2ce1fcece41f089005a4fe42e8886f81e0fa10f0
[oota-llvm.git] / lib / Transforms / IPO / SampleProfile.cpp
1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===//
2 //
3 //                      The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SampleProfileLoader transformation. This pass
11 // reads a profile file generated by a sampling profiler (e.g. Linux Perf -
12 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the
13 // profile information in the given profile.
14 //
15 // This pass generates branch weight annotations on the IR:
16 //
17 // - prof: Represents branch weights. This annotation is added to branches
18 //      to indicate the weights of each edge coming out of the branch.
19 //      The weight of each edge is the weight of the target block for
20 //      that edge. The weight of a block B is computed as the maximum
21 //      number of samples found in B.
22 //
23 //===----------------------------------------------------------------------===//
24
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallSet.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/Analysis/LoopInfo.h"
30 #include "llvm/Analysis/PostDominators.h"
31 #include "llvm/IR/Constants.h"
32 #include "llvm/IR/DebugInfo.h"
33 #include "llvm/IR/DiagnosticInfo.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/InstIterator.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/LLVMContext.h"
39 #include "llvm/IR/MDBuilder.h"
40 #include "llvm/IR/Metadata.h"
41 #include "llvm/IR/Module.h"
42 #include "llvm/Pass.h"
43 #include "llvm/ProfileData/SampleProfReader.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Support/ErrorOr.h"
47 #include "llvm/Support/Format.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include "llvm/Transforms/IPO.h"
50 #include "llvm/Transforms/Utils/Cloning.h"
51 #include <cctype>
52
53 using namespace llvm;
54 using namespace sampleprof;
55
56 #define DEBUG_TYPE "sample-profile"
57
58 // Command line option to specify the file to read samples from. This is
59 // mainly used for debugging.
60 static cl::opt<std::string> SampleProfileFile(
61     "sample-profile-file", cl::init(""), cl::value_desc("filename"),
62     cl::desc("Profile file loaded by -sample-profile"), cl::Hidden);
63 static cl::opt<unsigned> SampleProfileMaxPropagateIterations(
64     "sample-profile-max-propagate-iterations", cl::init(100),
65     cl::desc("Maximum number of iterations to go through when propagating "
66              "sample block/edge weights through the CFG."));
67 static cl::opt<unsigned> SampleProfileRecordCoverage(
68     "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"),
69     cl::desc("Emit a warning if less than N% of records in the input profile "
70              "are matched to the IR."));
71 static cl::opt<unsigned> SampleProfileSampleCoverage(
72     "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"),
73     cl::desc("Emit a warning if less than N% of samples in the input profile "
74              "are matched to the IR."));
75 static cl::opt<double> SampleProfileHotThreshold(
76     "sample-profile-inline-hot-threshold", cl::init(0.1), cl::value_desc("N"),
77     cl::desc("Inlined functions that account for more than N% of all samples "
78              "collected in the parent function, will be inlined again."));
79 static cl::opt<double> SampleProfileGlobalHotThreshold(
80     "sample-profile-global-hot-threshold", cl::init(30), cl::value_desc("N"),
81     cl::desc("Top-level functions that account for more than N% of all samples "
82              "collected in the profile, will be marked as hot for the inliner "
83              "to consider."));
84 static cl::opt<double> SampleProfileGlobalColdThreshold(
85     "sample-profile-global-cold-threshold", cl::init(0.5), cl::value_desc("N"),
86     cl::desc("Top-level functions that account for less than N% of all samples "
87              "collected in the profile, will be marked as cold for the inliner "
88              "to consider."));
89
90 namespace {
91 typedef DenseMap<const BasicBlock *, uint64_t> BlockWeightMap;
92 typedef DenseMap<const BasicBlock *, const BasicBlock *> EquivalenceClassMap;
93 typedef std::pair<const BasicBlock *, const BasicBlock *> Edge;
94 typedef DenseMap<Edge, uint64_t> EdgeWeightMap;
95 typedef DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>
96     BlockEdgeMap;
97
98 /// \brief Sample profile pass.
99 ///
100 /// This pass reads profile data from the file specified by
101 /// -sample-profile-file and annotates every affected function with the
102 /// profile information found in that file.
103 class SampleProfileLoader : public ModulePass {
104 public:
105   // Class identification, replacement for typeinfo
106   static char ID;
107
108   SampleProfileLoader(StringRef Name = SampleProfileFile)
109       : ModulePass(ID), DT(nullptr), PDT(nullptr), LI(nullptr), Reader(),
110         Samples(nullptr), Filename(Name), ProfileIsValid(false),
111         TotalCollectedSamples(0) {
112     initializeSampleProfileLoaderPass(*PassRegistry::getPassRegistry());
113   }
114
115   bool doInitialization(Module &M) override;
116
117   void dump() { Reader->dump(); }
118
119   const char *getPassName() const override { return "Sample profile pass"; }
120
121   bool runOnModule(Module &M) override;
122
123   void getAnalysisUsage(AnalysisUsage &AU) const override {
124     AU.setPreservesCFG();
125   }
126
127 protected:
128   bool runOnFunction(Function &F);
129   unsigned getFunctionLoc(Function &F);
130   bool emitAnnotations(Function &F);
131   ErrorOr<uint64_t> getInstWeight(const Instruction &I) const;
132   ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB) const;
133   const FunctionSamples *findCalleeFunctionSamples(const CallInst &I) const;
134   const FunctionSamples *findFunctionSamples(const Instruction &I) const;
135   bool inlineHotFunctions(Function &F);
136   bool emitInlineHints(Function &F);
137   void printEdgeWeight(raw_ostream &OS, Edge E);
138   void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const;
139   void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB);
140   bool computeBlockWeights(Function &F);
141   void findEquivalenceClasses(Function &F);
142   void findEquivalencesFor(BasicBlock *BB1,
143                            SmallVector<BasicBlock *, 8> Descendants,
144                            DominatorTreeBase<BasicBlock> *DomTree);
145   void propagateWeights(Function &F);
146   uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge);
147   void buildEdges(Function &F);
148   bool propagateThroughEdges(Function &F);
149   void computeDominanceAndLoopInfo(Function &F);
150   unsigned getOffset(unsigned L, unsigned H) const;
151   void clearFunctionData();
152
153   /// \brief Map basic blocks to their computed weights.
154   ///
155   /// The weight of a basic block is defined to be the maximum
156   /// of all the instruction weights in that block.
