1a46bbb86122811bbf8ff4525bf39ba7d2f01344
[oota-llvm.git] / lib / Transforms / Instrumentation / ThreadSanitizer.cpp
1 //===-- ThreadSanitizer.cpp - race detector -------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of ThreadSanitizer, a race detector.
11 //
12 // The tool is under development, for the details about previous versions see
13 // http://code.google.com/p/data-race-test
14 //
15 // The instrumentation phase is quite simple:
16 //   - Insert calls to run-time library before every memory access.
17 //      - Optimizations may apply to avoid instrumenting some of the accesses.
18 //   - Insert calls at function entry/exit.
19 // The rest is handled by the run-time library.
20 //===----------------------------------------------------------------------===//
21
22 #include "llvm/Transforms/Instrumentation.h"
23 #include "llvm/ADT/SmallSet.h"
24 #include "llvm/ADT/SmallString.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/ADT/StringExtras.h"
28 #include "llvm/Analysis/CaptureTracking.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/IRBuilder.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/Metadata.h"
37 #include "llvm/IR/Module.h"
38 #include "llvm/IR/Type.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/MathExtras.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
44 #include "llvm/Transforms/Utils/ModuleUtils.h"
45
46 using namespace llvm;
47
48 #define DEBUG_TYPE "tsan"
49
50 static cl::opt<bool>  ClInstrumentMemoryAccesses(
51     "tsan-instrument-memory-accesses", cl::init(true),
52     cl::desc("Instrument memory accesses"), cl::Hidden);
53 static cl::opt<bool>  ClInstrumentFuncEntryExit(
54     "tsan-instrument-func-entry-exit", cl::init(true),
55     cl::desc("Instrument function entry and exit"), cl::Hidden);
56 static cl::opt<bool>  ClInstrumentAtomics(
57     "tsan-instrument-atomics", cl::init(true),
58     cl::desc("Instrument atomics"), cl::Hidden);
59 static cl::opt<bool>  ClInstrumentMemIntrinsics(
60     "tsan-instrument-memintrinsics", cl::init(true),
61     cl::desc("Instrument memintrinsics (memset/memcpy/memmove)"), cl::Hidden);
62
63 STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
64 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
65 STATISTIC(NumOmittedReadsBeforeWrite,
66           "Number of reads ignored due to following writes");
67 STATISTIC(NumAccessesWithBadSize, "Number of accesses with bad size");
68 STATISTIC(NumInstrumentedVtableWrites, "Number of vtable ptr writes");
69 STATISTIC(NumInstrumentedVtableReads, "Number of vtable ptr reads");
70 STATISTIC(NumOmittedReadsFromConstantGlobals,
71           "Number of reads from constant globals");
72 STATISTIC(NumOmittedReadsFromVtable, "Number of vtable reads");
73 STATISTIC(NumOmittedNonCaptured, "Number of accesses ignored due to capturing");
74
75 static const char *const kTsanModuleCtorName = "tsan.module_ctor";
76 static const char *const kTsanInitName = "__tsan_init";
77
78 namespace {
79
80 /// ThreadSanitizer: instrument the code in module to find races.
81 struct ThreadSanitizer : public FunctionPass {
82   ThreadSanitizer() : FunctionPass(ID) {}
83   const char *getPassName() const override;
84   bool runOnFunction(Function &F) override;
85   bool doInitialization(Module &M) override;
86   static char ID;  // Pass identification, replacement for typeid.
87
88  private:
89   void initializeCallbacks(Module &M);
90   bool instrumentLoadOrStore(Instruction *I, const DataLayout &DL);
91   bool instrumentAtomic(Instruction *I, const DataLayout &DL);
92   bool instrumentMemIntrinsic(Instruction *I);
93   void chooseInstructionsToInstrument(SmallVectorImpl<Instruction *> &Local,
94                                       SmallVectorImpl<Instruction *> &All,
95                                       const DataLayout &DL);
96   bool addrPointsToConstantData(Value *Addr);
97   int getMemoryAccessFuncIndex(Value *Addr, const DataLayout &DL);
98
99   Type *IntptrTy;
100   IntegerType *OrdTy;
101   // Callbacks to run-time library are computed in doInitialization.
