c0786afe965ee4e626d4118360c559baa9749755
[oota-llvm.git] / lib / Transforms / InstCombine / InstCombineCompares.cpp
1 //===- InstCombineCompares.cpp --------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visitICmp and visitFCmp functions.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/ConstantFolding.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/MemoryBuiltins.h"
20 #include "llvm/IR/ConstantRange.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/GetElementPtrTypeIterator.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/PatternMatch.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Analysis/TargetLibraryInfo.h"
28
29 using namespace llvm;
30 using namespace PatternMatch;
31
32 #define DEBUG_TYPE "instcombine"
33
34 // How many times is a select replaced by one of its operands?
35 STATISTIC(NumSel, "Number of select opts");
36
37 // Initialization Routines
38
39 static ConstantInt *getOne(Constant *C) {
40   return ConstantInt::get(cast<IntegerType>(C->getType()), 1);
41 }
42
43 static ConstantInt *ExtractElement(Constant *V, Constant *Idx) {
44   return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx));
45 }
46
47 static bool HasAddOverflow(ConstantInt *Result,
48                            ConstantInt *In1, ConstantInt *In2,
49                            bool IsSigned) {
50   if (!IsSigned)
51     return Result->getValue().ult(In1->getValue());
52
53   if (In2->isNegative())
54     return Result->getValue().sgt(In1->getValue());
55   return Result->getValue().slt(In1->getValue());
56 }
57
58 /// AddWithOverflow - Compute Result = In1+In2, returning true if the result
59 /// overflowed for this type.
60 static bool AddWithOverflow(Constant *&Result, Constant *In1,
61                             Constant *In2, bool IsSigned = false) {
62   Result = ConstantExpr::getAdd(In1, In2);
63
64   if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
65     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
66       Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
67       if (HasAddOverflow(ExtractElement(Result, Idx),
68                          ExtractElement(In1, Idx),
69                          ExtractElement(In2, Idx),
70                          IsSigned))
71         return true;
72     }
73     return false;
74   }
75
76   return HasAddOverflow(cast<ConstantInt>(Result),
77                         cast<ConstantInt>(In1), cast<ConstantInt>(In2),
78                         IsSigned);
79 }
80
81 static bool HasSubOverflow(ConstantInt *Result,
82                            ConstantInt *In1, ConstantInt *In2,
83                            bool IsSigned) {
84   if (!IsSigned)
85     return Result->getValue().ugt(In1->getValue());
86
87   if (In2->isNegative())
88     return Result->getValue().slt(In1->getValue());
89
90   return Result->getValue().sgt(In1->getValue());
91 }
92
93 /// SubWithOverflow - Compute Result = In1-In2, returning true if the result
94 /// overflowed for this type.
95 static bool SubWithOverflow(Constant *&Result, Constant *In1,
96                             Constant *In2, bool IsSigned = false) {
97   Result = ConstantExpr::getSub(In1, In2);
98
99   if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
100     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
101       Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
102       if (HasSubOverflow(ExtractElement(Result, Idx),
103                          ExtractElement(In1, Idx),
104                          ExtractElement(In2, Idx),
105                          IsSigned))
106         return true;
107     }
108     return false;
109   }
110
111   return HasSubOverflow(cast<ConstantInt>(Result),
112                         cast<ConstantInt>(In1), cast<ConstantInt>(In2),
113                         IsSigned);
114 }
115
116 /// isSignBitCheck - Given an exploded icmp instruction, return true if the
117 /// comparison only checks the sign bit.  If it only checks the sign bit, set
118 /// TrueIfSigned if the result of the comparison is true when the input value is
119 /// signed.
120 static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
121                            bool &TrueIfSigned) {
122   switch (pred) {
123   case ICmpInst::ICMP_SLT:   // True if LHS s< 0
124     TrueIfSigned = true;
125     return RHS->isZero();
126   case ICmpInst::ICMP_SLE:   // True if LHS s<= RHS and RHS == -1
127     TrueIfSigned = true;
128     return RHS->isAllOnesValue();
129   case ICmpInst::ICMP_SGT:   // True if LHS s> -1
130     TrueIfSigned = false;
131     return RHS->isAllOnesValue();
132   case ICmpInst::ICMP_UGT:
133     // True if LHS u> RHS and RHS == high-bit-mask - 1
134     TrueIfSigned = true;
135     return RHS->isMaxValue(true);
136   case ICmpInst::ICMP_UGE:
137     // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
138     TrueIfSigned = true;
139     return RHS->getValue().isSignBit();
140   default:
141     return false;
142   }
143 }
144
145 /// Returns true if the exploded icmp can be expressed as a signed comparison
146 /// to zero and updates the predicate accordingly.
147 /// The signedness of the comparison is preserved.
148 static bool isSignTest(ICmpInst::Predicate &pred, const ConstantInt *RHS) {
149   if (!ICmpInst::isSigned(pred))
150     return false;
151
152   if (RHS->isZero())
153     return ICmpInst::isRelational(pred);
154
155   if (RHS->isOne()) {
156     if (pred == ICmpInst::ICMP_SLT) {
157       pred = ICmpInst::ICMP_SLE;
158       return true;
159     }
160   } else if (RHS->isAllOnesValue()) {
161     if (pred == ICmpInst::ICMP_SGT) {
162       pred = ICmpInst::ICMP_SGE;
163       return true;
164     }
165   }
166
167   return false;
168 }
169
170 // isHighOnes - Return true if the constant is of the form 1+0+.
171 // This is the same as lowones(~X).
172 static bool isHighOnes(const ConstantInt *CI) {
173   return (~CI->getValue() + 1).isPowerOf2();
174 }
175
176 /// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
177 /// set of known zero and one bits, compute the maximum and minimum values that
178 /// could have the specified known zero and known one bits, returning them in
179 /// min/max.
180 static void ComputeSignedMinMaxValuesFromKnownBits(const APInt& KnownZero,
181                                                    const APInt& KnownOne,
182                                                    APInt& Min, APInt& Max) {
183   assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
184          KnownZero.getBitWidth() == Min.getBitWidth() &&
185          KnownZero.getBitWidth() == Max.getBitWidth() &&
186          "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
187   APInt UnknownBits = ~(KnownZero|KnownOne);
188
189   // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
190   // bit if it is unknown.
191   Min = KnownOne;
192   Max = KnownOne|UnknownBits;
193
194   if (UnknownBits.isNegative()) { // Sign bit is unknown
195     Min.setBit(Min.getBitWidth()-1);
196     Max.clearBit(Max.getBitWidth()-1);
197   }
198 }
199
200 // ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
201 // a set of known zero and one bits, compute the maximum and minimum values that
202 // could have the specified known zero and known one bits, returning them in
203 // min/max.
204 static void ComputeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero,
205                                                      const APInt &KnownOne,
206                                                      APInt &Min, APInt &Max) {
207   assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
208          KnownZero.getBitWidth() == Min.getBitWidth() &&
209          KnownZero.getBitWidth() == Max.getBitWidth() &&
210          "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
211   APInt UnknownBits = ~(KnownZero|KnownOne);
212
213   // The minimum value is when the unknown bits are all zeros.
214   Min = KnownOne;
215   // The maximum value is when the unknown bits are all ones.
216   Max = KnownOne|UnknownBits;
217 }
218
219 /// FoldCmpLoadFromIndexedGlobal - Called we see this pattern:
220 ///   cmp pred (load (gep GV, ...)), cmpcst
221 /// where GV is a global variable with a constant initializer.  Try to simplify
222 /// this into some simple computation that does not need the load.  For example
223 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
224 ///
225 /// If AndCst is non-null, then the loaded value is masked with that constant
226 /// before doing the comparison.  This handles cases like "A[i]&4 == 0".
227 Instruction *InstCombiner::
228 FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,
229                              CmpInst &ICI, ConstantInt *AndCst) {
230   Constant *Init = GV->getInitializer();
231   if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
232     return nullptr;
233
234   uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
235   if (ArrayElementCount > 1024) return nullptr; // Don't blow up on huge arrays.
236
237   // There are many forms of this optimization we can handle, for now, just do
238   // the simple index into a single-dimensional array.
239   //
240   // Require: GEP GV, 0, i {{, constant indices}}
241   if (GEP->getNumOperands() < 3 ||
242       !isa<ConstantInt>(GEP->getOperand(1)) ||
243       !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
244       isa<Constant>(GEP->getOperand(2)))
245     return nullptr;
246
247   // Check that indices after the variable are constants and in-range for the
248   // type they index.  Collect the indices.  This is typically for arrays of
249   // structs.
250   SmallVector<unsigned, 4> LaterIndices;
251
252   Type *EltTy = Init->getType()->getArrayElementType();
253   for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
254     ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
255     if (!Idx) return nullptr;  // Variable index.
256
257     uint64_t IdxVal = Idx->getZExtValue();
258     if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index.
259
260     if (StructType *STy = dyn_cast<StructType>(EltTy))
261       EltTy = STy->getElementType(IdxVal);
262     else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
263       if (IdxVal >= ATy->getNumElements()) return nullptr;
264       EltTy = ATy->getElementType();
265     } else {
266       return nullptr; // Unknown type.
267     }
268
269     LaterIndices.push_back(IdxVal);
270   }
271
272   enum { Overdefined = -3, Undefined = -2 };
273
274   // Variables for our state machines.
275
276   // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
277   // "i == 47 | i == 87", where 47 is the first index the condition is true for,
278   // and 87 is the second (and last) index.  FirstTrueElement is -2 when
279   // undefined, otherwise set to the first true element.  SecondTrueElement is
280   // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
281   int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
282
283   // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
284   // form "i != 47 & i != 87".  Same state transitions as for true elements.
285   int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
286
287   /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
288   /// define a state machine that triggers for ranges of values that the index
289   /// is true or false for.  This triggers on things like "abbbbc"[i] == 'b'.
290   /// This is -2 when undefined, -3 when overdefined, and otherwise the last
291   /// index in the range (inclusive).  We use -2 for undefined here because we
292   /// use relative comparisons and don't want 0-1 to match -1.
293   int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
294
295   // MagicBitvector - This is a magic bitvector where we set a bit if the
296   // comparison is true for element 'i'.  If there are 64 elements or less in
297   // the array, this will fully represent all the comparison results.
298   uint64_t MagicBitvector = 0;
299
300   // Scan the array and see if one of our patterns matches.
301   Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
302   for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
303     Constant *Elt = Init->getAggregateElement(i);
304     if (!Elt) return nullptr;
305
306     // If this is indexing an array of structures, get the structure element.
307     if (!LaterIndices.empty())
308       Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
309
310     // If the element is masked, handle it.
311     if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
312
313     // Find out if the comparison would be true or false for the i'th element.
314     Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
315                                                   CompareRHS, DL, TLI);
316     // If the result is undef for this element, ignore it.
317     if (isa<UndefValue>(C)) {
318       // Extend range state machines to cover this element in case there is an
319       // undef in the middle of the range.
320       if (TrueRangeEnd == (int)i-1)
321         TrueRangeEnd = i;
322       if (FalseRangeEnd == (int)i-1)
323         FalseRangeEnd = i;
324       continue;
325     }
326
327     // If we can't compute the result for any of the elements, we have to give
328     // up evaluating the entire conditional.
329     if (!isa<ConstantInt>(C)) return nullptr;
330
331     // Otherwise, we know if the comparison is true or false for this element,
332     // update our state machines.
333     bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
334
335     // State machine for single/double/range index comparison.
336     if (IsTrueForElt) {
337       // Update the TrueElement state machine.
338       if (FirstTrueElement == Undefined)
339         FirstTrueElement = TrueRangeEnd = i;  // First true element.
340       else {
341         // Update double-compare state machine.
342         if (SecondTrueElement == Undefined)
343           SecondTrueElement = i;
344         else
345           SecondTrueElement = Overdefined;
346
347         // Update range state machine.
348         if (TrueRangeEnd == (int)i-1)
349           TrueRangeEnd = i;
350         else
351           TrueRangeEnd = Overdefined;
352       }
353     } else {
354       // Update the FalseElement state machine.
355       if (FirstFalseElement == Undefined)
356         FirstFalseElement = FalseRangeEnd = i; // First false element.
357       else {
358         // Update double-compare state machine.
359         if (SecondFalseElement == Undefined)
360           SecondFalseElement = i;
361         else
362           SecondFalseElement = Overdefined;
363
364         // Update range state machine.
365         if (FalseRangeEnd == (int)i-1)
366           FalseRangeEnd = i;
367         else
368           FalseRangeEnd = Overdefined;
369       }
370     }
371
372     // If this element is in range, update our magic bitvector.
373     if (i < 64 && IsTrueForElt)
374       MagicBitvector |= 1ULL << i;
375
376     // If all of our states become overdefined, bail out early.  Since the
377     // predicate is expensive, only check it every 8 elements.  This is only
378     // really useful for really huge arrays.
379     if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
380         SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
381         FalseRangeEnd == Overdefined)
382       return nullptr;
383   }
384
385   // Now that we've scanned the entire array, emit our new comparison(s).  We
386   // order the state machines in complexity of the generated code.
387   Value *Idx = GEP->getOperand(2);
388
389   // If the index is larger than the pointer size of the target, truncate the
390   // index down like the GEP would do implicitly.  We don't have to do this for
391   // an inbounds GEP because the index can't be out of range.
392   if (!GEP->isInBounds()) {
393     Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
394     unsigned PtrSize = IntPtrTy->getIntegerBitWidth();
395     if (Idx->getType()->getPrimitiveSizeInBits() > PtrSize)
396       Idx = Builder->CreateTrunc(Idx, IntPtrTy);
397   }
398
399   // If the comparison is only true for one or two elements, emit direct
400   // comparisons.
401   if (SecondTrueElement != Overdefined) {
402     // None true -> false.
403     if (FirstTrueElement == Undefined)
404       return ReplaceInstUsesWith(ICI, Builder->getFalse());
405
406     Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
407
408     // True for one element -> 'i == 47'.
409     if (SecondTrueElement == Undefined)
410       return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
411
412     // True for two elements -> 'i == 47 | i == 72'.
413     Value *C1 = Builder->CreateICmpEQ(Idx, FirstTrueIdx);
414     Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
415     Value *C2 = Builder->CreateICmpEQ(Idx, SecondTrueIdx);
416     return BinaryOperator::CreateOr(C1, C2);
417   }
418
419   // If the comparison is only false for one or two elements, emit direct
420   // comparisons.
421   if (SecondFalseElement != Overdefined) {
422     // None false -> true.
423     if (FirstFalseElement == Undefined)
424       return ReplaceInstUsesWith(ICI, Builder->getTrue());
425
426     Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
427
428     // False for one element -> 'i != 47'.
429     if (SecondFalseElement == Undefined)
430       return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
431
432     // False for two elements -> 'i != 47 & i != 72'.
433     Value *C1 = Builder->CreateICmpNE(Idx, FirstFalseIdx);
434     Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
435     Value *C2 = Builder->CreateICmpNE(Idx, SecondFalseIdx);
436     return BinaryOperator::CreateAnd(C1, C2);
437   }
438
439   // If the comparison can be replaced with a range comparison for the elements
440   // where it is true, emit the range check.
441   if (TrueRangeEnd != Overdefined) {
442     assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
443
444     // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
445     if (FirstTrueElement) {
446       Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
447       Idx = Builder->CreateAdd(Idx, Offs);
448     }
449
450     Value *End = ConstantInt::get(Idx->getType(),
451                                   TrueRangeEnd-FirstTrueElement+1);
452     return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
453   }
454
455   // False range check.
456   if (FalseRangeEnd != Overdefined) {
457     assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
458     // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
459     if (FirstFalseElement) {
460       Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
461       Idx = Builder->CreateAdd(Idx, Offs);
462     }
463
464     Value *End = ConstantInt::get(Idx->getType(),
465                                   FalseRangeEnd-FirstFalseElement);
466     return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
467   }
468
469   // If a magic bitvector captures the entire comparison state
470   // of this load, replace it with computation that does:
471   //   ((magic_cst >> i) & 1) != 0
472   {
473     Type *Ty = nullptr;
474
475     // Look for an appropriate type:
476     // - The type of Idx if the magic fits
477     // - The smallest fitting legal type if we have a DataLayout
478     // - Default to i32
479     if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
480       Ty = Idx->getType();
481     else
482       Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
483
484     if (Ty) {
485       Value *V = Builder->CreateIntCast(Idx, Ty, false);
486       V = Builder->CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
487       V = Builder->CreateAnd(ConstantInt::get(Ty, 1), V);
488       return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
489     }
490   }
491
492   return nullptr;
493 }
494
495 /// EvaluateGEPOffsetExpression - Return a value that can be used to compare
496 /// the *offset* implied by a GEP to zero.  For example, if we have &A[i], we
497 /// want to return 'i' for "icmp ne i, 0".  Note that, in general, indices can
498 /// be complex, and scales are involved.  The above expression would also be
499 /// legal to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32).
500 /// This later form is less amenable to optimization though, and we are allowed
501 /// to generate the first by knowing that pointer arithmetic doesn't overflow.
502 ///
503 /// If we can't emit an optimized form for this expression, this returns null.
504 ///
505 static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC,
506                                           const DataLayout &DL) {
507   gep_type_iterator GTI = gep_type_begin(GEP);
508
509   // Check to see if this gep only has a single variable index.  If so, and if
510   // any constant indices are a multiple of its scale, then we can compute this
511   // in terms of the scale of the variable index.  For example, if the GEP
512   // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
513   // because the expression will cross zero at the same point.
514   unsigned i, e = GEP->getNumOperands();
515   int64_t Offset = 0;
516   for (i = 1; i != e; ++i, ++GTI) {
517     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
518       // Compute the aggregate offset of constant indices.
519       if (CI->isZero()) continue;
520
521       // Handle a struct index, which adds its field offset to the pointer.
522       if (StructType *STy = dyn_cast<StructType>(*GTI)) {
523         Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
524       } else {
525         uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
526         Offset += Size*CI->getSExtValue();
527       }
528     } else {
529       // Found our variable index.
530       break;
531     }
532   }
533
534   // If there are no variable indices, we must have a constant offset, just
535   // evaluate it the general way.