157   BlockWeightMap BlockWeights;
158
159   /// \brief Map edges to their computed weights.
160   ///
161   /// Edge weights are computed by propagating basic block weights in
162   /// SampleProfile::propagateWeights.
163   EdgeWeightMap EdgeWeights;
164
165   /// \brief Set of visited blocks during propagation.
166   SmallPtrSet<const BasicBlock *, 128> VisitedBlocks;
167
168   /// \brief Set of visited edges during propagation.
169   SmallSet<Edge, 128> VisitedEdges;
170
171   /// \brief Equivalence classes for block weights.
172   ///
173   /// Two blocks BB1 and BB2 are in the same equivalence class if they
174   /// dominate and post-dominate each other, and they are in the same loop
175   /// nest. When this happens, the two blocks are guaranteed to execute
176   /// the same number of times.
177   EquivalenceClassMap EquivalenceClass;
178
179   /// \brief Dominance, post-dominance and loop information.
180   std::unique_ptr<DominatorTree> DT;
181   std::unique_ptr<DominatorTreeBase<BasicBlock>> PDT;
182   std::unique_ptr<LoopInfo> LI;
183
184   /// \brief Predecessors for each basic block in the CFG.
185   BlockEdgeMap Predecessors;
186
187   /// \brief Successors for each basic block in the CFG.
188   BlockEdgeMap Successors;
189
190   /// \brief Profile reader object.
191   std::unique_ptr<SampleProfileReader> Reader;
192
193   /// \brief Samples collected for the body of this function.
194   FunctionSamples *Samples;
195
196   /// \brief Name of the profile file to load.
197   StringRef Filename;
198
199   /// \brief Flag indicating whether the profile input loaded successfully.
200   bool ProfileIsValid;
201
202   /// \brief Total number of samples collected in this profile.
203   ///
204   /// This is the sum of all the samples collected in all the functions executed
205   /// at runtime.
206   uint64_t TotalCollectedSamples;
207 };
208
209 class SampleCoverageTracker {
210 public:
211   SampleCoverageTracker() : SampleCoverage(), TotalUsedSamples(0) {}
212
213   bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset,
214                        uint32_t Discriminator, uint64_t Samples);
215   unsigned computeCoverage(unsigned Used, unsigned Total) const;
216   unsigned countUsedRecords(const FunctionSamples *FS) const;
217   unsigned countBodyRecords(const FunctionSamples *FS) const;
218   uint64_t getTotalUsedSamples() const { return TotalUsedSamples; }
219   uint64_t countBodySamples(const FunctionSamples *FS) const;
220   void clear() {
221     SampleCoverage.clear();
222     TotalUsedSamples = 0;
223   }
224
225 private:
226   typedef DenseMap<LineLocation, unsigned> BodySampleCoverageMap;
227   typedef DenseMap<const FunctionSamples *, BodySampleCoverageMap>
228       FunctionSamplesCoverageMap;
229
230   /// Coverage map for sampling records.
231   ///
232   /// This map keeps a record of sampling records that have been matched to
233   /// an IR instruction. This is used to detect some form of staleness in
234   /// profiles (see flag -sample-profile-check-coverage).
235   ///
236   /// Each entry in the map corresponds to a FunctionSamples instance.  This is
237   /// another map that counts how many times the sample record at the
238   /// given location has been used.
239   FunctionSamplesCoverageMap SampleCoverage;
240
241   /// Number of samples used from the profile.
242   ///
243   /// When a sampling record is used for the first time, the samples from
244   /// that record are added to this accumulator.  Coverage is later computed
245   /// based on the total number of samples available in this function and
246   /// its callsites.
247   ///
248   /// Note that this accumulator tracks samples used from a single function
249   /// and all the inlined callsites. Strictly, we should have a map of counters
250   /// keyed by FunctionSamples pointers, but these stats are cleared after
251   /// every function, so we just need to keep a single counter.
252   uint64_t TotalUsedSamples;
253 };
254
255 SampleCoverageTracker CoverageTracker;
256
257 /// Return true if the given callsite is hot wrt to its caller.
258 ///
259 /// Functions that were inlined in the original binary will be represented
260 /// in the inline stack in the sample profile. If the profile shows that
261 /// the original inline decision was "good" (i.e., the callsite is executed
262 /// frequently), then we will recreate the inline decision and apply the
263 /// profile from the inlined callsite.
264 ///
265 /// To decide whether an inlined callsite is hot, we compute the fraction
266 /// of samples used by the callsite with respect to the total number of samples
267 /// collected in the caller.
268 ///
269 /// If that fraction is larger than the default given by
270 /// SampleProfileHotThreshold, the callsite will be inlined again.
271 bool callsiteIsHot(const FunctionSamples *CallerFS,
272                    const FunctionSamples *CallsiteFS) {
273   if (!CallsiteFS)
274     return false; // The callsite was not inlined in the original binary.
275
276   uint64_t ParentTotalSamples = CallerFS->getTotalSamples();
277   if (ParentTotalSamples == 0)
278     return false; // Avoid division by zero.
279
280   uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples();
281   if (CallsiteTotalSamples == 0)
282     return false; // Callsite is trivially cold.
283
284   double PercentSamples =
285       (double)CallsiteTotalSamples / (double)ParentTotalSamples * 100.0;
286   return PercentSamples >= SampleProfileHotThreshold;
287 }
288
289 }
290
291 /// Mark as used the sample record for the given function samples at
292 /// (LineOffset, Discriminator).
293 ///
294 /// \returns true if this is the first time we mark the given record.
295 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS,
296                                             uint32_t LineOffset,
297                                             uint32_t Discriminator,
298                                             uint64_t Samples) {
299   LineLocation Loc(LineOffset, Discriminator);
300   unsigned &Count = SampleCoverage[FS][Loc];
301   bool FirstTime = (++Count == 1);
302   if (FirstTime)
303     TotalUsedSamples += Samples;
304   return FirstTime;
305 }
306
307 /// Return the number of sample records that were applied from this profile.
308 ///
309 /// This count does not include records from cold inlined callsites.
310 unsigned
311 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS) const {
312   auto I = SampleCoverage.find(FS);
313
314   // The size of the coverage map for FS represents the number of records
315   // that were marked used at least once.
316   unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0;
317
318   // If there are inlined callsites in this function, count the samples found
319   // in the respective bodies. However, do not bother counting callees with 0
320   // total samples, these are callees that were never invoked at runtime.
