c9314229c38bd38031bbf112a1ce841beaad7c25
[oota-llvm.git] / lib / Transforms / Scalar / Float2Int.cpp
1 //===- Float2Int.cpp - Demote floating point ops to work on integers ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Float2Int pass, which aims to demote floating
11 // point operations to work on integers, where that is losslessly possible.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #define DEBUG_TYPE "float2int"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/EquivalenceClasses.h"
20 #include "llvm/ADT/MapVector.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/IR/ConstantRange.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/IRBuilder.h"
25 #include "llvm/IR/InstIterator.h"
26 #include "llvm/IR/Instructions.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/Pass.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/Transforms/Scalar.h"
32 #include <deque>
33 #include <functional> // For std::function
34 using namespace llvm;
35
36 // The algorithm is simple. Start at instructions that convert from the
37 // float to the int domain: fptoui, fptosi and fcmp. Walk up the def-use
38 // graph, using an equivalence datastructure to unify graphs that interfere.
39 //
40 // Mappable instructions are those with an integer corrollary that, given
41 // integer domain inputs, produce an integer output; fadd, for example.
42 //
43 // If a non-mappable instruction is seen, this entire def-use graph is marked
44 // as non-transformable. If we see an instruction that converts from the 
45 // integer domain to FP domain (uitofp,sitofp), we terminate our walk.
46
47 /// The largest integer type worth dealing with.
48 static cl::opt<unsigned>
49 MaxIntegerBW("float2int-max-integer-bw", cl::init(64), cl::Hidden,
50              cl::desc("Max integer bitwidth to consider in float2int"
51                       "(default=64)"));
52
53 namespace {
54   struct Float2Int : public FunctionPass {
55     static char ID; // Pass identification, replacement for typeid
56     Float2Int() : FunctionPass(ID) {
57       initializeFloat2IntPass(*PassRegistry::getPassRegistry());
58     }
59
60     bool runOnFunction(Function &F) override;
61     void getAnalysisUsage(AnalysisUsage &AU) const override {
62       AU.setPreservesCFG();
63     }
64
65     void findRoots(Function &F, SmallPtrSet<Instruction*,8> &Roots);
66     ConstantRange seen(Instruction *I, ConstantRange R);
67     ConstantRange badRange();
68     ConstantRange unknownRange();
69     ConstantRange validateRange(ConstantRange R);
70     void walkBackwards(const SmallPtrSetImpl<Instruction*> &Roots);
71     void walkForwards();
72     bool validateAndTransform();
73     Value *convert(Instruction *I, Type *ToTy);
74     void cleanup();
75
76     MapVector<Instruction*, ConstantRange > SeenInsts;
77     SmallPtrSet<Instruction*,8> Roots;
78     EquivalenceClasses<Instruction*> ECs;
79     MapVector<Instruction*, Value*> ConvertedInsts;
80     LLVMContext *Ctx;
81   };
82 }
83
84 char Float2Int::ID = 0;
85 INITIALIZE_PASS(Float2Int, "float2int", "Float to int", false, false)
86
87 // Given a FCmp predicate, return a matching ICmp predicate if one
88 // exists, otherwise return BAD_ICMP_PREDICATE.
89 static CmpInst::Predicate mapFCmpPred(CmpInst::Predicate P) {
90   switch (P) {
91   case CmpInst::FCMP_OEQ:
92   case CmpInst::FCMP_UEQ:
93     return CmpInst::ICMP_EQ;
94   case CmpInst::FCMP_OGT:
95   case CmpInst::FCMP_UGT:
96     return CmpInst::ICMP_SGT;
97   case CmpInst::FCMP_OGE:
98   case CmpInst::FCMP_UGE:
99     return CmpInst::ICMP_SGE;
100   case CmpInst::FCMP_OLT:
101   case CmpInst::FCMP_ULT:
102     return CmpInst::ICMP_SLT;
103   case CmpInst::FCMP_OLE:
104   case CmpInst::FCMP_ULE:
105     return CmpInst::ICMP_SLE;
106   case CmpInst::FCMP_ONE:
107   case CmpInst::FCMP_UNE:
108     return CmpInst::ICMP_NE;
109   default:
110     return CmpInst::BAD_ICMP_PREDICATE;
111   }
112 }
113
114 // Given a floating point binary operator, return the matching
115 // integer version.