536   if (i == e) return nullptr;
537
538   Value *VariableIdx = GEP->getOperand(i);
539   // Determine the scale factor of the variable element.  For example, this is
540   // 4 if the variable index is into an array of i32.
541   uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType());
542
543   // Verify that there are no other variable indices.  If so, emit the hard way.
544   for (++i, ++GTI; i != e; ++i, ++GTI) {
545     ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
546     if (!CI) return nullptr;
547
548     // Compute the aggregate offset of constant indices.
549     if (CI->isZero()) continue;
550
551     // Handle a struct index, which adds its field offset to the pointer.
552     if (StructType *STy = dyn_cast<StructType>(*GTI)) {
553       Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
554     } else {
555       uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
556       Offset += Size*CI->getSExtValue();
557     }
558   }
559
560   // Okay, we know we have a single variable index, which must be a
561   // pointer/array/vector index.  If there is no offset, life is simple, return
562   // the index.
563   Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType());
564   unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth();
565   if (Offset == 0) {
566     // Cast to intptrty in case a truncation occurs.  If an extension is needed,
567     // we don't need to bother extending: the extension won't affect where the
568     // computation crosses zero.
569     if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) {
570       VariableIdx = IC.Builder->CreateTrunc(VariableIdx, IntPtrTy);
571     }
572     return VariableIdx;
573   }
574
575   // Otherwise, there is an index.  The computation we will do will be modulo
576   // the pointer size, so get it.
577   uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
578
579   Offset &= PtrSizeMask;
580   VariableScale &= PtrSizeMask;
581
582   // To do this transformation, any constant index must be a multiple of the
583   // variable scale factor.  For example, we can evaluate "12 + 4*i" as "3 + i",
584   // but we can't evaluate "10 + 3*i" in terms of i.  Check that the offset is a
585   // multiple of the variable scale.
586   int64_t NewOffs = Offset / (int64_t)VariableScale;
587   if (Offset != NewOffs*(int64_t)VariableScale)
588     return nullptr;
589
590   // Okay, we can do this evaluation.  Start by converting the index to intptr.
591   if (VariableIdx->getType() != IntPtrTy)
592     VariableIdx = IC.Builder->CreateIntCast(VariableIdx, IntPtrTy,
593                                             true /*Signed*/);
594   Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
595   return IC.Builder->CreateAdd(VariableIdx, OffsetVal, "offset");
596 }
597
598 /// FoldGEPICmp - Fold comparisons between a GEP instruction and something
599 /// else.  At this point we know that the GEP is on the LHS of the comparison.
600 Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
601                                        ICmpInst::Predicate Cond,
602                                        Instruction &I) {
603   // Don't transform signed compares of GEPs into index compares. Even if the
604   // GEP is inbounds, the final add of the base pointer can have signed overflow
605   // and would change the result of the icmp.
606   // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
607   // the maximum signed value for the pointer type.
608   if (ICmpInst::isSigned(Cond))
609     return nullptr;
610
611   // Look through bitcasts and addrspacecasts. We do not however want to remove
612   // 0 GEPs.
613   if (!isa<GetElementPtrInst>(RHS))
614     RHS = RHS->stripPointerCasts();
615
616   Value *PtrBase = GEPLHS->getOperand(0);
617   if (PtrBase == RHS && GEPLHS->isInBounds()) {
618     // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
619     // This transformation (ignoring the base and scales) is valid because we
620     // know pointers can't overflow since the gep is inbounds.  See if we can
621     // output an optimized form.
622     Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, *this, DL);
623
624     // If not, synthesize the offset the hard way.
625     if (!Offset)
626       Offset = EmitGEPOffset(GEPLHS);
627     return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
628                         Constant::getNullValue(Offset->getType()));
629   } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
630     // If the base pointers are different, but the indices are the same, just
631     // compare the base pointer.
632     if (PtrBase != GEPRHS->getOperand(0)) {
633       bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
634       IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
635                         GEPRHS->getOperand(0)->getType();
636       if (IndicesTheSame)
637         for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
638           if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
639             IndicesTheSame = false;
640             break;
641           }
642
643       // If all indices are the same, just compare the base pointers.
644       if (IndicesTheSame)
645         return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
646
647       // If we're comparing GEPs with two base pointers that only differ in type
648       // and both GEPs have only constant indices or just one use, then fold
649       // the compare with the adjusted indices.
650       if (GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
651           (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
652           (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
653           PtrBase->stripPointerCasts() ==
654               GEPRHS->getOperand(0)->stripPointerCasts()) {
655         Value *LOffset = EmitGEPOffset(GEPLHS);
656         Value *ROffset = EmitGEPOffset(GEPRHS);
657
658         // If we looked through an addrspacecast between different sized address
659         // spaces, the LHS and RHS pointers are different sized
660         // integers. Truncate to the smaller one.
661         Type *LHSIndexTy = LOffset->getType();
662         Type *RHSIndexTy = ROffset->getType();
663         if (LHSIndexTy != RHSIndexTy) {
664           if (LHSIndexTy->getPrimitiveSizeInBits() <
665               RHSIndexTy->getPrimitiveSizeInBits()) {
666             ROffset = Builder->CreateTrunc(ROffset, LHSIndexTy);
667           } else
668             LOffset = Builder->CreateTrunc(LOffset, RHSIndexTy);
669         }
670
671         Value *Cmp = Builder->CreateICmp(ICmpInst::getSignedPredicate(Cond),
672                                          LOffset, ROffset);
673         return ReplaceInstUsesWith(I, Cmp);
674       }
675
676       // Otherwise, the base pointers are different and the indices are
677       // different, bail out.
678       return nullptr;
679     }
680
681     // If one of the GEPs has all zero indices, recurse.
682     if (GEPLHS->hasAllZeroIndices())
683       return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
684                          ICmpInst::getSwappedPredicate(Cond), I);
685
686     // If the other GEP has all zero indices, recurse.
687     if (GEPRHS->hasAllZeroIndices())
688       return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
689
690     bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
691     if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
692       // If the GEPs only differ by one index, compare it.
693       unsigned NumDifferences = 0;  // Keep track of # differences.
694       unsigned DiffOperand = 0;     // The operand that differs.
695       for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
696         if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
697           if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
698                    GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
699             // Irreconcilable differences.
700             NumDifferences = 2;
701             break;
702           } else {
703             if (NumDifferences++) break;
704             DiffOperand = i;
705           }
706         }
707
708       if (NumDifferences == 0)   // SAME GEP?
709         return ReplaceInstUsesWith(I, // No comparison is needed here.
710                              Builder->getInt1(ICmpInst::isTrueWhenEqual(Cond)));
711
712       else if (NumDifferences == 1 && GEPsInBounds) {
713         Value *LHSV = GEPLHS->getOperand(DiffOperand);
714         Value *RHSV = GEPRHS->getOperand(DiffOperand);
715         // Make sure we do a signed comparison here.
716         return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
717       }
718     }
719
720     // Only lower this if the icmp is the only user of the GEP or if we expect
721     // the result to fold to a constant!
722     if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
723         (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
724       // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
725       Value *L = EmitGEPOffset(GEPLHS);
726       Value *R = EmitGEPOffset(GEPRHS);
727       return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
728     }
729   }
730   return nullptr;
731 }
732
733 Instruction *InstCombiner::FoldAllocaCmp(ICmpInst &ICI, AllocaInst *Alloca,
734                                          Value *Other) {
735   assert(ICI.isEquality() && "Cannot fold non-equality comparison.");
736
737   // It would be tempting to fold away comparisons between allocas and any
738   // pointer not based on that alloca (e.g. an argument). However, even
739   // though such pointers cannot alias, they can still compare equal.
740   //
741   // But LLVM doesn't specify where allocas get their memory, so if the alloca
742   // doesn't escape we can argue that it's impossible to guess its value, and we
743   // can therefore act as if any such guesses are wrong.
744   //
745   // The code below checks that the alloca doesn't escape, and that it's only
746   // used in a comparison once (the current instruction). The
747   // single-comparison-use condition ensures that we're trivially folding all
748   // comparisons against the alloca consistently, and avoids the risk of
749   // erroneously folding a comparison of the pointer with itself.
750
751   unsigned MaxIter = 32; // Break cycles and bound to constant-time.
752
753   SmallVector<Use *, 32> Worklist;
754   for (Use &U : Alloca->uses()) {
755     if (Worklist.size() >= MaxIter)
756       return nullptr;
757     Worklist.push_back(&U);
758   }
759
760   unsigned NumCmps = 0;
761   while (!Worklist.empty()) {
762     assert(Worklist.size() <= MaxIter);
763     Use *U = Worklist.pop_back_val();
764     Value *V = U->getUser();
765     --MaxIter;
766
767     if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) ||
768         isa<SelectInst>(V)) {
769       // Track the uses.
770     } else if (isa<LoadInst>(V)) {
771       // Loading from the pointer doesn't escape it.
772       continue;
773     } else if (auto *SI = dyn_cast<StoreInst>(V)) {
774       // Storing *to* the pointer is fine, but storing the pointer escapes it.
775       if (SI->getValueOperand() == U->get())
776         return nullptr;
777       continue;
778     } else if (isa<ICmpInst>(V)) {
779       if (NumCmps++)
780         return nullptr; // Found more than one cmp.
781       continue;
782     } else if (auto *Intrin = dyn_cast<IntrinsicInst>(V)) {
783       switch (Intrin->getIntrinsicID()) {
784         // These intrinsics don't escape or compare the pointer. Memset is safe
785         // because we don't allow ptrtoint. Memcpy and memmove are safe because
786         // we don't allow stores, so src cannot point to V.
787         case Intrinsic::lifetime_start: case Intrinsic::lifetime_end:
788         case Intrinsic::dbg_declare: case Intrinsic::dbg_value:
789         case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset:
790           continue;
791         default:
792           return nullptr;
793       }
794     } else {
795       return nullptr;
796     }
797     for (Use &U : V->uses()) {
798       if (Worklist.size() >= MaxIter)
799         return nullptr;
800       Worklist.push_back(&U);
801     }
802   }
803
804   Type *CmpTy = CmpInst::makeCmpResultType(Other->getType());
805   return ReplaceInstUsesWith(
806       ICI,
807       ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate())));
808 }
809
810 /// FoldICmpAddOpCst - Fold "icmp pred (X+CI), X".
811 Instruction *InstCombiner::FoldICmpAddOpCst(Instruction &ICI,
812                                             Value *X, ConstantInt *CI,
813                                             ICmpInst::Predicate Pred) {
814   // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
815   // so the values can never be equal.  Similarly for all other "or equals"
816   // operators.
817
818   // (X+1) <u X        --> X >u (MAXUINT-1)        --> X == 255
819   // (X+2) <u X        --> X >u (MAXUINT-2)        --> X > 253
820   // (X+MAXUINT) <u X  --> X >u (MAXUINT-MAXUINT)  --> X != 0
821   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
822     Value *R =
823       ConstantExpr::getSub(ConstantInt::getAllOnesValue(CI->getType()), CI);
824     return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
825   }
826
827   // (X+1) >u X        --> X <u (0-1)        --> X != 255
828   // (X+2) >u X        --> X <u (0-2)        --> X <u 254
829   // (X+MAXUINT) >u X  --> X <u (0-MAXUINT)  --> X <u 1  --> X == 0
830   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
831     return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantExpr::getNeg(CI));
832
833   unsigned BitWidth = CI->getType()->getPrimitiveSizeInBits();
834   ConstantInt *SMax = ConstantInt::get(X->getContext(),
835                                        APInt::getSignedMaxValue(BitWidth));
836
837   // (X+ 1) <s X       --> X >s (MAXSINT-1)          --> X == 127
838   // (X+ 2) <s X       --> X >s (MAXSINT-2)          --> X >s 125
839   // (X+MAXSINT) <s X  --> X >s (MAXSINT-MAXSINT)    --> X >s 0
840   // (X+MINSINT) <s X  --> X >s (MAXSINT-MINSINT)    --> X >s -1
841   // (X+ -2) <s X      --> X >s (MAXSINT- -2)        --> X >s 126
842   // (X+ -1) <s X      --> X >s (MAXSINT- -1)        --> X != 127
843   if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
844     return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantExpr::getSub(SMax, CI));
845
846   // (X+ 1) >s X       --> X <s (MAXSINT-(1-1))       --> X != 127
847   // (X+ 2) >s X       --> X <s (MAXSINT-(2-1))       --> X <s 126
848   // (X+MAXSINT) >s X  --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
849   // (X+MINSINT) >s X  --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
850   // (X+ -2) >s X      --> X <s (MAXSINT-(-2-1))      --> X <s -126
851   // (X+ -1) >s X      --> X <s (MAXSINT-(-1-1))      --> X == -128
852
853   assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
854   Constant *C = Builder->getInt(CI->getValue()-1);
855   return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantExpr::getSub(SMax, C));
856 }
857
858 /// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
859 /// and CmpRHS are both known to be integer constants.
860 Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
861                                           ConstantInt *DivRHS) {
862   ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
863   const APInt &CmpRHSV = CmpRHS->getValue();
864
865   // FIXME: If the operand types don't match the type of the divide
866   // then don't attempt this transform. The code below doesn't have the
867   // logic to deal with a signed divide and an unsigned compare (and
868   // vice versa). This is because (x /s C1) <s C2  produces different
869   // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
870   // (x /u C1) <u C2.  Simply casting the operands and result won't
871   // work. :(  The if statement below tests that condition and bails
872   // if it finds it.
873   bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
874   if (!ICI.isEquality() && DivIsSigned != ICI.isSigned())
875     return nullptr;
876   if (DivRHS->isZero())
877     return nullptr; // The ProdOV computation fails on divide by zero.
878   if (DivIsSigned && DivRHS->isAllOnesValue())
879     return nullptr; // The overflow computation also screws up here
880   if (DivRHS->isOne()) {
881     // This eliminates some funny cases with INT_MIN.
882     ICI.setOperand(0, DivI->getOperand(0));   // X/1 == X.
883     return &ICI;
884   }
885
886   // Compute Prod = CI * DivRHS. We are essentially solving an equation
887   // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
888   // C2 (CI). By solving for X we can turn this into a range check
889   // instead of computing a divide.
890   Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS);
891
892   // Determine if the product overflows by seeing if the product is
893   // not equal to the divide. Make sure we do the same kind of divide
894   // as in the LHS instruction that we're folding.
895   bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
896                  ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
897
898   // Get the ICmp opcode
899   ICmpInst::Predicate Pred = ICI.getPredicate();
900
901   /// If the division is known to be exact, then there is no remainder from the
902   /// divide, so the covered range size is unit, otherwise it is the divisor.
903   ConstantInt *RangeSize = DivI->isExact() ? getOne(Prod) : DivRHS;
904
905   // Figure out the interval that is being checked.  For example, a comparison
906   // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
907   // Compute this interval based on the constants involved and the signedness of
908   // the compare/divide.  This computes a half-open interval, keeping track of
909   // whether either value in the interval overflows.  After analysis each
910   // overflow variable is set to 0 if it's corresponding bound variable is valid
911   // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
912   int LoOverflow = 0, HiOverflow = 0;
913   Constant *LoBound = nullptr, *HiBound = nullptr;
914
915   if (!DivIsSigned) {  // udiv
916     // e.g. X/5 op 3  --> [15, 20)
917     LoBound = Prod;
918     HiOverflow = LoOverflow = ProdOV;
919     if (!HiOverflow) {
920       // If this is not an exact divide, then many values in the range collapse
921       // to the same result value.
922       HiOverflow = AddWithOverflow(HiBound, LoBound, RangeSize, false);
923     }
924   } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.
925     if (CmpRHSV == 0) {       // (X / pos) op 0
926       // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2)
927       LoBound = ConstantExpr::getNeg(SubOne(RangeSize));
928       HiBound = RangeSize;
929     } else if (CmpRHSV.isStrictlyPositive()) {   // (X / pos) op pos
930       LoBound = Prod;     // e.g.   X/5 op 3 --> [15, 20)
931       HiOverflow = LoOverflow = ProdOV;
932       if (!HiOverflow)
933         HiOverflow = AddWithOverflow(HiBound, Prod, RangeSize, true);
934     } else {                       // (X / pos) op neg
935       // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14)
936       HiBound = AddOne(Prod);
937       LoOverflow = HiOverflow = ProdOV ? -1 : 0;
938       if (!LoOverflow) {
939         ConstantInt *DivNeg =cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
940         LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
941       }
942     }
943   } else if (DivRHS->isNegative()) { // Divisor is < 0.
944     if (DivI->isExact())
945       RangeSize = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
946     if (CmpRHSV == 0) {       // (X / neg) op 0
947       // e.g. X/-5 op 0  --> [-4, 5)
948       LoBound = AddOne(RangeSize);
949       HiBound = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
950       if (HiBound == DivRHS) {     // -INTMIN = INTMIN
951         HiOverflow = 1;            // [INTMIN+1, overflow)
952         HiBound = nullptr;         // e.g. X/INTMIN = 0 --> X > INTMIN
953       }
954     } else if (CmpRHSV.isStrictlyPositive()) {   // (X / neg) op pos
955       // e.g. X/-5 op 3  --> [-19, -14)
956       HiBound = AddOne(Prod);
957       HiOverflow = LoOverflow = ProdOV ? -1 : 0;
958       if (!LoOverflow)
959         LoOverflow = AddWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
960     } else {                       // (X / neg) op neg
961       LoBound = Prod;       // e.g. X/-5 op -3  --> [15, 20)
962       LoOverflow = HiOverflow = ProdOV;
963       if (!HiOverflow)
964         HiOverflow = SubWithOverflow(HiBound, Prod, RangeSize, true);
965     }
966
967     // Dividing by a negative swaps the condition.  LT <-> GT
968     Pred = ICmpInst::getSwappedPredicate(Pred);
969   }
970
971   Value *X = DivI->getOperand(0);
972   switch (Pred) {
973   default: llvm_unreachable("Unhandled icmp opcode!");
974   case ICmpInst::ICMP_EQ:
975     if (LoOverflow && HiOverflow)
976       return ReplaceInstUsesWith(ICI, Builder->getFalse());
977     if (HiOverflow)
978       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
979                           ICmpInst::ICMP_UGE, X, LoBound);
980     if (LoOverflow)
981       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
982                           ICmpInst::ICMP_ULT, X, HiBound);
983     return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
984                                                     DivIsSigned, true));
985   case ICmpInst::ICMP_NE:
986     if (LoOverflow && HiOverflow)
987       return ReplaceInstUsesWith(ICI, Builder->getTrue());
988     if (HiOverflow)
989       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
990                           ICmpInst::ICMP_ULT, X, LoBound);
991     if (LoOverflow)
992       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
993                           ICmpInst::ICMP_UGE, X, HiBound);
994     return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
995                                                     DivIsSigned, false));
996   case ICmpInst::ICMP_ULT:
997   case ICmpInst::ICMP_SLT:
998     if (LoOverflow == +1)   // Low bound is greater than input range.