321   for (const auto &I : FS->getCallsiteSamples()) {
322     const FunctionSamples *CalleeSamples = &I.second;
323     if (callsiteIsHot(FS, CalleeSamples))
324       Count += countUsedRecords(CalleeSamples);
325   }
326
327   return Count;
328 }
329
330 /// Return the number of sample records in the body of this profile.
331 ///
332 /// This count does not include records from cold inlined callsites.
333 unsigned
334 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS) const {
335   unsigned Count = FS->getBodySamples().size();
336
337   // Only count records in hot callsites.
338   for (const auto &I : FS->getCallsiteSamples()) {
339     const FunctionSamples *CalleeSamples = &I.second;
340     if (callsiteIsHot(FS, CalleeSamples))
341       Count += countBodyRecords(CalleeSamples);
342   }
343
344   return Count;
345 }
346
347 /// Return the number of samples collected in the body of this profile.
348 ///
349 /// This count does not include samples from cold inlined callsites.
350 uint64_t
351 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS) const {
352   uint64_t Total = 0;
353   for (const auto &I : FS->getBodySamples())
354     Total += I.second.getSamples();
355
356   // Only count samples in hot callsites.
357   for (const auto &I : FS->getCallsiteSamples()) {
358     const FunctionSamples *CalleeSamples = &I.second;
359     if (callsiteIsHot(FS, CalleeSamples))
360       Total += countBodySamples(CalleeSamples);
361   }
362
363   return Total;
364 }
365
366 /// Return the fraction of sample records used in this profile.
367 ///
368 /// The returned value is an unsigned integer in the range 0-100 indicating
369 /// the percentage of sample records that were used while applying this
370 /// profile to the associated function.
371 unsigned SampleCoverageTracker::computeCoverage(unsigned Used,
372                                                 unsigned Total) const {
373   assert(Used <= Total &&
374          "number of used records cannot exceed the total number of records");
375   return Total > 0 ? Used * 100 / Total : 100;
376 }
377
378 /// Clear all the per-function data used to load samples and propagate weights.
379 void SampleProfileLoader::clearFunctionData() {
380   BlockWeights.clear();
381   EdgeWeights.clear();
382   VisitedBlocks.clear();
383   VisitedEdges.clear();
384   EquivalenceClass.clear();
385   DT = nullptr;
386   PDT = nullptr;
387   LI = nullptr;
388   Predecessors.clear();
389   Successors.clear();
390   CoverageTracker.clear();
391 }
392
393 /// \brief Returns the offset of lineno \p L to head_lineno \p H
394 ///
395 /// \param L  Lineno
396 /// \param H  Header lineno of the function
397 ///
398 /// \returns offset to the header lineno. 16 bits are used to represent offset.
399 /// We assume that a single function will not exceed 65535 LOC.
400 unsigned SampleProfileLoader::getOffset(unsigned L, unsigned H) const {
401   return (L - H) & 0xffff;
402 }
403
404 /// \brief Print the weight of edge \p E on stream \p OS.
405 ///
406 /// \param OS  Stream to emit the output to.
407 /// \param E  Edge to print.
408 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) {
409   OS << "weight[" << E.first->getName() << "->" << E.second->getName()
410      << "]: " << EdgeWeights[E] << "\n";
411 }
412
413 /// \brief Print the equivalence class of block \p BB on stream \p OS.
414 ///
415 /// \param OS  Stream to emit the output to.
416 /// \param BB  Block to print.
417 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS,
418                                                 const BasicBlock *BB) {
419   const BasicBlock *Equiv = EquivalenceClass[BB];
420   OS << "equivalence[" << BB->getName()
421      << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n";
422 }
423
424 /// \brief Print the weight of block \p BB on stream \p OS.
425 ///
426 /// \param OS  Stream to emit the output to.
427 /// \param BB  Block to print.
428 void SampleProfileLoader::printBlockWeight(raw_ostream &OS,
429                                            const BasicBlock *BB) const {
430   const auto &I = BlockWeights.find(BB);
431   uint64_t W = (I == BlockWeights.end() ? 0 : I->second);
432   OS << "weight[" << BB->getName() << "]: " << W << "\n";
433 }
434
435 /// \brief Get the weight for an instruction.
436 ///
437 /// The "weight" of an instruction \p Inst is the number of samples
438 /// collected on that instruction at runtime. To retrieve it, we
439 /// need to compute the line number of \p Inst relative to the start of its
440 /// function. We use HeaderLineno to compute the offset. We then
441 /// look up the samples collected for \p Inst using BodySamples.
442 ///
443 /// \param Inst Instruction to query.
444 ///
445 /// \returns the weight of \p Inst.
446 ErrorOr<uint64_t>
447 SampleProfileLoader::getInstWeight(const Instruction &Inst) const {
448   DebugLoc DLoc = Inst.getDebugLoc();
449   if (!DLoc)
450     return std::error_code();
451
452   const FunctionSamples *FS = findFunctionSamples(Inst);
453   if (!FS)
454     return std::error_code();
455
456   const DILocation *DIL = DLoc;
457   unsigned Lineno = DLoc.getLine();
458   unsigned HeaderLineno = DIL->getScope()->getSubprogram()->getLine();
459
460   uint32_t LineOffset = getOffset(Lineno, HeaderLineno);
461   uint32_t Discriminator = DIL->getDiscriminator();
462   ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator);
463   if (R) {
464     bool FirstMark =
465         CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get());
466     if (FirstMark) {
467       const Function *F = Inst.getParent()->getParent();
468       LLVMContext &Ctx = F->getContext();
469       emitOptimizationRemark(
470           Ctx, DEBUG_TYPE, *F, DLoc,
471           Twine("Applied ") + Twine(*R) + " samples from profile (offset: " +
472               Twine(LineOffset) +
473               ((Discriminator) ? Twine(".") + Twine(Discriminator) : "") + ")");
474     }
475     DEBUG(dbgs() << "    " << Lineno << "." << DIL->getDiscriminator() << ":"
476                  << Inst << " (line offset: " << Lineno - HeaderLineno << "."
477                  << DIL->getDiscriminator() << " - weight: " << R.get()
478                  << ")\n");
479   }
480   return R;
481 }
482
483 /// \brief Compute the weight of a basic block.
484 ///
485 /// The weight of basic block \p BB is the maximum weight of all the
486 /// instructions in BB.
487 ///
488 /// \param BB The basic block to query.
489 ///
490 /// \returns the weight for \p BB.
491 ErrorOr<uint64_t>
492 SampleProfileLoader::getBlockWeight(const BasicBlock *BB) const {
493   bool Found = false;
494   uint64_t Weight = 0;
495   for (auto &I : BB->getInstList()) {
496     const ErrorOr<uint64_t> &R = getInstWeight(I);
497     if (R && R.get() >= Weight) {
498       Weight = R.get();
499       Found = true;
500     }
501   }
502   if (Found)
503     return Weight;
504   else
505     return std::error_code();
506 }
507
508 /// \brief Compute and store the weights of every basic block.
509 ///
510 /// This populates the BlockWeights map by computing
511 /// the weights of every basic block in the CFG.
512 ///
513 /// \param F The function to query.
514 bool SampleProfileLoader::computeBlockWeights(Function &F) {
515   bool Changed = false;
516   DEBUG(dbgs() << "Block weights\n");
517   for (const auto &BB : F) {
518     ErrorOr<uint64_t> Weight = getBlockWeight(&BB);
519     if (Weight) {
520       BlockWeights[&BB] = Weight.get();
521       VisitedBlocks.insert(&BB);
522       Changed = true;
523     }
524     DEBUG(printBlockWeight(dbgs(), &BB));
525   }
526
527   return Changed;
528 }
529
530 /// \brief Get the FunctionSamples for a call instruction.
531 ///
532 /// The FunctionSamples of a call instruction \p Inst is the inlined
533 /// instance in which that call instruction is calling to. It contains
534 /// all samples that resides in the inlined instance. We first find the
535 /// inlined instance in which the call instruction is from, then we
536 /// traverse its children to find the callsite with the matching
537 /// location and callee function name.
538 ///
539 /// \param Inst Call instruction to query.
540 ///
541 /// \returns The FunctionSamples pointer to the inlined instance.
542 const FunctionSamples *
543 SampleProfileLoader::findCalleeFunctionSamples(const CallInst &Inst) const {
544   const DILocation *DIL = Inst.getDebugLoc();
545   if (!DIL) {
546     return nullptr;
547   }
548   DISubprogram *SP = DIL->getScope()->getSubprogram();
549   if (!SP)
550     return nullptr;
551
552   Function *CalleeFunc = Inst.getCalledFunction();
553   if (!CalleeFunc) {
554     return nullptr;
555   }
556
557   StringRef CalleeName = CalleeFunc->getName();
558   const FunctionSamples *FS = findFunctionSamples(Inst);
559   if (FS == nullptr)
560     return nullptr;
561
562   return FS->findFunctionSamplesAt(
563       CallsiteLocation(getOffset(DIL->getLine(), SP->getLine()),
564                        DIL->getDiscriminator(), CalleeName));
565 }
566
567 /// \brief Get the FunctionSamples for an instruction.
568 ///
569 /// The FunctionSamples of an instruction \p Inst is the inlined instance
570 /// in which that instruction is coming from. We traverse the inline stack
571 /// of that instruction, and match it with the tree nodes in the profile.
572 ///
573 /// \param Inst Instruction to query.
574 ///
575 /// \returns the FunctionSamples pointer to the inlined instance.
576 const FunctionSamples *
577 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const {
578   SmallVector<CallsiteLocation, 10> S;
579   const DILocation *DIL = Inst.getDebugLoc();
580   if (!DIL) {
581     return Samples;
582   }
583   StringRef CalleeName;
584   for (const DILocation *DIL = Inst.getDebugLoc(); DIL;
585        DIL = DIL->getInlinedAt()) {
586     DISubprogram *SP = DIL->getScope()->getSubprogram();
587     if (!SP)
588       return nullptr;
589     if (!CalleeName.empty()) {
590       S.push_back(CallsiteLocation(getOffset(DIL->getLine(), SP->getLine()),
591                                    DIL->getDiscriminator(), CalleeName));
592     }
593     CalleeName = SP->getLinkageName();
594   }
595   if (S.size() == 0)
596     return Samples;
597   const FunctionSamples *FS = Samples;
598   for (int i = S.size() - 1; i >= 0 && FS != nullptr; i--) {
599     FS = FS->findFunctionSamplesAt(S[i]);
600   }
601   return FS;
602 }
603
604 /// \brief Emit an inline hint if \p F is globally hot or cold.
605 ///
606 /// If \p F consumes a significant fraction of samples (indicated by
607 /// SampleProfileGlobalHotThreshold), apply the InlineHint attribute for the
608 /// inliner to consider the function hot.
609 ///
610 /// If \p F consumes a small fraction of samples (indicated by
611 /// SampleProfileGlobalColdThreshold), apply the Cold attribute for the inliner
612 /// to consider the function cold.
613 ///
614 /// FIXME - This setting of inline hints is sub-optimal. Instead of marking a
615 /// function globally hot or cold, we should be annotating individual callsites.
616 /// This is not currently possible, but work on the inliner will eventually
617 /// provide this ability. See http://reviews.llvm.org/D15003 for details and
618 /// discussion.
619 ///
620 /// \returns True if either attribute was applied to \p F.
621 bool SampleProfileLoader::emitInlineHints(Function &F) {
622   if (TotalCollectedSamples == 0)
623     return false;
624
625   uint64_t FunctionSamples = Samples->getTotalSamples();
626   double SamplesPercent =
627       (double)FunctionSamples / (double)TotalCollectedSamples * 100.0;
628
629   // If the function collected more samples than the hot threshold, mark
630   // it globally hot.
631   if (SamplesPercent >= SampleProfileGlobalHotThreshold) {
632     F.addFnAttr(llvm::Attribute::InlineHint);
633     std::string Msg;
634     raw_string_ostream S(Msg);
635     S << "Applied inline hint to globally hot function '" << F.getName()
636       << "' with " << format("%.2f", SamplesPercent)
637       << "% of samples (threshold: "
638       << format("%.2f", SampleProfileGlobalHotThreshold.getValue()) << "%)";
639     S.flush();
640     emitOptimizationRemark(F.getContext(), DEBUG_TYPE, F, DebugLoc(), Msg);
641     return true;
642   }
643
644   // If the function collected fewer samples than the cold threshold, mark
645   // it globally cold.
646   if (SamplesPercent <= SampleProfileGlobalColdThreshold) {
647     F.addFnAttr(llvm::Attribute::Cold);
648     std::string Msg;
649     raw_string_ostream S(Msg);
650     S << "Applied cold hint to globally cold function '" << F.getName()
651       << "' with " << format("%.2f", SamplesPercent)
652       << "% of samples (threshold: "
653       << format("%.2f", SampleProfileGlobalColdThreshold.getValue()) << "%)";
654     S.flush();
655     emitOptimizationRemark(F.getContext(), DEBUG_TYPE, F, DebugLoc(), Msg);
656     return true;
657   }
658
659   return false;
660 }
661
662 /// \brief Iteratively inline hot callsites of a function.
663 ///
664 /// Iteratively traverse all callsites of the function \p F, and find if
665 /// the corresponding inlined instance exists and is hot in profile. If
666 /// it is hot enough, inline the callsites and adds new callsites of the
667 /// callee into the caller.
668 ///
669 /// TODO: investigate the possibility of not invoking InlineFunction directly.
670 ///
671 /// \param F function to perform iterative inlining.
672 ///
673 /// \returns True if there is any inline happened.
674 bool SampleProfileLoader::inlineHotFunctions(Function &F) {
675   bool Changed = false;
676   LLVMContext &Ctx = F.getContext();
677   while (true) {
678     bool LocalChanged = false;
679     SmallVector<CallInst *, 10> CIS;
680     for (auto &BB : F) {
681       for (auto &I : BB.getInstList()) {
682         CallInst *CI = dyn_cast<CallInst>(&I);
683         if (CI && callsiteIsHot(Samples, findCalleeFunctionSamples(*CI)))
684           CIS.push_back(CI);
685       }
686     }
687     for (auto CI : CIS) {
688       InlineFunctionInfo IFI;
689       Function *CalledFunction = CI->getCalledFunction();
690       DebugLoc DLoc = CI->getDebugLoc();
691       uint64_t NumSamples = findCalleeFunctionSamples(*CI)->getTotalSamples();
692       if (InlineFunction(CI, IFI)) {
693         LocalChanged = true;
694         emitOptimizationRemark(Ctx, DEBUG_TYPE, F, DLoc,
695                                Twine("inlined hot callee '") +
696                                    CalledFunction->getName() + "' with " +
697                                    Twine(NumSamples) + " samples into '" +
698                                    F.getName() + "'");
699       }
700     }
701     if (LocalChanged) {
702       Changed = true;
703     } else {
704       break;
705     }
706   }
707   return Changed;
708 }
709
710 /// \brief Find equivalence classes for the given block.
711 ///
712 /// This finds all the blocks that are guaranteed to execute the same
713 /// number of times as \p BB1. To do this, it traverses all the
714 /// descendants of \p BB1 in the dominator or post-dominator tree.
715 ///
716 /// A block BB2 will be in the same equivalence class as \p BB1 if
717 /// the following holds:
718 ///
719 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2
720 ///    is a descendant of \p BB1 in the dominator tree, then BB2 should
721 ///    dominate BB1 in the post-dominator tree.
722 ///
723 /// 2- Both BB2 and \p BB1 must be in the same loop.
724 ///
725 /// For every block BB2 that meets those two requirements, we set BB2's
726 /// equivalence class to \p BB1.
727 ///
728 /// \param BB1  Block to check.
729 /// \param Descendants  Descendants of \p BB1 in either the dom or pdom tree.
730 /// \param DomTree  Opposite dominator tree. If \p Descendants is filled
731 ///                 with blocks from \p BB1's dominator tree, then
732 ///                 this is the post-dominator tree, and vice versa.
733 void SampleProfileLoader::findEquivalencesFor(
734     BasicBlock *BB1, SmallVector<BasicBlock *, 8> Descendants,
735     DominatorTreeBase<BasicBlock> *DomTree) {
736   const BasicBlock *EC = EquivalenceClass[BB1];
737   uint64_t Weight = BlockWeights[EC];
738   for (const auto *BB2 : Descendants) {
739     bool IsDomParent = DomTree->dominates(BB2, BB1);
740     bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2);
741     if (BB1 != BB2 && IsDomParent && IsInSameLoop) {
742       EquivalenceClass[BB2] = EC;
743
744       // If BB2 is heavier than BB1, make BB2 have the same weight
745       // as BB1.
746       //
747       // Note that we don't worry about the opposite situation here
748       // (when BB2 is lighter than BB1). We will deal with this
749       // during the propagation phase. Right now, we just want to
750       // make sure that BB1 has the largest weight of all the
751       // members of its equivalence set.
752       Weight = std::max(Weight, BlockWeights[BB2]);
753     }
754   }
755   BlockWeights[EC] = Weight;
756 }
757
758 /// \brief Find equivalence classes.
759 ///
760 /// Since samples may be missing from blocks, we can fill in the gaps by setting
761 /// the weights of all the blocks in the same equivalence class to the same
762 /// weight. To compute the concept of equivalence, we use dominance and loop
763 /// information. Two blocks B1 and B2 are in the same equivalence class if B1
764 /// dominates B2, B2 post-dominates B1 and both are in the same loop.
765 ///
766 /// \param F The function to query.
767 void SampleProfileLoader::findEquivalenceClasses(Function &F) {
768   SmallVector<BasicBlock *, 8> DominatedBBs;
769   DEBUG(dbgs() << "\nBlock equivalence classes\n");
770   // Find equivalence sets based on dominance and post-dominance information.
771   for (auto &BB : F) {
772     BasicBlock *BB1 = &BB;
773
774     // Compute BB1's equivalence class once.
775     if (EquivalenceClass.count(BB1)) {
776       DEBUG(printBlockEquivalence(dbgs(), BB1));
777       continue;
778     }
779
780     // By default, blocks are in their own equivalence class.
781     EquivalenceClass[BB1] = BB1;
782
783     // Traverse all the blocks dominated by BB1. We are looking for
784     // every basic block BB2 such that:
785     //
786     // 1- BB1 dominates BB2.
787     // 2- BB2 post-dominates BB1.
788     // 3- BB1 and BB2 are in the same loop nest.
789     //
790     // If all those conditions hold, it means that BB2 is executed
791     // as many times as BB1, so they are placed in the same equivalence
792     // class by making BB2's equivalence class be BB1.
793     DominatedBBs.clear();
794     DT->getDescendants(BB1, DominatedBBs);
795     findEquivalencesFor(BB1, DominatedBBs, PDT.get());
796
797     DEBUG(printBlockEquivalence(dbgs(), BB1));
798   }
799
800   // Assign weights to equivalence classes.
801   //
802   // All the basic blocks in the same equivalence class will execute
803   // the same number of times. Since we know that the head block in
804   // each equivalence class has the largest weight, assign that weight
805   // to all the blocks in that equivalence class.
806   DEBUG(dbgs() << "\nAssign the same weight to all blocks in the same class\n");
807   for (auto &BI : F) {
808     const BasicBlock *BB = &BI;
809     const BasicBlock *EquivBB = EquivalenceClass[BB];
810     if (BB != EquivBB)
811       BlockWeights[BB] = BlockWeights[EquivBB];
812     DEBUG(printBlockWeight(dbgs(), BB));
813   }
814 }
815
816 /// \brief Visit the given edge to decide if it has a valid weight.
817 ///
818 /// If \p E has not been visited before, we copy to \p UnknownEdge
819 /// and increment the count of unknown edges.
820 ///
821 /// \param E  Edge to visit.
822 /// \param NumUnknownEdges  Current number of unknown edges.
823 /// \param UnknownEdge  Set if E has not been visited before.
824 ///
825 /// \returns E's weight, if known. Otherwise, return 0.
826 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges,
827                                         Edge *UnknownEdge) {
828   if (!VisitedEdges.count(E)) {
829     (*NumUnknownEdges)++;
830     *UnknownEdge = E;
831     return 0;
832   }
833
834   return EdgeWeights[E];
835 }
836
837 /// \brief Propagate weights through incoming/outgoing edges.
838 ///
839 /// If the weight of a basic block is known, and there is only one edge
840 /// with an unknown weight, we can calculate the weight of that edge.
841 ///
842 /// Similarly, if all the edges have a known count, we can calculate the
843 /// count of the basic block, if needed.
844 ///
845 /// \param F  Function to process.
846 ///
847 /// \returns  True if new weights were assigned to edges or blocks.
848 bool SampleProfileLoader::propagateThroughEdges(Function &F) {
849   bool Changed = false;
850   DEBUG(dbgs() << "\nPropagation through edges\n");
851   for (const auto &BI : F) {
852     const BasicBlock *BB = &BI;
853     const BasicBlock *EC = EquivalenceClass[BB];
854
855     // Visit all the predecessor and successor edges to determine
856     // which ones have a weight assigned already. Note that it doesn't
857     // matter that we only keep track of a single unknown edge. The
858     // only case we are interested in handling is when only a single
859     // edge is unknown (see setEdgeOrBlockWeight).
860     for (unsigned i = 0; i < 2; i++) {
861       uint64_t TotalWeight = 0;
862       unsigned NumUnknownEdges = 0;
863       Edge UnknownEdge, SelfReferentialEdge;
864
865       if (i == 0) {
866         // First, visit all predecessor edges.
867         for (auto *Pred : Predecessors[BB]) {
868           Edge E = std::make_pair(Pred, BB);
869           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
870           if (E.first == E.second)
871             SelfReferentialEdge = E;
872         }
873       } else {
874         // On the second round, visit all successor edges.
875         for (auto *Succ : Successors[BB]) {
876           Edge E = std::make_pair(BB, Succ);
877           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
878         }
879       }
880
881       // After visiting all the edges, there are three cases that we
882       // can handle immediately:
883       //
884       // - All the edge weights are known (i.e., NumUnknownEdges == 0).
885       //   In this case, we simply check that the sum of all the edges
886       //   is the same as BB's weight. If not, we change BB's weight
887       //   to match. Additionally, if BB had not been visited before,
888       //   we mark it visited.
889       //
890       // - Only one edge is unknown and BB has already been visited.
891       //   In this case, we can compute the weight of the edge by
892       //   subtracting the total block weight from all the known
893       //   edge weights. If the edges weight more than BB, then the
894       //   edge of the last remaining edge is set to zero.
895       //
896       // - There exists a self-referential edge and the weight of BB is
897       //   known. In this case, this edge can be based on BB's weight.
898       //   We add up all the other known edges and set the weight on
899       //   the self-referential edge as we did in the previous case.
900       //
901       // In any other case, we must continue iterating. Eventually,
902       // all edges will get a weight, or iteration will stop when
903       // it reaches SampleProfileMaxPropagateIterations.
904       if (NumUnknownEdges <= 1) {
905         uint64_t &BBWeight = BlockWeights[EC];
906         if (NumUnknownEdges == 0) {
907           // If we already know the weight of all edges, the weight of the
908           // basic block can be computed. It should be no larger than the sum
909           // of all edge weights.
910           if (TotalWeight > BBWeight) {
911             BBWeight = TotalWeight;
912             Changed = true;
913             DEBUG(dbgs() << "All edge weights for " << BB->getName()
914                          << " known. Set weight for block: ";
915                   printBlockWeight(dbgs(), BB););
916           }
917           if (VisitedBlocks.insert(EC).second)
918             Changed = true;
919         } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) {
920           // If there is a single unknown edge and the block has been
921           // visited, then we can compute E's weight.
922           if (BBWeight >= TotalWeight)
923             EdgeWeights[UnknownEdge] = BBWeight - TotalWeight;
924           else
925             EdgeWeights[UnknownEdge] = 0;
926           VisitedEdges.insert(UnknownEdge);
927           Changed = true;
928           DEBUG(dbgs() << "Set weight for edge: ";
929                 printEdgeWeight(dbgs(), UnknownEdge));
930         }
931       } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) {
932         uint64_t &BBWeight = BlockWeights[BB];
933         // We have a self-referential edge and the weight of BB is known.
934         if (BBWeight >= TotalWeight)
935           EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight;
936         else
937           EdgeWeights[SelfReferentialEdge] = 0;
938         VisitedEdges.insert(SelfReferentialEdge);
939         Changed = true;
940         DEBUG(dbgs() << "Set self-referential edge weight to: ";
941               printEdgeWeight(dbgs(), SelfReferentialEdge));
942       }
943     }
944   }
945
946   return Changed;
947 }
948
949 /// \brief Build in/out edge lists for each basic block in the CFG.
950 ///
951 /// We are interested in unique edges. If a block B1 has multiple
952 /// edges to another block B2, we only add a single B1->B2 edge.
953 void SampleProfileLoader::buildEdges(Function &F) {
954   for (auto &BI : F) {
955     BasicBlock *B1 = &BI;
956
957     // Add predecessors for B1.
958     SmallPtrSet<BasicBlock *, 16> Visited;
959     if (!Predecessors[B1].empty())
960       llvm_unreachable("Found a stale predecessors list in a basic block.");
961     for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) {
962       BasicBlock *B2 = *PI;
963       if (Visited.insert(B2).second)
964         Predecessors[B1].push_back(B2);
965     }
966
967     // Add successors for B1.
968     Visited.clear();
969     if (!Successors[B1].empty())
970       llvm_unreachable("Found a stale successors list in a basic block.");
971     for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) {
972       BasicBlock *B2 = *SI;
973       if (Visited.insert(B2).second)
974         Successors[B1].push_back(B2);
975     }
976   }
977 }
978
979 /// \brief Propagate weights into edges
980 ///
981 /// The following rules are applied to every block BB in the CFG:
982 ///
983 /// - If BB has a single predecessor/successor, then the weight
984 ///   of that edge is the weight of the block.
985 ///
986 /// - If all incoming or outgoing edges are known except one, and the
987 ///   weight of the block is already known, the weight of the unknown
988 ///   edge will be the weight of the block minus the sum of all the known
989 ///   edges. If the sum of all the known edges is larger than BB's weight,
990 ///   we set the unknown edge weight to zero.
991 ///
992 /// - If there is a self-referential edge, and the weight of the block is
993 ///   known, the weight for that edge is set to the weight of the block
994 ///   minus the weight of the other incoming edges to that block (if
995 ///   known).
996 void SampleProfileLoader::propagateWeights(Function &F) {
997   bool Changed = true;
998   unsigned I = 0;
999
1000   // Add an entry count to the function using the samples gathered
1001   // at the function entry.
1002   F.setEntryCount(Samples->getHeadSamples());
1003
1004   // Before propagation starts, build, for each block, a list of
1005   // unique predecessors and successors. This is necessary to handle
1006   // identical edges in multiway branches. Since we visit all blocks and all
1007   // edges of the CFG, it is cleaner to build these lists once at the start
1008   // of the pass.
1009   buildEdges(F);
1010
1011   // Propagate until we converge or we go past the iteration limit.
1012   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1013     Changed = propagateThroughEdges(F);
1014   }
1015
1016   // Generate MD_prof metadata for every branch instruction using the
1017   // edge weights computed during propagation.
1018   DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n");
1019   LLVMContext &Ctx = F.getContext();
1020   MDBuilder MDB(Ctx);
1021   for (auto &BI : F) {
1022     BasicBlock *BB = &BI;
1023     TerminatorInst *TI = BB->getTerminator();
1024     if (TI->getNumSuccessors() == 1)
1025       continue;
1026     if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI))
1027       continue;
1028
1029     DEBUG(dbgs() << "\nGetting weights for branch at line "
1030                  << TI->getDebugLoc().getLine() << ".\n");
1031     SmallVector<uint32_t, 4> Weights;
1032     uint32_t MaxWeight = 0;
1033     DebugLoc MaxDestLoc;
1034     for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) {
1035       BasicBlock *Succ = TI->getSuccessor(I);
1036       Edge E = std::make_pair(BB, Succ);
1037       uint64_t Weight = EdgeWeights[E];
1038       DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E));
1039       // Use uint32_t saturated arithmetic to adjust the incoming weights,
1040       // if needed. Sample counts in profiles are 64-bit unsigned values,
1041       // but internally branch weights are expressed as 32-bit values.
1042       if (Weight > std::numeric_limits<uint32_t>::max()) {
1043         DEBUG(dbgs() << " (saturated due to uint32_t overflow)");
1044         Weight = std::numeric_limits<uint32_t>::max();
1045       }
1046       Weights.push_back(static_cast<uint32_t>(Weight));
1047       if (Weight != 0) {
1048         if (Weight > MaxWeight) {
1049           MaxWeight = Weight;
1050           MaxDestLoc = Succ->getFirstNonPHIOrDbgOrLifetime()->getDebugLoc();
1051         }
1052       }
1053     }
1054
1055     // Only set weights if there is at least one non-zero weight.
1056     // In any other case, let the analyzer set weights.
1057     if (MaxWeight > 0) {
1058       DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n");
1059       TI->setMetadata(llvm::LLVMContext::MD_prof,
1060                       MDB.createBranchWeights(Weights));
1061       DebugLoc BranchLoc = TI->getDebugLoc();
1062       emitOptimizationRemark(
1063           Ctx, DEBUG_TYPE, F, MaxDestLoc,
1064           Twine("most popular destination for conditional branches at ") +
1065               ((BranchLoc) ? Twine(BranchLoc->getFilename() + ":" +
1066                                    Twine(BranchLoc.getLine()) + ":" +
1067                                    Twine(BranchLoc.getCol()))
1068                            : Twine("<UNKNOWN LOCATION>")));
1069     } else {
1070       DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n");
1071     }
1072   }
1073 }
1074
1075 /// \brief Get the line number for the function header.
1076 ///
1077 /// This looks up function \p F in the current compilation unit and
1078 /// retrieves the line number where the function is defined. This is
1079 /// line 0 for all the samples read from the profile file. Every line
1080 /// number is relative to this line.
1081 ///
1082 /// \param F  Function object to query.
1083 ///
1084 /// \returns the line number where \p F is defined. If it returns 0,
1085 ///          it means that there is no debug information available for \p F.
1086 unsigned SampleProfileLoader::getFunctionLoc(Function &F) {
1087   if (DISubprogram *S = getDISubprogram(&F))
1088     return S->getLine();
1089
1090   // If the start of \p F is missing, emit a diagnostic to inform the user
1091   // about the missed opportunity.
1092   F.getContext().diagnose(DiagnosticInfoSampleProfile(
1093       "No debug information found in function " + F.getName() +
1094           ": Function profile not used",
1095       DS_Warning));
1096   return 0;
1097 }
1098
1099 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) {
1100   DT.reset(new DominatorTree);
1101   DT->recalculate(F);
1102
1103   PDT.reset(new DominatorTreeBase<BasicBlock>(true));
1104   PDT->recalculate(F);
1105
1106   LI.reset(new LoopInfo);
1107   LI->analyze(*DT);
1108 }
1109
1110 /// \brief Generate branch weight metadata for all branches in \p F.