116 static Instruction::BinaryOps mapBinOpcode(unsigned Opcode) {
117   switch (Opcode) {
118   default: llvm_unreachable("Unhandled opcode!");
119   case Instruction::FAdd: return Instruction::Add;
120   case Instruction::FSub: return Instruction::Sub;
121   case Instruction::FMul: return Instruction::Mul;
122   }
123 }
124
125 // Find the roots - instructions that convert from the FP domain to
126 // integer domain.
127 void Float2Int::findRoots(Function &F, SmallPtrSet<Instruction*,8> &Roots) {
128   for (auto &I : inst_range(F)) {
129     switch (I.getOpcode()) {
130     default: break;
131     case Instruction::FPToUI:
132     case Instruction::FPToSI:
133       Roots.insert(&I);
134       break;
135     case Instruction::FCmp:
136       if (mapFCmpPred(cast<CmpInst>(&I)->getPredicate()) != 
137           CmpInst::BAD_ICMP_PREDICATE)
138         Roots.insert(&I);
139       break;
140     }
141   }
142 }
143
144 // Helper - mark I as having been traversed, having range R.
145 ConstantRange Float2Int::seen(Instruction *I, ConstantRange R) {
146   DEBUG(dbgs() << "F2I: " << *I << ":" << R << "\n");
147   if (SeenInsts.find(I) != SeenInsts.end())
148     SeenInsts.find(I)->second = R;
149   else
150     SeenInsts.insert(std::make_pair(I, R));
151   return R;
152 }
153
154 // Helper - get a range representing a poison value.
155 ConstantRange Float2Int::badRange() {
156   return ConstantRange(MaxIntegerBW + 1, true);
157 }
158 ConstantRange Float2Int::unknownRange() {
159   return ConstantRange(MaxIntegerBW + 1, false);
160 }
161 ConstantRange Float2Int::validateRange(ConstantRange R) {
162   if (R.getBitWidth() > MaxIntegerBW + 1)
163     return badRange();
164   return R;
165 }
166
167 // The most obvious way to structure the search is a depth-first, eager
168 // search from each root. However, that require direct recursion and so
169 // can only handle small instruction sequences. Instead, we split the search
170 // up into two phases:
171 //   - walkBackwards:  A breadth-first walk of the use-def graph starting from
172 //                     the roots. Populate "SeenInsts" with interesting
173 //                     instructions and poison values if they're obvious and
174 //                     cheap to compute. Calculate the equivalance set structure
175 //                     while we're here too.
176 //   - walkForwards:  Iterate over SeenInsts in reverse order, so we visit
177 //                     defs before their uses. Calculate the real range info.
178
179 // Breadth-first walk of the use-def graph; determine the set of nodes 
180 // we care about and eagerly determine if some of them are poisonous.
181 void Float2Int::walkBackwards(const SmallPtrSetImpl<Instruction*> &Roots) {
182   std::deque<Instruction*> Worklist(Roots.begin(), Roots.end());
183   while (!Worklist.empty()) {
184     Instruction *I = Worklist.back();
185     Worklist.pop_back();
186
187     if (SeenInsts.find(I) != SeenInsts.end())
188       // Seen already.
189       continue;
190
191     switch (I->getOpcode()) {
192       // FIXME: Handle select and phi nodes.
193     default:
194       // Path terminated uncleanly.
195       seen(I, badRange());
196       break;
197
198     case Instruction::UIToFP: {
199       // Path terminated cleanly.
200       unsigned BW = I->getOperand(0)->getType()->getPrimitiveSizeInBits();
201       APInt Min = APInt::getMinValue(BW).zextOrSelf(MaxIntegerBW+1);
202       APInt Max = APInt::getMaxValue(BW).zextOrSelf(MaxIntegerBW+1);
203       seen(I, validateRange(ConstantRange(Min, Max)));
204       continue;
205     }
206
207     case Instruction::SIToFP: {
208       // Path terminated cleanly.