999       return ReplaceInstUsesWith(ICI, Builder->getTrue());
1000     if (LoOverflow == -1)   // Low bound is less than input range.
1001       return ReplaceInstUsesWith(ICI, Builder->getFalse());
1002     return new ICmpInst(Pred, X, LoBound);
1003   case ICmpInst::ICMP_UGT:
1004   case ICmpInst::ICMP_SGT:
1005     if (HiOverflow == +1)       // High bound greater than input range.
1006       return ReplaceInstUsesWith(ICI, Builder->getFalse());
1007     if (HiOverflow == -1)       // High bound less than input range.
1008       return ReplaceInstUsesWith(ICI, Builder->getTrue());
1009     if (Pred == ICmpInst::ICMP_UGT)
1010       return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
1011     return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
1012   }
1013 }
1014
1015 /// FoldICmpShrCst - Handle "icmp(([al]shr X, cst1), cst2)".
1016 Instruction *InstCombiner::FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *Shr,
1017                                           ConstantInt *ShAmt) {
1018   const APInt &CmpRHSV = cast<ConstantInt>(ICI.getOperand(1))->getValue();
1019
1020   // Check that the shift amount is in range.  If not, don't perform
1021   // undefined shifts.  When the shift is visited it will be
1022   // simplified.
1023   uint32_t TypeBits = CmpRHSV.getBitWidth();
1024   uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
1025   if (ShAmtVal >= TypeBits || ShAmtVal == 0)
1026     return nullptr;
1027
1028   if (!ICI.isEquality()) {
1029     // If we have an unsigned comparison and an ashr, we can't simplify this.
1030     // Similarly for signed comparisons with lshr.
1031     if (ICI.isSigned() != (Shr->getOpcode() == Instruction::AShr))
1032       return nullptr;
1033
1034     // Otherwise, all lshr and most exact ashr's are equivalent to a udiv/sdiv
1035     // by a power of 2.  Since we already have logic to simplify these,
1036     // transform to div and then simplify the resultant comparison.
1037     if (Shr->getOpcode() == Instruction::AShr &&
1038         (!Shr->isExact() || ShAmtVal == TypeBits - 1))
1039       return nullptr;
1040
1041     // Revisit the shift (to delete it).
1042     Worklist.Add(Shr);
1043
1044     Constant *DivCst =
1045       ConstantInt::get(Shr->getType(), APInt::getOneBitSet(TypeBits, ShAmtVal));
1046
1047     Value *Tmp =
1048       Shr->getOpcode() == Instruction::AShr ?
1049       Builder->CreateSDiv(Shr->getOperand(0), DivCst, "", Shr->isExact()) :
1050       Builder->CreateUDiv(Shr->getOperand(0), DivCst, "", Shr->isExact());
1051
1052     ICI.setOperand(0, Tmp);
1053
1054     // If the builder folded the binop, just return it.
1055     BinaryOperator *TheDiv = dyn_cast<BinaryOperator>(Tmp);
1056     if (!TheDiv)
1057       return &ICI;
1058
1059     // Otherwise, fold this div/compare.
1060     assert(TheDiv->getOpcode() == Instruction::SDiv ||
1061            TheDiv->getOpcode() == Instruction::UDiv);
1062
1063     Instruction *Res = FoldICmpDivCst(ICI, TheDiv, cast<ConstantInt>(DivCst));
1064     assert(Res && "This div/cst should have folded!");
1065     return Res;
1066   }
1067
1068   // If we are comparing against bits always shifted out, the
1069   // comparison cannot succeed.
1070   APInt Comp = CmpRHSV << ShAmtVal;
1071   ConstantInt *ShiftedCmpRHS = Builder->getInt(Comp);
1072   if (Shr->getOpcode() == Instruction::LShr)
1073     Comp = Comp.lshr(ShAmtVal);
1074   else
1075     Comp = Comp.ashr(ShAmtVal);
1076
1077   if (Comp != CmpRHSV) { // Comparing against a bit that we know is zero.
1078     bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
1079     Constant *Cst = Builder->getInt1(IsICMP_NE);
1080     return ReplaceInstUsesWith(ICI, Cst);
1081   }
1082
1083   // Otherwise, check to see if the bits shifted out are known to be zero.
1084   // If so, we can compare against the unshifted value:
1085   //  (X & 4) >> 1 == 2  --> (X & 4) == 4.
1086   if (Shr->hasOneUse() && Shr->isExact())
1087     return new ICmpInst(ICI.getPredicate(), Shr->getOperand(0), ShiftedCmpRHS);
1088
1089   if (Shr->hasOneUse()) {
1090     // Otherwise strength reduce the shift into an and.
1091     APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
1092     Constant *Mask = Builder->getInt(Val);
1093
1094     Value *And = Builder->CreateAnd(Shr->getOperand(0),
1095                                     Mask, Shr->getName()+".mask");
1096     return new ICmpInst(ICI.getPredicate(), And, ShiftedCmpRHS);
1097   }
1098   return nullptr;
1099 }
1100
1101 /// FoldICmpCstShrCst - Handle "(icmp eq/ne (ashr/lshr const2, A), const1)" ->
1102 /// (icmp eq/ne A, Log2(const2/const1)) ->
1103 /// (icmp eq/ne A, Log2(const2) - Log2(const1)).
1104 Instruction *InstCombiner::FoldICmpCstShrCst(ICmpInst &I, Value *Op, Value *A,
1105                                              ConstantInt *CI1,
1106                                              ConstantInt *CI2) {
1107   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1108
1109   auto getConstant = [&I, this](bool IsTrue) {
1110     if (I.getPredicate() == I.ICMP_NE)
1111       IsTrue = !IsTrue;
1112     return ReplaceInstUsesWith(I, ConstantInt::get(I.getType(), IsTrue));
1113   };
1114
1115   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1116     if (I.getPredicate() == I.ICMP_NE)
1117       Pred = CmpInst::getInversePredicate(Pred);
1118     return new ICmpInst(Pred, LHS, RHS);
1119   };
1120
1121   APInt AP1 = CI1->getValue();
1122   APInt AP2 = CI2->getValue();
1123
1124   // Don't bother doing any work for cases which InstSimplify handles.
1125   if (AP2 == 0)
1126     return nullptr;
1127   bool IsAShr = isa<AShrOperator>(Op);
1128   if (IsAShr) {
1129     if (AP2.isAllOnesValue())
1130       return nullptr;
1131     if (AP2.isNegative() != AP1.isNegative())
1132       return nullptr;
1133     if (AP2.sgt(AP1))
1134       return nullptr;
1135   }
1136
1137   if (!AP1)
1138     // 'A' must be large enough to shift out the highest set bit.
1139     return getICmp(I.ICMP_UGT, A,
1140                    ConstantInt::get(A->getType(), AP2.logBase2()));
1141
1142   if (AP1 == AP2)
1143     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1144
1145   int Shift;
1146   if (IsAShr && AP1.isNegative())
1147     Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes();
1148   else
1149     Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros();
1150
1151   if (Shift > 0) {
1152     if (IsAShr && AP1 == AP2.ashr(Shift)) {
1153       // There are multiple solutions if we are comparing against -1 and the LHS
1154       // of the ashr is not a power of two.
1155       if (AP1.isAllOnesValue() && !AP2.isPowerOf2())
1156         return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift));
1157       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1158     } else if (AP1 == AP2.lshr(Shift)) {
1159       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1160     }
1161   }
1162   // Shifting const2 will never be equal to const1.
1163   return getConstant(false);
1164 }
1165
1166 /// FoldICmpCstShlCst - Handle "(icmp eq/ne (shl const2, A), const1)" ->
1167 /// (icmp eq/ne A, TrailingZeros(const1) - TrailingZeros(const2)).
1168 Instruction *InstCombiner::FoldICmpCstShlCst(ICmpInst &I, Value *Op, Value *A,
1169                                              ConstantInt *CI1,
1170                                              ConstantInt *CI2) {
1171   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1172
1173   auto getConstant = [&I, this](bool IsTrue) {
1174     if (I.getPredicate() == I.ICMP_NE)
1175       IsTrue = !IsTrue;
1176     return ReplaceInstUsesWith(I, ConstantInt::get(I.getType(), IsTrue));
1177   };
1178
1179   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1180     if (I.getPredicate() == I.ICMP_NE)
1181       Pred = CmpInst::getInversePredicate(Pred);
1182     return new ICmpInst(Pred, LHS, RHS);
1183   };
1184
1185   APInt AP1 = CI1->getValue();
1186   APInt AP2 = CI2->getValue();
1187
1188   // Don't bother doing any work for cases which InstSimplify handles.
1189   if (AP2 == 0)
1190     return nullptr;
1191
1192   unsigned AP2TrailingZeros = AP2.countTrailingZeros();
1193
1194   if (!AP1 && AP2TrailingZeros != 0)
1195     return getICmp(I.ICMP_UGE, A,
1196                    ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros));
1197
1198   if (AP1 == AP2)
1199     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1200
1201   // Get the distance between the lowest bits that are set.
1202   int Shift = AP1.countTrailingZeros() - AP2TrailingZeros;
1203
1204   if (Shift > 0 && AP2.shl(Shift) == AP1)
1205     return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1206
1207   // Shifting const2 will never be equal to const1.
1208   return getConstant(false);
1209 }
1210
1211 /// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
1212 ///
1213 Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
1214                                                           Instruction *LHSI,
1215                                                           ConstantInt *RHS) {
1216   const APInt &RHSV = RHS->getValue();
1217
1218   switch (LHSI->getOpcode()) {
1219   case Instruction::Trunc:
1220     if (RHS->isOne() && RHSV.getBitWidth() > 1) {
1221       // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1
1222       Value *V = nullptr;
1223       if (ICI.getPredicate() == ICmpInst::ICMP_SLT &&
1224           match(LHSI->getOperand(0), m_Signum(m_Value(V))))
1225         return new ICmpInst(ICmpInst::ICMP_SLT, V,
1226                             ConstantInt::get(V->getType(), 1));
1227     }
1228     if (ICI.isEquality() && LHSI->hasOneUse()) {
1229       // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1230       // of the high bits truncated out of x are known.
1231       unsigned DstBits = LHSI->getType()->getPrimitiveSizeInBits(),
1232              SrcBits = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits();
1233       APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0);
1234       computeKnownBits(LHSI->getOperand(0), KnownZero, KnownOne, 0, &ICI);
1235
1236       // If all the high bits are known, we can do this xform.
1237       if ((KnownZero|KnownOne).countLeadingOnes() >= SrcBits-DstBits) {
1238         // Pull in the high bits from known-ones set.
1239         APInt NewRHS = RHS->getValue().zext(SrcBits);
1240         NewRHS |= KnownOne & APInt::getHighBitsSet(SrcBits, SrcBits-DstBits);
1241         return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
1242                             Builder->getInt(NewRHS));
1243       }
1244     }
1245     break;
1246
1247   case Instruction::Xor:         // (icmp pred (xor X, XorCst), CI)
1248     if (ConstantInt *XorCst = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
1249       // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1250       // fold the xor.
1251       if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) ||
1252           (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) {
1253         Value *CompareVal = LHSI->getOperand(0);
1254
1255         // If the sign bit of the XorCst is not set, there is no change to
1256         // the operation, just stop using the Xor.
1257         if (!XorCst->isNegative()) {
1258           ICI.setOperand(0, CompareVal);
1259           Worklist.Add(LHSI);
1260           return &ICI;
1261         }
1262
1263         // Was the old condition true if the operand is positive?
1264         bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
1265
1266         // If so, the new one isn't.
1267         isTrueIfPositive ^= true;
1268
1269         if (isTrueIfPositive)
1270           return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal,
1271                               SubOne(RHS));
1272         else
1273           return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal,
1274                               AddOne(RHS));
1275       }
1276
1277       if (LHSI->hasOneUse()) {
1278         // (icmp u/s (xor A SignBit), C) -> (icmp s/u A, (xor C SignBit))
1279         if (!ICI.isEquality() && XorCst->getValue().isSignBit()) {
1280           const APInt &SignBit = XorCst->getValue();
1281           ICmpInst::Predicate Pred = ICI.isSigned()
1282                                          ? ICI.getUnsignedPredicate()
1283                                          : ICI.getSignedPredicate();
1284           return new ICmpInst(Pred, LHSI->getOperand(0),
1285                               Builder->getInt(RHSV ^ SignBit));
1286         }
1287
1288         // (icmp u/s (xor A ~SignBit), C) -> (icmp s/u (xor C ~SignBit), A)
1289         if (!ICI.isEquality() && XorCst->isMaxValue(true)) {
1290           const APInt &NotSignBit = XorCst->getValue();
1291           ICmpInst::Predicate Pred = ICI.isSigned()
1292                                          ? ICI.getUnsignedPredicate()
1293                                          : ICI.getSignedPredicate();
1294           Pred = ICI.getSwappedPredicate(Pred);
1295           return new ICmpInst(Pred, LHSI->getOperand(0),
1296                               Builder->getInt(RHSV ^ NotSignBit));
1297         }
1298       }
1299
1300       // (icmp ugt (xor X, C), ~C) -> (icmp ult X, C)
1301       //   iff -C is a power of 2
1302       if (ICI.getPredicate() == ICmpInst::ICMP_UGT &&
1303           XorCst->getValue() == ~RHSV && (RHSV + 1).isPowerOf2())
1304         return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0), XorCst);
1305
1306       // (icmp ult (xor X, C), -C) -> (icmp uge X, C)
1307       //   iff -C is a power of 2
1308       if (ICI.getPredicate() == ICmpInst::ICMP_ULT &&
1309           XorCst->getValue() == -RHSV && RHSV.isPowerOf2())
1310         return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0), XorCst);
1311     }
1312     break;
1313   case Instruction::And:         // (icmp pred (and X, AndCst), RHS)
1314     if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
1315         LHSI->getOperand(0)->hasOneUse()) {
1316       ConstantInt *AndCst = cast<ConstantInt>(LHSI->getOperand(1));
1317
1318       // If the LHS is an AND of a truncating cast, we can widen the
1319       // and/compare to be the input width without changing the value
1320       // produced, eliminating a cast.
1321       if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
1322         // We can do this transformation if either the AND constant does not
1323         // have its sign bit set or if it is an equality comparison.
1324         // Extending a relational comparison when we're checking the sign
1325         // bit would not work.
1326         if (ICI.isEquality() ||
1327             (!AndCst->isNegative() && RHSV.isNonNegative())) {
1328           Value *NewAnd =
1329             Builder->CreateAnd(Cast->getOperand(0),
1330                                ConstantExpr::getZExt(AndCst, Cast->getSrcTy()));
1331           NewAnd->takeName(LHSI);
1332           return new ICmpInst(ICI.getPredicate(), NewAnd,
1333                               ConstantExpr::getZExt(RHS, Cast->getSrcTy()));
1334         }
1335       }
1336
1337       // If the LHS is an AND of a zext, and we have an equality compare, we can
1338       // shrink the and/compare to the smaller type, eliminating the cast.
1339       if (ZExtInst *Cast = dyn_cast<ZExtInst>(LHSI->getOperand(0))) {
1340         IntegerType *Ty = cast<IntegerType>(Cast->getSrcTy());
1341         // Make sure we don't compare the upper bits, SimplifyDemandedBits
1342         // should fold the icmp to true/false in that case.
1343         if (ICI.isEquality() && RHSV.getActiveBits() <= Ty->getBitWidth()) {
1344           Value *NewAnd =
1345             Builder->CreateAnd(Cast->getOperand(0),
1346                                ConstantExpr::getTrunc(AndCst, Ty));
1347           NewAnd->takeName(LHSI);
1348           return new ICmpInst(ICI.getPredicate(), NewAnd,
1349                               ConstantExpr::getTrunc(RHS, Ty));
1350         }
1351       }
1352
1353       // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
1354       // could exist), turn it into (X & (C2 << C1)) != (C3 << C1).  This
1355       // happens a LOT in code produced by the C front-end, for bitfield
1356       // access.
1357       BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
1358       if (Shift && !Shift->isShift())
1359         Shift = nullptr;
1360
1361       ConstantInt *ShAmt;
1362       ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : nullptr;
1363
1364       // This seemingly simple opportunity to fold away a shift turns out to
1365       // be rather complicated. See PR17827
1366       // ( http://llvm.org/bugs/show_bug.cgi?id=17827 ) for details.
1367       if (ShAmt) {
1368         bool CanFold = false;
1369         unsigned ShiftOpcode = Shift->getOpcode();
1370         if (ShiftOpcode == Instruction::AShr) {
1371           // There may be some constraints that make this possible,
1372           // but nothing simple has been discovered yet.
1373           CanFold = false;
1374         } else if (ShiftOpcode == Instruction::Shl) {
1375           // For a left shift, we can fold if the comparison is not signed.
1376           // We can also fold a signed comparison if the mask value and
1377           // comparison value are not negative. These constraints may not be
1378           // obvious, but we can prove that they are correct using an SMT
1379           // solver.
1380           if (!ICI.isSigned() || (!AndCst->isNegative() && !RHS->isNegative()))
1381             CanFold = true;
1382         } else if (ShiftOpcode == Instruction::LShr) {
1383           // For a logical right shift, we can fold if the comparison is not
1384           // signed. We can also fold a signed comparison if the shifted mask
1385           // value and the shifted comparison value are not negative.
1386           // These constraints may not be obvious, but we can prove that they
1387           // are correct using an SMT solver.
