, unless
721     // it can be expanded to a trivial value.
722     if (!isSafe(AR, L, SE))
723       continue;
724
725     // Determine the insertion point for this user. By default, insert
726     // immediately before the user. The SCEVExpander class will automatically
727     // hoist loop invariants out of the loop. For PHI nodes, there may be
728     // multiple uses, so compute the nearest common dominator for the
729     // incoming blocks.
730     Instruction *InsertPt = getInsertPointForUses(User, Op, DT);
731
732     // Now expand it into actual Instructions and patch it into place.
733     Value *NewVal = Rewriter.expandCodeFor(AR, UseTy, InsertPt);
734
735     DEBUG(dbgs() << "INDVARS: Rewrote IV '" << *AR << "' " << *Op << '\n'
736                  << "   into = " << *NewVal << "\n");
737
738     if (!isValidRewrite(Op, NewVal)) {
739       DeadInsts.push_back(NewVal);
740       continue;
741     }
742     // Inform ScalarEvolution that this value is changing. The change doesn't
743     // affect its value, but it does potentially affect which use lists the
744     // value will be on after the replacement, which affects ScalarEvolution's
745     // ability to walk use lists and drop dangling pointers when a value is
746     // deleted.
747     SE->forgetValue(User);
748
749     // Patch the new value into place.
750     if (Op->hasName())
751       NewVal->takeName(Op);
752     if (Instruction *NewValI = dyn_cast<Instruction>(NewVal))
753       NewValI->setDebugLoc(User->getDebugLoc());
754     User->replaceUsesOfWith(Op, NewVal);
755     UI->setOperandValToReplace(NewVal);
756
757     ++NumRemoved;
758     Changed = true;
759
760     // The old value may be dead now.
761     DeadInsts.push_back(Op);
762   }
763 }
764
765 //===----------------------------------------------------------------------===//
766 //  IV Widening - Extend the width of an IV to cover its widest uses.
767 //===----------------------------------------------------------------------===//
768
769 namespace {
770   // Collect information about induction variables that are used by sign/zero
771   // extend operations. This information is recorded by CollectExtend and
772   // provides the input to WidenIV.
773   struct WideIVInfo {
774     Type *WidestNativeType; // Widest integer type created [sz]ext
775     bool IsSigned;                // Was an sext user seen before a zext?
776
777     WideIVInfo() : WidestNativeType(0), IsSigned(false) {}
778   };
779 }
780
781 /// CollectExtend - Update information about the induction variable that is
782 /// extended by this sign or zero extend operation. This is used to determine
783 /// the final width of the IV before actually widening it.
784 static void CollectExtend(CastInst *Cast, bool IsSigned, WideIVInfo &WI,
785                           ScalarEvolution *SE, const TargetData *TD) {
786   Type *Ty = Cast->getType();
787   uint64_t Width = SE->getTypeSizeInBits(Ty);
788   if (TD && !TD->isLegalInteger(Width))
789     return;
790
791   if (!WI.WidestNativeType) {
792     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
793     WI.IsSigned = IsSigned;
794     return;
795   }
796
797   // We extend the IV to satisfy the sign of its first user, arbitrarily.
798   if (WI.IsSigned != IsSigned)
799     return;
800
801   if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
802     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
803 }
804
805 namespace {
806
807 /// NarrowIVDefUse - Record a link in the Narrow IV def-use chain along with the
808 /// WideIV that computes the same value as the Narrow IV def.  This avoids
809 /// caching Use* pointers.
810 struct NarrowIVDefUse {
811   Instruction *NarrowDef;
812   Instruction *NarrowUse;
813   Instruction *WideDef;
814
815   NarrowIVDefUse(): NarrowDef(0), NarrowUse(0), WideDef(0) {}
816
817   NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD):
818     NarrowDef(ND), NarrowUse(NU), WideDef(WD) {}
819 };
820
821 /// WidenIV - The goal of this transform is to remove sign and zero extends
822 /// without creating any new induction variables. To do this, it creates a new
823 /// phi of the wider type and redirects all users, either removing extends or
824 /// inserting truncs whenever we stop propagating the type.
825 ///
826 class WidenIV {
827   // Parameters
828   PHINode *OrigPhi;
829   Type *WideType;
830   bool IsSigned;
831
832   // Context
833   LoopInfo        *LI;
834   Loop            *L;
835   ScalarEvolution *SE;
836   DominatorTree   *DT;
837
838   // Result
839   PHINode *WidePhi;
840   Instruction *WideInc;
841   const SCEV *WideIncExpr;
842   SmallVectorImpl<WeakVH> &DeadInsts;
843
844   SmallPtrSet<Instruction*,16> Widened;
845   SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
846
847 public:
848   WidenIV(PHINode *PN, const WideIVInfo &WI, LoopInfo *LInfo,
849           ScalarEvolution *SEv, DominatorTree *DTree,
850           SmallVectorImpl<WeakVH> &DI) :
851     OrigPhi(PN),
852     WideType(WI.WidestNativeType),
853     IsSigned(WI.IsSigned),
854     LI(LInfo),
855     L(LI->getLoopFor(OrigPhi->getParent())),
856     SE(SEv),
857     DT(DTree),
858     WidePhi(0),
859     WideInc(0),
860     WideIncExpr(0),
861     DeadInsts(DI) {
862     assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
863   }
864
865   PHINode *CreateWideIV(SCEVExpander &Rewriter);
866
867 protected:
868   Instruction *CloneIVUser(NarrowIVDefUse DU);
869
870   const SCEVAddRecExpr *GetWideRecurrence(Instruction *NarrowUse);
871
872   Instruction *WidenIVUse(NarrowIVDefUse DU);
873
874   void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
875 };
876 } // anonymous namespace
877
878 static Value *getExtend( Value *NarrowOper, Type *WideType,
879                                bool IsSigned, IRBuilder<> &Builder) {
880   return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
881                     Builder.CreateZExt(NarrowOper, WideType);
882 }
883
884 /// CloneIVUser - Instantiate a wide operation to replace a narrow
885 /// operation. This only needs to handle operations that can evaluation to
886 /// SCEVAddRec. It can safely return 0 for any operation we decide not to clone.
887 Instruction *WidenIV::CloneIVUser(NarrowIVDefUse DU) {
888   unsigned Opcode = DU.NarrowUse->getOpcode();
889   switch (Opcode) {
890   default:
891     return 0;
892   case Instruction::Add:
893   case Instruction::Mul:
894   case Instruction::UDiv:
895   case Instruction::Sub:
896   case Instruction::And:
897   case Instruction::Or:
898   case Instruction::Xor:
899   case Instruction::Shl:
900   case Instruction::LShr:
901   case Instruction::AShr:
902     DEBUG(dbgs() << "Cloning IVUser: " << *DU.NarrowUse << "\n");
903
904     IRBuilder<> Builder(DU.NarrowUse);
905
906     // Replace NarrowDef operands with WideDef. Otherwise, we don't know
907     // anything about the narrow operand yet so must insert a [sz]ext. It is
908     // probably loop invariant and will be folded or hoisted. If it actually
909     // comes from a widened IV, it should be removed during a future call to
910     // WidenIVUse.
911     Value *LHS = (DU.NarrowUse->getOperand(0) == DU.NarrowDef) ? DU.WideDef :
912       getExtend(DU.NarrowUse->getOperand(0), WideType, IsSigned, Builder);
913     Value *RHS = (DU.NarrowUse->getOperand(1) == DU.NarrowDef) ? DU.WideDef :
914       getExtend(DU.NarrowUse->getOperand(1), WideType, IsSigned, Builder);
915
916     BinaryOperator *NarrowBO = cast<BinaryOperator>(DU.NarrowUse);
917     BinaryOperator *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(),
918                                                     LHS, RHS,
919                                                     NarrowBO->getName());
920     Builder.Insert(WideBO);
921     if (const OverflowingBinaryOperator *OBO =
922         dyn_cast<OverflowingBinaryOperator>(NarrowBO)) {
923       if (OBO->hasNoUnsignedWrap()) WideBO->setHasNoUnsignedWrap();
924       if (OBO->hasNoSignedWrap()) WideBO->setHasNoSignedWrap();
925     }
926     return WideBO;
927   }
928   llvm_unreachable(0);
929 }
930
931 /// HoistStep - Attempt to hoist an IV increment above a potential use.
932 ///
933 /// To successfully hoist, two criteria must be met:
934 /// - IncV operands dominate InsertPos and
935 /// - InsertPos dominates IncV
936 ///
937 /// Meeting the second condition means that we don't need to check all of IncV's
938 /// existing uses (it's moving up in the domtree).
939 ///
940 /// This does not yet recursively hoist the operands, although that would
941 /// not be difficult.
942 static bool HoistStep(Instruction *IncV, Instruction *InsertPos,
943                       const DominatorTree *DT)
944 {
945   if (DT->dominates(IncV, InsertPos))
946     return true;
947
948   if (!DT->dominates(InsertPos->getParent(), IncV->getParent()))
949     return false;
950
951   if (IncV->mayHaveSideEffects())
952     return false;
953
954   // Attempt to hoist IncV
955   for (User::op_iterator OI = IncV->op_begin(), OE = IncV->op_end();
956        OI != OE; ++OI) {
957     Instruction *OInst = dyn_cast<Instruction>(OI);
958     if (OInst && !DT->dominates(OInst, InsertPos))
959       return false;
960   }
961   IncV->moveBefore(InsertPos);
962   return true;
963 }
964
965 // GetWideRecurrence - Is this instruction potentially interesting from IVUsers'
966 // perspective after widening it's type? In other words, can the extend be
967 // safely hoisted out of the loop with SCEV reducing the value to a recurrence
968 // on the same loop. If so, return the sign or zero extended
969 // recurrence. Otherwise return NULL.
970 const SCEVAddRecExpr *WidenIV::GetWideRecurrence(Instruction *NarrowUse) {
971   if (!SE->isSCEVable(NarrowUse->getType()))
972     return 0;
973
974   const SCEV *NarrowExpr = SE->getSCEV(NarrowUse);
975   if (SE->getTypeSizeInBits(NarrowExpr->getType())
976       >= SE->getTypeSizeInBits(WideType)) {
977     // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
978     // index. So don't follow this use.
979     return 0;
980   }
981
982   const SCEV *WideExpr = IsSigned ?
983     SE->getSignExtendExpr(NarrowExpr, WideType) :
984     SE->getZeroExtendExpr(NarrowExpr, WideType);
985   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
986   if (!AddRec || AddRec->getLoop() != L)
987     return 0;
988
989   return AddRec;
990 }
991
992 /// WidenIVUse - Determine whether an individual user of the narrow IV can be
993 /// widened. If so, return the wide clone of the user.
994 Instruction *WidenIV::WidenIVUse(NarrowIVDefUse DU) {
995
996   // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
997   if (isa<PHINode>(DU.NarrowUse) &&
998       LI->getLoopFor(DU.NarrowUse->getParent()) != L)
999     return 0;
1000
1001   // Our raison d'etre! Eliminate sign and zero extension.
1002   if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) {
1003     Value *NewDef = DU.WideDef;
1004     if (DU.NarrowUse->getType() != WideType) {
1005       unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
1006       unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1007       if (CastWidth < IVWidth) {
1008         // The cast isn't as wide as the IV, so insert a Trunc.
1009         IRBuilder<> Builder(DU.NarrowUse);
1010         NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
1011       }
1012       else {
1013         // A wider extend was hidden behind a narrower one. This may induce
1014         // another round of IV widening in which the intermediate IV becomes
1015         // dead. It should be very rare.
1016         DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
1017               << " not wide enough to subsume " << *DU.NarrowUse << "\n");
1018         DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1019         NewDef = DU.NarrowUse;
1020       }
1021     }
1022     if (NewDef != DU.NarrowUse) {
1023       DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
1024             << " replaced by " << *DU.WideDef << "\n");
1025       ++NumElimExt;
1026       DU.NarrowUse->replaceAllUsesWith(NewDef);
1027       DeadInsts.push_back(DU.NarrowUse);
1028     }
1029     // Now that the extend is gone, we want to expose it's uses for potential
1030     // further simplification. We don't need to directly inform SimplifyIVUsers
1031     // of the new users, because their parent IV will be processed later as a
1032     // new loop phi. If we preserved IVUsers analysis, we would also want to
1033     // push the uses of WideDef here.
1034
1035     // No further widening is needed. The deceased [sz]ext had done it for us.
1036     return 0;
1037   }
1038
1039   // Does this user itself evaluate to a recurrence after widening?
1040   const SCEVAddRecExpr *WideAddRec = GetWideRecurrence(DU.NarrowUse);
1041   if (!WideAddRec) {
1042     // This user does not evaluate to a recurence after widening, so don't
1043     // follow it. Instead insert a Trunc to kill off the original use,
1044     // eventually isolating the original narrow IV so it can be removed.
1045     IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT));
1046     Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
1047     DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
1048     return 0;
1049   }
1050   // Assume block terminators cannot evaluate to a recurrence. We can't to
1051   // insert a Trunc after a terminator if there happens to be a critical edge.
1052   assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
1053          "SCEV is not expected to evaluate a block terminator");
1054
1055   // Reuse the IV increment that SCEVExpander created as long as it dominates
1056   // NarrowUse.
1057   Instruction *WideUse = 0;
1058   if (WideAddRec == WideIncExpr && HoistStep(WideInc, DU.NarrowUse, DT)) {
1059     WideUse = WideInc;
1060   }
1061   else {
1062     WideUse = CloneIVUser(DU);
1063     if (!WideUse)
1064       return 0;
1065   }
1066   // Evaluation of WideAddRec ensured that the narrow expression could be
1067   // extended outside the loop without overflow. This suggests that the wide use
1068   // evaluates to the same expression as the extended narrow use, but doesn't
1069   // absolutely guarantee it. Hence the following failsafe check. In rare cases
1070   // where it fails, we simply throw away the newly created wide use.
1071   if (WideAddRec != SE->getSCEV(WideUse)) {
1072     DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse
1073           << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n");
1074     DeadInsts.push_back(WideUse);
1075     return 0;
1076   }
1077
1078   // Returning WideUse pushes it on the worklist.
1079   return WideUse;
1080 }
1081
1082 /// pushNarrowIVUsers - Add eligible users of NarrowDef to NarrowIVUsers.
1083 ///
1084 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
1085   for (Value::use_iterator UI = NarrowDef->use_begin(),
1086          UE = NarrowDef->use_end(); UI != UE; ++UI) {
1087     Instruction *NarrowUse = cast<Instruction>(*UI);
1088
1089     // Handle data flow merges and bizarre phi cycles.
1090     if (!Widened.insert(NarrowUse))
1091       continue;
1092
1093     NarrowIVUsers.push_back(NarrowIVDefUse(NarrowDef, NarrowUse, WideDef));
1094   }
1095 }
1096
1097 /// CreateWideIV - Process a single induction variable. First use the
1098 /// SCEVExpander to create a wide induction variable that evaluates to the same
1099 /// recurrence as the original narrow IV. Then use a worklist to forward
1100 /// traverse the narrow IV's def-use chain. After WidenIVUse has processed all
1101 /// interesting IV users, the narrow IV will be isolated for removal by
1102 /// DeleteDeadPHIs.
1103 ///
1104 /// It would be simpler to delete uses as they are processed, but we must avoid
1105 /// invalidating SCEV expressions.
1106 ///
1107 PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) {
1108   // Is this phi an induction variable?
1109   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
1110   if (!AddRec)
1111     return NULL;
1112
1113   // Widen the induction variable expression.
1114   const SCEV *WideIVExpr = IsSigned ?
1115     SE->getSignExtendExpr(AddRec, WideType) :
1116     SE->getZeroExtendExpr(AddRec, WideType);
1117
1118   assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
1119          "Expect the new IV expression to preserve its type");
1120
1121   // Can the IV be extended outside the loop without overflow?
1122   AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
1123   if (!AddRec || AddRec->getLoop() != L)
1124     return NULL;
1125
1126   // An AddRec must have loop-invariant operands. Since this AddRec is
1127   // materialized by a loop header phi, the expression cannot have any post-loop
1128   // operands, so they must dominate the loop header.
1129   assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
1130          SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader())
1131          && "Loop header phi recurrence inputs do not dominate the loop");
1132
1133   // The rewriter provides a value for the desired IV expression. This may
1134   // either find an existing phi or materialize a new one. Either way, we
1135   // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
1136   // of the phi-SCC dominates the loop entry.
1137   Instruction *InsertPt = L->getHeader()->begin();
1138   WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
1139
1140   // Remembering the WideIV increment generated by SCEVExpander allows
1141   // WidenIVUse to reuse it when widening the narrow IV's increment. We don't
1142   // employ a general reuse mechanism because the call above is the only call to
1143   // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
1144   if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1145     WideInc =
1146       cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
1147     WideIncExpr = SE->getSCEV(WideInc);
1148   }
1149
1150   DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
1151   ++NumWidened;
1152
1153   // Traverse the def-use chain using a worklist starting at the original IV.
1154   assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
1155
1156   Widened.insert(OrigPhi);
1157   pushNarrowIVUsers(OrigPhi, WidePhi);
1158
1159   while (!NarrowIVUsers.empty()) {
1160     NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
1161
1162     // Process a def-use edge. This may replace the use, so don't hold a
1163     // use_iterator across it.
1164     Instruction *WideUse = WidenIVUse(DU);
1165
1166     // Follow all def-use edges from the previous narrow use.
1167     if (WideUse)
1168       pushNarrowIVUsers(DU.NarrowUse, WideUse);
1169
1170     // WidenIVUse may have removed the def-use edge.
1171     if (DU.NarrowDef->use_empty())
1172       DeadInsts.push_back(DU.NarrowDef);
1173   }
1174   return WidePhi;
1175 }
1176
1177 //===----------------------------------------------------------------------===//
1178 //  Simplification of IV users based on SCEV evaluation.
1179 //===----------------------------------------------------------------------===//
1180
1181 void IndVarSimplify::EliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) {
1182   unsigned IVOperIdx = 0;
1183   ICmpInst::Predicate Pred = ICmp->getPredicate();
1184   if (IVOperand != ICmp->getOperand(0)) {
1185     // Swapped
1186     assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
1187     IVOperIdx = 1;
1188     Pred = ICmpInst::getSwappedPredicate(Pred);
1189   }
1190
1191   // Get the SCEVs for the ICmp operands.
1192   const SCEV *S = SE->getSCEV(ICmp->getOperand(IVOperIdx));
1193   const SCEV *X = SE->getSCEV(ICmp->getOperand(1 - IVOperIdx));
1194
1195   // Simplify unnecessary loops away.
1196   const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
1197   S = SE->getSCEVAtScope(S, ICmpLoop);
1198   X = SE->getSCEVAtScope(X, ICmpLoop);
1199
1200   // If the condition is always true or always false, replace it with
1201   // a constant value.
1202   if (SE->isKnownPredicate(Pred, S, X))
1203     ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext()));
1204   else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X))
1205     ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext()));
1206   else
1207     return;
1208
1209   DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
1210   ++NumElimCmp;
1211   Changed = true;
1212   DeadInsts.push_back(ICmp);
1213 }
1214
1215 void IndVarSimplify::EliminateIVRemainder(BinaryOperator *Rem,
1216                                           Value *IVOperand,
1217                                           bool IsSigned) {
1218   // We're only interested in the case where we know something about
1219   // the numerator.
1220   if (IVOperand != Rem->getOperand(0))
1221     return;
1222
1223   // Get the SCEVs for the ICmp operands.
1224   const SCEV *S = SE->getSCEV(Rem->getOperand(0));
1225   const SCEV *X = SE->getSCEV(Rem->getOperand(1));
1226
1227   // Simplify unnecessary loops away.
1228   const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent());
1229   S = SE->getSCEVAtScope(S, ICmpLoop);
1230   X = SE->getSCEVAtScope(X, ICmpLoop);
1231
1232   // i % n  -->  i  if i is in [0,n).
1233   if ((!IsSigned || SE->isKnownNonNegative(S)) &&
1234       SE->isKnownPredicate(IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
1235                            S, X))
1236     Rem->replaceAllUsesWith(Rem->getOperand(0));
1237   else {
1238     // (i+1) % n  -->  (i+1)==n?0:(i+1)  if i is in [0,n).
1239     const SCEV *LessOne =
1240       SE->getMinusSCEV(S, SE->getConstant(S->getType(), 1));
1241     if (IsSigned && !SE->isKnownNonNegative(LessOne))
1242       return;
1243
1244     if (!SE->isKnownPredicate(IsSigned ?
1245                               ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
1246                               LessOne, X))
1247       return;
1248
1249     ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ,
1250                                   Rem->getOperand(0), Rem->getOperand(1),
1251                                   "tmp");
1252     SelectInst *Sel =
1253       SelectInst::Create(ICmp,
1254                          ConstantInt::get(Rem->getType(), 0),
1255                          Rem->getOperand(0), "tmp", Rem);
1256     Rem->replaceAllUsesWith(Sel);
1257   }
1258
1259   // Inform IVUsers about the new users.
1260   if (IU) {
1261     if (Instruction *I = dyn_cast<Instruction>(Rem->getOperand(0)))
1262       IU->AddUsersIfInteresting(I);
1263   }
1264   DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
1265   ++NumElimRem;
1266   Changed = true;
1267   DeadInsts.push_back(Rem);
1268 }
1269
1270 /// EliminateIVUser - Eliminate an operation that consumes a simple IV and has
1271 /// no observable side-effect given the range of IV values.
1272 bool IndVarSimplify::EliminateIVUser(Instruction *UseInst,
1273                                      Instruction *IVOperand) {
1274   if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
1275     EliminateIVComparison(ICmp, IVOperand);
1276     return true;
1277   }
1278   if (BinaryOperator *Rem = dyn_cast<BinaryOperator>(UseInst)) {
1279     bool IsSigned = Rem->getOpcode() == Instruction::SRem;
1280     if (IsSigned || Rem->getOpcode() == Instruction::URem) {
1281       EliminateIVRemainder(Rem, IVOperand, IsSigned);
1282       return true;
1283     }
1284   }
1285
1286   // Eliminate any operation that SCEV can prove is an identity function.
1287   if (!SE->isSCEVable(UseInst->getType()) ||
1288       (UseInst->getType() != IVOperand->getType()) ||
1289       (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand)))
1290     return false;
1291
1292   DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n');
1293
1294   UseInst->replaceAllUsesWith(IVOperand);
1295   ++NumElimIdentity;
1296   Changed = true;
1297   DeadInsts.push_back(UseInst);
1298   return true;
1299 }
1300
1301 /// pushIVUsers - Add all uses of Def to the current IV's worklist.
1302 ///
1303 static void pushIVUsers(
1304   Instruction *Def,
1305   SmallPtrSet<Instruction*,16> &Simplified,
1306   SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) {
1307
1308   for (Value::use_iterator UI = Def->use_begin(), E = Def->use_end();
1309        UI != E; ++UI) {
1310     Instruction *User = cast<Instruction>(*UI);
1311
1312     // Avoid infinite or exponential worklist processing.
1313     // Also ensure unique worklist users.
1314     // If Def is a LoopPhi, it may not be in the Simplified set, so check for
1315     // self edges first.
1316     if (User != Def && Simplified.insert(User))
1317       SimpleIVUsers.push_back(std::make_pair(User, Def));
1318   }
1319 }
1320
1321 /// isSimpleIVUser - Return true if this instruction generates a simple SCEV
1322 /// expression in terms of that IV.
1323 ///
1324 /// This is similar to IVUsers' isInsteresting() but processes each instruction
1325 /// non-recursively when the operand is already known to be a simpleIVUser.
1326 ///
1327 static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) {
1328   if (!SE->isSCEVable(I->getType()))
1329     return false;
1330
1331   // Get the symbolic expression for this instruction.
1332   const SCEV *S = SE->getSCEV(I);
1333
1334   // Only consider affine recurrences.
1335   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
1336   if (AR && AR->getLoop() == L)
1337     return true;
1338
1339   return false;
1340 }
1341
1342 /// SimplifyIVUsersNoRewrite - Iteratively perform simplification on a worklist
1343 /// of IV users. Each successive simplification may push more users which may
1344 /// themselves be candidates for simplification.
1345 ///
1346 /// The "NoRewrite" algorithm does not require IVUsers analysis. Instead, it
1347 /// simplifies instructions in-place during analysis. Rather than rewriting
1348 /// induction variables bottom-up from their users, it transforms a chain of
1349 /// IVUsers top-down, updating the IR only when it encouters a clear
1350 /// optimization opportunitiy. A SCEVExpander "Rewriter" instance is still
1351 /// needed, but only used to generate a new IV (phi) of wider type for sign/zero
1352 /// extend elimination.
1353 ///
1354 /// Once DisableIVRewrite is default, LSR will be the only client of IVUsers.
1355 ///
1356 void IndVarSimplify::SimplifyIVUsersNoRewrite(Loop *L, SCEVExpander &Rewriter) {
1357   std::map<PHINode *, WideIVInfo> WideIVMap;
1358
1359   SmallVector<PHINode*, 8> LoopPhis;
1360   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1361     LoopPhis.push_back(cast<PHINode>(I));
1362   }
1363   // Each round of simplification iterates through the SimplifyIVUsers worklist
1364   // for all current phis, then determines whether any IVs can be
1365   // widened. Widening adds new phis to LoopPhis, inducing another round of
1366   // simplification on the wide IVs.
1367   while (!LoopPhis.empty()) {
1368     // Evaluate as many IV expressions as possible before widening any IVs. This
1369     // forces SCEV to set no-wrap flags before evaluating sign/zero
1370     // extension. The first time SCEV attempts to normalize sign/zero extension,
1371     // the result becomes final. So for the most predictable results, we delay
1372     // evaluation of sign/zero extend evaluation until needed, and avoid running
1373     // other SCEV based analysis prior to SimplifyIVUsersNoRewrite.
1374     do {
1375       PHINode *CurrIV = LoopPhis.pop_back_val();
1376
1377       // Information about sign/zero extensions of CurrIV.
1378       WideIVInfo WI;
1379
1380       // Instructions processed by SimplifyIVUsers for CurrIV.
1381       SmallPtrSet<Instruction*,16> Simplified;
1382
1383       // Use-def pairs if IV users waiting to be processed for CurrIV.
1384       SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers;
1385
1386       // Push users of the current LoopPhi. In rare cases, pushIVUsers may be
1387       // called multiple times for the same LoopPhi. This is the proper thing to
1388       // do for loop header phis that use each other.
1389       pushIVUsers(CurrIV, Simplified, SimpleIVUsers);
1390
1391       while (!SimpleIVUsers.empty()) {
1392         std::pair<Instruction*, Instruction*> Use =SimpleIVUsers.pop_back_val();
1393         // Bypass back edges to avoid extra work.
1394         if (Use.first == CurrIV) continue;
1395
1396         if (EliminateIVUser(Use.first, Use.second)) {
1397           pushIVUsers(Use.second, Simplified, SimpleIVUsers);
1398           continue;
1399         }
1400         if (CastInst *Cast = dyn_cast<CastInst>(Use.first)) {
1401           bool IsSigned = Cast->getOpcode() == Instruction::SExt;
1402           if (IsSigned || Cast->getOpcode() == Instruction::ZExt) {
1403             CollectExtend(Cast, IsSigned, WI, SE, TD);
1404           }
1405           continue;
1406         }
1407         if (isSimpleIVUser(Use.first, L, SE)) {
1408           pushIVUsers(Use.first, Simplified, SimpleIVUsers);
1409         }
1410       }
1411       if (WI.WidestNativeType) {
1412         WideIVMap[CurrIV] = WI;
1413       }
1414     } while(!LoopPhis.empty());
1415
1416     for (std::map<PHINode *, WideIVInfo>::const_iterator I = WideIVMap.begin(),
1417            E = WideIVMap.end(); I != E; ++I) {
1418       WidenIV Widener(I->first, I->second, LI, SE, DT, DeadInsts);
1419       if (PHINode *WidePhi = Widener.CreateWideIV(Rewriter)) {
1420         Changed = true;
1421         LoopPhis.push_back(WidePhi);
1422       }
1423     }
1424     WideIVMap.clear();
1425   }
1426 }
1427
1428 /// SimplifyCongruentIVs - Check for congruent phis in this loop header and
1429 /// populate ExprToIVMap for use later.
1430 ///
1431 void IndVarSimplify::SimplifyCongruentIVs(Loop *L) {
1432   DenseMap<const SCEV *, PHINode *> ExprToIVMap;
1433   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1434     PHINode *Phi = cast<PHINode>(I);
1435     if (!SE->isSCEVable(Phi->getType()))
1436       continue;
1437
1438     const SCEV *S = SE->getSCEV(Phi);
1439     std::pair<DenseMap<const SCEV *, PHINode *>::const_iterator, bool> Tmp =
1440       ExprToIVMap.insert(std::make_pair(S, Phi));
1441     if (Tmp.second)
1442       continue;
1443     PHINode *OrigPhi = Tmp.first->second;
1444
1445     // If one phi derives from the other via GEPs, types may differ.
1446     if (OrigPhi->getType() != Phi->getType())
1447       continue;
1448
1449     // Replacing the congruent phi is sufficient because acyclic redundancy
1450     // elimination, CSE/GVN, should handle the rest. However, once SCEV proves
1451     // that a phi is congruent, it's almost certain to be the head of an IV
1452     // user cycle that is isomorphic with the original phi. So it's worth
1453     // eagerly cleaning up the common case of a single IV increment.
1454     if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1455       Instruction *OrigInc =
1456         cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock));
1457       Instruction *IsomorphicInc =
1458         cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock));
1459       if (OrigInc != IsomorphicInc &&
1460           OrigInc->getType() == IsomorphicInc->getType() &&
1461           SE->getSCEV(OrigInc) == SE->getSCEV(IsomorphicInc) &&
1462           HoistStep(OrigInc, IsomorphicInc, DT)) {
1463         DEBUG(dbgs() << "INDVARS: Eliminated congruent iv.inc: "
1464               << *IsomorphicInc << '\n');
1465         IsomorphicInc->replaceAllUsesWith(OrigInc);
1466         DeadInsts.push_back(IsomorphicInc);
1467       }
1468     }
1469     DEBUG(dbgs() << "INDVARS: Eliminated congruent iv: " << *Phi << '\n');
1470     ++NumElimIV;
1471     Phi->replaceAllUsesWith(OrigPhi);
1472     DeadInsts.push_back(Phi);
1473   }
1474 }
1475
1476 //===----------------------------------------------------------------------===//
1477 //  LinearFunctionTestReplace and its kin. Rewrite the loop exit condition.
1478 //===----------------------------------------------------------------------===//
1479
1480 // Check for expressions that ScalarEvolution generates to compute
1481 // BackedgeTakenInfo. If these expressions have not been reduced, then expanding
1482 // them may incur additional cost (albeit in the loop preheader).
1483 static bool isHighCostExpansion(const SCEV *S, BranchInst *BI,
1484                                 ScalarEvolution *SE) {
1485   // If the backedge-taken count is a UDiv, it's very likely a UDiv that
1486   // ScalarEvolution's HowFarToZero or HowManyLessThans produced to compute a
1487   // precise expression, rather than a UDiv from the user's code. If we can't
1488   // find a UDiv in the code with some simple searching, assume the former and
1489   // forego rewriting the loop.
1490   if (isa<SCEVUDivExpr>(S)) {
1491     ICmpInst *OrigCond = dyn_cast<ICmpInst>(BI->getCondition());
1492     if (!OrigCond) return true;
1493     const SCEV *R = SE->getSCEV(OrigCond->getOperand(1));
1494     R = SE->getMinusSCEV(R, SE->getConstant(R->getType(), 1));
1495     if (R != S) {
1496       const SCEV *L = SE->getSCEV(OrigCond->getOperand(0));
1497       L = SE->getMinusSCEV(L, SE->getConstant(L->getType(), 1));
1498       if (L != S)
1499         return true;
1500     }
1501   }
1502
1503   if (!DisableIVRewrite || ForceLFTR)
1504     return false;
1505
1506   // Recurse past add expressions, which commonly occur in the
1507   // BackedgeTakenCount. They may already exist in program code, and if not,
1508   // they are not too expensive rematerialize.
1509   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
1510     for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1511          I != E; ++I) {
1512       if (isHighCostExpansion(*I, BI, SE))
1513         return true;
1514     }
1515     return false;
1516   }
1517
1518   // HowManyLessThans uses a Max expression whenever the loop is not guarded by
1519   // the exit condition.
1520   if (isa<SCEVSMaxExpr>(S) || isa<SCEVUMaxExpr>(S))
1521     return true;
1522
1523   // If we haven't recognized an expensive SCEV patter, assume its an expression
1524   // produced by program code.
1525   return false;
1526 }
1527
1528 /// canExpandBackedgeTakenCount - Return true if this loop's backedge taken
1529 /// count expression can be safely and cheaply expanded into an instruction
1530 /// sequence that can be used by LinearFunctionTestReplace.
1531 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE) {
1532   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1533   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
1534       BackedgeTakenCount->isZero())
1535     return false;
1536
1537   if (!L->getExitingBlock())
1538     return false;
1539
1540   // Can't rewrite non-branch yet.
1541   BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1542   if (!BI)
1543     return false;
1544
1545   if (isHighCostExpansion(BackedgeTakenCount, BI, SE))
1546     return false;
1547
1548   return true;
1549 }
1550
1551 /// getBackedgeIVType - Get the widest type used by the loop test after peeking
1552 /// through Truncs.
1553 ///
1554 /// TODO: Unnecessary when ForceLFTR is removed.
1555 static Type *getBackedgeIVType(Loop *L) {
1556   if (!L->getExitingBlock())
1557     return 0;
1558
1559   // Can't rewrite non-branch yet.
1560   BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1561   if (!BI)
1562     return 0;
1563
1564   ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
1565   if (!Cond)
1566     return 0;
1567
1568   Type *Ty = 0;
1569   for(User::op_iterator OI = Cond->op_begin(), OE = Cond->op_end();
1570       OI != OE; ++OI) {
1571     assert((!Ty || Ty == (*OI)->getType()) && "bad icmp operand types");
1572     TruncInst *Trunc = dyn_cast<TruncInst>(*OI);
1573     if (!Trunc)
1574       continue;
1575
1576     return Trunc->getSrcTy();
1577   }
1578   return Ty;
1579 }
1580
1581 /// isLoopInvariant - Perform a quick domtree based check for loop invariance
1582 /// assuming that V is used within the loop. LoopInfo::isLoopInvariant() seems
1583 /// gratuitous for this purpose.
1584 static bool isLoopInvariant(Value *V, Loop *L, DominatorTree *DT) {
1585   Instruction *Inst = dyn_cast<Instruction>(V);
1586   if (!Inst)
1587     return true;
1588
1589   return DT->properlyDominates(Inst->getParent(), L->getHeader());
1590 }
1591
1592 /// getLoopPhiForCounter - Return the loop header phi IFF IncV adds a loop
1593 /// invariant value to the phi.
1594 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) {
1595   Instruction *IncI = dyn_cast<Instruction>(IncV);
1596   if (!IncI)
1597     return 0;
1598
1599   switch (IncI->getOpcode()) {
1600   case Instruction::Add:
1601   case Instruction::Sub:
1602     break;
1603   case Instruction::GetElementPtr:
1604     // An IV counter must preserve its type.
1605     if (IncI->getNumOperands() == 2)
1606       break;
1607   default:
1608     return 0;
1609   }
1610
1611   PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
1612   if (Phi && Phi->getParent() == L->getHeader()) {
1613     if (isLoopInvariant(IncI->getOperand(1), L, DT))
1614       return Phi;
1615     return 0;
1616   }
1617   if (IncI->getOpcode() == Instruction::GetElementPtr)
1618     return 0;
1619
1620   // Allow add/sub to be commuted.
1621   Phi = dyn_cast<PHINode>(IncI->getOperand(1));
1622   if (Phi && Phi->getParent() == L->getHeader()) {
1623     if (isLoopInvariant(IncI->getOperand(0), L, DT))
1624       return Phi;
1625   }
1626   return 0;
1627 }
1628
1629 /// needsLFTR - LinearFunctionTestReplace policy. Return true unless we can show
1630 /// that the current exit test is already sufficiently canonical.
1631 static bool needsLFTR(Loop *L, DominatorTree *DT) {
1632   assert(L->getExitingBlock() && "expected loop exit");
1633
1634   BasicBlock *LatchBlock = L->getLoopLatch();
1635   // Don't bother with LFTR if the loop is not properly simplified.
1636   if (!LatchBlock)
1637     return false;
1638
1639   BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1640   assert(BI && "expected exit branch");
1641
1642   // Do LFTR to simplify the exit condition to an ICMP.
1643   ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
1644   if (!Cond)
1645     return true;
1646
1647   // Do LFTR to simplify the exit ICMP to EQ/NE
1648   ICmpInst::Predicate Pred = Cond->getPredicate();
1649   if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
1650     return true;
1651
1652   // Look for a loop invariant RHS
1653   Value *LHS = Cond->getOperand(0);
1654   Value *RHS = Cond->getOperand(1);
1655   if (!isLoopInvariant(RHS, L, DT)) {
1656     if (!isLoopInvariant(LHS, L, DT))
1657       return true;
1658     std::swap(LHS, RHS);
1659   }
1660   // Look for a simple IV counter LHS
1661   PHINode *Phi = dyn_cast<PHINode>(LHS);
1662   if (!Phi)
1663     Phi = getLoopPhiForCounter(LHS, L, DT);
1664
1665   if (!Phi)
1666     return true;
1667
1668   // Do LFTR if the exit condition's IV is *not* a simple counter.
1669   Value *IncV = Phi->getIncomingValueForBlock(L->getLoopLatch());
1670   return Phi != getLoopPhiForCounter(IncV, L, DT);
1671 }
1672
1673 /// AlmostDeadIV - Return true if this IV has any uses other than the (soon to
1674 /// be rewritten) loop exit test.
1675 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
1676   int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1677   Value *IncV = Phi->getIncomingValue(LatchIdx);
1678
1679   for (Value::use_iterator UI = Phi->use_begin(), UE = Phi->use_end();
1680        UI != UE; ++UI) {
1681     if (*UI != Cond && *UI != IncV) return false;
1682   }
1683
1684   for (Value::use_iterator UI = IncV->use_begin(), UE = IncV->use_end();
1685        UI != UE; ++UI) {
1686     if (*UI != Cond && *UI != Phi) return false;
1687   }
1688   return true;
1689 }
1690
1691 /// FindLoopCounter - Find an affine IV in canonical form.
1692 ///
1693 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount
1694 ///
1695 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride.
1696 /// This is difficult in general for SCEV because of potential overflow. But we
1697 /// could at least handle constant BECounts.
1698 static PHINode *
1699 FindLoopCounter(Loop *L, const SCEV *BECount,
1700                 ScalarEvolution *SE, DominatorTree *DT, const TargetData *TD) {
1701   // I'm not sure how BECount could be a pointer type, but we definitely don't
1702   // want to LFTR that.
1703   if (BECount->getType()->isPointerTy())
1704     return 0;
1705
1706   uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
1707
1708   Value *Cond =
1709     cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition();
1710
1711   // Loop over all of the PHI nodes, looking for a simple counter.
1712   PHINode *BestPhi = 0;
1713   const SCEV *BestInit = 0;
1714   BasicBlock *LatchBlock = L->getLoopLatch();
1715   assert(LatchBlock && "needsLFTR should guarantee a loop latch");
1716
1717   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1718     PHINode *Phi = cast<PHINode>(I);
1719     if (!SE->isSCEVable(Phi->getType()))
1720       continue;
1721
1722     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
1723     if (!AR || AR->getLoop() != L || !AR->isAffine())
1724       continue;
1725
1726     // AR may be a pointer type, while BECount is an integer type.
1727     // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
1728     // AR may not be a narrower type, or we may never exit.
1729     uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
1730     if (PhiWidth < BCWidth || (TD && !TD->isLegalInteger(PhiWidth)))
1731       continue;
1732
1733     const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
1734     if (!Step || !Step->isOne())
1735       continue;
1736
1737     int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1738     Value *IncV = Phi->getIncomingValue(LatchIdx);
1739     if (getLoopPhiForCounter(IncV, L, DT) != Phi)
1740       continue;
1741
1742     const SCEV *Init = AR->getStart();
1743
1744     if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
1745       // Don't force a live loop counter if another IV can be used.
1746       if (AlmostDeadIV(Phi, LatchBlock, Cond))
1747         continue;
1748
1749       // Prefer to count-from-zero. This is a more "canonical" counter form. It
1750       // also prefers integer to pointer IVs.
1751       if (BestInit->isZero() != Init->isZero()) {
1752         if (BestInit->isZero())
1753           continue;
1754       }
1755       // If two IVs both count from zero or both count from nonzero then the
1756       // narrower is likely a dead phi that has been widened. Use the wider phi
1757       // to allow the other to be eliminated.
1758       if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
1759         continue;
1760     }
1761     BestPhi = Phi;
1762     BestInit = Init;
1763   }
1764   return BestPhi;
1765 }
1766
1767 /// LinearFunctionTestReplace - This method rewrites the exit condition of the
1768 /// loop to be a canonical != comparison against the incremented loop induction
1769 /// variable.  This pass is able to rewrite the exit tests of any loop where the
1770 /// SCEV analysis can determine a loop-invariant trip count of the loop, which
1771 /// is actually a much broader range than just linear tests.
1772 Value *IndVarSimplify::
1773 LinearFunctionTestReplace(Loop *L,
1774                           const SCEV *BackedgeTakenCount,
1775                           PHINode *IndVar,
1776                           SCEVExpander &Rewriter) {
1777   assert(canExpandBackedgeTakenCount(L, SE) && "precondition");
1778   BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1779
1780   // In DisableIVRewrite mode, IndVar is not necessarily a canonical IV. In this
1781   // mode, LFTR can ignore IV overflow and truncate to the width of
1782   // BECount. This avoids materializing the add(zext(add)) expression.
1783   Type *CntTy = DisableIVRewrite ?
1784     BackedgeTakenCount->getType() : IndVar->getType();
1785
1786   const SCEV *IVLimit = BackedgeTakenCount;
1787
1788   // If the exiting block is not the same as the backedge block, we must compare
1789   // against the preincremented value, otherwise we prefer to compare against
1790   // the post-incremented value.
1791   Value *CmpIndVar;
1792   if (L->getExitingBlock() == L->getLoopLatch()) {
1793     // Add one to the "backedge-taken" count to get the trip count.
1794     // If this addition may overflow, we have to be more pessimistic and
1795     // cast the induction variable before doing the add.
1796     const SCEV *N =
1797       SE->getAddExpr(IVLimit, SE->getConstant(IVLimit->getType(), 1));
1798     if (CntTy == IVLimit->getType())
1799       IVLimit = N;
1800     else {
1801       const SCEV *Zero = SE->getConstant(IVLimit->getType(), 0);
1802       if ((isa<SCEVConstant>(N) && !N->isZero()) ||
1803           SE->isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) {
1804         // No overflow. Cast the sum.
1805         IVLimit = SE->getTruncateOrZeroExtend(N, CntTy);
1806       } else {
1807         // Potential overflow. Cast before doing the add.
1808         IVLimit = SE->getTruncateOrZeroExtend(IVLimit, CntTy);
1809         IVLimit = SE->getAddExpr(IVLimit, SE->getConstant(CntTy, 1));
1810       }
1811     }
1812     // The BackedgeTaken expression contains the number of times that the
1813     // backedge branches to the loop header.  This is one less than the
1814     // number of times the loop executes, so use the incremented indvar.
1815     CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock());
1816   } else {
1817     // We have to use the preincremented value...
1818     IVLimit = SE->getTruncateOrZeroExtend(IVLimit, CntTy);
1819     CmpIndVar = IndVar;
1820   }
1821
1822   // For unit stride, IVLimit = Start + BECount with 2's complement overflow.
1823   // So for, non-zero start compute the IVLimit here.
1824   bool isPtrIV = false;
1825   Type *CmpTy = CntTy;
1826   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
1827   assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter");
1828   if (!AR->getStart()->isZero()) {
1829     assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
1830     const SCEV *IVInit = AR->getStart();
1831
1832     // For pointer types, sign extend BECount in order to materialize a GEP.
1833     // Note that for DisableIVRewrite, we never run SCEVExpander on a
1834     // pointer type, because we must preserve the existing GEPs. Instead we
1835     // directly generate a GEP later.
1836     if (IVInit->getType()->isPointerTy()) {
1837       isPtrIV = true;
1838       CmpTy = SE->getEffectiveSCEVType(IVInit->getType());
1839       IVLimit = SE->getTruncateOrSignExtend(IVLimit, CmpTy);
1840     }
1841     // For integer types, truncate the IV before computing IVInit + BECount.
1842     else {
1843       if (SE->getTypeSizeInBits(IVInit->getType())
1844           > SE->getTypeSizeInBits(CmpTy))
1845         IVInit = SE->getTruncateExpr(IVInit, CmpTy);
1846
1847       IVLimit = SE->getAddExpr(IVInit, IVLimit);
1848     }
1849   }
1850   // Expand the code for the iteration count.
1851   IRBuilder<> Builder(BI);
1852
1853   assert(SE->isLoopInvariant(IVLimit, L) &&
1854          "Computed iteration count is not loop invariant!");
1855   Value *ExitCnt = Rewriter.expandCodeFor(IVLimit, CmpTy, BI);
1856
1857   // Create a gep for IVInit + IVLimit from on an existing pointer base.
1858   assert(isPtrIV == IndVar->getType()->isPointerTy() &&
1859          "IndVar type must match IVInit type");
1860   if (isPtrIV) {
1861       Value *IVStart = IndVar->getIncomingValueForBlock(L->getLoopPreheader());
1862       assert(AR->getStart() == SE->getSCEV(IVStart) && "bad loop counter");
1863       assert(SE->getSizeOfExpr(
1864                cast<PointerType>(IVStart->getType())->getElementType())->isOne()
1865              && "unit stride pointer IV must be i8*");
1866
1867       Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
1868       ExitCnt = Builder.CreateGEP(IVStart, ExitCnt, "lftr.limit");
1869       Builder.SetInsertPoint(BI);
1870   }
1871
1872   // Insert a new icmp_ne or icmp_eq instruction before the branch.
1873   ICmpInst::Predicate P;
1874   if (L->contains(BI->getSuccessor(0)))
1875     P = ICmpInst::ICMP_NE;
1876   else
1877     P = ICmpInst::ICMP_EQ;
1878
1879   DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
1880                << "      LHS:" << *CmpIndVar << '\n'
1881                << "       op:\t"
1882                << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
1883                << "      RHS:\t" << *ExitCnt << "\n"
1884                << "     Expr:\t" << *IVLimit << "\n");
1885
1886   if (SE->getTypeSizeInBits(CmpIndVar->getType())
1887       > SE->getTypeSizeInBits(CmpTy)) {
1888     CmpIndVar = Builder.CreateTrunc(CmpIndVar, CmpTy, "lftr.wideiv");
1889   }
1890
1891   Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
1892   Value *OrigCond = BI->getCondition();
1893   // It's tempting to use replaceAllUsesWith here to fully replace the old
1894   // comparison, but that's not immediately safe, since users of the old
1895   // comparison may not be dominated by the new comparison. Instead, just
1896   // update the branch to use the new comparison; in the common case this
1897   // will make old comparison dead.
1898   BI->setCondition(Cond);
1899   DeadInsts.push_back(OrigCond);
1900
1901   ++NumLFTR;
1902   Changed = true;
1903   return Cond;
1904 }
1905
1906 //===----------------------------------------------------------------------===//
1907 //  SinkUnusedInvariants. A late subpass to cleanup loop preheaders.
1908 //===----------------------------------------------------------------------===//
1909
1910 /// If there's a single exit block, sink any loop-invariant values that
1911 /// were defined in the preheader but not used inside the loop into the
1912 /// exit block to reduce register pressure in the loop.
1913 void IndVarSimplify::SinkUnusedInvariants(Loop *L) {
1914   BasicBlock *ExitBlock = L->getExitBlock();
1915   if (!ExitBlock) return;
1916
1917   BasicBlock *Preheader = L->getLoopPreheader();
1918   if (!Preheader) return;
1919
1920   Instruction *InsertPt = ExitBlock->getFirstNonPHI();
1921   BasicBlock::iterator I = Preheader->getTerminator();
1922   while (I != Preheader->begin()) {
1923     --I;
1924     // New instructions were inserted at the end of the preheader.
1925     if (isa<PHINode>(I))
1926       break;
1927
1928     // Don't move instructions which might have side effects, since the side
1929     // effects need to complete before instructions inside the loop.  Also don't
1930     // move instructions which might read memory, since the loop may modify
1931     // memory. Note that it's okay if the instruction might have undefined
1932     // behavior: LoopSimplify guarantees that the preheader dominates the exit
1933     // block.
1934     if (I->mayHaveSideEffects() || I->mayReadFromMemory())
1935       continue;
1936
1937     // Skip debug info intrinsics.
1938     if (isa<DbgInfoIntrinsic>(I))
1939       continue;
1940
1941     // Don't sink static AllocaInsts out of the entry block, which would
1942     // turn them into dynamic allocas!
1943     if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
1944       if (AI->isStaticAlloca())
1945         continue;
1946
1947     // Determine if there is a use in or before the loop (direct or
1948     // otherwise).
1949     bool UsedInLoop = false;
1950     for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
1951          UI != UE; ++UI) {
1952       User *U = *UI;
1953       BasicBlock *UseBB = cast<Instruction>(U)->getParent();
1954       if (PHINode *P = dyn_cast<PHINode>(U)) {
1955         unsigned i =
1956           PHINode::getIncomingValueNumForOperand(UI.getOperandNo());
1957         UseBB = P->getIncomingBlock(i);
1958       }
1959       if (UseBB == Preheader || L->contains(UseBB)) {
1960         UsedInLoop = true;
1961         break;
1962       }
1963     }
1964
1965     // If there is, the def must remain in the preheader.
1966     if (UsedInLoop)
1967       continue;
1968
1969     // Otherwise, sink it to the exit block.
1970     Instruction *ToMove = I;
1971     bool Done = false;
1972
1973     if (I != Preheader->begin()) {
1974       // Skip debug info intrinsics.
1975       do {
1976         --I;
1977       } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
1978
1979       if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
1980         Done = true;
1981     } else {
1982       Done = true;
1983     }
1984
1985     ToMove->moveBefore(InsertPt);
1986     if (Done) break;
1987     InsertPt = ToMove;
1988   }
1989 }
1990
1991 //===----------------------------------------------------------------------===//
1992 //  IndVarSimplify driver. Manage several subpasses of IV simplification.
1993 //===----------------------------------------------------------------------===//
1994
1995 bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
1996   // If LoopSimplify form is not available, stay out of trouble. Some notes:
1997   //  - LSR currently only supports LoopSimplify-form loops. Indvars'
1998   //    canonicalization can be a pessimization without LSR to "clean up"
1999   //    afterwards.
2000   //  - We depend on having a preheader; in particular,
2001   //    Loop::getCanonicalInductionVariable only supports loops with preheaders,
2002   //    and we're in trouble if we can't find the induction variable even when
2003   //    we've manually inserted one.
2004   if (!L->isLoopSimplifyForm())
2005     return false;
2006
2007   if (!DisableIVRewrite)
2008     IU = &getAnalysis<IVUsers>();
2009   LI = &getAnalysis<LoopInfo>();
2010   SE = &getAnalysis<ScalarEvolution>();
2011   DT = &getAnalysis<DominatorTree>();
2012   TD = getAnalysisIfAvailable<TargetData>();
2013
2014   DeadInsts.clear();
2015   Changed = false;
2016
2017   // If there are any floating-point recurrences, attempt to
2018   // transform them to use integer recurrences.
2019   RewriteNonIntegerIVs(L);
2020
2021   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
2022
2023   // Create a rewriter object which we'll use to transform the code with.
2024   SCEVExpander Rewriter(*SE, "indvars");
2025
2026   // Eliminate redundant IV users.
2027   //
2028   // Simplification works best when run before other consumers of SCEV. We
2029   // attempt to avoid evaluating SCEVs for sign/zero extend operations until
2030   // other expressions involving loop IVs have been evaluated. This helps SCEV
2031   // set no-wrap flags before normalizing sign/zero extension.
2032   if (DisableIVRewrite) {
2033     Rewriter.disableCanonicalMode();
2034     SimplifyIVUsersNoRewrite(L, Rewriter);
2035   }
2036
2037   // Check to see if this loop has a computable loop-invariant execution count.
2038   // If so, this means that we can compute the final value of any expressions
2039   // that are recurrent in the loop, and substitute the exit values from the
2040   // loop into any instructions outside of the loop that use the final values of
2041   // the current expressions.
2042   //
2043   if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2044     RewriteLoopExitValues(L, Rewriter);
2045
2046   // Eliminate redundant IV users.
2047   if (!DisableIVRewrite)
2048     SimplifyIVUsers(Rewriter);
2049
2050   // Eliminate redundant IV cycles.
2051   if (DisableIVRewrite)
2052     SimplifyCongruentIVs(L);
2053
2054   // Compute the type of the largest recurrence expression, and decide whether
2055   // a canonical induction variable should be inserted.
2056   Type *LargestType = 0;
2057   bool NeedCannIV = false;
2058   bool ReuseIVForExit = DisableIVRewrite && !ForceLFTR;
2059   bool ExpandBECount = canExpandBackedgeTakenCount(L, SE);
2060   if (ExpandBECount && !ReuseIVForExit) {
2061     // If we have a known trip count and a single exit block, we'll be
2062     // rewriting the loop exit test condition below, which requires a
2063     // canonical induction variable.
2064     NeedCannIV = true;
2065     Type *Ty = BackedgeTakenCount->getType();
2066     if (DisableIVRewrite) {
2067       // In this mode, SimplifyIVUsers may have already widened the IV used by
2068       // the backedge test and inserted a Trunc on the compare's operand. Get
2069       // the wider type to avoid creating a redundant narrow IV only used by the
2070       // loop test.
2071       LargestType = getBackedgeIVType(L);
2072     }
2073     if (!LargestType ||
2074         SE->getTypeSizeInBits(Ty) >
2075         SE->getTypeSizeInBits(LargestType))
2076       LargestType = SE->getEffectiveSCEVType(Ty);
2077   }
2078   if (!DisableIVRewrite) {
2079     for (IVUsers::const_iterator I = IU->begin(), E = IU->end(); I != E; ++I) {
2080       NeedCannIV = true;
2081       Type *Ty =
2082         SE->getEffectiveSCEVType(I->getOperandValToReplace()->getType());
2083       if (!LargestType ||
2084           SE->getTypeSizeInBits(Ty) >
2085           SE->getTypeSizeInBits(LargestType))
2086         LargestType = Ty;
2087     }
2088   }
2089
2090   // Now that we know the largest of the induction variable expressions
2091   // in this loop, insert a canonical induction variable of the largest size.
2092   PHINode *IndVar = 0;
2093   if (NeedCannIV) {
2094     // Check to see if the loop already has any canonical-looking induction
2095     // variables. If any are present and wider than the planned canonical
2096     // induction variable, temporarily remove them, so that the Rewriter
2097     // doesn't attempt to reuse them.
2098     SmallVector<PHINode *, 2> OldCannIVs;
2099     while (PHINode *OldCannIV = L->getCanonicalInductionVariable()) {
2100       if (SE->getTypeSizeInBits(OldCannIV->getType()) >
2101           SE->getTypeSizeInBits(LargestType))
2102         OldCannIV->removeFromParent();
2103       else
2104         break;
2105       OldCannIVs.push_back(OldCannIV);
2106     }
2107
2108     IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L, LargestType);
2109
2110     ++NumInserted;
2111     Changed = true;
2112     DEBUG(dbgs() << "INDVARS: New CanIV: " << *IndVar << '\n');
2113
2114     // Now that the official induction variable is established, reinsert
2115     // any old canonical-looking variables after it so that the IR remains
2116     // consistent. They will be deleted as part of the dead-PHI deletion at
2117     // the end of the pass.
2118     while (!OldCannIVs.empty()) {
2119       PHINode *OldCannIV = OldCannIVs.pop_back_val();
2120       OldCannIV->insertBefore(L->getHeader()->getFirstNonPHI());
2121     }
2122   }
2123   else if (ExpandBECount && ReuseIVForExit && needsLFTR(L, DT)) {
2124     IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT, TD);
2125   }
2126   // If we have a trip count expression, rewrite the loop's exit condition
2127   // using it.  We can currently only handle loops with a single exit.
2128   Value *NewICmp = 0;
2129   if (ExpandBECount && IndVar) {
2130     // Check preconditions for proper SCEVExpander operation. SCEV does not
2131     // express SCEVExpander's dependencies, such as LoopSimplify. Instead any
2132     // pass that uses the SCEVExpander must do it. This does not work well for
2133     // loop passes because SCEVExpander makes assumptions about all loops, while
2134     // LoopPassManager only forces the current loop to be simplified.
2135     //
2136     // FIXME: SCEV expansion has no way to bail out, so the caller must
2137     // explicitly check any assumptions made by SCEV. Brittle.
2138     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount);
2139     if (!AR || AR->getLoop()->getLoopPreheader())
2140       NewICmp =
2141         LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar, Rewriter);
2142   }
2143   // Rewrite IV-derived expressions.
2144   if (!DisableIVRewrite)
2145     RewriteIVExpressions(L, Rewriter);
2146
2147   // Clear the rewriter cache, because values that are in the rewriter's cache
2148   // can be deleted in the loop below, causing the AssertingVH in the cache to
2149   // trigger.
2150   Rewriter.clear();
2151
2152   // Now that we're done iterating through lists, clean up any instructions
2153   // which are now dead.
2154   while (!DeadInsts.empty())
2155     if (Instruction *Inst =
2156           dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
2157       RecursivelyDeleteTriviallyDeadInstructions(Inst);
2158
2159   // The Rewriter may not be used from this point on.
2160
2161   // Loop-invariant instructions in the preheader that aren't used in the
2162   // loop may be sunk below the loop to reduce register pressure.
2163   SinkUnusedInvariants(L);
2164
2165   // For completeness, inform IVUsers of the IV use in the newly-created
2166   // loop exit test instruction.
2167   if (IU && NewICmp) {
2168     ICmpInst *NewICmpInst = dyn_cast<ICmpInst>(NewICmp);
2169     if (NewICmpInst)
2170       IU->AddUsersIfInteresting(cast<Instruction>(NewICmpInst->getOperand(0)));
2171   }
2172   // Clean up dead instructions.
2173   Changed |= DeleteDeadPHIs(L->getHeader());
2174   // Check a post-condition.
2175   assert(L->isLCSSAForm(*DT) &&
2176          "Indvars did not leave the loop in lcssa form!");
2177
2178   // Verify that LFTR, and any other change have not interfered with SCEV's
2179   // ability to compute trip count.
2180 #ifndef NDEBUG
2181   if (DisableIVRewrite && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
2182     SE->forgetLoop(L);
2183     const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
2184     if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
2185         SE->getTypeSizeInBits(NewBECount->getType()))
2186       NewBECount = SE->getTruncateOrNoop(NewBECount,
2187                                          BackedgeTakenCount->getType());
2188     else
2189       BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
2190                                                  NewBECount->getType());
2191     assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV");
2192   }
2193 #endif
2194
2195   return Changed;
2196 }