209       unsigned BW = I->getOperand(0)->getType()->getPrimitiveSizeInBits();
210       APInt SMin = APInt::getSignedMinValue(BW).sextOrSelf(MaxIntegerBW+1);
211       APInt SMax = APInt::getSignedMaxValue(BW).sextOrSelf(MaxIntegerBW+1);
212       seen(I, validateRange(ConstantRange(SMin, SMax)));
213       continue;
214     }
215
216     case Instruction::FAdd:
217     case Instruction::FSub:
218     case Instruction::FMul:
219     case Instruction::FPToUI:
220     case Instruction::FPToSI:
221     case Instruction::FCmp:
222       seen(I, unknownRange());
223       break;
224     }
225   
226     for (Value *O : I->operands()) {
227       if (Instruction *OI = dyn_cast<Instruction>(O)) {
228         // Unify def-use chains if they interfere.
229         ECs.unionSets(I, OI);
230         if (SeenInsts.find(I)->second != badRange())
231           Worklist.push_back(OI);
232       } else if (!isa<ConstantFP>(O)) {      
233         // Not an instruction or ConstantFP? we can't do anything.
234         seen(I, badRange());
235       }
236     }
237   }
238 }
239
240 // Walk forwards down the list of seen instructions, so we visit defs before
241 // uses.
242 void Float2Int::walkForwards() {
243   for (auto It = SeenInsts.rbegin(), E = SeenInsts.rend(); It != E; ++It) {
244     if (It->second != unknownRange())
245       continue;
246
247     Instruction *I = It->first;
248     std::function<ConstantRange(ArrayRef<ConstantRange>)> Op;
249     switch (I->getOpcode()) {
250       // FIXME: Handle select and phi nodes.
251     default:
252     case Instruction::UIToFP:
253     case Instruction::SIToFP:
254       llvm_unreachable("Should have been handled in walkForwards!");
255
256     case Instruction::FAdd:
257       Op = [](ArrayRef<ConstantRange> Ops) {
258         assert(Ops.size() == 2 && "FAdd is a binary operator!");
259         return Ops[0].add(Ops[1]);
260       };
261       break;
262
263     case Instruction::FSub:
264       Op = [](ArrayRef<ConstantRange> Ops) {
265         assert(Ops.size() == 2 && "FSub is a binary operator!");
266         return Ops[0].sub(Ops[1]);
267       };
268       break;
269
270     case Instruction::FMul:
271       Op = [](ArrayRef<ConstantRange> Ops) {
272         assert(Ops.size() == 2 && "FMul is a binary operator!");
273         return Ops[0].multiply(Ops[1]);
274       };
275       break;
276
277     //
278     // Root-only instructions - we'll only see these if they're the
279     //                          first node in a walk.
280     //
281     case Instruction::FPToUI:
282     case Instruction::FPToSI:
283       Op = [](ArrayRef<ConstantRange> Ops) {
284         assert(Ops.size() == 1 && "FPTo[US]I is a unary operator!");
285         return Ops[0];
286       };
287       break;
288
289     case Instruction::FCmp:
290       Op = [](ArrayRef<ConstantRange> Ops) {
291         assert(Ops.size() == 2 && "FCmp is a binary operator!");
292         return Ops[0].unionWith(Ops[1]);
293       };
294       break;
295     }
296
297     bool Abort = false;
298     SmallVector<ConstantRange,4> OpRanges;
299     for (Value *O : I->operands()) {
300       if (Instruction *OI = dyn_cast<Instruction>(O)) {
301         assert(SeenInsts.find(OI) != SeenInsts.end() &&
302                "def not seen before use!");
303         OpRanges.push_back(SeenInsts.find(OI)->second);
304       } else if (ConstantFP *CF = dyn_cast<ConstantFP>(O)) {
305         // Work out if the floating point number can be losslessly represented
306         // as an integer.
307         // APFloat::convertToInteger(&Exact) purports to do what we want, but
308         // the exactness can be too precise. For example, negative zero can
309         // never be exactly converted to an integer.
310         //
311         // Instead, we ask APFloat to round itself to an integral value - this
312         // preserves sign-of-zero - then compare the result with the original.
313         //
314         APFloat F = CF->getValueAPF();
315
316         // First, weed out obviously incorrect values. Non-finite numbers
317         // can't be represented and neither can negative zero, unless 
318         // we're in fast math mode.
319         if (!F.isFinite() ||
320             (F.isZero() && F.isNegative() && isa<FPMathOperator>(I) &&
321              !I->hasNoSignedZeros())) {
322           seen(I, badRange());
323           Abort = true;
324           break;
325         }
326
327         APFloat NewF = F;
328         auto Res = NewF.roundToIntegral(APFloat::rmNearestTiesToEven);
329         if (Res != APFloat::opOK || NewF.compare(F) != APFloat::cmpEqual) {
330           seen(I, badRange());
331           Abort = true;
332           break;
333         }
334         // OK, it's representable. Now get it.
335         APSInt Int(MaxIntegerBW+1, false);
336         bool Exact;
337         CF->getValueAPF().convertToInteger(Int,
338                                            APFloat::rmNearestTiesToEven,
339                                            &Exact);
340         OpRanges.push_back(ConstantRange(Int));
341       } else {
342         llvm_unreachable("Should have already marked this as badRange!");
343       }
344     }
345
346     // Reduce the operands' ranges to a single range and return.
347     if (!Abort)
348       seen(I, Op(OpRanges));    
349   }
350 }
351
352 // If there is a valid transform to be done, do it.
353 bool Float2Int::validateAndTransform() {
354   bool MadeChange = false;
355
356   // Iterate over every disjoint partition of the def-use graph.
357   for (auto It = ECs.begin(), E = ECs.end(); It != E; ++It) {
358     ConstantRange R(MaxIntegerBW + 1, false);
359     bool Fail = false;
360     Type *ConvertedToTy = nullptr;
361
362     // For every member of the partition, union all the ranges together.
363     for (auto MI = ECs.member_begin(It), ME = ECs.member_end();
364          MI != ME; ++MI) {
365       Instruction *I = *MI;
366       auto SeenI = SeenInsts.find(I);
367       if (SeenI == SeenInsts.end())
368         continue;
369
370       R = R.unionWith(SeenI->second);
371       // We need to ensure I has no users that have not been seen.
372       // If it does, transformation would be illegal.
373       //
374       // Don't count the roots, as they terminate the graphs.
375       if (Roots.count(I) == 0) {
376         // Set the type of the conversion while we're here.
377         if (!ConvertedToTy)
378           ConvertedToTy = I->getType();
379         for (User *U : I->users()) {
380           Instruction *UI = dyn_cast<Instruction>(U);
381           if (!UI || SeenInsts.find(UI) == SeenInsts.end()) {
382             DEBUG(dbgs() << "F2I: Failing because of " << *U << "\n");
383             Fail = true;
384             break;
385           }
386         }
387       }
388       if (Fail)
389         break;
390     }
391
392     // If the set was empty, or we failed, or the range is poisonous,
393     // bail out.
394     if (ECs.member_begin(It) == ECs.member_end() || Fail ||
395         R.isFullSet() || R.isSignWrappedSet())
396       continue;
397     assert(ConvertedToTy && "Must have set the convertedtoty by this point!");
398     
399     // The number of bits required is the maximum of the upper and
400     // lower limits, plus one so it can be signed.
401     unsigned MinBW = std::max(R.getLower().getMinSignedBits(),
402                               R.getUpper().getMinSignedBits()) + 1;
403     DEBUG(dbgs() << "F2I: MinBitwidth=" << MinBW << ", R: " << R << "\n");
404
405     // If we've run off the realms of the exactly representable integers,
406     // the floating point result will differ from an integer approximation.
407
408     // Do we need more bits than are in the mantissa of the type we converted
409     // to? semanticsPrecision returns the number of mantissa bits plus one
410     // for the sign bit.
411     unsigned MaxRepresentableBits
412       = APFloat::semanticsPrecision(ConvertedToTy->getFltSemantics()) - 1;
413     if (MinBW > MaxRepresentableBits) {
414       DEBUG(dbgs() << "F2I: Value not guaranteed to be representable!\n");
415       continue;
416     }
417     if (MinBW > 64) {
418       DEBUG(dbgs() << "F2I: Value requires more than 64 bits to represent!\n");
419       continue;
420     }
421
422     // OK, R is known to be representable. Now pick a type for it.
423     // FIXME: Pick the smallest legal type that will fit.
424     Type *Ty = (MinBW > 32) ? Type::getInt64Ty(*Ctx) : Type::getInt32Ty(*Ctx);
425
426     for (auto MI = ECs.member_begin(It), ME = ECs.member_end();
427          MI != ME; ++MI)
428       convert(*MI, Ty);
429     MadeChange = true;
430   }
431
432   return MadeChange;
433 }
434
435 Value *Float2Int::convert(Instruction *I, Type *ToTy) {
436   if (ConvertedInsts.find(I) != ConvertedInsts.end())
437     // Already converted this instruction.
438     return ConvertedInsts[I];
439
440   SmallVector<Value*,4> NewOperands;
441   for (Value *V : I->operands()) {
442     // Don't recurse if we're an instruction that terminates the path.
443     if (I->getOpcode() == Instruction::UIToFP ||
444         I->getOpcode() == Instruction::SIToFP) {
445       NewOperands.push_back(V);
446     } else if (Instruction *VI = dyn_cast<Instruction>(V)) {
447       NewOperands.push_back(convert(VI, ToTy));
448     } else if (ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
449       APSInt Val(ToTy->getPrimitiveSizeInBits(), /*IsUnsigned=*/false);
450       bool Exact;
451       CF->getValueAPF().convertToInteger(Val,
452                                          APFloat::rmNearestTiesToEven,
453                                          &Exact);
454       NewOperands.push_back(ConstantInt::get(ToTy, Val));
455     } else {
456       llvm_unreachable("Unhandled operand type?");
457     }
458   }
459
460   // Now create a new instruction.
461   IRBuilder<> IRB(I);
462   Value *NewV = nullptr;
463   switch (I->getOpcode()) {
464   default: llvm_unreachable("Unhandled instruction!");
465
466   case Instruction::FPToUI:
467     NewV = IRB.CreateZExtOrTrunc(NewOperands[0], I->getType());
468     break;
469
470   case Instruction::FPToSI:
471     NewV = IRB.CreateSExtOrTrunc(NewOperands[0], I->getType());
472     break;
473
474   case Instruction::FCmp: {
475     CmpInst::Predicate P = mapFCmpPred(cast<CmpInst>(I)->getPredicate());
476     assert(P != CmpInst::BAD_ICMP_PREDICATE && "Unhandled predicate!");
477     NewV = IRB.CreateICmp(P, NewOperands[0], NewOperands[1], I->getName());
478     break;
479   }
480
481   case Instruction::UIToFP:
482     NewV = IRB.CreateZExtOrTrunc(NewOperands[0], ToTy);
483     break;
484
485   case Instruction::SIToFP:
486     NewV = IRB.CreateSExtOrTrunc(NewOperands[0], ToTy);
487     break;
488
489   case Instruction::FAdd:
490   case Instruction::FSub:
491   case Instruction::FMul:
492     NewV = IRB.CreateBinOp(mapBinOpcode(I->getOpcode()),
493                            NewOperands[0], NewOperands[1],
494                            I->getName());
495     break;
496   }
497
498   // If we're a root instruction, RAUW.
499   if (Roots.count(I))
500     I->replaceAllUsesWith(NewV);
501
502   ConvertedInsts[I] = NewV;
503   return NewV;
504 }
505
506 // Perform dead code elimination on the instructions we just modified.
507 void Float2Int::cleanup() {
508   for (auto I = ConvertedInsts.rbegin(), E = ConvertedInsts.rend();
509        I != E; ++I)
510     I->first->eraseFromParent();
511 }
512
513 bool Float2Int::runOnFunction(Function &F) {
514   if (skipOptnoneFunction(F))
515     return false;
516
517   DEBUG(dbgs() << "F2I: Looking at function " << F.getName() << "\n");
518   // Clear out all state.
519   ECs = EquivalenceClasses<Instruction*>();
520   SeenInsts.clear();
521   ConvertedInsts.clear();
522   Roots.clear();
523
524   Ctx = &F.getParent()->getContext();
525
526   findRoots(F, Roots);
527
528   walkBackwards(Roots);
529   walkForwards();
530
531   bool Modified = validateAndTransform();
532   if (Modified)
533     cleanup();
534   return Modified;
535 }
536
537 FunctionPass *llvm::createFloat2IntPass() {
538   return new Float2Int();
539 }
540