1388           if (!ICI.isSigned())
1389             CanFold = true;
1390           else {
1391             ConstantInt *ShiftedAndCst =
1392               cast<ConstantInt>(ConstantExpr::getShl(AndCst, ShAmt));
1393             ConstantInt *ShiftedRHSCst =
1394               cast<ConstantInt>(ConstantExpr::getShl(RHS, ShAmt));
1395             
1396             if (!ShiftedAndCst->isNegative() && !ShiftedRHSCst->isNegative())
1397               CanFold = true;
1398           }
1399         }
1400
1401         if (CanFold) {
1402           Constant *NewCst;
1403           if (ShiftOpcode == Instruction::Shl)
1404             NewCst = ConstantExpr::getLShr(RHS, ShAmt);
1405           else
1406             NewCst = ConstantExpr::getShl(RHS, ShAmt);
1407
1408           // Check to see if we are shifting out any of the bits being
1409           // compared.
1410           if (ConstantExpr::get(ShiftOpcode, NewCst, ShAmt) != RHS) {
1411             // If we shifted bits out, the fold is not going to work out.
1412             // As a special case, check to see if this means that the
1413             // result is always true or false now.
1414             if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
1415               return ReplaceInstUsesWith(ICI, Builder->getFalse());
1416             if (ICI.getPredicate() == ICmpInst::ICMP_NE)
1417               return ReplaceInstUsesWith(ICI, Builder->getTrue());
1418           } else {
1419             ICI.setOperand(1, NewCst);
1420             Constant *NewAndCst;
1421             if (ShiftOpcode == Instruction::Shl)
1422               NewAndCst = ConstantExpr::getLShr(AndCst, ShAmt);
1423             else
1424               NewAndCst = ConstantExpr::getShl(AndCst, ShAmt);
1425             LHSI->setOperand(1, NewAndCst);
1426             LHSI->setOperand(0, Shift->getOperand(0));
1427             Worklist.Add(Shift); // Shift is dead.
1428             return &ICI;
1429           }
1430         }
1431       }
1432
1433       // Turn ((X >> Y) & C) == 0  into  (X & (C << Y)) == 0.  The later is
1434       // preferable because it allows the C<<Y expression to be hoisted out
1435       // of a loop if Y is invariant and X is not.
1436       if (Shift && Shift->hasOneUse() && RHSV == 0 &&
1437           ICI.isEquality() && !Shift->isArithmeticShift() &&
1438           !isa<Constant>(Shift->getOperand(0))) {
1439         // Compute C << Y.
1440         Value *NS;
1441         if (Shift->getOpcode() == Instruction::LShr) {
1442           NS = Builder->CreateShl(AndCst, Shift->getOperand(1));
1443         } else {
1444           // Insert a logical shift.
1445           NS = Builder->CreateLShr(AndCst, Shift->getOperand(1));
1446         }
1447
1448         // Compute X & (C << Y).
1449         Value *NewAnd =
1450           Builder->CreateAnd(Shift->getOperand(0), NS, LHSI->getName());
1451
1452         ICI.setOperand(0, NewAnd);
1453         return &ICI;
1454       }
1455
1456       // (icmp pred (and (or (lshr X, Y), X), 1), 0) -->
1457       //    (icmp pred (and X, (or (shl 1, Y), 1), 0))
1458       //
1459       // iff pred isn't signed
1460       {
1461         Value *X, *Y, *LShr;
1462         if (!ICI.isSigned() && RHSV == 0) {
1463           if (match(LHSI->getOperand(1), m_One())) {
1464             Constant *One = cast<Constant>(LHSI->getOperand(1));
1465             Value *Or = LHSI->getOperand(0);
1466             if (match(Or, m_Or(m_Value(LShr), m_Value(X))) &&
1467                 match(LShr, m_LShr(m_Specific(X), m_Value(Y)))) {
1468               unsigned UsesRemoved = 0;
1469               if (LHSI->hasOneUse())
1470                 ++UsesRemoved;
1471               if (Or->hasOneUse())
1472                 ++UsesRemoved;
1473               if (LShr->hasOneUse())
1474                 ++UsesRemoved;
1475               Value *NewOr = nullptr;
1476               // Compute X & ((1 << Y) | 1)
1477               if (auto *C = dyn_cast<Constant>(Y)) {
1478                 if (UsesRemoved >= 1)
1479                   NewOr =
1480                       ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One);
1481               } else {
1482                 if (UsesRemoved >= 3)
1483                   NewOr = Builder->CreateOr(Builder->CreateShl(One, Y,
1484                                                                LShr->getName(),
1485                                                                /*HasNUW=*/true),
1486                                             One, Or->getName());
1487               }
1488               if (NewOr) {
1489                 Value *NewAnd = Builder->CreateAnd(X, NewOr, LHSI->getName());
1490                 ICI.setOperand(0, NewAnd);
1491                 return &ICI;
1492               }
1493             }
1494           }
1495         }
1496       }
1497
1498       // Replace ((X & AndCst) > RHSV) with ((X & AndCst) != 0), if any
1499       // bit set in (X & AndCst) will produce a result greater than RHSV.
1500       if (ICI.getPredicate() == ICmpInst::ICMP_UGT) {
1501         unsigned NTZ = AndCst->getValue().countTrailingZeros();
1502         if ((NTZ < AndCst->getBitWidth()) &&
1503             APInt::getOneBitSet(AndCst->getBitWidth(), NTZ).ugt(RHSV))
1504           return new ICmpInst(ICmpInst::ICMP_NE, LHSI,
1505                               Constant::getNullValue(RHS->getType()));
1506       }
1507     }
1508
1509     // Try to optimize things like "A[i]&42 == 0" to index computations.
1510     if (LoadInst *LI = dyn_cast<LoadInst>(LHSI->getOperand(0))) {
1511       if (GetElementPtrInst *GEP =
1512           dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1513         if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1514           if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
1515               !LI->isVolatile() && isa<ConstantInt>(LHSI->getOperand(1))) {
1516             ConstantInt *C = cast<ConstantInt>(LHSI->getOperand(1));
1517             if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV,ICI, C))
1518               return Res;
1519           }
1520     }
1521
1522     // X & -C == -C -> X >  u ~C
1523     // X & -C != -C -> X <= u ~C
1524     //   iff C is a power of 2
1525     if (ICI.isEquality() && RHS == LHSI->getOperand(1) && (-RHSV).isPowerOf2())
1526       return new ICmpInst(
1527           ICI.getPredicate() == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_UGT
1528                                                   : ICmpInst::ICMP_ULE,
1529           LHSI->getOperand(0), SubOne(RHS));
1530
1531     // (icmp eq (and %A, C), 0) -> (icmp sgt (trunc %A), -1)
1532     //   iff C is a power of 2
1533     if (ICI.isEquality() && LHSI->hasOneUse() && match(RHS, m_Zero())) {
1534       if (auto *CI = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
1535         const APInt &AI = CI->getValue();
1536         int32_t ExactLogBase2 = AI.exactLogBase2();
1537         if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) {
1538           Type *NTy = IntegerType::get(ICI.getContext(), ExactLogBase2 + 1);
1539           Value *Trunc = Builder->CreateTrunc(LHSI->getOperand(0), NTy);
1540           return new ICmpInst(ICI.getPredicate() == ICmpInst::ICMP_EQ
1541                                   ? ICmpInst::ICMP_SGE
1542                                   : ICmpInst::ICMP_SLT,
1543                               Trunc, Constant::getNullValue(NTy));
1544         }
1545       }
1546     }
1547     break;
1548
1549   case Instruction::Or: {
1550     if (RHS->isOne()) {
1551       // icmp slt signum(V) 1 --> icmp slt V, 1
1552       Value *V = nullptr;
1553       if (ICI.getPredicate() == ICmpInst::ICMP_SLT &&
1554           match(LHSI, m_Signum(m_Value(V))))
1555         return new ICmpInst(ICmpInst::ICMP_SLT, V,
1556                             ConstantInt::get(V->getType(), 1));
1557     }
1558
1559     if (!ICI.isEquality() || !RHS->isNullValue() || !LHSI->hasOneUse())
1560       break;
1561     Value *P, *Q;
1562     if (match(LHSI, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
1563       // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1564       // -> and (icmp eq P, null), (icmp eq Q, null).
1565       Value *ICIP = Builder->CreateICmp(ICI.getPredicate(), P,
1566                                         Constant::getNullValue(P->getType()));
1567       Value *ICIQ = Builder->CreateICmp(ICI.getPredicate(), Q,
1568                                         Constant::getNullValue(Q->getType()));
1569       Instruction *Op;
1570       if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
1571         Op = BinaryOperator::CreateAnd(ICIP, ICIQ);
1572       else
1573         Op = BinaryOperator::CreateOr(ICIP, ICIQ);
1574       return Op;
1575     }
1576     break;
1577   }
1578
1579   case Instruction::Mul: {       // (icmp pred (mul X, Val), CI)
1580     ConstantInt *Val = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1581     if (!Val) break;
1582
1583     // If this is a signed comparison to 0 and the mul is sign preserving,
1584     // use the mul LHS operand instead.
1585     ICmpInst::Predicate pred = ICI.getPredicate();
1586     if (isSignTest(pred, RHS) && !Val->isZero() &&
1587         cast<BinaryOperator>(LHSI)->hasNoSignedWrap())
1588       return new ICmpInst(Val->isNegative() ?
1589                           ICmpInst::getSwappedPredicate(pred) : pred,
1590                           LHSI->getOperand(0),
1591                           Constant::getNullValue(RHS->getType()));
1592
1593     break;
1594   }
1595
1596   case Instruction::Shl: {       // (icmp pred (shl X, ShAmt), CI)
1597     uint32_t TypeBits = RHSV.getBitWidth();
1598     ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1599     if (!ShAmt) {
1600       Value *X;
1601       // (1 << X) pred P2 -> X pred Log2(P2)
1602       if (match(LHSI, m_Shl(m_One(), m_Value(X)))) {
1603         bool RHSVIsPowerOf2 = RHSV.isPowerOf2();
1604         ICmpInst::Predicate Pred = ICI.getPredicate();
1605         if (ICI.isUnsigned()) {
1606           if (!RHSVIsPowerOf2) {
1607             // (1 << X) <  30 -> X <= 4
1608             // (1 << X) <= 30 -> X <= 4
1609             // (1 << X) >= 30 -> X >  4
1610             // (1 << X) >  30 -> X >  4
1611             if (Pred == ICmpInst::ICMP_ULT)
1612               Pred = ICmpInst::ICMP_ULE;
1613             else if (Pred == ICmpInst::ICMP_UGE)
1614               Pred = ICmpInst::ICMP_UGT;
1615           }
1616           unsigned RHSLog2 = RHSV.logBase2();
1617
1618           // (1 << X) >= 2147483648 -> X >= 31 -> X == 31
1619           // (1 << X) <  2147483648 -> X <  31 -> X != 31
1620           if (RHSLog2 == TypeBits-1) {
1621             if (Pred == ICmpInst::ICMP_UGE)
1622               Pred = ICmpInst::ICMP_EQ;
1623             else if (Pred == ICmpInst::ICMP_ULT)
1624               Pred = ICmpInst::ICMP_NE;
1625           }
1626
1627           return new ICmpInst(Pred, X,
1628                               ConstantInt::get(RHS->getType(), RHSLog2));
1629         } else if (ICI.isSigned()) {
1630           if (RHSV.isAllOnesValue()) {
1631             // (1 << X) <= -1 -> X == 31
1632             if (Pred == ICmpInst::ICMP_SLE)
1633               return new ICmpInst(ICmpInst::ICMP_EQ, X,
1634                                   ConstantInt::get(RHS->getType(), TypeBits-1));
1635
1636             // (1 << X) >  -1 -> X != 31
1637             if (Pred == ICmpInst::ICMP_SGT)
1638               return new ICmpInst(ICmpInst::ICMP_NE, X,
1639                                   ConstantInt::get(RHS->getType(), TypeBits-1));
1640           } else if (!RHSV) {
1641             // (1 << X) <  0 -> X == 31
1642             // (1 << X) <= 0 -> X == 31
1643             if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
1644               return new ICmpInst(ICmpInst::ICMP_EQ, X,
1645                                   ConstantInt::get(RHS->getType(), TypeBits-1));
1646
1647             // (1 << X) >= 0 -> X != 31
1648             // (1 << X) >  0 -> X != 31
1649             if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
1650               return new ICmpInst(ICmpInst::ICMP_NE, X,
1651                                   ConstantInt::get(RHS->getType(), TypeBits-1));
1652           }
1653         } else if (ICI.isEquality()) {
1654           if (RHSVIsPowerOf2)
1655             return new ICmpInst(
1656                 Pred, X, ConstantInt::get(RHS->getType(), RHSV.logBase2()));
1657         }
1658       }
1659       break;
1660     }
1661
1662     // Check that the shift amount is in range.  If not, don't perform
1663     // undefined shifts.  When the shift is visited it will be
1664     // simplified.
1665     if (ShAmt->uge(TypeBits))
1666       break;
1667
1668     if (ICI.isEquality()) {
1669       // If we are comparing against bits always shifted out, the
1670       // comparison cannot succeed.
1671       Constant *Comp =
1672         ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt),
1673                                                                  ShAmt);
1674       if (Comp != RHS) {// Comparing against a bit that we know is zero.
1675         bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
1676         Constant *Cst = Builder->getInt1(IsICMP_NE);
1677         return ReplaceInstUsesWith(ICI, Cst);
1678       }
1679
1680       // If the shift is NUW, then it is just shifting out zeros, no need for an
1681       // AND.
1682       if (cast<BinaryOperator>(LHSI)->hasNoUnsignedWrap())
1683         return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
1684                             ConstantExpr::getLShr(RHS, ShAmt));
1685
1686       // If the shift is NSW and we compare to 0, then it is just shifting out
1687       // sign bits, no need for an AND either.
1688       if (cast<BinaryOperator>(LHSI)->hasNoSignedWrap() && RHSV == 0)
1689         return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
1690                             ConstantExpr::getLShr(RHS, ShAmt));
1691
1692       if (LHSI->hasOneUse()) {
1693         // Otherwise strength reduce the shift into an and.
1694         uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
1695         Constant *Mask = Builder->getInt(APInt::getLowBitsSet(TypeBits,
1696                                                           TypeBits - ShAmtVal));
1697
1698         Value *And =
1699           Builder->CreateAnd(LHSI->getOperand(0),Mask, LHSI->getName()+".mask");
1700         return new ICmpInst(ICI.getPredicate(), And,
1701                             ConstantExpr::getLShr(RHS, ShAmt));
1702       }
1703     }
1704
1705     // If this is a signed comparison to 0 and the shift is sign preserving,
1706     // use the shift LHS operand instead.
1707     ICmpInst::Predicate pred = ICI.getPredicate();
1708     if (isSignTest(pred, RHS) &&
1709         cast<BinaryOperator>(LHSI)->hasNoSignedWrap())
1710       return new ICmpInst(pred,
1711                           LHSI->getOperand(0),
1712                           Constant::getNullValue(RHS->getType()));
1713
1714     // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
1715     bool TrueIfSigned = false;
1716     if (LHSI->hasOneUse() &&
1717         isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
1718       // (X << 31) <s 0  --> (X&1) != 0
1719       Constant *Mask = ConstantInt::get(LHSI->getOperand(0)->getType(),
1720                                         APInt::getOneBitSet(TypeBits,
1721                                             TypeBits-ShAmt->getZExtValue()-1));
1722       Value *And =
1723         Builder->CreateAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask");
1724       return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
1725                           And, Constant::getNullValue(And->getType()));
1726     }
1727
1728     // Transform (icmp pred iM (shl iM %v, N), CI)
1729     // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (CI>>N))
1730     // Transform the shl to a trunc if (trunc (CI>>N)) has no loss and M-N.
1731     // This enables to get rid of the shift in favor of a trunc which can be
1732     // free on the target. It has the additional benefit of comparing to a
1733     // smaller constant, which will be target friendly.
1734     unsigned Amt = ShAmt->getLimitedValue(TypeBits-1);
1735     if (LHSI->hasOneUse() &&
1736         Amt != 0 && RHSV.countTrailingZeros() >= Amt) {
1737       Type *NTy = IntegerType::get(ICI.getContext(), TypeBits - Amt);
1738       Constant *NCI = ConstantExpr::getTrunc(
1739                         ConstantExpr::getAShr(RHS,
1740                           ConstantInt::get(RHS->getType(), Amt)),
1741                         NTy);
1742       return new ICmpInst(ICI.getPredicate(),
1743                           Builder->CreateTrunc(LHSI->getOperand(0), NTy),
1744                           NCI);
1745     }
1746
1747     break;
1748   }
1749
1750   case Instruction::LShr:         // (icmp pred (shr X, ShAmt), CI)
1751   case Instruction::AShr: {
1752     // Handle equality comparisons of shift-by-constant.
1753     BinaryOperator *BO = cast<BinaryOperator>(LHSI);
1754     if (ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
1755       if (Instruction *Res = FoldICmpShrCst(ICI, BO, ShAmt))
1756         return Res;
1757     }
1758
1759     // Handle exact shr's.
1760     if (ICI.isEquality() && BO->isExact() && BO->hasOneUse()) {
1761       if (RHSV.isMinValue())
1762         return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), RHS);
1763     }
1764     break;
1765   }
1766
1767   case Instruction::SDiv:
1768   case Instruction::UDiv:
1769     // Fold: icmp pred ([us]div X, C1), C2 -> range test
1770     // Fold this div into the comparison, producing a range check.
1771     // Determine, based on the divide type, what the range is being
1772     // checked.  If there is an overflow on the low or high side, remember
1773     // it, otherwise compute the range [low, hi) bounding the new value.
1774     // See: InsertRangeTest above for the kinds of replacements possible.