1111 ///
1112 /// Branch weights are computed out of instruction samples using a
1113 /// propagation heuristic. Propagation proceeds in 3 phases:
1114 ///
1115 /// 1- Assignment of block weights. All the basic blocks in the function
1116 ///    are initial assigned the same weight as their most frequently
1117 ///    executed instruction.
1118 ///
1119 /// 2- Creation of equivalence classes. Since samples may be missing from
1120 ///    blocks, we can fill in the gaps by setting the weights of all the
1121 ///    blocks in the same equivalence class to the same weight. To compute
1122 ///    the concept of equivalence, we use dominance and loop information.
1123 ///    Two blocks B1 and B2 are in the same equivalence class if B1
1124 ///    dominates B2, B2 post-dominates B1 and both are in the same loop.
1125 ///
1126 /// 3- Propagation of block weights into edges. This uses a simple
1127 ///    propagation heuristic. The following rules are applied to every
1128 ///    block BB in the CFG:
1129 ///
1130 ///    - If BB has a single predecessor/successor, then the weight
1131 ///      of that edge is the weight of the block.
1132 ///
1133 ///    - If all the edges are known except one, and the weight of the
1134 ///      block is already known, the weight of the unknown edge will
1135 ///      be the weight of the block minus the sum of all the known
1136 ///      edges. If the sum of all the known edges is larger than BB's weight,
1137 ///      we set the unknown edge weight to zero.
1138 ///
1139 ///    - If there is a self-referential edge, and the weight of the block is
1140 ///      known, the weight for that edge is set to the weight of the block
1141 ///      minus the weight of the other incoming edges to that block (if
1142 ///      known).
1143 ///
1144 /// Since this propagation is not guaranteed to finalize for every CFG, we
1145 /// only allow it to proceed for a limited number of iterations (controlled
1146 /// by -sample-profile-max-propagate-iterations).
1147 ///
1148 /// FIXME: Try to replace this propagation heuristic with a scheme
1149 /// that is guaranteed to finalize. A work-list approach similar to
1150 /// the standard value propagation algorithm used by SSA-CCP might
1151 /// work here.
1152 ///
1153 /// Once all the branch weights are computed, we emit the MD_prof
1154 /// metadata on BB using the computed values for each of its branches.
1155 ///
1156 /// \param F The function to query.
1157 ///
1158 /// \returns true if \p F was modified. Returns false, otherwise.
1159 bool SampleProfileLoader::emitAnnotations(Function &F) {
1160   bool Changed = false;
1161
1162   if (getFunctionLoc(F) == 0)
1163     return false;
1164
1165   DEBUG(dbgs() << "Line number for the first instruction in " << F.getName()
1166                << ": " << getFunctionLoc(F) << "\n");
1167
1168   Changed |= emitInlineHints(F);
1169
1170   Changed |= inlineHotFunctions(F);
1171
1172   // Compute basic block weights.
1173   Changed |= computeBlockWeights(F);
1174
1175   if (Changed) {
1176     // Compute dominance and loop info needed for propagation.
1177     computeDominanceAndLoopInfo(F);
1178
1179     // Find equivalence classes.
1180     findEquivalenceClasses(F);
1181
1182     // Propagate weights to all edges.
1183     propagateWeights(F);
1184   }
1185
1186   // If coverage checking was requested, compute it now.
1187   if (SampleProfileRecordCoverage) {
1188     unsigned Used = CoverageTracker.countUsedRecords(Samples);
1189     unsigned Total = CoverageTracker.countBodyRecords(Samples);
1190     unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1191     if (Coverage < SampleProfileRecordCoverage) {
1192       F.getContext().diagnose(DiagnosticInfoSampleProfile(
1193           getDISubprogram(&F)->getFilename(), getFunctionLoc(F),
1194           Twine(Used) + " of " + Twine(Total) + " available profile records (" +
1195               Twine(Coverage) + "%) were applied",
1196           DS_Warning));
1197     }
1198   }
1199
1200   if (SampleProfileSampleCoverage) {
1201     uint64_t Used = CoverageTracker.getTotalUsedSamples();
1202     uint64_t Total = CoverageTracker.countBodySamples(Samples);
1203     unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1204     if (Coverage < SampleProfileSampleCoverage) {
1205       F.getContext().diagnose(DiagnosticInfoSampleProfile(
1206           getDISubprogram(&F)->getFilename(), getFunctionLoc(F),
1207           Twine(Used) + " of " + Twine(Total) + " available profile samples (" +
1208               Twine(Coverage) + "%) were applied",
1209           DS_Warning));
1210     }
1211   }
1212   return Changed;
1213 }
1214
1215 char SampleProfileLoader::ID = 0;
1216 INITIALIZE_PASS_BEGIN(SampleProfileLoader, "sample-profile",
1217                       "Sample Profile loader", false, false)
1218 INITIALIZE_PASS_DEPENDENCY(AddDiscriminators)
1219 INITIALIZE_PASS_END(SampleProfileLoader, "sample-profile",
1220                     "Sample Profile loader", false, false)
1221
1222 bool SampleProfileLoader::doInitialization(Module &M) {
1223   auto &Ctx = M.getContext();
1224   auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx);
1225   if (std::error_code EC = ReaderOrErr.getError()) {
1226     std::string Msg = "Could not open profile: " + EC.message();
1227     Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg));
1228     return false;
1229   }
1230   Reader = std::move(ReaderOrErr.get());
1231   ProfileIsValid = (Reader->read() == sampleprof_error::success);
1232   return true;
1233 }
1234
1235 ModulePass *llvm::createSampleProfileLoaderPass() {
1236   return new SampleProfileLoader(SampleProfileFile);
1237 }
1238
1239 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) {
1240   return new SampleProfileLoader(Name);
1241 }
1242
1243 bool SampleProfileLoader::runOnModule(Module &M) {
1244   if (!ProfileIsValid)
1245     return false;
1246
1247   // Compute the total number of samples collected in this profile.
1248   for (const auto &I : Reader->getProfiles())
1249     TotalCollectedSamples += I.second.getTotalSamples();
1250
1251   bool retval = false;
1252   for (auto &F : M)
1253     if (!F.isDeclaration()) {
1254       clearFunctionData();
1255       retval |= runOnFunction(F);
1256     }
1257   return retval;
1258 }
1259
1260 bool SampleProfileLoader::runOnFunction(Function &F) {
1261   Samples = Reader->getSamplesFor(F);
1262   if (!Samples->empty())
1263     return emitAnnotations(F);
1264   return false;
1265 }