102   Function *TsanFuncEntry;
103   Function *TsanFuncExit;
104   // Accesses sizes are powers of two: 1, 2, 4, 8, 16.
105   static const size_t kNumberOfAccessSizes = 5;
106   Function *TsanRead[kNumberOfAccessSizes];
107   Function *TsanWrite[kNumberOfAccessSizes];
108   Function *TsanUnalignedRead[kNumberOfAccessSizes];
109   Function *TsanUnalignedWrite[kNumberOfAccessSizes];
110   Function *TsanAtomicLoad[kNumberOfAccessSizes];
111   Function *TsanAtomicStore[kNumberOfAccessSizes];
112   Function *TsanAtomicRMW[AtomicRMWInst::LAST_BINOP + 1][kNumberOfAccessSizes];
113   Function *TsanAtomicCAS[kNumberOfAccessSizes];
114   Function *TsanAtomicThreadFence;
115   Function *TsanAtomicSignalFence;
116   Function *TsanVptrUpdate;
117   Function *TsanVptrLoad;
118   Function *MemmoveFn, *MemcpyFn, *MemsetFn;
119   Function *TsanCtorFunction;
120 };
121 }  // namespace
122
123 char ThreadSanitizer::ID = 0;
124 INITIALIZE_PASS(ThreadSanitizer, "tsan",
125     "ThreadSanitizer: detects data races.",
126     false, false)
127
128 const char *ThreadSanitizer::getPassName() const {
129   return "ThreadSanitizer";
130 }
131
132 FunctionPass *llvm::createThreadSanitizerPass() {
133   return new ThreadSanitizer();
134 }
135
136 void ThreadSanitizer::initializeCallbacks(Module &M) {
137   IRBuilder<> IRB(M.getContext());
138   // Initialize the callbacks.
139   TsanFuncEntry = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
140       "__tsan_func_entry", IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr));
141   TsanFuncExit = checkSanitizerInterfaceFunction(
142       M.getOrInsertFunction("__tsan_func_exit", IRB.getVoidTy(), nullptr));
143   OrdTy = IRB.getInt32Ty();
144   for (size_t i = 0; i < kNumberOfAccessSizes; ++i) {
145     const size_t ByteSize = 1 << i;
146     const size_t BitSize = ByteSize * 8;
147     SmallString<32> ReadName("__tsan_read" + itostr(ByteSize));
148     TsanRead[i] = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
149         ReadName, IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr));
150
151     SmallString<32> WriteName("__tsan_write" + itostr(ByteSize));
152     TsanWrite[i] = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
153         WriteName, IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr));
154
155     SmallString<64> UnalignedReadName("__tsan_unaligned_read" +
156         itostr(ByteSize));
157     TsanUnalignedRead[i] =
158         checkSanitizerInterfaceFunction(M.getOrInsertFunction(
159             UnalignedReadName, IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr));
160
161     SmallString<64> UnalignedWriteName("__tsan_unaligned_write" +
162         itostr(ByteSize));
163     TsanUnalignedWrite[i] =
164         checkSanitizerInterfaceFunction(M.getOrInsertFunction(
165             UnalignedWriteName, IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr));
166
167     Type *Ty = Type::getIntNTy(M.getContext(), BitSize);
168     Type *PtrTy = Ty->getPointerTo();
169     SmallString<32> AtomicLoadName("__tsan_atomic" + itostr(BitSize) +
170                                    "_load");
171     TsanAtomicLoad[i] = checkSanitizerInterfaceFunction(
172         M.getOrInsertFunction(AtomicLoadName, Ty, PtrTy, OrdTy, nullptr));
173
174     SmallString<32> AtomicStoreName("__tsan_atomic" + itostr(BitSize) +
175                                     "_store");
176     TsanAtomicStore[i] = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
177         AtomicStoreName, IRB.getVoidTy(), PtrTy, Ty, OrdTy, nullptr));
178
179     for (int op = AtomicRMWInst::FIRST_BINOP;
180         op <= AtomicRMWInst::LAST_BINOP; ++op) {
181       TsanAtomicRMW[op][i] = nullptr;
182       const char *NamePart = nullptr;
183       if (op == AtomicRMWInst::Xchg)
184         NamePart = "_exchange";
185       else if (op == AtomicRMWInst::Add)
186         NamePart = "_fetch_add";
187       else if (op == AtomicRMWInst::Sub)
188         NamePart = "_fetch_sub";
189       else if (op == AtomicRMWInst::And)
190         NamePart = "_fetch_and";
191       else if (op == AtomicRMWInst::Or)
192         NamePart = "_fetch_or";
193       else if (op == AtomicRMWInst::Xor)
194         NamePart = "_fetch_xor";
195       else if (op == AtomicRMWInst::Nand)
196         NamePart = "_fetch_nand";
197       else
198         continue;
199       SmallString<32> RMWName("__tsan_atomic" + itostr(BitSize) + NamePart);
200       TsanAtomicRMW[op][i] = checkSanitizerInterfaceFunction(
201           M.getOrInsertFunction(RMWName, Ty, PtrTy, Ty, OrdTy, nullptr));
202     }
203
204     SmallString<32> AtomicCASName("__tsan_atomic" + itostr(BitSize) +
205                                   "_compare_exchange_val");
206     TsanAtomicCAS[i] = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
207         AtomicCASName, Ty, PtrTy, Ty, Ty, OrdTy, OrdTy, nullptr));
208   }
209   TsanVptrUpdate = checkSanitizerInterfaceFunction(
210       M.getOrInsertFunction("__tsan_vptr_update", IRB.getVoidTy(),
211                             IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), nullptr));
212   TsanVptrLoad = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
213       "__tsan_vptr_read", IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr));
214   TsanAtomicThreadFence = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
215       "__tsan_atomic_thread_fence", IRB.getVoidTy(), OrdTy, nullptr));
216   TsanAtomicSignalFence = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
217       "__tsan_atomic_signal_fence", IRB.getVoidTy(), OrdTy, nullptr));
218
219   MemmoveFn = checkSanitizerInterfaceFunction(
220       M.getOrInsertFunction("memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
221                             IRB.getInt8PtrTy(), IntptrTy, nullptr));
222   MemcpyFn = checkSanitizerInterfaceFunction(
223       M.getOrInsertFunction("memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
224                             IRB.getInt8PtrTy(), IntptrTy, nullptr));
225   MemsetFn = checkSanitizerInterfaceFunction(
226       M.getOrInsertFunction("memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
227                             IRB.getInt32Ty(), IntptrTy, nullptr));
228 }
229
230 bool ThreadSanitizer::doInitialization(Module &M) {
231   const DataLayout &DL = M.getDataLayout();
232   IntptrTy = DL.getIntPtrType(M.getContext());
233   std::tie(TsanCtorFunction, std::ignore) = createSanitizerCtorAndInitFunctions(
234       M, kTsanModuleCtorName, kTsanInitName, /*InitArgTypes=*/{},
235       /*InitArgs=*/{});
236
237   appendToGlobalCtors(M, TsanCtorFunction, 0);
238
239   return true;
240 }
241
242 static bool isVtableAccess(Instruction *I) {
243   if (MDNode *Tag = I->getMetadata(LLVMContext::MD_tbaa))
244     return Tag->isTBAAVtableAccess();
245   return false;
246 }
247
248 bool ThreadSanitizer::addrPointsToConstantData(Value *Addr) {
249   // If this is a GEP, just analyze its pointer operand.
250   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr))
251     Addr = GEP->getPointerOperand();
252
253   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
254     if (GV->isConstant()) {
255       // Reads from constant globals can not race with any writes.
256       NumOmittedReadsFromConstantGlobals++;
257       return true;
258     }
259   } else if (LoadInst *L = dyn_cast<LoadInst>(Addr)) {
260     if (isVtableAccess(L)) {
261       // Reads from a vtable pointer can not race with any writes.
262       NumOmittedReadsFromVtable++;
263       return true;
264     }
265   }
266   return false;
267 }
268
269 // Instrumenting some of the accesses may be proven redundant.
270 // Currently handled:
271 //  - read-before-write (within same BB, no calls between)
272 //  - not captured variables
273 //
274 // We do not handle some of the patterns that should not survive
275 // after the classic compiler optimizations.
276 // E.g. two reads from the same temp should be eliminated by CSE,
277 // two writes should be eliminated by DSE, etc.
278 //
279 // 'Local' is a vector of insns within the same BB (no calls between).
280 // 'All' is a vector of insns that will be instrumented.
281 void ThreadSanitizer::chooseInstructionsToInstrument(
282     SmallVectorImpl<Instruction *> &Local, SmallVectorImpl<Instruction *> &All,
283     const DataLayout &DL) {
284   SmallSet<Value*, 8> WriteTargets;
285   // Iterate from the end.
286   for (SmallVectorImpl<Instruction*>::reverse_iterator It = Local.rbegin(),
287        E = Local.rend(); It != E; ++It) {
288     Instruction *I = *It;
289     if (StoreInst *Store = dyn_cast<StoreInst>(I)) {
290       WriteTargets.insert(Store->getPointerOperand());
291     } else {
292       LoadInst *Load = cast<LoadInst>(I);
293       Value *Addr = Load->getPointerOperand();
294       if (WriteTargets.count(Addr)) {
295         // We will write to this temp, so no reason to analyze the read.
296         NumOmittedReadsBeforeWrite++;
297         continue;
298       }
299       if (addrPointsToConstantData(Addr)) {
300         // Addr points to some constant data -- it can not race with any writes.
301         continue;
302       }
303     }
304     Value *Addr = isa<StoreInst>(*I)
305         ? cast<StoreInst>(I)->getPointerOperand()
306         : cast<LoadInst>(I)->getPointerOperand();
307     if (isa<AllocaInst>(GetUnderlyingObject(Addr, DL)) &&
308         !PointerMayBeCaptured(Addr, true, true)) {
309       // The variable is addressable but not captured, so it cannot be
310       // referenced from a different thread and participate in a data race
311       // (see llvm/Analysis/CaptureTracking.h for details).
312       NumOmittedNonCaptured++;
313       continue;
314     }
315     All.push_back(I);
316   }
317   Local.clear();
318 }
319
320 static bool isAtomic(Instruction *I) {
321   if (LoadInst *LI = dyn_cast<LoadInst>(I))
322     return LI->isAtomic() && LI->getSynchScope() == CrossThread;
323   if (StoreInst *SI = dyn_cast<StoreInst>(I))
324     return SI->isAtomic() && SI->getSynchScope() == CrossThread;
325   if (isa<AtomicRMWInst>(I))
326     return true;
327   if (isa<AtomicCmpXchgInst>(I))
328     return true;
329   if (isa<FenceInst>(I))
330     return true;
331   return false;
332 }
333
334 bool ThreadSanitizer::runOnFunction(Function &F) {
335   // This is required to prevent instrumenting call to __tsan_init from within
336   // the module constructor.
337   if (&F == TsanCtorFunction)
338     return false;
339   initializeCallbacks(*F.getParent());
340   SmallVector<Instruction*, 8> RetVec;
341   SmallVector<Instruction*, 8> AllLoadsAndStores;
342   SmallVector<Instruction*, 8> LocalLoadsAndStores;
343   SmallVector<Instruction*, 8> AtomicAccesses;
344   SmallVector<Instruction*, 8> MemIntrinCalls;
345   bool Res = false;
346   bool HasCalls = false;
347   bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeThread);
348   const DataLayout &DL = F.getParent()->getDataLayout();
349
350   // Traverse all instructions, collect loads/stores/returns, check for calls.
351   for (auto &BB : F) {
352     for (auto &Inst : BB) {
353       if (isAtomic(&Inst))
354         AtomicAccesses.push_back(&Inst);
355       else if (isa<LoadInst>(Inst) || isa<StoreInst>(Inst))
356         LocalLoadsAndStores.push_back(&Inst);
357       else if (isa<ReturnInst>(Inst))
358         RetVec.push_back(&Inst);
359       else if (isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) {
360         if (isa<MemIntrinsic>(Inst))
361           MemIntrinCalls.push_back(&Inst);
362         HasCalls = true;
363         chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores,
364                                        DL);
365       }
366     }
367     chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores, DL);
368   }
369
370   // We have collected all loads and stores.
371   // FIXME: many of these accesses do not need to be checked for races
372   // (e.g. variables that do not escape, etc).
373
374   // Instrument memory accesses only if we want to report bugs in the function.
375   if (ClInstrumentMemoryAccesses && SanitizeFunction)
376     for (auto Inst : AllLoadsAndStores) {
377       Res |= instrumentLoadOrStore(Inst, DL);
378     }
379
380   // Instrument atomic memory accesses in any case (they can be used to
381   // implement synchronization).
382   if (ClInstrumentAtomics)
383     for (auto Inst : AtomicAccesses) {
384       Res |= instrumentAtomic(Inst, DL);
385     }
386
387   if (ClInstrumentMemIntrinsics && SanitizeFunction)
388     for (auto Inst : MemIntrinCalls) {
389       Res |= instrumentMemIntrinsic(Inst);
390     }
391
392   // Instrument function entry/exit points if there were instrumented accesses.
393   if ((Res || HasCalls) && ClInstrumentFuncEntryExit) {
394     IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
395     Value *ReturnAddress = IRB.CreateCall(
396         Intrinsic::getDeclaration(F.getParent(), Intrinsic::returnaddress),
397         IRB.getInt32(0));
398     IRB.CreateCall(TsanFuncEntry, ReturnAddress);
399     for (auto RetInst : RetVec) {
400       IRBuilder<> IRBRet(RetInst);
401       IRBRet.CreateCall(TsanFuncExit, {});
402     }
403     Res = true;
404   }
405   return Res;
406 }
407
408 bool ThreadSanitizer::instrumentLoadOrStore(Instruction *I,
409                                             const DataLayout &DL) {
410   IRBuilder<> IRB(I);
411   bool IsWrite = isa<StoreInst>(*I);
412   Value *Addr = IsWrite
413       ? cast<StoreInst>(I)->getPointerOperand()
414       : cast<LoadInst>(I)->getPointerOperand();
415   int Idx = getMemoryAccessFuncIndex(Addr, DL);
416   if (Idx < 0)
417     return false;
418   if (IsWrite && isVtableAccess(I)) {
419     DEBUG(dbgs() << "  VPTR : " << *I << "\n");
420     Value *StoredValue = cast<StoreInst>(I)->getValueOperand();
421     // StoredValue may be a vector type if we are storing several vptrs at once.
422     // In this case, just take the first element of the vector since this is
423     // enough to find vptr races.
424     if (isa<VectorType>(StoredValue->getType()))
425       StoredValue = IRB.CreateExtractElement(
426           StoredValue, ConstantInt::get(IRB.getInt32Ty(), 0));
427     if (StoredValue->getType()->isIntegerTy())
428       StoredValue = IRB.CreateIntToPtr(StoredValue, IRB.getInt8PtrTy());
429     // Call TsanVptrUpdate.
430     IRB.CreateCall(TsanVptrUpdate,
431                    {IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()),
432                     IRB.CreatePointerCast(StoredValue, IRB.getInt8PtrTy())});
433     NumInstrumentedVtableWrites++;
434     return true;
435   }
436   if (!IsWrite && isVtableAccess(I)) {
437     IRB.CreateCall(TsanVptrLoad,
438                    IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()));
439     NumInstrumentedVtableReads++;
440     return true;
441   }
442   const unsigned Alignment = IsWrite
443       ? cast<StoreInst>(I)->getAlignment()
444       : cast<LoadInst>(I)->getAlignment();
445   Type *OrigTy = cast<PointerType>(Addr->getType())->getElementType();
446   const uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy);
447   Value *OnAccessFunc = nullptr;
448   if (Alignment == 0 || Alignment >= 8 || (Alignment % (TypeSize / 8)) == 0)
449     OnAccessFunc = IsWrite ? TsanWrite[Idx] : TsanRead[Idx];
450   else
451     OnAccessFunc = IsWrite ? TsanUnalignedWrite[Idx] : TsanUnalignedRead[Idx];
452   IRB.CreateCall(OnAccessFunc, IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()));
453   if (IsWrite) NumInstrumentedWrites++;
454   else         NumInstrumentedReads++;
455   return true;
456 }
457
458 static ConstantInt *createOrdering(IRBuilder<> *IRB, AtomicOrdering ord) {
459   uint32_t v = 0;
460   switch (ord) {
461     case NotAtomic: llvm_unreachable("unexpected atomic ordering!");
462     case Unordered:              // Fall-through.
463     case Monotonic:              v = 0; break;
464     // case Consume:                v = 1; break;  // Not specified yet.
465     case Acquire:                v = 2; break;
466     case Release:                v = 3; break;
467     case AcquireRelease:         v = 4; break;
468     case SequentiallyConsistent: v = 5; break;
469   }
470   return IRB->getInt32(v);
471 }
472
473 // If a memset intrinsic gets inlined by the code gen, we will miss races on it.
474 // So, we either need to ensure the intrinsic is not inlined, or instrument it.
475 // We do not instrument memset/memmove/memcpy intrinsics (too complicated),
476 // instead we simply replace them with regular function calls, which are then
477 // intercepted by the run-time.
478 // Since tsan is running after everyone else, the calls should not be
479 // replaced back with intrinsics. If that becomes wrong at some point,
480 // we will need to call e.g. __tsan_memset to avoid the intrinsics.
481 bool ThreadSanitizer::instrumentMemIntrinsic(Instruction *I) {
482   IRBuilder<> IRB(I);
483   if (MemSetInst *M = dyn_cast<MemSetInst>(I)) {
484     IRB.CreateCall(
485         MemsetFn,
486         {IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()),
487          IRB.CreateIntCast(M->getArgOperand(1), IRB.getInt32Ty(), false),
488          IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false)});
489     I->eraseFromParent();
490   } else if (MemTransferInst *M = dyn_cast<MemTransferInst>(I)) {
491     IRB.CreateCall(
492         isa<MemCpyInst>(M) ? MemcpyFn : MemmoveFn,
493         {IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()),
494          IRB.CreatePointerCast(M->getArgOperand(1), IRB.getInt8PtrTy()),
495          IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false)});
496     I->eraseFromParent();
497   }
498   return false;
499 }
500
501 // Both llvm and ThreadSanitizer atomic operations are based on C++11/C1x
502 // standards.  For background see C++11 standard.  A slightly older, publicly
503 // available draft of the standard (not entirely up-to-date, but close enough
504 // for casual browsing) is available here:
505 // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
506 // The following page contains more background information:
507 // http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/
508
509 bool ThreadSanitizer::instrumentAtomic(Instruction *I, const DataLayout &DL) {
510   IRBuilder<> IRB(I);
511   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
512     Value *Addr = LI->getPointerOperand();
513     int Idx = getMemoryAccessFuncIndex(Addr, DL);
514     if (Idx < 0)
515       return false;
516     const size_t ByteSize = 1 << Idx;
517     const size_t BitSize = ByteSize * 8;
518     Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
519     Type *PtrTy = Ty->getPointerTo();
520     Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
521                      createOrdering(&IRB, LI->getOrdering())};
522     CallInst *C = CallInst::Create(TsanAtomicLoad[Idx], Args);
523     ReplaceInstWithInst(I, C);
524
525   } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
526     Value *Addr = SI->getPointerOperand();
527     int Idx = getMemoryAccessFuncIndex(Addr, DL);
528     if (Idx < 0)
529       return false;
530     const size_t ByteSize = 1 << Idx;
531     const size_t BitSize = ByteSize * 8;
532     Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
533     Type *PtrTy = Ty->getPointerTo();
534     Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
535                      IRB.CreateIntCast(SI->getValueOperand(), Ty, false),
536                      createOrdering(&IRB, SI->getOrdering())};
537     CallInst *C = CallInst::Create(TsanAtomicStore[Idx], Args);
538     ReplaceInstWithInst(I, C);
539   } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) {
540     Value *Addr = RMWI->getPointerOperand();
541     int Idx = getMemoryAccessFuncIndex(Addr, DL);
542     if (Idx < 0)
543       return false;
544     Function *F = TsanAtomicRMW[RMWI->getOperation()][Idx];
545     if (!F)
546       return false;
547     const size_t ByteSize = 1 << Idx;
548     const size_t BitSize = ByteSize * 8;
549     Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
550     Type *PtrTy = Ty->getPointerTo();
551     Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
552                      IRB.CreateIntCast(RMWI->getValOperand(), Ty, false),
553                      createOrdering(&IRB, RMWI->getOrdering())};
554     CallInst *C = CallInst::Create(F, Args);
555     ReplaceInstWithInst(I, C);
556   } else if (AtomicCmpXchgInst *CASI = dyn_cast<AtomicCmpXchgInst>(I)) {
557     Value *Addr = CASI->getPointerOperand();
558     int Idx = getMemoryAccessFuncIndex(Addr, DL);
559     if (Idx < 0)
560       return false;
561     const size_t ByteSize = 1 << Idx;
562     const size_t BitSize = ByteSize * 8;
563     Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
564     Type *PtrTy = Ty->getPointerTo();
565     Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
566                      IRB.CreateIntCast(CASI->getCompareOperand(), Ty, false),
567                      IRB.CreateIntCast(CASI->getNewValOperand(), Ty, false),
568                      createOrdering(&IRB, CASI->getSuccessOrdering()),
569                      createOrdering(&IRB, CASI->getFailureOrdering())};
570     CallInst *C = IRB.CreateCall(TsanAtomicCAS[Idx], Args);
571     Value *Success = IRB.CreateICmpEQ(C, CASI->getCompareOperand());
572
573     Value *Res = IRB.CreateInsertValue(UndefValue::get(CASI->getType()), C, 0);
574     Res = IRB.CreateInsertValue(Res, Success, 1);
575
576     I->replaceAllUsesWith(Res);
577     I->eraseFromParent();
578   } else if (FenceInst *FI = dyn_cast<FenceInst>(I)) {
579     Value *Args[] = {createOrdering(&IRB, FI->getOrdering())};
580     Function *F = FI->getSynchScope() == SingleThread ?
581         TsanAtomicSignalFence : TsanAtomicThreadFence;
582     CallInst *C = CallInst::Create(F, Args);
583     ReplaceInstWithInst(I, C);
584   }
585   return true;
586 }
587
588 int ThreadSanitizer::getMemoryAccessFuncIndex(Value *Addr,
589                                               const DataLayout &DL) {
590   Type *OrigPtrTy = Addr->getType();
591   Type *OrigTy = cast<PointerType>(OrigPtrTy)->getElementType();
592   assert(OrigTy->isSized());
593   uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy);
594   if (TypeSize != 8  && TypeSize != 16 &&
595       TypeSize != 32 && TypeSize != 64 && TypeSize != 128) {
596     NumAccessesWithBadSize++;
597     // Ignore all unusual sizes.
598     return -1;
599   }
600   size_t Idx = countTrailingZeros(TypeSize / 8);
601   assert(Idx < kNumberOfAccessSizes);
602   return Idx;
603 }