1775     if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
1776       if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
1777                                           DivRHS))
1778         return R;
1779     break;
1780
1781   case Instruction::Sub: {
1782     ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(0));
1783     if (!LHSC) break;
1784     const APInt &LHSV = LHSC->getValue();
1785
1786     // C1-X <u C2 -> (X|(C2-1)) == C1
1787     //   iff C1 & (C2-1) == C2-1
1788     //       C2 is a power of 2
1789     if (ICI.getPredicate() == ICmpInst::ICMP_ULT && LHSI->hasOneUse() &&
1790         RHSV.isPowerOf2() && (LHSV & (RHSV - 1)) == (RHSV - 1))
1791       return new ICmpInst(ICmpInst::ICMP_EQ,
1792                           Builder->CreateOr(LHSI->getOperand(1), RHSV - 1),
1793                           LHSC);
1794
1795     // C1-X >u C2 -> (X|C2) != C1
1796     //   iff C1 & C2 == C2
1797     //       C2+1 is a power of 2
1798     if (ICI.getPredicate() == ICmpInst::ICMP_UGT && LHSI->hasOneUse() &&
1799         (RHSV + 1).isPowerOf2() && (LHSV & RHSV) == RHSV)
1800       return new ICmpInst(ICmpInst::ICMP_NE,
1801                           Builder->CreateOr(LHSI->getOperand(1), RHSV), LHSC);
1802     break;
1803   }
1804
1805   case Instruction::Add:
1806     // Fold: icmp pred (add X, C1), C2
1807     if (!ICI.isEquality()) {
1808       ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1809       if (!LHSC) break;
1810       const APInt &LHSV = LHSC->getValue();
1811
1812       ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV)
1813                             .subtract(LHSV);
1814
1815       if (ICI.isSigned()) {
1816         if (CR.getLower().isSignBit()) {
1817           return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0),
1818                               Builder->getInt(CR.getUpper()));
1819         } else if (CR.getUpper().isSignBit()) {
1820           return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0),
1821                               Builder->getInt(CR.getLower()));
1822         }
1823       } else {
1824         if (CR.getLower().isMinValue()) {
1825           return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0),
1826                               Builder->getInt(CR.getUpper()));
1827         } else if (CR.getUpper().isMinValue()) {
1828           return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0),
1829                               Builder->getInt(CR.getLower()));
1830         }
1831       }
1832
1833       // X-C1 <u C2 -> (X & -C2) == C1
1834       //   iff C1 & (C2-1) == 0
1835       //       C2 is a power of 2
1836       if (ICI.getPredicate() == ICmpInst::ICMP_ULT && LHSI->hasOneUse() &&
1837           RHSV.isPowerOf2() && (LHSV & (RHSV - 1)) == 0)
1838         return new ICmpInst(ICmpInst::ICMP_EQ,
1839                             Builder->CreateAnd(LHSI->getOperand(0), -RHSV),
1840                             ConstantExpr::getNeg(LHSC));
1841
1842       // X-C1 >u C2 -> (X & ~C2) != C1
1843       //   iff C1 & C2 == 0
1844       //       C2+1 is a power of 2
1845       if (ICI.getPredicate() == ICmpInst::ICMP_UGT && LHSI->hasOneUse() &&
1846           (RHSV + 1).isPowerOf2() && (LHSV & RHSV) == 0)
1847         return new ICmpInst(ICmpInst::ICMP_NE,
1848                             Builder->CreateAnd(LHSI->getOperand(0), ~RHSV),
1849                             ConstantExpr::getNeg(LHSC));
1850     }
1851     break;
1852   }
1853
1854   // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
1855   if (ICI.isEquality()) {
1856     bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
1857
1858     // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
1859     // the second operand is a constant, simplify a bit.
1860     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
1861       switch (BO->getOpcode()) {
1862       case Instruction::SRem:
1863         // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
1864         if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
1865           const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
1866           if (V.sgt(1) && V.isPowerOf2()) {
1867             Value *NewRem =
1868               Builder->CreateURem(BO->getOperand(0), BO->getOperand(1),
1869                                   BO->getName());
1870             return new ICmpInst(ICI.getPredicate(), NewRem,
1871                                 Constant::getNullValue(BO->getType()));
1872           }
1873         }
1874         break;
1875       case Instruction::Add:
1876         // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
1877         if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1878           if (BO->hasOneUse())
1879             return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1880                                 ConstantExpr::getSub(RHS, BOp1C));
1881         } else if (RHSV == 0) {
1882           // Replace ((add A, B) != 0) with (A != -B) if A or B is
1883           // efficiently invertible, or if the add has just this one use.
1884           Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
1885
1886           if (Value *NegVal = dyn_castNegVal(BOp1))
1887             return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
1888           if (Value *NegVal = dyn_castNegVal(BOp0))
1889             return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
1890           if (BO->hasOneUse()) {
1891             Value *Neg = Builder->CreateNeg(BOp1);
1892             Neg->takeName(BO);
1893             return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
1894           }
1895         }
1896         break;
1897       case Instruction::Xor:
1898         // For the xor case, we can xor two constants together, eliminating
1899         // the explicit xor.
1900         if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
1901           return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1902                               ConstantExpr::getXor(RHS, BOC));
1903         } else if (RHSV == 0) {
1904           // Replace ((xor A, B) != 0) with (A != B)
1905           return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1906                               BO->getOperand(1));
1907         }
1908         break;
1909       case Instruction::Sub:
1910         // Replace ((sub A, B) != C) with (B != A-C) if A & C are constants.
1911         if (ConstantInt *BOp0C = dyn_cast<ConstantInt>(BO->getOperand(0))) {
1912           if (BO->hasOneUse())
1913             return new ICmpInst(ICI.getPredicate(), BO->getOperand(1),
1914                                 ConstantExpr::getSub(BOp0C, RHS));
1915         } else if (RHSV == 0) {
1916           // Replace ((sub A, B) != 0) with (A != B)
1917           return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1918                               BO->getOperand(1));
1919         }
1920         break;
1921       case Instruction::Or:
1922         // If bits are being or'd in that are not present in the constant we
1923         // are comparing against, then the comparison could never succeed!
1924         if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1925           Constant *NotCI = ConstantExpr::getNot(RHS);
1926           if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
1927             return ReplaceInstUsesWith(ICI, Builder->getInt1(isICMP_NE));
1928         }
1929         break;
1930
1931       case Instruction::And:
1932         if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1933           // If bits are being compared against that are and'd out, then the
1934           // comparison can never succeed!
1935           if ((RHSV & ~BOC->getValue()) != 0)
1936             return ReplaceInstUsesWith(ICI, Builder->getInt1(isICMP_NE));
1937
1938           // If we have ((X & C) == C), turn it into ((X & C) != 0).
1939           if (RHS == BOC && RHSV.isPowerOf2())
1940             return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
1941                                 ICmpInst::ICMP_NE, LHSI,
1942                                 Constant::getNullValue(RHS->getType()));
1943
1944           // Don't perform the following transforms if the AND has multiple uses
1945           if (!BO->hasOneUse())
1946             break;
1947
1948           // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
1949           if (BOC->getValue().isSignBit()) {
1950             Value *X = BO->getOperand(0);
1951             Constant *Zero = Constant::getNullValue(X->getType());
1952             ICmpInst::Predicate pred = isICMP_NE ?
1953               ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
1954             return new ICmpInst(pred, X, Zero);
1955           }
1956
1957           // ((X & ~7) == 0) --> X < 8
1958           if (RHSV == 0 && isHighOnes(BOC)) {
1959             Value *X = BO->getOperand(0);
1960             Constant *NegX = ConstantExpr::getNeg(BOC);
1961             ICmpInst::Predicate pred = isICMP_NE ?
1962               ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
1963             return new ICmpInst(pred, X, NegX);
1964           }
1965         }
1966         break;
1967       case Instruction::Mul:
1968         if (RHSV == 0 && BO->hasNoSignedWrap()) {
1969           if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1970             // The trivial case (mul X, 0) is handled by InstSimplify
1971             // General case : (mul X, C) != 0 iff X != 0
1972             //                (mul X, C) == 0 iff X == 0
1973             if (!BOC->isZero())
1974               return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1975                                   Constant::getNullValue(RHS->getType()));
1976           }
1977         }
1978         break;
1979       default: break;
1980       }
1981     } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
1982       // Handle icmp {eq|ne} <intrinsic>, intcst.
1983       switch (II->getIntrinsicID()) {
1984       case Intrinsic::bswap:
1985         Worklist.Add(II);
1986         ICI.setOperand(0, II->getArgOperand(0));
1987         ICI.setOperand(1, Builder->getInt(RHSV.byteSwap()));
1988         return &ICI;
1989       case Intrinsic::ctlz:
1990       case Intrinsic::cttz:
1991         // ctz(A) == bitwidth(a)  ->  A == 0 and likewise for !=
1992         if (RHSV == RHS->getType()->getBitWidth()) {
1993           Worklist.Add(II);
1994           ICI.setOperand(0, II->getArgOperand(0));
1995           ICI.setOperand(1, ConstantInt::get(RHS->getType(), 0));
1996           return &ICI;
1997         }
1998         break;
1999       case Intrinsic::ctpop:
2000         // popcount(A) == 0  ->  A == 0 and likewise for !=
2001         if (RHS->isZero()) {
2002           Worklist.Add(II);
2003           ICI.setOperand(0, II->getArgOperand(0));
2004           ICI.setOperand(1, RHS);
2005           return &ICI;
2006         }
2007         break;
2008       default:
2009         break;
2010       }
2011     }
2012   }
2013   return nullptr;
2014 }
2015
2016 /// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
2017 /// We only handle extending casts so far.
2018 ///
2019 Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
2020   const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
2021   Value *LHSCIOp        = LHSCI->getOperand(0);
2022   Type *SrcTy     = LHSCIOp->getType();
2023   Type *DestTy    = LHSCI->getType();
2024   Value *RHSCIOp;
2025
2026   // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
2027   // integer type is the same size as the pointer type.
2028   if (LHSCI->getOpcode() == Instruction::PtrToInt &&
2029       DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth()) {
2030     Value *RHSOp = nullptr;
2031     if (PtrToIntOperator *RHSC = dyn_cast<PtrToIntOperator>(ICI.getOperand(1))) {
2032       Value *RHSCIOp = RHSC->getOperand(0);
2033       if (RHSCIOp->getType()->getPointerAddressSpace() ==
2034           LHSCIOp->getType()->getPointerAddressSpace()) {
2035         RHSOp = RHSC->getOperand(0);
2036         // If the pointer types don't match, insert a bitcast.
2037         if (LHSCIOp->getType() != RHSOp->getType())
2038           RHSOp = Builder->CreateBitCast(RHSOp, LHSCIOp->getType());
2039       }
2040     } else if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1)))
2041       RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
2042
2043     if (RHSOp)
2044       return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);
2045   }
2046
2047   // The code below only handles extension cast instructions, so far.
2048   // Enforce this.
2049   if (LHSCI->getOpcode() != Instruction::ZExt &&
2050       LHSCI->getOpcode() != Instruction::SExt)
2051     return nullptr;
2052
2053   bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
2054   bool isSignedCmp = ICI.isSigned();
2055
2056   if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
2057     // Not an extension from the same type?
2058     RHSCIOp = CI->getOperand(0);
2059     if (RHSCIOp->getType() != LHSCIOp->getType())
2060       return nullptr;
2061
2062     // If the signedness of the two casts doesn't agree (i.e. one is a sext
2063     // and the other is a zext), then we can't handle this.
2064     if (CI->getOpcode() != LHSCI->getOpcode())
2065       return nullptr;
2066
2067     // Deal with equality cases early.
2068     if (ICI.isEquality())
2069       return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
2070
2071     // A signed comparison of sign extended values simplifies into a
2072     // signed comparison.
2073     if (isSignedCmp && isSignedExt)
2074       return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
2075
2076     // The other three cases all fold into an unsigned comparison.
2077     return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
2078   }
2079
2080   // If we aren't dealing with a constant on the RHS, exit early
2081   ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
2082   if (!CI)
2083     return nullptr;
2084
2085   // Compute the constant that would happen if we truncated to SrcTy then
2086   // reextended to DestTy.
2087   Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
2088   Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(),
2089                                                 Res1, DestTy);
2090
2091   // If the re-extended constant didn't change...
2092   if (Res2 == CI) {
2093     // Deal with equality cases early.
2094     if (ICI.isEquality())
2095       return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
2096
2097     // A signed comparison of sign extended values simplifies into a
2098     // signed comparison.
2099     if (isSignedExt && isSignedCmp)
2100       return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
2101
2102     // The other three cases all fold into an unsigned comparison.
2103     return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, Res1);
2104   }
2105
2106   // The re-extended constant changed so the constant cannot be represented
2107   // in the shorter type. Consequently, we cannot emit a simple comparison.
2108   // All the cases that fold to true or false will have already been handled
2109   // by SimplifyICmpInst, so only deal with the tricky case.
2110
2111   if (isSignedCmp || !isSignedExt)
2112     return nullptr;
2113
2114   // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
2115   // should have been folded away previously and not enter in here.
2116
2117   // We're performing an unsigned comp with a sign extended value.
2118   // This is true if the input is >= 0. [aka >s -1]
2119   Constant *NegOne = Constant::getAllOnesValue(SrcTy);
2120   Value *Result = Builder->CreateICmpSGT(LHSCIOp, NegOne, ICI.getName());
2121
2122   // Finally, return the value computed.
2123   if (ICI.getPredicate() == ICmpInst::ICMP_ULT)
2124     return ReplaceInstUsesWith(ICI, Result);
2125
2126   assert(ICI.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
2127   return BinaryOperator::CreateNot(Result);
2128 }
2129
2130 /// ProcessUGT_ADDCST_ADD - The caller has matched a pattern of the form:
2131 ///   I = icmp ugt (add (add A, B), CI2), CI1
2132 /// If this is of the form:
2133 ///   sum = a + b
2134 ///   if (sum+128 >u 255)
2135 /// Then replace it with llvm.sadd.with.overflow.i8.
2136 ///
2137 static Instruction *ProcessUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
2138                                           ConstantInt *CI2, ConstantInt *CI1,
2139                                           InstCombiner &IC) {
2140   // The transformation we're trying to do here is to transform this into an
2141   // llvm.sadd.with.overflow.  To do this, we have to replace the original add
2142   // with a narrower add, and discard the add-with-constant that is part of the
2143   // range check (if we can't eliminate it, this isn't profitable).
2144
2145   // In order to eliminate the add-with-constant, the compare can be its only
2146   // use.
2147   Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
2148   if (!AddWithCst->hasOneUse()) return nullptr;
2149
2150   // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
2151   if (!CI2->getValue().isPowerOf2()) return nullptr;
2152   unsigned NewWidth = CI2->getValue().countTrailingZeros();
2153   if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) return nullptr;
2154
2155   // The width of the new add formed is 1 more than the bias.
2156   ++NewWidth;
2157
2158   // Check to see that CI1 is an all-ones value with NewWidth bits.
2159   if (CI1->getBitWidth() == NewWidth ||
2160       CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
2161     return nullptr;
2162
2163   // This is only really a signed overflow check if the inputs have been
2164   // sign-extended; check for that condition. For example, if CI2 is 2^31 and
2165   // the operands of the add are 64 bits wide, we need at least 33 sign bits.
2166   unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1;
2167   if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits ||
2168       IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits)
2169     return nullptr;
2170
2171   // In order to replace the original add with a narrower
2172   // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
2173   // and truncates that discard the high bits of the add.  Verify that this is
2174   // the case.
2175   Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
2176   for (User *U : OrigAdd->users()) {
2177     if (U == AddWithCst) continue;
2178
2179     // Only accept truncates for now.  We would really like a nice recursive
2180     // predicate like SimplifyDemandedBits, but which goes downwards the use-def
2181     // chain to see which bits of a value are actually demanded.  If the
2182     // original add had another add which was then immediately truncated, we
2183     // could still do the transformation.
2184     TruncInst *TI = dyn_cast<TruncInst>(U);
2185     if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth)
2186       return nullptr;
2187   }
2188
2189   // If the pattern matches, truncate the inputs to the narrower type and
2190   // use the sadd_with_overflow intrinsic to efficiently compute both the
2191   // result and the overflow bit.
2192   Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
2193   Value *F = Intrinsic::getDeclaration(I.getModule(),
2194                                        Intrinsic::sadd_with_overflow, NewType);
2195
2196   InstCombiner::BuilderTy *Builder = IC.Builder;
2197
2198   // Put the new code above the original add, in case there are any uses of the
2199   // add between the add and the compare.
2200   Builder->SetInsertPoint(OrigAdd);
2201
2202   Value *TruncA = Builder->CreateTrunc(A, NewType, A->getName()+".trunc");
2203   Value *TruncB = Builder->CreateTrunc(B, NewType, B->getName()+".trunc");
2204   CallInst *Call = Builder->CreateCall(F, {TruncA, TruncB}, "sadd");
2205   Value *Add = Builder->CreateExtractValue(Call, 0, "sadd.result");
2206   Value *ZExt = Builder->CreateZExt(Add, OrigAdd->getType());
2207
2208   // The inner add was the result of the narrow add, zero extended to the
2209   // wider type.  Replace it with the result computed by the intrinsic.
2210   IC.ReplaceInstUsesWith(*OrigAdd, ZExt);
2211
2212   // The original icmp gets replaced with the overflow value.
2213   return ExtractValueInst::Create(Call, 1, "sadd.overflow");
2214 }
2215
2216 bool InstCombiner::OptimizeOverflowCheck(OverflowCheckFlavor OCF, Value *LHS,
2217                                          Value *RHS, Instruction &OrigI,
2218                                          Value *&Result, Constant *&Overflow) {
2219   if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS))
2220     std::swap(LHS, RHS);
2221
2222   auto SetResult = [&](Value *OpResult, Constant *OverflowVal, bool ReuseName) {
2223     Result = OpResult;
2224     Overflow = OverflowVal;
2225     if (ReuseName)
2226       Result->takeName(&OrigI);
2227     return true;
2228   };
2229
2230   // If the overflow check was an add followed by a compare, the insertion point
2231   // may be pointing to the compare.  We want to insert the new instructions
2232   // before the add in case there are uses of the add between the add and the
2233   // compare.
2234   Builder->SetInsertPoint(&OrigI);
2235
2236   switch (OCF) {
2237   case OCF_INVALID:
2238     llvm_unreachable("bad overflow check kind!");
2239
2240   case OCF_UNSIGNED_ADD: {
2241     OverflowResult OR = computeOverflowForUnsignedAdd(LHS, RHS, &OrigI);
2242     if (OR == OverflowResult::NeverOverflows)
2243       return SetResult(Builder->CreateNUWAdd(LHS, RHS), Builder->getFalse(),
2244                        true);
2245
2246     if (OR == OverflowResult::AlwaysOverflows)
2247       return SetResult(Builder->CreateAdd(LHS, RHS), Builder->getTrue(), true);
2248   }
2249   // FALL THROUGH uadd into sadd
2250   case OCF_SIGNED_ADD: {
2251     // X + 0 -> {X, false}
2252     if (match(RHS, m_Zero()))
2253       return SetResult(LHS, Builder->getFalse(), false);
2254
2255     // We can strength reduce this signed add into a regular add if we can prove
2256     // that it will never overflow.
2257     if (OCF == OCF_SIGNED_ADD)
2258       if (WillNotOverflowSignedAdd(LHS, RHS, OrigI))
2259         return SetResult(Builder->CreateNSWAdd(LHS, RHS), Builder->getFalse(),
2260                          true);
2261     break;
2262   }
2263
2264   case OCF_UNSIGNED_SUB:
2265   case OCF_SIGNED_SUB: {
2266     // X - 0 -> {X, false}
2267     if (match(RHS, m_Zero()))
2268       return SetResult(LHS, Builder->getFalse(), false);
2269
2270     if (OCF == OCF_SIGNED_SUB) {
2271       if (WillNotOverflowSignedSub(LHS, RHS, OrigI))
2272         return SetResult(Builder->CreateNSWSub(LHS, RHS), Builder->getFalse(),
2273                          true);
2274     } else {
2275       if (WillNotOverflowUnsignedSub(LHS, RHS, OrigI))
2276         return SetResult(Builder->CreateNUWSub(LHS, RHS), Builder->getFalse(),
2277                          true);
2278     }
2279     break;
2280   }
2281
2282   case OCF_UNSIGNED_MUL: {
2283     OverflowResult OR = computeOverflowForUnsignedMul(LHS, RHS, &OrigI);
2284     if (OR == OverflowResult::NeverOverflows)
2285       return SetResult(Builder->CreateNUWMul(LHS, RHS), Builder->getFalse(),
2286                        true);
2287     if (OR == OverflowResult::AlwaysOverflows)
2288       return SetResult(Builder->CreateMul(LHS, RHS), Builder->getTrue(), true);
2289   } // FALL THROUGH
2290   case OCF_SIGNED_MUL:
2291     // X * undef -> undef
2292     if (isa<UndefValue>(RHS))
2293       return SetResult(RHS, UndefValue::get(Builder->getInt1Ty()), false);
2294
2295     // X * 0 -> {0, false}
2296     if (match(RHS, m_Zero()))
2297       return SetResult(RHS, Builder->getFalse(), false);
2298
2299     // X * 1 -> {X, false}
2300     if (match(RHS, m_One()))
2301       return SetResult(LHS, Builder->getFalse(), false);
2302
2303     if (OCF == OCF_SIGNED_MUL)
2304       if (WillNotOverflowSignedMul(LHS, RHS, OrigI))
2305         return SetResult(Builder->CreateNSWMul(LHS, RHS), Builder->getFalse(),
2306                          true);
2307     break;
2308   }
2309
2310   return false;
2311 }
2312
2313 /// \brief Recognize and process idiom involving test for multiplication
2314 /// overflow.
2315 ///
2316 /// The caller has matched a pattern of the form:
2317 ///   I = cmp u (mul(zext A, zext B), V
2318 /// The function checks if this is a test for overflow and if so replaces
2319 /// multiplication with call to 'mul.with.overflow' intrinsic.
2320 ///
2321 /// \param I Compare instruction.
2322 /// \param MulVal Result of 'mult' instruction.  It is one of the arguments of
2323 ///               the compare instruction.  Must be of integer type.
2324 /// \param OtherVal The other argument of compare instruction.
2325 /// \returns Instruction which must replace the compare instruction, NULL if no
2326 ///          replacement required.
2327 static Instruction *ProcessUMulZExtIdiom(ICmpInst &I, Value *MulVal,
2328                                          Value *OtherVal, InstCombiner &IC) {
2329   // Don't bother doing this transformation for pointers, don't do it for
2330   // vectors.
2331   if (!isa<IntegerType>(MulVal->getType()))
2332     return nullptr;
2333
2334   assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal);
2335   assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal);
2336   auto *MulInstr = dyn_cast<Instruction>(MulVal);
2337   if (!MulInstr)
2338     return nullptr;
2339   assert(MulInstr->getOpcode() == Instruction::Mul);
2340
2341   auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)),
2342        *RHS = cast<ZExtOperator>(MulInstr->getOperand(1));
2343   assert(LHS->getOpcode() == Instruction::ZExt);
2344   assert(RHS->getOpcode() == Instruction::ZExt);
2345   Value *A = LHS->getOperand(0), *B = RHS->getOperand(0);
2346
2347   // Calculate type and width of the result produced by mul.with.overflow.
2348   Type *TyA = A->getType(), *TyB = B->getType();
2349   unsigned WidthA = TyA->getPrimitiveSizeInBits(),
2350            WidthB = TyB->getPrimitiveSizeInBits();
2351   unsigned MulWidth;
2352   Type *MulType;
2353   if (WidthB > WidthA) {
2354     MulWidth = WidthB;
2355     MulType = TyB;
2356   } else {
2357     MulWidth = WidthA;
2358     MulType = TyA;
2359   }
2360
2361   // In order to replace the original mul with a narrower mul.with.overflow,
2362   // all uses must ignore upper bits of the product.  The number of used low
2363   // bits must be not greater than the width of mul.with.overflow.
2364   if (MulVal->hasNUsesOrMore(2))
2365     for (User *U : MulVal->users()) {
2366       if (U == &I)
2367         continue;
2368       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
2369         // Check if truncation ignores bits above MulWidth.
2370         unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits();
2371         if (TruncWidth > MulWidth)
2372           return nullptr;
2373       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
2374         // Check if AND ignores bits above MulWidth.
2375         if (BO->getOpcode() != Instruction::And)
2376           return nullptr;
2377         if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
2378           const APInt &CVal = CI->getValue();
2379           if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth)
2380             return nullptr;
2381         }
2382       } else {
2383         // Other uses prohibit this transformation.
2384         return nullptr;
2385       }
2386     }
2387
2388   // Recognize patterns
2389   switch (I.getPredicate()) {
2390   case ICmpInst::ICMP_EQ:
2391   case ICmpInst::ICMP_NE:
2392     // Recognize pattern:
2393     //   mulval = mul(zext A, zext B)
2394     //   cmp eq/neq mulval, zext trunc mulval
2395     if (ZExtInst *Zext = dyn_cast<ZExtInst>(OtherVal))
2396       if (Zext->hasOneUse()) {
2397         Value *ZextArg = Zext->getOperand(0);
2398         if (TruncInst *Trunc = dyn_cast<TruncInst>(ZextArg))
2399           if (Trunc->getType()->getPrimitiveSizeInBits() == MulWidth)
2400             break; //Recognized
2401       }
2402
2403     // Recognize pattern:
2404     //   mulval = mul(zext A, zext B)
2405     //   cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits.
2406     ConstantInt *CI;
2407     Value *ValToMask;
2408     if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) {
2409       if (ValToMask != MulVal)
2410         return nullptr;
2411       const APInt &CVal = CI->getValue() + 1;
2412       if (CVal.isPowerOf2()) {
2413         unsigned MaskWidth = CVal.logBase2();
2414         if (MaskWidth == MulWidth)
2415           break; // Recognized
2416       }
2417     }
2418     return nullptr;
2419
2420   case ICmpInst::ICMP_UGT:
2421     // Recognize pattern:
2422     //   mulval = mul(zext A, zext B)
2423     //   cmp ugt mulval, max
2424     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
2425       APInt MaxVal = APInt::getMaxValue(MulWidth);
2426       MaxVal = MaxVal.zext(CI->getBitWidth());
2427       if (MaxVal.eq(CI->getValue()))
2428         break; // Recognized
2429     }
2430     return nullptr;
2431
2432   case ICmpInst::ICMP_UGE:
2433     // Recognize pattern:
2434     //   mulval = mul(zext A, zext B)
2435     //   cmp uge mulval, max+1
2436     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
2437       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
2438       if (MaxVal.eq(CI->getValue()))
2439         break; // Recognized
2440     }
2441     return nullptr;
2442
2443   case ICmpInst::ICMP_ULE:
2444     // Recognize pattern:
2445     //   mulval = mul(zext A, zext B)
2446     //   cmp ule mulval, max
2447     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
2448       APInt MaxVal = APInt::getMaxValue(MulWidth);
2449       MaxVal = MaxVal.zext(CI->getBitWidth());
2450       if (MaxVal.eq(CI->getValue()))
2451         break; // Recognized
2452     }
2453     return nullptr;
2454
2455   case ICmpInst::ICMP_ULT:
2456     // Recognize pattern:
2457     //   mulval = mul(zext A, zext B)
2458     //   cmp ule mulval, max + 1
2459     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
2460       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
2461       if (MaxVal.eq(CI->getValue()))
2462         break; // Recognized
2463     }
2464     return nullptr;
2465
2466   default:
2467     return nullptr;
2468   }
2469
2470   InstCombiner::BuilderTy *Builder = IC.Builder;
2471   Builder->SetInsertPoint(MulInstr);
2472
2473   // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
2474   Value *MulA = A, *MulB = B;
2475   if (WidthA < MulWidth)
2476     MulA = Builder->CreateZExt(A, MulType);
2477   if (WidthB < MulWidth)
2478     MulB = Builder->CreateZExt(B, MulType);
2479   Value *F = Intrinsic::getDeclaration(I.getModule(),
2480                                        Intrinsic::umul_with_overflow, MulType);
2481   CallInst *Call = Builder->CreateCall(F, {MulA, MulB}, "umul");
2482   IC.Worklist.Add(MulInstr);
2483
2484   // If there are uses of mul result other than the comparison, we know that
2485   // they are truncation or binary AND. Change them to use result of
2486   // mul.with.overflow and adjust properly mask/size.
2487   if (MulVal->hasNUsesOrMore(2)) {
2488     Value *Mul = Builder->CreateExtractValue(Call, 0, "umul.value");
2489     for (User *U : MulVal->users()) {
2490       if (U == &I || U == OtherVal)
2491         continue;
2492       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
2493         if (TI->getType()->getPrimitiveSizeInBits() == MulWidth)
2494           IC.ReplaceInstUsesWith(*TI, Mul);
2495         else
2496           TI->setOperand(0, Mul);
2497       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
2498         assert(BO->getOpcode() == Instruction::And);
2499         // Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
2500         ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
2501         APInt ShortMask = CI->getValue().trunc(MulWidth);
2502         Value *ShortAnd = Builder->CreateAnd(Mul, ShortMask);
2503         Instruction *Zext =
2504             cast<Instruction>(Builder->CreateZExt(ShortAnd, BO->getType()));
2505         IC.Worklist.Add(Zext);
2506         IC.ReplaceInstUsesWith(*BO, Zext);
2507       } else {
2508         llvm_unreachable("Unexpected Binary operation");
2509       }
2510       IC.Worklist.Add(cast<Instruction>(U));
2511     }
2512   }
2513   if (isa<Instruction>(OtherVal))
2514     IC.Worklist.Add(cast<Instruction>(OtherVal));
2515
2516   // The original icmp gets replaced with the overflow value, maybe inverted
2517   // depending on predicate.
2518   bool Inverse = false;
2519   switch (I.getPredicate()) {
2520   case ICmpInst::ICMP_NE:
2521     break;
2522   case ICmpInst::ICMP_EQ:
2523     Inverse = true;
2524     break;
2525   case ICmpInst::ICMP_UGT:
2526   case ICmpInst::ICMP_UGE:
2527     if (I.getOperand(0) == MulVal)
2528       break;
2529     Inverse = true;
2530     break;
2531   case ICmpInst::ICMP_ULT:
2532   case ICmpInst::ICMP_ULE:
2533     if (I.getOperand(1) == MulVal)
2534       break;
2535     Inverse = true;
2536     break;
2537   default:
2538     llvm_unreachable("Unexpected predicate");
2539   }
2540   if (Inverse) {
2541     Value *Res = Builder->CreateExtractValue(Call, 1);
2542     return BinaryOperator::CreateNot(Res);
2543   }
2544
2545   return ExtractValueInst::Create(Call, 1);
2546 }
2547
2548 // DemandedBitsLHSMask - When performing a comparison against a constant,
2549 // it is possible that not all the bits in the LHS are demanded.  This helper
2550 // method computes the mask that IS demanded.
2551 static APInt DemandedBitsLHSMask(ICmpInst &I,
2552                                  unsigned BitWidth, bool isSignCheck) {
2553   if (isSignCheck)
2554     return APInt::getSignBit(BitWidth);
2555
2556   ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1));
2557   if (!CI) return APInt::getAllOnesValue(BitWidth);
2558   const APInt &RHS = CI->getValue();
2559
2560   switch (I.getPredicate()) {
2561   // For a UGT comparison, we don't care about any bits that
2562   // correspond to the trailing ones of the comparand.  The value of these
2563   // bits doesn't impact the outcome of the comparison, because any value
2564   // greater than the RHS must differ in a bit higher than these due to carry.
2565   case ICmpInst::ICMP_UGT: {
2566     unsigned trailingOnes = RHS.countTrailingOnes();
2567     APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingOnes);
2568     return ~lowBitsSet;
2569   }
2570
2571   // Similarly, for a ULT comparison, we don't care about the trailing zeros.
2572   // Any value less than the RHS must differ in a higher bit because of carries.
2573   case ICmpInst::ICMP_ULT: {
2574     unsigned trailingZeros = RHS.countTrailingZeros();
2575     APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingZeros);
2576     return ~lowBitsSet;
2577   }
2578
2579   default:
2580     return APInt::getAllOnesValue(BitWidth);
2581   }
2582 }
2583
2584 /// \brief Check if the order of \p Op0 and \p Op1 as operand in an ICmpInst
2585 /// should be swapped.
2586 /// The decision is based on how many times these two operands are reused
2587 /// as subtract operands and their positions in those instructions.
2588 /// The rational is that several architectures use the same instruction for
2589 /// both subtract and cmp, thus it is better if the order of those operands
2590 /// match.
2591 /// \return true if Op0 and Op1 should be swapped.
2592 static bool swapMayExposeCSEOpportunities(const Value * Op0,
2593                                           const Value * Op1) {
2594   // Filter out pointer value as those cannot appears directly in subtract.
2595   // FIXME: we may want to go through inttoptrs or bitcasts.
2596   if (Op0->getType()->isPointerTy())
2597     return false;
2598   // Count every uses of both Op0 and Op1 in a subtract.
2599   // Each time Op0 is the first operand, count -1: swapping is bad, the
2600   // subtract has already the same layout as the compare.
2601   // Each time Op0 is the second operand, count +1: swapping is good, the
2602   // subtract has a different layout as the compare.
2603   // At the end, if the benefit is greater than 0, Op0 should come second to
2604   // expose more CSE opportunities.
2605   int GlobalSwapBenefits = 0;
2606   for (const User *U : Op0->users()) {
2607     const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(U);
2608     if (!BinOp || BinOp->getOpcode() != Instruction::Sub)
2609       continue;
2610     // If Op0 is the first argument, this is not beneficial to swap the
2611     // arguments.
2612     int LocalSwapBenefits = -1;
2613     unsigned Op1Idx = 1;
2614     if (BinOp->getOperand(Op1Idx) == Op0) {
2615       Op1Idx = 0;
2616       LocalSwapBenefits = 1;
2617     }
2618     if (BinOp->getOperand(Op1Idx) != Op1)
2619       continue;
2620     GlobalSwapBenefits += LocalSwapBenefits;
2621   }
2622   return GlobalSwapBenefits > 0;
2623 }
2624
2625 /// \brief Check that one use is in the same block as the definition and all
2626 /// other uses are in blocks dominated by a given block
2627 ///
2628 /// \param DI Definition
2629 /// \param UI Use
2630 /// \param DB Block that must dominate all uses of \p DI outside
2631 ///           the parent block
2632 /// \return true when \p UI is the only use of \p DI in the parent block
2633 /// and all other uses of \p DI are in blocks dominated by \p DB.
2634 ///
2635 bool InstCombiner::dominatesAllUses(const Instruction *DI,
2636                                     const Instruction *UI,
2637                                     const BasicBlock *DB) const {
2638   assert(DI && UI && "Instruction not defined\n");
2639   // ignore incomplete definitions
2640   if (!DI->getParent())
2641     return false;
2642   // DI and UI must be in the same block
2643   if (DI->getParent() != UI->getParent())
2644     return false;
2645   // Protect from self-referencing blocks
2646   if (DI->getParent() == DB)
2647     return false;
2648   // DominatorTree available?
2649   if (!DT)
2650     return false;
2651   for (const User *U : DI->users()) {
2652     auto *Usr = cast<Instruction>(U);
2653     if (Usr != UI && !DT->dominates(DB, Usr->getParent()))
2654       return false;
2655   }
2656   return true;
2657 }
2658
2659 ///
2660 /// true when the instruction sequence within a block is select-cmp-br.
2661 ///
2662 static bool isChainSelectCmpBranch(const SelectInst *SI) {
2663   const BasicBlock *BB = SI->getParent();
2664   if (!BB)
2665     return false;
2666   auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator());
2667   if (!BI || BI->getNumSuccessors() != 2)
2668     return false;
2669   auto *IC = dyn_cast<ICmpInst>(BI->getCondition());
2670   if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI))
2671     return false;
2672   return true;
2673 }
2674
2675 ///
2676 /// \brief True when a select result is replaced by one of its operands
2677 /// in select-icmp sequence. This will eventually result in the elimination
2678 /// of the select.
2679 ///
2680 /// \param SI    Select instruction
2681 /// \param Icmp  Compare instruction
2682 /// \param SIOpd Operand that replaces the select
2683 ///
2684 /// Notes:
2685 /// - The replacement is global and requires dominator information
2686 /// - The caller is responsible for the actual replacement
2687 ///
2688 /// Example:
2689 ///
2690 /// entry:
2691 ///  %4 = select i1 %3, %C* %0, %C* null
2692 ///  %5 = icmp eq %C* %4, null
2693 ///  br i1 %5, label %9, label %7
2694 ///  ...
2695 ///  ; <label>:7                                       ; preds = %entry
2696 ///  %8 = getelementptr inbounds %C* %4, i64 0, i32 0
2697 ///  ...
2698 ///
2699 /// can be transformed to
2700 ///
2701 ///  %5 = icmp eq %C* %0, null
2702 ///  %6 = select i1 %3, i1 %5, i1 true
2703 ///  br i1 %6, label %9, label %7
2704 ///  ...
2705 ///  ; <label>:7                                       ; preds = %entry
2706 ///  %8 = getelementptr inbounds %C* %0, i64 0, i32 0  // replace by %0!
2707 ///
2708 /// Similar when the first operand of the select is a constant or/and
2709 /// the compare is for not equal rather than equal.
2710 ///
2711 /// NOTE: The function is only called when the select and compare constants
2712 /// are equal, the optimization can work only for EQ predicates. This is not a
2713 /// major restriction since a NE compare should be 'normalized' to an equal
2714 /// compare, which usually happens in the combiner and test case
2715 /// select-cmp-br.ll
2716 /// checks for it.
2717 bool InstCombiner::replacedSelectWithOperand(SelectInst *SI,
2718                                              const ICmpInst *Icmp,
2719                                              const unsigned SIOpd) {
2720   assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!");
2721   if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) {
2722     BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1);
2723     // The check for the unique predecessor is not the best that can be
2724     // done. But it protects efficiently against cases like  when SI's
2725     // home block has two successors, Succ and Succ1, and Succ1 predecessor
2726     // of Succ. Then SI can't be replaced by SIOpd because the use that gets
2727     // replaced can be reached on either path. So the uniqueness check
2728     // guarantees that the path all uses of SI (outside SI's parent) are on
2729     // is disjoint from all other paths out of SI. But that information
2730     // is more expensive to compute, and the trade-off here is in favor
2731     // of compile-time.
2732     if (Succ->getUniquePredecessor() && dominatesAllUses(SI, Icmp, Succ)) {
2733       NumSel++;
2734       SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent());
2735       return true;
2736     }
2737   }
2738   return false;
2739 }
2740
2741 Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
2742   bool Changed = false;
2743   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2744   unsigned Op0Cplxity = getComplexity(Op0);
2745   unsigned Op1Cplxity = getComplexity(Op1);
2746
2747   /// Orders the operands of the compare so that they are listed from most
2748   /// complex to least complex.  This puts constants before unary operators,
2749   /// before binary operators.
2750   if (Op0Cplxity < Op1Cplxity ||
2751         (Op0Cplxity == Op1Cplxity &&
2752          swapMayExposeCSEOpportunities(Op0, Op1))) {
2753     I.swapOperands();
2754     std::swap(Op0, Op1);
2755     Changed = true;
2756   }
2757
2758   if (Value *V =
2759           SimplifyICmpInst(I.getPredicate(), Op0, Op1, DL, TLI, DT, AC, &I))
2760     return ReplaceInstUsesWith(I, V);
2761
2762   // comparing -val or val with non-zero is the same as just comparing val
2763   // ie, abs(val) != 0 -> val != 0
2764   if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero()))
2765   {
2766     Value *Cond, *SelectTrue, *SelectFalse;
2767     if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
2768                             m_Value(SelectFalse)))) {
2769       if (Value *V = dyn_castNegVal(SelectTrue)) {
2770         if (V == SelectFalse)
2771           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
2772       }
2773       else if (Value *V = dyn_castNegVal(SelectFalse)) {
2774         if (V == SelectTrue)
2775           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
2776       }
2777     }
2778   }
2779
2780   Type *Ty = Op0->getType();
2781
2782   // icmp's with boolean values can always be turned into bitwise operations
2783   if (Ty->isIntegerTy(1)) {
2784     switch (I.getPredicate()) {
2785     default: llvm_unreachable("Invalid icmp instruction!");
2786     case ICmpInst::ICMP_EQ: {               // icmp eq i1 A, B -> ~(A^B)
2787       Value *Xor = Builder->CreateXor(Op0, Op1, I.getName()+"tmp");
2788       return BinaryOperator::CreateNot(Xor);
2789     }
2790     case ICmpInst::ICMP_NE:                  // icmp eq i1 A, B -> A^B
2791       return BinaryOperator::CreateXor(Op0, Op1);
2792
2793     case ICmpInst::ICMP_UGT:
2794       std::swap(Op0, Op1);                   // Change icmp ugt -> icmp ult
2795       // FALL THROUGH
2796     case ICmpInst::ICMP_ULT:{               // icmp ult i1 A, B -> ~A & B
2797       Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
2798       return BinaryOperator::CreateAnd(Not, Op1);
2799     }
2800     case ICmpInst::ICMP_SGT:
2801       std::swap(Op0, Op1);                   // Change icmp sgt -> icmp slt
2802       // FALL THROUGH
2803     case ICmpInst::ICMP_SLT: {               // icmp slt i1 A, B -> A & ~B
2804       Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
2805       return BinaryOperator::CreateAnd(Not, Op0);
2806     }
2807     case ICmpInst::ICMP_UGE:
2808       std::swap(Op0, Op1);                   // Change icmp uge -> icmp ule
2809       // FALL THROUGH
2810     case ICmpInst::ICMP_ULE: {               //  icmp ule i1 A, B -> ~A | B
2811       Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
2812       return BinaryOperator::CreateOr(Not, Op1);
2813     }
2814     case ICmpInst::ICMP_SGE:
2815       std::swap(Op0, Op1);                   // Change icmp sge -> icmp sle
2816       // FALL THROUGH
2817     case ICmpInst::ICMP_SLE: {               //  icmp sle i1 A, B -> A | ~B
2818       Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
2819       return BinaryOperator::CreateOr(Not, Op0);
2820     }
2821     }
2822   }
2823
2824   unsigned BitWidth = 0;
2825   if (Ty->isIntOrIntVectorTy())
2826     BitWidth = Ty->getScalarSizeInBits();
2827   else // Get pointer size.
2828     BitWidth = DL.getTypeSizeInBits(Ty->getScalarType());
2829
2830   bool isSignBit = false;
2831
2832   // See if we are doing a comparison with a constant.
2833   if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2834     Value *A = nullptr, *B = nullptr;
2835
2836     // Match the following pattern, which is a common idiom when writing
2837     // overflow-safe integer arithmetic function.  The source performs an
2838     // addition in wider type, and explicitly checks for overflow using
2839     // comparisons against INT_MIN and INT_MAX.  Simplify this by using the
2840     // sadd_with_overflow intrinsic.
2841     //
2842     // TODO: This could probably be generalized to handle other overflow-safe
2843     // operations if we worked out the formulas to compute the appropriate
2844     // magic constants.
2845     //
2846     // sum = a + b
2847     // if (sum+128 >u 255)  ...  -> llvm.sadd.with.overflow.i8
2848     {
2849     ConstantInt *CI2;    // I = icmp ugt (add (add A, B), CI2), CI
2850     if (I.getPredicate() == ICmpInst::ICMP_UGT &&
2851         match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
2852       if (Instruction *Res = ProcessUGT_ADDCST_ADD(I, A, B, CI2, CI, *this))
2853         return Res;
2854     }
2855
2856     // The following transforms are only 'worth it' if the only user of the
2857     // subtraction is the icmp.
2858     if (Op0->hasOneUse()) {
2859       // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
2860       if (I.isEquality() && CI->isZero() &&
2861           match(Op0, m_Sub(m_Value(A), m_Value(B))))
2862         return new ICmpInst(I.getPredicate(), A, B);
2863
2864       // (icmp sgt (sub nsw A B), -1) -> (icmp sge A, B)
2865       if (I.getPredicate() == ICmpInst::ICMP_SGT && CI->isAllOnesValue() &&
2866           match(Op0, m_NSWSub(m_Value(A), m_Value(B))))
2867         return new ICmpInst(ICmpInst::ICMP_SGE, A, B);
2868
2869       // (icmp sgt (sub nsw A B), 0) -> (icmp sgt A, B)
2870       if (I.getPredicate() == ICmpInst::ICMP_SGT && CI->isZero() &&
2871           match(Op0, m_NSWSub(m_Value(A), m_Value(B))))
2872         return new ICmpInst(ICmpInst::ICMP_SGT, A, B);
2873
2874       // (icmp slt (sub nsw A B), 0) -> (icmp slt A, B)
2875       if (I.getPredicate() == ICmpInst::ICMP_SLT && CI->isZero() &&
2876           match(Op0, m_NSWSub(m_Value(A), m_Value(B))))
2877         return new ICmpInst(ICmpInst::ICMP_SLT, A, B);
2878
2879       // (icmp slt (sub nsw A B), 1) -> (icmp sle A, B)
2880       if (I.getPredicate() == ICmpInst::ICMP_SLT && CI->isOne() &&
2881           match(Op0, m_NSWSub(m_Value(A), m_Value(B))))
2882         return new ICmpInst(ICmpInst::ICMP_SLE, A, B);
2883     }
2884
2885     // If we have an icmp le or icmp ge instruction, turn it into the
2886     // appropriate icmp lt or icmp gt instruction.  This allows us to rely on
2887     // them being folded in the code below.  The SimplifyICmpInst code has
2888     // already handled the edge cases for us, so we just assert on them.
2889     switch (I.getPredicate()) {
2890     default: break;
2891     case ICmpInst::ICMP_ULE:
2892       assert(!CI->isMaxValue(false));                 // A <=u MAX -> TRUE
2893       return new ICmpInst(ICmpInst::ICMP_ULT, Op0,
2894                           Builder->getInt(CI->getValue()+1));
2895     case ICmpInst::ICMP_SLE:
2896       assert(!CI->isMaxValue(true));                  // A <=s MAX -> TRUE
2897       return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
2898                           Builder->getInt(CI->getValue()+1));
2899     case ICmpInst::ICMP_UGE:
2900       assert(!CI->isMinValue(false));                 // A >=u MIN -> TRUE
2901       return new ICmpInst(ICmpInst::ICMP_UGT, Op0,
2902                           Builder->getInt(CI->getValue()-1));
2903     case ICmpInst::ICMP_SGE:
2904       assert(!CI->isMinValue(true));                  // A >=s MIN -> TRUE
2905       return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
2906                           Builder->getInt(CI->getValue()-1));
2907     }
2908
2909     if (I.isEquality()) {
2910       ConstantInt *CI2;
2911       if (match(Op0, m_AShr(m_ConstantInt(CI2), m_Value(A))) ||
2912           match(Op0, m_LShr(m_ConstantInt(CI2), m_Value(A)))) {
2913         // (icmp eq/ne (ashr/lshr const2, A), const1)
2914         if (Instruction *Inst = FoldICmpCstShrCst(I, Op0, A, CI, CI2))
2915           return Inst;
2916       }
2917       if (match(Op0, m_Shl(m_ConstantInt(CI2), m_Value(A)))) {
2918         // (icmp eq/ne (shl const2, A), const1)
2919         if (Instruction *Inst = FoldICmpCstShlCst(I, Op0, A, CI, CI2))
2920           return Inst;
2921       }
2922     }
2923
2924     // If this comparison is a normal comparison, it demands all
2925     // bits, if it is a sign bit comparison, it only demands the sign bit.
2926     bool UnusedBit;
2927     isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
2928   }
2929
2930   // See if we can fold the comparison based on range information we can get
2931   // by checking whether bits are known to be zero or one in the input.
2932   if (BitWidth != 0) {
2933     APInt Op0KnownZero(BitWidth, 0), Op0KnownOne(BitWidth, 0);
2934     APInt Op1KnownZero(BitWidth, 0), Op1KnownOne(BitWidth, 0);
2935
2936     if (SimplifyDemandedBits(I.getOperandUse(0),
2937                              DemandedBitsLHSMask(I, BitWidth, isSignBit),
2938                              Op0KnownZero, Op0KnownOne, 0))
2939       return &I;
2940     if (SimplifyDemandedBits(I.getOperandUse(1),
2941                              APInt::getAllOnesValue(BitWidth), Op1KnownZero,
2942                              Op1KnownOne, 0))
2943       return &I;
2944
2945     // Given the known and unknown bits, compute a range that the LHS could be
2946     // in.  Compute the Min, Max and RHS values based on the known bits. For the
2947     // EQ and NE we use unsigned values.
2948     APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
2949     APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
2950     if (I.isSigned()) {
2951       ComputeSignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
2952                                              Op0Min, Op0Max);
2953       ComputeSignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
2954                                              Op1Min, Op1Max);
2955     } else {
2956       ComputeUnsignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
2957                                                Op0Min, Op0Max);
2958       ComputeUnsignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
2959                                                Op1Min, Op1Max);
2960     }
2961
2962     // If Min and Max are known to be the same, then SimplifyDemandedBits
2963     // figured out that the LHS is a constant.  Just constant fold this now so
2964     // that code below can assume that Min != Max.
2965     if (!isa<Constant>(Op0) && Op0Min == Op0Max)
2966       return new ICmpInst(I.getPredicate(),
2967                           ConstantInt::get(Op0->getType(), Op0Min), Op1);
2968     if (!isa<Constant>(Op1) && Op1Min == Op1Max)
2969       return new ICmpInst(I.getPredicate(), Op0,
2970                           ConstantInt::get(Op1->getType(), Op1Min));
2971
2972     // Based on the range information we know about the LHS, see if we can
2973     // simplify this comparison.  For example, (x&4) < 8 is always true.
2974     switch (I.getPredicate()) {
2975     default: llvm_unreachable("Unknown icmp opcode!");
2976     case ICmpInst::ICMP_EQ: {
2977       if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
2978         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2979
2980       // If all bits are known zero except for one, then we know at most one
2981       // bit is set.   If the comparison is against zero, then this is a check
2982       // to see if *that* bit is set.
2983       APInt Op0KnownZeroInverted = ~Op0KnownZero;
2984       if (~Op1KnownZero == 0) {
2985         // If the LHS is an AND with the same constant, look through it.
2986         Value *LHS = nullptr;
2987         ConstantInt *LHSC = nullptr;
2988         if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
2989             LHSC->getValue() != Op0KnownZeroInverted)
2990           LHS = Op0;
2991
2992         // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
2993         // then turn "((1 << x)&8) == 0" into "x != 3".
2994         // or turn "((1 << x)&7) == 0" into "x > 2".
2995         Value *X = nullptr;
2996         if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
2997           APInt ValToCheck = Op0KnownZeroInverted;
2998           if (ValToCheck.isPowerOf2()) {
2999             unsigned CmpVal = ValToCheck.countTrailingZeros();
3000             return new ICmpInst(ICmpInst::ICMP_NE, X,
3001                                 ConstantInt::get(X->getType(), CmpVal));
3002           } else if ((++ValToCheck).isPowerOf2()) {
3003             unsigned CmpVal = ValToCheck.countTrailingZeros() - 1;
3004             return new ICmpInst(ICmpInst::ICMP_UGT, X,
3005                                 ConstantInt::get(X->getType(), CmpVal));
3006           }
3007         }
3008
3009         // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
3010         // then turn "((8 >>u x)&1) == 0" into "x != 3".
3011         const APInt *CI;
3012         if (Op0KnownZeroInverted == 1 &&
3013             match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
3014           return new ICmpInst(ICmpInst::ICMP_NE, X,
3015                               ConstantInt::get(X->getType(),
3016                                                CI->countTrailingZeros()));
3017       }
3018       break;
3019     }
3020     case ICmpInst::ICMP_NE: {
3021       if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
3022         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3023
3024       // If all bits are known zero except for one, then we know at most one
3025       // bit is set.   If the comparison is against zero, then this is a check
3026       // to see if *that* bit is set.
3027       APInt Op0KnownZeroInverted = ~Op0KnownZero;
3028       if (~Op1KnownZero == 0) {
3029         // If the LHS is an AND with the same constant, look through it.
3030         Value *LHS = nullptr;
3031         ConstantInt *LHSC = nullptr;
3032         if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
3033             LHSC->getValue() != Op0KnownZeroInverted)
3034           LHS = Op0;
3035
3036         // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
3037         // then turn "((1 << x)&8) != 0" into "x == 3".
3038         // or turn "((1 << x)&7) != 0" into "x < 3".
3039         Value *X = nullptr;
3040         if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
3041           APInt ValToCheck = Op0KnownZeroInverted;
3042           if (ValToCheck.isPowerOf2()) {
3043             unsigned CmpVal = ValToCheck.countTrailingZeros();
3044             return new ICmpInst(ICmpInst::ICMP_EQ, X,
3045                                 ConstantInt::get(X->getType(), CmpVal));
3046           } else if ((++ValToCheck).isPowerOf2()) {
3047             unsigned CmpVal = ValToCheck.countTrailingZeros();
3048             return new ICmpInst(ICmpInst::ICMP_ULT, X,
3049                                 ConstantInt::get(X->getType(), CmpVal));
3050           }
3051         }
3052
3053         // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
3054         // then turn "((8 >>u x)&1) != 0" into "x == 3".
3055         const APInt *CI;
3056         if (Op0KnownZeroInverted == 1 &&
3057             match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
3058           return new ICmpInst(ICmpInst::ICMP_EQ, X,
3059                               ConstantInt::get(X->getType(),
3060                                                CI->countTrailingZeros()));
3061       }
3062       break;
3063     }
3064     case ICmpInst::ICMP_ULT:
3065       if (Op0Max.ult(Op1Min))          // A <u B -> true if max(A) < min(B)
3066         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3067       if (Op0Min.uge(Op1Max))          // A <u B -> false if min(A) >= max(B)
3068         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3069       if (Op1Min == Op0Max)            // A <u B -> A != B if max(A) == min(B)
3070         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
3071       if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
3072         if (Op1Max == Op0Min+1)        // A <u C -> A == C-1 if min(A)+1 == C
3073           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
3074                               Builder->getInt(CI->getValue()-1));
3075
3076         // (x <u 2147483648) -> (x >s -1)  -> true if sign bit clear
3077         if (CI->isMinValue(true))
3078           return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
3079                            Constant::getAllOnesValue(Op0->getType()));
3080       }
3081       break;
3082     case ICmpInst::ICMP_UGT:
3083       if (Op0Min.ugt(Op1Max))          // A >u B -> true if min(A) > max(B)
3084         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3085       if (Op0Max.ule(Op1Min))          // A >u B -> false if max(A) <= max(B)
3086         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3087
3088       if (Op1Max == Op0Min)            // A >u B -> A != B if min(A) == max(B)
3089         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
3090       if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
3091         if (Op1Min == Op0Max-1)        // A >u C -> A == C+1 if max(a)-1 == C
3092           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
3093                               Builder->getInt(CI->getValue()+1));
3094
3095         // (x >u 2147483647) -> (x <s 0)  -> true if sign bit set
3096         if (CI->isMaxValue(true))
3097           return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
3098                               Constant::getNullValue(Op0->getType()));
3099       }
3100       break;
3101     case ICmpInst::ICMP_SLT:
3102       if (Op0Max.slt(Op1Min))          // A <s B -> true if max(A) < min(C)
3103         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3104       if (Op0Min.sge(Op1Max))          // A <s B -> false if min(A) >= max(C)
3105         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3106       if (Op1Min == Op0Max)            // A <s B -> A != B if max(A) == min(B)
3107         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
3108       if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
3109         if (Op1Max == Op0Min+1)        // A <s C -> A == C-1 if min(A)+1 == C
3110           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
3111                               Builder->getInt(CI->getValue()-1));
3112       }
3113       break;
3114     case ICmpInst::ICMP_SGT:
3115       if (Op0Min.sgt(Op1Max))          // A >s B -> true if min(A) > max(B)
3116         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3117       if (Op0Max.sle(Op1Min))          // A >s B -> false if max(A) <= min(B)
3118         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3119
3120       if (Op1Max == Op0Min)            // A >s B -> A != B if min(A) == max(B)
3121         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
3122       if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
3123         if (Op1Min == Op0Max-1)        // A >s C -> A == C+1 if max(A)-1 == C
3124           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
3125                               Builder->getInt(CI->getValue()+1));
3126       }
3127       break;
3128     case ICmpInst::ICMP_SGE:
3129       assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
3130       if (Op0Min.sge(Op1Max))          // A >=s B -> true if min(A) >= max(B)
3131         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3132       if (Op0Max.slt(Op1Min))          // A >=s B -> false if max(A) < min(B)
3133         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3134       break;
3135     case ICmpInst::ICMP_SLE:
3136       assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
3137       if (Op0Max.sle(Op1Min))          // A <=s B -> true if max(A) <= min(B)
3138         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3139       if (Op0Min.sgt(Op1Max))          // A <=s B -> false if min(A) > max(B)
3140         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3141       break;
3142     case ICmpInst::ICMP_UGE:
3143       assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
3144       if (Op0Min.uge(Op1Max))          // A >=u B -> true if min(A) >= max(B)
3145         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3146       if (Op0Max.ult(Op1Min))          // A >=u B -> false if max(A) < min(B)
3147         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3148       break;
3149     case ICmpInst::ICMP_ULE:
3150       assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
3151       if (Op0Max.ule(Op1Min))          // A <=u B -> true if max(A) <= min(B)
3152         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3153       if (Op0Min.ugt(Op1Max))          // A <=u B -> false if min(A) > max(B)
3154         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3155       break;
3156     }
3157
3158     // Turn a signed comparison into an unsigned one if both operands
3159     // are known to have the same sign.
3160     if (I.isSigned() &&
3161         ((Op0KnownZero.isNegative() && Op1KnownZero.isNegative()) ||
3162          (Op0KnownOne.isNegative() && Op1KnownOne.isNegative())))
3163       return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
3164   }
3165
3166   // Test if the ICmpInst instruction is used exclusively by a select as
3167   // part of a minimum or maximum operation. If so, refrain from doing
3168   // any other folding. This helps out other analyses which understand
3169   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
3170   // and CodeGen. And in this case, at least one of the comparison
3171   // operands has at least one user besides the compare (the select),
3172   // which would often largely negate the benefit of folding anyway.
3173   if (I.hasOneUse())
3174     if (SelectInst *SI = dyn_cast<SelectInst>(*I.user_begin()))
3175       if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
3176           (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
3177         return nullptr;
3178
3179   // See if we are doing a comparison between a constant and an instruction that
3180   // can be folded into the comparison.
3181   if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
3182     // Since the RHS is a ConstantInt (CI), if the left hand side is an
3183     // instruction, see if that instruction also has constants so that the
3184     // instruction can be folded into the icmp
3185     if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
3186       if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
3187         return Res;
3188   }
3189
3190   // Handle icmp with constant (but not simple integer constant) RHS
3191   if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
3192     if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
3193       switch (LHSI->getOpcode()) {
3194       case Instruction::GetElementPtr:
3195           // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
3196         if (RHSC->isNullValue() &&
3197             cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
3198           return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
3199                   Constant::getNullValue(LHSI->getOperand(0)->getType()));
3200         break;
3201       case Instruction::PHI:
3202         // Only fold icmp into the PHI if the phi and icmp are in the same
3203         // block.  If in the same block, we're encouraging jump threading.  If
3204         // not, we are just pessimizing the code by making an i1 phi.
3205         if (LHSI->getParent() == I.getParent())
3206           if (Instruction *NV = FoldOpIntoPhi(I))
3207             return NV;
3208         break;
3209       case Instruction::Select: {
3210         // If either operand of the select is a constant, we can fold the
3211         // comparison into the select arms, which will cause one to be
3212         // constant folded and the select turned into a bitwise or.
3213         Value *Op1 = nullptr, *Op2 = nullptr;
3214         ConstantInt *CI = nullptr;
3215         if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
3216           Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
3217           CI = dyn_cast<ConstantInt>(Op1);
3218         }
3219         if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
3220           Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
3221           CI = dyn_cast<ConstantInt>(Op2);
3222         }
3223
3224         // We only want to perform this transformation if it will not lead to
3225         // additional code. This is true if either both sides of the select
3226         // fold to a constant (in which case the icmp is replaced with a select
3227         // which will usually simplify) or this is the only user of the
3228         // select (in which case we are trading a select+icmp for a simpler
3229         // select+icmp) or all uses of the select can be replaced based on
3230         // dominance information ("Global cases").
3231         bool Transform = false;
3232         if (Op1 && Op2)
3233           Transform = true;
3234         else if (Op1 || Op2) {
3235           // Local case
3236           if (LHSI->hasOneUse())
3237             Transform = true;
3238           // Global cases
3239           else if (CI && !CI->isZero())
3240             // When Op1 is constant try replacing select with second operand.
3241             // Otherwise Op2 is constant and try replacing select with first
3242             // operand.
3243             Transform = replacedSelectWithOperand(cast<SelectInst>(LHSI), &I,
3244                                                   Op1 ? 2 : 1);
3245         }
3246         if (Transform) {
3247           if (!Op1)
3248             Op1 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(1),
3249                                       RHSC, I.getName());
3250           if (!Op2)
3251             Op2 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(2),
3252                                       RHSC, I.getName());
3253           return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
3254         }
3255         break;
3256       }
3257       case Instruction::IntToPtr:
3258         // icmp pred inttoptr(X), null -> icmp pred X, 0
3259         if (RHSC->isNullValue() &&
3260             DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType())
3261           return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
3262                         Constant::getNullValue(LHSI->getOperand(0)->getType()));
3263         break;
3264
3265       case Instruction::Load:
3266         // Try to optimize things like "A[i] > 4" to index computations.
3267         if (GetElementPtrInst *GEP =
3268               dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
3269           if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
3270             if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
3271                 !cast<LoadInst>(LHSI)->isVolatile())
3272               if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
3273                 return Res;
3274         }
3275         break;
3276       }
3277   }
3278
3279   // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
3280   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
3281     if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
3282       return NI;
3283   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
3284     if (Instruction *NI = FoldGEPICmp(GEP, Op0,
3285                            ICmpInst::getSwappedPredicate(I.getPredicate()), I))
3286       return NI;
3287
3288   // Try to optimize equality comparisons against alloca-based pointers.
3289   if (Op0->getType()->isPointerTy() && I.isEquality()) {
3290     assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?");
3291     if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op0, DL)))
3292       if (Instruction *New = FoldAllocaCmp(I, Alloca, Op1))
3293         return New;
3294     if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op1, DL)))
3295       if (Instruction *New = FoldAllocaCmp(I, Alloca, Op0))
3296         return New;
3297   }
3298
3299   // Test to see if the operands of the icmp are casted versions of other
3300   // values.  If the ptr->ptr cast can be stripped off both arguments, we do so
3301   // now.
3302   if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
3303     if (Op0->getType()->isPointerTy() &&
3304         (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
3305       // We keep moving the cast from the left operand over to the right
3306       // operand, where it can often be eliminated completely.
3307       Op0 = CI->getOperand(0);
3308
3309       // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
3310       // so eliminate it as well.
3311       if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
3312         Op1 = CI2->getOperand(0);
3313
3314       // If Op1 is a constant, we can fold the cast into the constant.
3315       if (Op0->getType() != Op1->getType()) {
3316         if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
3317           Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
3318         } else {
3319           // Otherwise, cast the RHS right before the icmp
3320           Op1 = Builder->CreateBitCast(Op1, Op0->getType());
3321         }
3322       }
3323       return new ICmpInst(I.getPredicate(), Op0, Op1);
3324     }
3325   }
3326
3327   if (isa<CastInst>(Op0)) {
3328     // Handle the special case of: icmp (cast bool to X), <cst>
3329     // This comes up when you have code like
3330     //   int X = A < B;
3331     //   if (X) ...
3332     // For generality, we handle any zero-extension of any operand comparison
3333     // with a constant or another cast from the same type.
3334     if (isa<Constant>(Op1) || isa<CastInst>(Op1))
3335       if (Instruction *R = visitICmpInstWithCastAndCast(I))
3336         return R;
3337   }
3338
3339   // Special logic for binary operators.
3340   BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
3341   BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
3342   if (BO0 || BO1) {
3343     CmpInst::Predicate Pred = I.getPredicate();
3344     bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
3345     if (BO0 && isa<OverflowingBinaryOperator>(BO0))
3346       NoOp0WrapProblem = ICmpInst::isEquality(Pred) ||
3347         (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
3348         (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
3349     if (BO1 && isa<OverflowingBinaryOperator>(BO1))
3350       NoOp1WrapProblem = ICmpInst::isEquality(Pred) ||
3351         (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
3352         (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
3353
3354     // Analyze the case when either Op0 or Op1 is an add instruction.
3355     // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
3356     Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
3357     if (BO0 && BO0->getOpcode() == Instruction::Add)
3358       A = BO0->getOperand(0), B = BO0->getOperand(1);
3359     if (BO1 && BO1->getOpcode() == Instruction::Add)
3360       C = BO1->getOperand(0), D = BO1->getOperand(1);
3361
3362     // icmp (X+cst) < 0 --> X < -cst
3363     if (NoOp0WrapProblem && ICmpInst::isSigned(Pred) && match(Op1, m_Zero()))
3364       if (ConstantInt *RHSC = dyn_cast_or_null<ConstantInt>(B))
3365         if (!RHSC->isMinValue(/*isSigned=*/true))
3366           return new ICmpInst(Pred, A, ConstantExpr::getNeg(RHSC));
3367
3368     // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
3369     if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
3370       return new ICmpInst(Pred, A == Op1 ? B : A,
3371                           Constant::getNullValue(Op1->getType()));
3372
3373     // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
3374     if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
3375       return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
3376                           C == Op0 ? D : C);
3377
3378     // icmp (X+Y), (X+Z) -> icmp Y, Z for equalities or if there is no overflow.
3379     if (A && C && (A == C || A == D || B == C || B == D) &&
3380         NoOp0WrapProblem && NoOp1WrapProblem &&
3381         // Try not to increase register pressure.
3382         BO0->hasOneUse() && BO1->hasOneUse()) {
3383       // Determine Y and Z in the form icmp (X+Y), (X+Z).
3384       Value *Y, *Z;
3385       if (A == C) {
3386         // C + B == C + D  ->  B == D
3387         Y = B;
3388         Z = D;
3389       } else if (A == D) {
3390         // D + B == C + D  ->  B == C
3391         Y = B;
3392         Z = C;
3393       } else if (B == C) {
3394         // A + C == C + D  ->  A == D
3395         Y = A;
3396         Z = D;
3397       } else {
3398         assert(B == D);
3399         // A + D == C + D  ->  A == C
3400         Y = A;
3401         Z = C;
3402       }
3403       return new ICmpInst(Pred, Y, Z);
3404     }
3405
3406     // icmp slt (X + -1), Y -> icmp sle X, Y
3407     if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
3408         match(B, m_AllOnes()))
3409       return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
3410
3411     // icmp sge (X + -1), Y -> icmp sgt X, Y
3412     if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
3413         match(B, m_AllOnes()))
3414       return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
3415
3416     // icmp sle (X + 1), Y -> icmp slt X, Y
3417     if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE &&
3418         match(B, m_One()))
3419       return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
3420
3421     // icmp sgt (X + 1), Y -> icmp sge X, Y
3422     if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT &&
3423         match(B, m_One()))
3424       return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
3425
3426     // icmp sgt X, (Y + -1) -> icmp sge X, Y
3427     if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT &&
3428         match(D, m_AllOnes()))
3429       return new ICmpInst(CmpInst::ICMP_SGE, Op0, C);
3430
3431     // icmp sle X, (Y + -1) -> icmp slt X, Y
3432     if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE &&
3433         match(D, m_AllOnes()))
3434       return new ICmpInst(CmpInst::ICMP_SLT, Op0, C);
3435
3436     // icmp sge X, (Y + 1) -> icmp sgt X, Y
3437     if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE &&
3438         match(D, m_One()))
3439       return new ICmpInst(CmpInst::ICMP_SGT, Op0, C);
3440
3441     // icmp slt X, (Y + 1) -> icmp sle X, Y
3442     if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT &&
3443         match(D, m_One()))
3444       return new ICmpInst(CmpInst::ICMP_SLE, Op0, C);
3445
3446     // if C1 has greater magnitude than C2:
3447     //  icmp (X + C1), (Y + C2) -> icmp (X + C3), Y
3448     //  s.t. C3 = C1 - C2
3449     //
3450     // if C2 has greater magnitude than C1:
3451     //  icmp (X + C1), (Y + C2) -> icmp X, (Y + C3)
3452     //  s.t. C3 = C2 - C1
3453     if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
3454         (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned())
3455       if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
3456         if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) {
3457           const APInt &AP1 = C1->getValue();
3458           const APInt &AP2 = C2->getValue();
3459           if (AP1.isNegative() == AP2.isNegative()) {
3460             APInt AP1Abs = C1->getValue().abs();
3461             APInt AP2Abs = C2->getValue().abs();
3462             if (AP1Abs.uge(AP2Abs)) {
3463               ConstantInt *C3 = Builder->getInt(AP1 - AP2);
3464               Value *NewAdd = Builder->CreateNSWAdd(A, C3);
3465               return new ICmpInst(Pred, NewAdd, C);
3466             } else {
3467               ConstantInt *C3 = Builder->getInt(AP2 - AP1);
3468               Value *NewAdd = Builder->CreateNSWAdd(C, C3);
3469               return new ICmpInst(Pred, A, NewAdd);
3470             }
3471           }
3472         }
3473
3474
3475     // Analyze the case when either Op0 or Op1 is a sub instruction.
3476     // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
3477     A = nullptr; B = nullptr; C = nullptr; D = nullptr;
3478     if (BO0 && BO0->getOpcode() == Instruction::Sub)
3479       A = BO0->getOperand(0), B = BO0->getOperand(1);
3480     if (BO1 && BO1->getOpcode() == Instruction::Sub)
3481       C = BO1->getOperand(0), D = BO1->getOperand(1);
3482
3483     // icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow.
3484     if (A == Op1 && NoOp0WrapProblem)
3485       return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
3486
3487     // icmp X, (X-Y) -> icmp Y, 0 for equalities or if there is no overflow.
3488     if (C == Op0 && NoOp1WrapProblem)
3489       return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
3490
3491     // icmp (Y-X), (Z-X) -> icmp Y, Z for equalities or if there is no overflow.
3492     if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem &&
3493         // Try not to increase register pressure.
3494         BO0->hasOneUse() && BO1->hasOneUse())
3495       return new ICmpInst(Pred, A, C);
3496
3497     // icmp (X-Y), (X-Z) -> icmp Z, Y for equalities or if there is no overflow.
3498     if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem &&
3499         // Try not to increase register pressure.
3500         BO0->hasOneUse() && BO1->hasOneUse())
3501       return new ICmpInst(Pred, D, B);
3502
3503     // icmp (0-X) < cst --> x > -cst
3504     if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) {
3505       Value *X;
3506       if (match(BO0, m_Neg(m_Value(X))))
3507         if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1))
3508           if (!RHSC->isMinValue(/*isSigned=*/true))
3509             return new ICmpInst(I.getSwappedPredicate(), X,
3510                                 ConstantExpr::getNeg(RHSC));
3511     }
3512
3513     BinaryOperator *SRem = nullptr;
3514     // icmp (srem X, Y), Y
3515     if (BO0 && BO0->getOpcode() == Instruction::SRem &&
3516         Op1 == BO0->getOperand(1))
3517       SRem = BO0;
3518     // icmp Y, (srem X, Y)
3519     else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
3520              Op0 == BO1->getOperand(1))
3521       SRem = BO1;
3522     if (SRem) {
3523       // We don't check hasOneUse to avoid increasing register pressure because
3524       // the value we use is the same value this instruction was already using.
3525       switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
3526         default: break;
3527         case ICmpInst::ICMP_EQ:
3528           return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3529         case ICmpInst::ICMP_NE:
3530           return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3531         case ICmpInst::ICMP_SGT:
3532         case ICmpInst::ICMP_SGE:
3533           return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
3534                               Constant::getAllOnesValue(SRem->getType()));
3535         case ICmpInst::ICMP_SLT:
3536         case ICmpInst::ICMP_SLE:
3537           return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
3538                               Constant::getNullValue(SRem->getType()));
3539       }
3540     }
3541
3542     if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() &&
3543         BO0->hasOneUse() && BO1->hasOneUse() &&
3544         BO0->getOperand(1) == BO1->getOperand(1)) {
3545       switch (BO0->getOpcode()) {
3546       default: break;
3547       case Instruction::Add: