1 //===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file contains the X86 implementation of the TargetInstrInfo class.
12 //===----------------------------------------------------------------------===//
14 #include "X86InstrInfo.h"
16 #include "X86InstrBuilder.h"
17 #include "X86MachineFunctionInfo.h"
18 #include "X86Subtarget.h"
19 #include "X86TargetMachine.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/CodeGen/LiveVariables.h"
22 #include "llvm/CodeGen/MachineConstantPool.h"
23 #include "llvm/CodeGen/MachineDominators.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/StackMaps.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/MC/MCAsmInfo.h"
32 #include "llvm/MC/MCExpr.h"
33 #include "llvm/MC/MCInst.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/Target/TargetOptions.h"
43 #define DEBUG_TYPE "x86-instr-info"
45 #define GET_INSTRINFO_CTOR_DTOR
46 #include "X86GenInstrInfo.inc"
49 NoFusing("disable-spill-fusing",
50 cl::desc("Disable fusing of spill code into instructions"));
52 PrintFailedFusing("print-failed-fuse-candidates",
53 cl::desc("Print instructions that the allocator wants to"
54 " fuse, but the X86 backend currently can't"),
57 ReMatPICStubLoad("remat-pic-stub-load",
58 cl::desc("Re-materialize load from stub in PIC mode"),
59 cl::init(false), cl::Hidden);
62 // Select which memory operand is being unfolded.
63 // (stored in bits 0 - 3)
71 // Do not insert the reverse map (MemOp -> RegOp) into the table.
72 // This may be needed because there is a many -> one mapping.
73 TB_NO_REVERSE = 1 << 4,
75 // Do not insert the forward map (RegOp -> MemOp) into the table.
76 // This is needed for Native Client, which prohibits branch
77 // instructions from using a memory operand.
78 TB_NO_FORWARD = 1 << 5,
80 TB_FOLDED_LOAD = 1 << 6,
81 TB_FOLDED_STORE = 1 << 7,
83 // Minimum alignment required for load/store.
84 // Used for RegOp->MemOp conversion.
85 // (stored in bits 8 - 15)
87 TB_ALIGN_NONE = 0 << TB_ALIGN_SHIFT,
88 TB_ALIGN_16 = 16 << TB_ALIGN_SHIFT,
89 TB_ALIGN_32 = 32 << TB_ALIGN_SHIFT,
90 TB_ALIGN_64 = 64 << TB_ALIGN_SHIFT,
91 TB_ALIGN_MASK = 0xff << TB_ALIGN_SHIFT
94 struct X86OpTblEntry {
100 // Pin the vtable to this file.
101 void X86InstrInfo::anchor() {}
103 X86InstrInfo::X86InstrInfo(X86Subtarget &STI)
105 (STI.isTarget64BitLP64() ? X86::ADJCALLSTACKDOWN64 : X86::ADJCALLSTACKDOWN32),
106 (STI.isTarget64BitLP64() ? X86::ADJCALLSTACKUP64 : X86::ADJCALLSTACKUP32)),
107 Subtarget(STI), RI(STI) {
109 static const X86OpTblEntry OpTbl2Addr[] = {
110 { X86::ADC32ri, X86::ADC32mi, 0 },
111 { X86::ADC32ri8, X86::ADC32mi8, 0 },
112 { X86::ADC32rr, X86::ADC32mr, 0 },
113 { X86::ADC64ri32, X86::ADC64mi32, 0 },
114 { X86::ADC64ri8, X86::ADC64mi8, 0 },
115 { X86::ADC64rr, X86::ADC64mr, 0 },
116 { X86::ADD16ri, X86::ADD16mi, 0 },
117 { X86::ADD16ri8, X86::ADD16mi8, 0 },
118 { X86::ADD16ri_DB, X86::ADD16mi, TB_NO_REVERSE },
119 { X86::ADD16ri8_DB, X86::ADD16mi8, TB_NO_REVERSE },
120 { X86::ADD16rr, X86::ADD16mr, 0 },
121 { X86::ADD16rr_DB, X86::ADD16mr, TB_NO_REVERSE },
122 { X86::ADD32ri, X86::ADD32mi, 0 },
123 { X86::ADD32ri8, X86::ADD32mi8, 0 },
124 { X86::ADD32ri_DB, X86::ADD32mi, TB_NO_REVERSE },
125 { X86::ADD32ri8_DB, X86::ADD32mi8, TB_NO_REVERSE },
126 { X86::ADD32rr, X86::ADD32mr, 0 },
127 { X86::ADD32rr_DB, X86::ADD32mr, TB_NO_REVERSE },
128 { X86::ADD64ri32, X86::ADD64mi32, 0 },
129 { X86::ADD64ri8, X86::ADD64mi8, 0 },
130 { X86::ADD64ri32_DB,X86::ADD64mi32, TB_NO_REVERSE },
131 { X86::ADD64ri8_DB, X86::ADD64mi8, TB_NO_REVERSE },
132 { X86::ADD64rr, X86::ADD64mr, 0 },
133 { X86::ADD64rr_DB, X86::ADD64mr, TB_NO_REVERSE },
134 { X86::ADD8ri, X86::ADD8mi, 0 },
135 { X86::ADD8rr, X86::ADD8mr, 0 },
136 { X86::AND16ri, X86::AND16mi, 0 },
137 { X86::AND16ri8, X86::AND16mi8, 0 },
138 { X86::AND16rr, X86::AND16mr, 0 },
139 { X86::AND32ri, X86::AND32mi, 0 },
140 { X86::AND32ri8, X86::AND32mi8, 0 },
141 { X86::AND32rr, X86::AND32mr, 0 },
142 { X86::AND64ri32, X86::AND64mi32, 0 },
143 { X86::AND64ri8, X86::AND64mi8, 0 },
144 { X86::AND64rr, X86::AND64mr, 0 },
145 { X86::AND8ri, X86::AND8mi, 0 },
146 { X86::AND8rr, X86::AND8mr, 0 },
147 { X86::DEC16r, X86::DEC16m, 0 },
148 { X86::DEC32r, X86::DEC32m, 0 },
149 { X86::DEC64r, X86::DEC64m, 0 },
150 { X86::DEC8r, X86::DEC8m, 0 },
151 { X86::INC16r, X86::INC16m, 0 },
152 { X86::INC32r, X86::INC32m, 0 },
153 { X86::INC64r, X86::INC64m, 0 },
154 { X86::INC8r, X86::INC8m, 0 },
155 { X86::NEG16r, X86::NEG16m, 0 },
156 { X86::NEG32r, X86::NEG32m, 0 },
157 { X86::NEG64r, X86::NEG64m, 0 },
158 { X86::NEG8r, X86::NEG8m, 0 },
159 { X86::NOT16r, X86::NOT16m, 0 },
160 { X86::NOT32r, X86::NOT32m, 0 },
161 { X86::NOT64r, X86::NOT64m, 0 },
162 { X86::NOT8r, X86::NOT8m, 0 },
163 { X86::OR16ri, X86::OR16mi, 0 },
164 { X86::OR16ri8, X86::OR16mi8, 0 },
165 { X86::OR16rr, X86::OR16mr, 0 },
166 { X86::OR32ri, X86::OR32mi, 0 },
167 { X86::OR32ri8, X86::OR32mi8, 0 },
168 { X86::OR32rr, X86::OR32mr, 0 },
169 { X86::OR64ri32, X86::OR64mi32, 0 },
170 { X86::OR64ri8, X86::OR64mi8, 0 },
171 { X86::OR64rr, X86::OR64mr, 0 },
172 { X86::OR8ri, X86::OR8mi, 0 },
173 { X86::OR8rr, X86::OR8mr, 0 },
174 { X86::ROL16r1, X86::ROL16m1, 0 },
175 { X86::ROL16rCL, X86::ROL16mCL, 0 },
176 { X86::ROL16ri, X86::ROL16mi, 0 },
177 { X86::ROL32r1, X86::ROL32m1, 0 },
178 { X86::ROL32rCL, X86::ROL32mCL, 0 },
179 { X86::ROL32ri, X86::ROL32mi, 0 },
180 { X86::ROL64r1, X86::ROL64m1, 0 },
181 { X86::ROL64rCL, X86::ROL64mCL, 0 },
182 { X86::ROL64ri, X86::ROL64mi, 0 },
183 { X86::ROL8r1, X86::ROL8m1, 0 },
184 { X86::ROL8rCL, X86::ROL8mCL, 0 },
185 { X86::ROL8ri, X86::ROL8mi, 0 },
186 { X86::ROR16r1, X86::ROR16m1, 0 },
187 { X86::ROR16rCL, X86::ROR16mCL, 0 },
188 { X86::ROR16ri, X86::ROR16mi, 0 },
189 { X86::ROR32r1, X86::ROR32m1, 0 },
190 { X86::ROR32rCL, X86::ROR32mCL, 0 },
191 { X86::ROR32ri, X86::ROR32mi, 0 },
192 { X86::ROR64r1, X86::ROR64m1, 0 },
193 { X86::ROR64rCL, X86::ROR64mCL, 0 },
194 { X86::ROR64ri, X86::ROR64mi, 0 },
195 { X86::ROR8r1, X86::ROR8m1, 0 },
196 { X86::ROR8rCL, X86::ROR8mCL, 0 },
197 { X86::ROR8ri, X86::ROR8mi, 0 },
198 { X86::SAR16r1, X86::SAR16m1, 0 },
199 { X86::SAR16rCL, X86::SAR16mCL, 0 },
200 { X86::SAR16ri, X86::SAR16mi, 0 },
201 { X86::SAR32r1, X86::SAR32m1, 0 },
202 { X86::SAR32rCL, X86::SAR32mCL, 0 },
203 { X86::SAR32ri, X86::SAR32mi, 0 },
204 { X86::SAR64r1, X86::SAR64m1, 0 },
205 { X86::SAR64rCL, X86::SAR64mCL, 0 },
206 { X86::SAR64ri, X86::SAR64mi, 0 },
207 { X86::SAR8r1, X86::SAR8m1, 0 },
208 { X86::SAR8rCL, X86::SAR8mCL, 0 },
209 { X86::SAR8ri, X86::SAR8mi, 0 },
210 { X86::SBB32ri, X86::SBB32mi, 0 },
211 { X86::SBB32ri8, X86::SBB32mi8, 0 },
212 { X86::SBB32rr, X86::SBB32mr, 0 },
213 { X86::SBB64ri32, X86::SBB64mi32, 0 },
214 { X86::SBB64ri8, X86::SBB64mi8, 0 },
215 { X86::SBB64rr, X86::SBB64mr, 0 },
216 { X86::SHL16rCL, X86::SHL16mCL, 0 },
217 { X86::SHL16ri, X86::SHL16mi, 0 },
218 { X86::SHL32rCL, X86::SHL32mCL, 0 },
219 { X86::SHL32ri, X86::SHL32mi, 0 },
220 { X86::SHL64rCL, X86::SHL64mCL, 0 },
221 { X86::SHL64ri, X86::SHL64mi, 0 },
222 { X86::SHL8rCL, X86::SHL8mCL, 0 },
223 { X86::SHL8ri, X86::SHL8mi, 0 },
224 { X86::SHLD16rrCL, X86::SHLD16mrCL, 0 },
225 { X86::SHLD16rri8, X86::SHLD16mri8, 0 },
226 { X86::SHLD32rrCL, X86::SHLD32mrCL, 0 },
227 { X86::SHLD32rri8, X86::SHLD32mri8, 0 },
228 { X86::SHLD64rrCL, X86::SHLD64mrCL, 0 },
229 { X86::SHLD64rri8, X86::SHLD64mri8, 0 },
230 { X86::SHR16r1, X86::SHR16m1, 0 },
231 { X86::SHR16rCL, X86::SHR16mCL, 0 },
232 { X86::SHR16ri, X86::SHR16mi, 0 },
233 { X86::SHR32r1, X86::SHR32m1, 0 },
234 { X86::SHR32rCL, X86::SHR32mCL, 0 },
235 { X86::SHR32ri, X86::SHR32mi, 0 },
236 { X86::SHR64r1, X86::SHR64m1, 0 },
237 { X86::SHR64rCL, X86::SHR64mCL, 0 },
238 { X86::SHR64ri, X86::SHR64mi, 0 },
239 { X86::SHR8r1, X86::SHR8m1, 0 },
240 { X86::SHR8rCL, X86::SHR8mCL, 0 },
241 { X86::SHR8ri, X86::SHR8mi, 0 },
242 { X86::SHRD16rrCL, X86::SHRD16mrCL, 0 },
243 { X86::SHRD16rri8, X86::SHRD16mri8, 0 },
244 { X86::SHRD32rrCL, X86::SHRD32mrCL, 0 },
245 { X86::SHRD32rri8, X86::SHRD32mri8, 0 },
246 { X86::SHRD64rrCL, X86::SHRD64mrCL, 0 },
247 { X86::SHRD64rri8, X86::SHRD64mri8, 0 },
248 { X86::SUB16ri, X86::SUB16mi, 0 },
249 { X86::SUB16ri8, X86::SUB16mi8, 0 },
250 { X86::SUB16rr, X86::SUB16mr, 0 },
251 { X86::SUB32ri, X86::SUB32mi, 0 },
252 { X86::SUB32ri8, X86::SUB32mi8, 0 },
253 { X86::SUB32rr, X86::SUB32mr, 0 },
254 { X86::SUB64ri32, X86::SUB64mi32, 0 },
255 { X86::SUB64ri8, X86::SUB64mi8, 0 },
256 { X86::SUB64rr, X86::SUB64mr, 0 },
257 { X86::SUB8ri, X86::SUB8mi, 0 },
258 { X86::SUB8rr, X86::SUB8mr, 0 },
259 { X86::XOR16ri, X86::XOR16mi, 0 },
260 { X86::XOR16ri8, X86::XOR16mi8, 0 },
261 { X86::XOR16rr, X86::XOR16mr, 0 },
262 { X86::XOR32ri, X86::XOR32mi, 0 },
263 { X86::XOR32ri8, X86::XOR32mi8, 0 },
264 { X86::XOR32rr, X86::XOR32mr, 0 },
265 { X86::XOR64ri32, X86::XOR64mi32, 0 },
266 { X86::XOR64ri8, X86::XOR64mi8, 0 },
267 { X86::XOR64rr, X86::XOR64mr, 0 },
268 { X86::XOR8ri, X86::XOR8mi, 0 },
269 { X86::XOR8rr, X86::XOR8mr, 0 }
272 for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
273 unsigned RegOp = OpTbl2Addr[i].RegOp;
274 unsigned MemOp = OpTbl2Addr[i].MemOp;
275 unsigned Flags = OpTbl2Addr[i].Flags;
276 AddTableEntry(RegOp2MemOpTable2Addr, MemOp2RegOpTable,
278 // Index 0, folded load and store, no alignment requirement.
279 Flags | TB_INDEX_0 | TB_FOLDED_LOAD | TB_FOLDED_STORE);
282 static const X86OpTblEntry OpTbl0[] = {
283 { X86::BT16ri8, X86::BT16mi8, TB_FOLDED_LOAD },
284 { X86::BT32ri8, X86::BT32mi8, TB_FOLDED_LOAD },
285 { X86::BT64ri8, X86::BT64mi8, TB_FOLDED_LOAD },
286 { X86::CALL32r, X86::CALL32m, TB_FOLDED_LOAD },
287 { X86::CALL64r, X86::CALL64m, TB_FOLDED_LOAD },
288 { X86::CMP16ri, X86::CMP16mi, TB_FOLDED_LOAD },
289 { X86::CMP16ri8, X86::CMP16mi8, TB_FOLDED_LOAD },
290 { X86::CMP16rr, X86::CMP16mr, TB_FOLDED_LOAD },
291 { X86::CMP32ri, X86::CMP32mi, TB_FOLDED_LOAD },
292 { X86::CMP32ri8, X86::CMP32mi8, TB_FOLDED_LOAD },
293 { X86::CMP32rr, X86::CMP32mr, TB_FOLDED_LOAD },
294 { X86::CMP64ri32, X86::CMP64mi32, TB_FOLDED_LOAD },
295 { X86::CMP64ri8, X86::CMP64mi8, TB_FOLDED_LOAD },
296 { X86::CMP64rr, X86::CMP64mr, TB_FOLDED_LOAD },
297 { X86::CMP8ri, X86::CMP8mi, TB_FOLDED_LOAD },
298 { X86::CMP8rr, X86::CMP8mr, TB_FOLDED_LOAD },
299 { X86::DIV16r, X86::DIV16m, TB_FOLDED_LOAD },
300 { X86::DIV32r, X86::DIV32m, TB_FOLDED_LOAD },
301 { X86::DIV64r, X86::DIV64m, TB_FOLDED_LOAD },
302 { X86::DIV8r, X86::DIV8m, TB_FOLDED_LOAD },
303 { X86::EXTRACTPSrr, X86::EXTRACTPSmr, TB_FOLDED_STORE },
304 { X86::IDIV16r, X86::IDIV16m, TB_FOLDED_LOAD },
305 { X86::IDIV32r, X86::IDIV32m, TB_FOLDED_LOAD },
306 { X86::IDIV64r, X86::IDIV64m, TB_FOLDED_LOAD },
307 { X86::IDIV8r, X86::IDIV8m, TB_FOLDED_LOAD },
308 { X86::IMUL16r, X86::IMUL16m, TB_FOLDED_LOAD },
309 { X86::IMUL32r, X86::IMUL32m, TB_FOLDED_LOAD },
310 { X86::IMUL64r, X86::IMUL64m, TB_FOLDED_LOAD },
311 { X86::IMUL8r, X86::IMUL8m, TB_FOLDED_LOAD },
312 { X86::JMP32r, X86::JMP32m, TB_FOLDED_LOAD },
313 { X86::JMP64r, X86::JMP64m, TB_FOLDED_LOAD },
314 { X86::MOV16ri, X86::MOV16mi, TB_FOLDED_STORE },
315 { X86::MOV16rr, X86::MOV16mr, TB_FOLDED_STORE },
316 { X86::MOV32ri, X86::MOV32mi, TB_FOLDED_STORE },
317 { X86::MOV32rr, X86::MOV32mr, TB_FOLDED_STORE },
318 { X86::MOV64ri32, X86::MOV64mi32, TB_FOLDED_STORE },
319 { X86::MOV64rr, X86::MOV64mr, TB_FOLDED_STORE },
320 { X86::MOV8ri, X86::MOV8mi, TB_FOLDED_STORE },
321 { X86::MOV8rr, X86::MOV8mr, TB_FOLDED_STORE },
322 { X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, TB_FOLDED_STORE },
323 { X86::MOVAPDrr, X86::MOVAPDmr, TB_FOLDED_STORE | TB_ALIGN_16 },
324 { X86::MOVAPSrr, X86::MOVAPSmr, TB_FOLDED_STORE | TB_ALIGN_16 },
325 { X86::MOVDQArr, X86::MOVDQAmr, TB_FOLDED_STORE | TB_ALIGN_16 },
326 { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, TB_FOLDED_STORE },
327 { X86::MOVPQIto64rr,X86::MOVPQI2QImr, TB_FOLDED_STORE },
328 { X86::MOVSDto64rr, X86::MOVSDto64mr, TB_FOLDED_STORE },
329 { X86::MOVSS2DIrr, X86::MOVSS2DImr, TB_FOLDED_STORE },
330 { X86::MOVUPDrr, X86::MOVUPDmr, TB_FOLDED_STORE },
331 { X86::MOVUPSrr, X86::MOVUPSmr, TB_FOLDED_STORE },
332 { X86::MUL16r, X86::MUL16m, TB_FOLDED_LOAD },
333 { X86::MUL32r, X86::MUL32m, TB_FOLDED_LOAD },
334 { X86::MUL64r, X86::MUL64m, TB_FOLDED_LOAD },
335 { X86::MUL8r, X86::MUL8m, TB_FOLDED_LOAD },
336 { X86::PEXTRDrr, X86::PEXTRDmr, TB_FOLDED_STORE },
337 { X86::PEXTRQrr, X86::PEXTRQmr, TB_FOLDED_STORE },
338 { X86::SETAEr, X86::SETAEm, TB_FOLDED_STORE },
339 { X86::SETAr, X86::SETAm, TB_FOLDED_STORE },
340 { X86::SETBEr, X86::SETBEm, TB_FOLDED_STORE },
341 { X86::SETBr, X86::SETBm, TB_FOLDED_STORE },
342 { X86::SETEr, X86::SETEm, TB_FOLDED_STORE },
343 { X86::SETGEr, X86::SETGEm, TB_FOLDED_STORE },
344 { X86::SETGr, X86::SETGm, TB_FOLDED_STORE },
345 { X86::SETLEr, X86::SETLEm, TB_FOLDED_STORE },
346 { X86::SETLr, X86::SETLm, TB_FOLDED_STORE },
347 { X86::SETNEr, X86::SETNEm, TB_FOLDED_STORE },
348 { X86::SETNOr, X86::SETNOm, TB_FOLDED_STORE },
349 { X86::SETNPr, X86::SETNPm, TB_FOLDED_STORE },
350 { X86::SETNSr, X86::SETNSm, TB_FOLDED_STORE },
351 { X86::SETOr, X86::SETOm, TB_FOLDED_STORE },
352 { X86::SETPr, X86::SETPm, TB_FOLDED_STORE },
353 { X86::SETSr, X86::SETSm, TB_FOLDED_STORE },
354 { X86::TAILJMPr, X86::TAILJMPm, TB_FOLDED_LOAD },
355 { X86::TAILJMPr64, X86::TAILJMPm64, TB_FOLDED_LOAD },
356 { X86::TAILJMPr64_REX, X86::TAILJMPm64_REX, TB_FOLDED_LOAD },
357 { X86::TEST16ri, X86::TEST16mi, TB_FOLDED_LOAD },
358 { X86::TEST32ri, X86::TEST32mi, TB_FOLDED_LOAD },
359 { X86::TEST64ri32, X86::TEST64mi32, TB_FOLDED_LOAD },
360 { X86::TEST8ri, X86::TEST8mi, TB_FOLDED_LOAD },
361 // AVX 128-bit versions of foldable instructions
362 { X86::VEXTRACTPSrr,X86::VEXTRACTPSmr, TB_FOLDED_STORE },
363 { X86::VEXTRACTF128rr, X86::VEXTRACTF128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
364 { X86::VMOVAPDrr, X86::VMOVAPDmr, TB_FOLDED_STORE | TB_ALIGN_16 },
365 { X86::VMOVAPSrr, X86::VMOVAPSmr, TB_FOLDED_STORE | TB_ALIGN_16 },
366 { X86::VMOVDQArr, X86::VMOVDQAmr, TB_FOLDED_STORE | TB_ALIGN_16 },
367 { X86::VMOVPDI2DIrr,X86::VMOVPDI2DImr, TB_FOLDED_STORE },
368 { X86::VMOVPQIto64rr, X86::VMOVPQI2QImr,TB_FOLDED_STORE },
369 { X86::VMOVSDto64rr,X86::VMOVSDto64mr, TB_FOLDED_STORE },
370 { X86::VMOVSS2DIrr, X86::VMOVSS2DImr, TB_FOLDED_STORE },
371 { X86::VMOVUPDrr, X86::VMOVUPDmr, TB_FOLDED_STORE },
372 { X86::VMOVUPSrr, X86::VMOVUPSmr, TB_FOLDED_STORE },
373 { X86::VPEXTRDrr, X86::VPEXTRDmr, TB_FOLDED_STORE },
374 { X86::VPEXTRQrr, X86::VPEXTRQmr, TB_FOLDED_STORE },
375 // AVX 256-bit foldable instructions
376 { X86::VEXTRACTI128rr, X86::VEXTRACTI128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
377 { X86::VMOVAPDYrr, X86::VMOVAPDYmr, TB_FOLDED_STORE | TB_ALIGN_32 },
378 { X86::VMOVAPSYrr, X86::VMOVAPSYmr, TB_FOLDED_STORE | TB_ALIGN_32 },
379 { X86::VMOVDQAYrr, X86::VMOVDQAYmr, TB_FOLDED_STORE | TB_ALIGN_32 },
380 { X86::VMOVUPDYrr, X86::VMOVUPDYmr, TB_FOLDED_STORE },
381 { X86::VMOVUPSYrr, X86::VMOVUPSYmr, TB_FOLDED_STORE },
382 // AVX-512 foldable instructions
383 { X86::VMOVPDI2DIZrr, X86::VMOVPDI2DIZmr, TB_FOLDED_STORE },
384 { X86::VMOVAPDZrr, X86::VMOVAPDZmr, TB_FOLDED_STORE | TB_ALIGN_64 },
385 { X86::VMOVAPSZrr, X86::VMOVAPSZmr, TB_FOLDED_STORE | TB_ALIGN_64 },
386 { X86::VMOVDQA32Zrr, X86::VMOVDQA32Zmr, TB_FOLDED_STORE | TB_ALIGN_64 },
387 { X86::VMOVDQA64Zrr, X86::VMOVDQA64Zmr, TB_FOLDED_STORE | TB_ALIGN_64 },
388 { X86::VMOVUPDZrr, X86::VMOVUPDZmr, TB_FOLDED_STORE },
389 { X86::VMOVUPSZrr, X86::VMOVUPSZmr, TB_FOLDED_STORE },
390 { X86::VMOVDQU8Zrr, X86::VMOVDQU8Zmr, TB_FOLDED_STORE },
391 { X86::VMOVDQU16Zrr, X86::VMOVDQU16Zmr, TB_FOLDED_STORE },
392 { X86::VMOVDQU32Zrr, X86::VMOVDQU32Zmr, TB_FOLDED_STORE },
393 { X86::VMOVDQU64Zrr, X86::VMOVDQU64Zmr, TB_FOLDED_STORE },
394 // AVX-512 foldable instructions (256-bit versions)
395 { X86::VMOVAPDZ256rr, X86::VMOVAPDZ256mr, TB_FOLDED_STORE | TB_ALIGN_32 },
396 { X86::VMOVAPSZ256rr, X86::VMOVAPSZ256mr, TB_FOLDED_STORE | TB_ALIGN_32 },
397 { X86::VMOVDQA32Z256rr, X86::VMOVDQA32Z256mr, TB_FOLDED_STORE | TB_ALIGN_32 },
398 { X86::VMOVDQA64Z256rr, X86::VMOVDQA64Z256mr, TB_FOLDED_STORE | TB_ALIGN_32 },
399 { X86::VMOVUPDZ256rr, X86::VMOVUPDZ256mr, TB_FOLDED_STORE },
400 { X86::VMOVUPSZ256rr, X86::VMOVUPSZ256mr, TB_FOLDED_STORE },
401 { X86::VMOVDQU8Z256rr, X86::VMOVDQU8Z256mr, TB_FOLDED_STORE },
402 { X86::VMOVDQU16Z256rr, X86::VMOVDQU16Z256mr, TB_FOLDED_STORE },
403 { X86::VMOVDQU32Z256rr, X86::VMOVDQU32Z256mr, TB_FOLDED_STORE },
404 { X86::VMOVDQU64Z256rr, X86::VMOVDQU64Z256mr, TB_FOLDED_STORE },
405 // AVX-512 foldable instructions (128-bit versions)
406 { X86::VMOVAPDZ128rr, X86::VMOVAPDZ128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
407 { X86::VMOVAPSZ128rr, X86::VMOVAPSZ128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
408 { X86::VMOVDQA32Z128rr, X86::VMOVDQA32Z128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
409 { X86::VMOVDQA64Z128rr, X86::VMOVDQA64Z128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
410 { X86::VMOVUPDZ128rr, X86::VMOVUPDZ128mr, TB_FOLDED_STORE },
411 { X86::VMOVUPSZ128rr, X86::VMOVUPSZ128mr, TB_FOLDED_STORE },
412 { X86::VMOVDQU8Z128rr, X86::VMOVDQU8Z128mr, TB_FOLDED_STORE },
413 { X86::VMOVDQU16Z128rr, X86::VMOVDQU16Z128mr, TB_FOLDED_STORE },
414 { X86::VMOVDQU32Z128rr, X86::VMOVDQU32Z128mr, TB_FOLDED_STORE },
415 { X86::VMOVDQU64Z128rr, X86::VMOVDQU64Z128mr, TB_FOLDED_STORE },
416 // F16C foldable instructions
417 { X86::VCVTPS2PHrr, X86::VCVTPS2PHmr, TB_FOLDED_STORE },
418 { X86::VCVTPS2PHYrr, X86::VCVTPS2PHYmr, TB_FOLDED_STORE }
421 for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
422 unsigned RegOp = OpTbl0[i].RegOp;
423 unsigned MemOp = OpTbl0[i].MemOp;
424 unsigned Flags = OpTbl0[i].Flags;
425 AddTableEntry(RegOp2MemOpTable0, MemOp2RegOpTable,
426 RegOp, MemOp, TB_INDEX_0 | Flags);
429 static const X86OpTblEntry OpTbl1[] = {
430 { X86::CMP16rr, X86::CMP16rm, 0 },
431 { X86::CMP32rr, X86::CMP32rm, 0 },
432 { X86::CMP64rr, X86::CMP64rm, 0 },
433 { X86::CMP8rr, X86::CMP8rm, 0 },
434 { X86::CVTSD2SSrr, X86::CVTSD2SSrm, 0 },
435 { X86::CVTSI2SD64rr, X86::CVTSI2SD64rm, 0 },
436 { X86::CVTSI2SDrr, X86::CVTSI2SDrm, 0 },
437 { X86::CVTSI2SS64rr, X86::CVTSI2SS64rm, 0 },
438 { X86::CVTSI2SSrr, X86::CVTSI2SSrm, 0 },
439 { X86::CVTSS2SDrr, X86::CVTSS2SDrm, 0 },
440 { X86::CVTTSD2SI64rr, X86::CVTTSD2SI64rm, 0 },
441 { X86::CVTTSD2SIrr, X86::CVTTSD2SIrm, 0 },
442 { X86::CVTTSS2SI64rr, X86::CVTTSS2SI64rm, 0 },
443 { X86::CVTTSS2SIrr, X86::CVTTSS2SIrm, 0 },
444 { X86::IMUL16rri, X86::IMUL16rmi, 0 },
445 { X86::IMUL16rri8, X86::IMUL16rmi8, 0 },
446 { X86::IMUL32rri, X86::IMUL32rmi, 0 },
447 { X86::IMUL32rri8, X86::IMUL32rmi8, 0 },
448 { X86::IMUL64rri32, X86::IMUL64rmi32, 0 },
449 { X86::IMUL64rri8, X86::IMUL64rmi8, 0 },
450 { X86::Int_COMISDrr, X86::Int_COMISDrm, 0 },
451 { X86::Int_COMISSrr, X86::Int_COMISSrm, 0 },
452 { X86::CVTSD2SI64rr, X86::CVTSD2SI64rm, 0 },
453 { X86::CVTSD2SIrr, X86::CVTSD2SIrm, 0 },
454 { X86::CVTSS2SI64rr, X86::CVTSS2SI64rm, 0 },
455 { X86::CVTSS2SIrr, X86::CVTSS2SIrm, 0 },
456 { X86::CVTDQ2PDrr, X86::CVTDQ2PDrm, TB_ALIGN_16 },
457 { X86::CVTDQ2PSrr, X86::CVTDQ2PSrm, TB_ALIGN_16 },
458 { X86::CVTPD2DQrr, X86::CVTPD2DQrm, TB_ALIGN_16 },
459 { X86::CVTPD2PSrr, X86::CVTPD2PSrm, TB_ALIGN_16 },
460 { X86::CVTPS2DQrr, X86::CVTPS2DQrm, TB_ALIGN_16 },
461 { X86::CVTPS2PDrr, X86::CVTPS2PDrm, TB_ALIGN_16 },
462 { X86::CVTTPD2DQrr, X86::CVTTPD2DQrm, TB_ALIGN_16 },
463 { X86::CVTTPS2DQrr, X86::CVTTPS2DQrm, TB_ALIGN_16 },
464 { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm, 0 },
465 { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm, 0 },
466 { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm, 0 },
467 { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm, 0 },
468 { X86::Int_UCOMISDrr, X86::Int_UCOMISDrm, 0 },
469 { X86::Int_UCOMISSrr, X86::Int_UCOMISSrm, 0 },
470 { X86::MOV16rr, X86::MOV16rm, 0 },
471 { X86::MOV32rr, X86::MOV32rm, 0 },
472 { X86::MOV64rr, X86::MOV64rm, 0 },
473 { X86::MOV64toPQIrr, X86::MOVQI2PQIrm, 0 },
474 { X86::MOV64toSDrr, X86::MOV64toSDrm, 0 },
475 { X86::MOV8rr, X86::MOV8rm, 0 },
476 { X86::MOVAPDrr, X86::MOVAPDrm, TB_ALIGN_16 },
477 { X86::MOVAPSrr, X86::MOVAPSrm, TB_ALIGN_16 },
478 { X86::MOVDDUPrr, X86::MOVDDUPrm, 0 },
479 { X86::MOVDI2PDIrr, X86::MOVDI2PDIrm, 0 },
480 { X86::MOVDI2SSrr, X86::MOVDI2SSrm, 0 },
481 { X86::MOVDQArr, X86::MOVDQArm, TB_ALIGN_16 },
482 { X86::MOVSHDUPrr, X86::MOVSHDUPrm, TB_ALIGN_16 },
483 { X86::MOVSLDUPrr, X86::MOVSLDUPrm, TB_ALIGN_16 },
484 { X86::MOVSX16rr8, X86::MOVSX16rm8, 0 },
485 { X86::MOVSX32rr16, X86::MOVSX32rm16, 0 },
486 { X86::MOVSX32rr8, X86::MOVSX32rm8, 0 },
487 { X86::MOVSX64rr16, X86::MOVSX64rm16, 0 },
488 { X86::MOVSX64rr32, X86::MOVSX64rm32, 0 },
489 { X86::MOVSX64rr8, X86::MOVSX64rm8, 0 },
490 { X86::MOVUPDrr, X86::MOVUPDrm, TB_ALIGN_16 },
491 { X86::MOVUPSrr, X86::MOVUPSrm, 0 },
492 { X86::MOVZQI2PQIrr, X86::MOVZQI2PQIrm, 0 },
493 { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm, TB_ALIGN_16 },
494 { X86::MOVZX16rr8, X86::MOVZX16rm8, 0 },
495 { X86::MOVZX32rr16, X86::MOVZX32rm16, 0 },
496 { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8, 0 },
497 { X86::MOVZX32rr8, X86::MOVZX32rm8, 0 },
498 { X86::PABSBrr128, X86::PABSBrm128, TB_ALIGN_16 },
499 { X86::PABSDrr128, X86::PABSDrm128, TB_ALIGN_16 },
500 { X86::PABSWrr128, X86::PABSWrm128, TB_ALIGN_16 },
501 { X86::PCMPESTRIrr, X86::PCMPESTRIrm, TB_ALIGN_16 },
502 { X86::PCMPESTRM128rr, X86::PCMPESTRM128rm, TB_ALIGN_16 },
503 { X86::PCMPISTRIrr, X86::PCMPISTRIrm, TB_ALIGN_16 },
504 { X86::PCMPISTRM128rr, X86::PCMPISTRM128rm, TB_ALIGN_16 },
505 { X86::PHMINPOSUWrr128, X86::PHMINPOSUWrm128, TB_ALIGN_16 },
506 { X86::PMOVSXBDrr, X86::PMOVSXBDrm, TB_ALIGN_16 },
507 { X86::PMOVSXBQrr, X86::PMOVSXBQrm, TB_ALIGN_16 },
508 { X86::PMOVSXBWrr, X86::PMOVSXBWrm, TB_ALIGN_16 },
509 { X86::PMOVSXDQrr, X86::PMOVSXDQrm, TB_ALIGN_16 },
510 { X86::PMOVSXWDrr, X86::PMOVSXWDrm, TB_ALIGN_16 },
511 { X86::PMOVSXWQrr, X86::PMOVSXWQrm, TB_ALIGN_16 },
512 { X86::PMOVZXBDrr, X86::PMOVZXBDrm, TB_ALIGN_16 },
513 { X86::PMOVZXBQrr, X86::PMOVZXBQrm, TB_ALIGN_16 },
514 { X86::PMOVZXBWrr, X86::PMOVZXBWrm, TB_ALIGN_16 },
515 { X86::PMOVZXDQrr, X86::PMOVZXDQrm, TB_ALIGN_16 },
516 { X86::PMOVZXWDrr, X86::PMOVZXWDrm, TB_ALIGN_16 },
517 { X86::PMOVZXWQrr, X86::PMOVZXWQrm, TB_ALIGN_16 },
518 { X86::PSHUFDri, X86::PSHUFDmi, TB_ALIGN_16 },
519 { X86::PSHUFHWri, X86::PSHUFHWmi, TB_ALIGN_16 },
520 { X86::PSHUFLWri, X86::PSHUFLWmi, TB_ALIGN_16 },
521 { X86::PTESTrr, X86::PTESTrm, TB_ALIGN_16 },
522 { X86::RCPPSr, X86::RCPPSm, TB_ALIGN_16 },
523 { X86::RCPPSr_Int, X86::RCPPSm_Int, TB_ALIGN_16 },
524 { X86::ROUNDPDr, X86::ROUNDPDm, TB_ALIGN_16 },
525 { X86::ROUNDPSr, X86::ROUNDPSm, TB_ALIGN_16 },
526 { X86::RSQRTPSr, X86::RSQRTPSm, TB_ALIGN_16 },
527 { X86::RSQRTPSr_Int, X86::RSQRTPSm_Int, TB_ALIGN_16 },
528 { X86::RSQRTSSr, X86::RSQRTSSm, 0 },
529 { X86::RSQRTSSr_Int, X86::RSQRTSSm_Int, 0 },
530 { X86::SQRTPDr, X86::SQRTPDm, TB_ALIGN_16 },
531 { X86::SQRTPSr, X86::SQRTPSm, TB_ALIGN_16 },
532 { X86::SQRTSDr, X86::SQRTSDm, 0 },
533 { X86::SQRTSDr_Int, X86::SQRTSDm_Int, 0 },
534 { X86::SQRTSSr, X86::SQRTSSm, 0 },
535 { X86::SQRTSSr_Int, X86::SQRTSSm_Int, 0 },
536 { X86::TEST16rr, X86::TEST16rm, 0 },
537 { X86::TEST32rr, X86::TEST32rm, 0 },
538 { X86::TEST64rr, X86::TEST64rm, 0 },
539 { X86::TEST8rr, X86::TEST8rm, 0 },
540 // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
541 { X86::UCOMISDrr, X86::UCOMISDrm, 0 },
542 { X86::UCOMISSrr, X86::UCOMISSrm, 0 },
543 // AVX 128-bit versions of foldable instructions
544 { X86::Int_VCOMISDrr, X86::Int_VCOMISDrm, 0 },
545 { X86::Int_VCOMISSrr, X86::Int_VCOMISSrm, 0 },
546 { X86::Int_VUCOMISDrr, X86::Int_VUCOMISDrm, 0 },
547 { X86::Int_VUCOMISSrr, X86::Int_VUCOMISSrm, 0 },
548 { X86::VCVTTSD2SI64rr, X86::VCVTTSD2SI64rm, 0 },
549 { X86::Int_VCVTTSD2SI64rr,X86::Int_VCVTTSD2SI64rm,0 },
550 { X86::VCVTTSD2SIrr, X86::VCVTTSD2SIrm, 0 },
551 { X86::Int_VCVTTSD2SIrr,X86::Int_VCVTTSD2SIrm, 0 },
552 { X86::VCVTTSS2SI64rr, X86::VCVTTSS2SI64rm, 0 },
553 { X86::Int_VCVTTSS2SI64rr,X86::Int_VCVTTSS2SI64rm,0 },
554 { X86::VCVTTSS2SIrr, X86::VCVTTSS2SIrm, 0 },
555 { X86::Int_VCVTTSS2SIrr,X86::Int_VCVTTSS2SIrm, 0 },
556 { X86::VCVTSD2SI64rr, X86::VCVTSD2SI64rm, 0 },
557 { X86::VCVTSD2SIrr, X86::VCVTSD2SIrm, 0 },
558 { X86::VCVTSS2SI64rr, X86::VCVTSS2SI64rm, 0 },
559 { X86::VCVTSS2SIrr, X86::VCVTSS2SIrm, 0 },
560 { X86::VCVTDQ2PDrr, X86::VCVTDQ2PDrm, 0 },
561 { X86::VCVTDQ2PSrr, X86::VCVTDQ2PSrm, 0 },
562 { X86::VCVTPD2DQrr, X86::VCVTPD2DQXrm, 0 },
563 { X86::VCVTPD2PSrr, X86::VCVTPD2PSXrm, 0 },
564 { X86::VCVTPS2DQrr, X86::VCVTPS2DQrm, 0 },
565 { X86::VCVTPS2PDrr, X86::VCVTPS2PDrm, 0 },
566 { X86::VCVTTPD2DQrr, X86::VCVTTPD2DQXrm, 0 },
567 { X86::VCVTTPS2DQrr, X86::VCVTTPS2DQrm, 0 },
568 { X86::VMOV64toPQIrr, X86::VMOVQI2PQIrm, 0 },
569 { X86::VMOV64toSDrr, X86::VMOV64toSDrm, 0 },
570 { X86::VMOVAPDrr, X86::VMOVAPDrm, TB_ALIGN_16 },
571 { X86::VMOVAPSrr, X86::VMOVAPSrm, TB_ALIGN_16 },
572 { X86::VMOVDDUPrr, X86::VMOVDDUPrm, 0 },
573 { X86::VMOVDI2PDIrr, X86::VMOVDI2PDIrm, 0 },
574 { X86::VMOVDI2SSrr, X86::VMOVDI2SSrm, 0 },
575 { X86::VMOVDQArr, X86::VMOVDQArm, TB_ALIGN_16 },
576 { X86::VMOVSLDUPrr, X86::VMOVSLDUPrm, 0 },
577 { X86::VMOVSHDUPrr, X86::VMOVSHDUPrm, 0 },
578 { X86::VMOVUPDrr, X86::VMOVUPDrm, 0 },
579 { X86::VMOVUPSrr, X86::VMOVUPSrm, 0 },
580 { X86::VMOVZQI2PQIrr, X86::VMOVZQI2PQIrm, 0 },
581 { X86::VMOVZPQILo2PQIrr,X86::VMOVZPQILo2PQIrm, TB_ALIGN_16 },
582 { X86::VPABSBrr128, X86::VPABSBrm128, 0 },
583 { X86::VPABSDrr128, X86::VPABSDrm128, 0 },
584 { X86::VPABSWrr128, X86::VPABSWrm128, 0 },
585 { X86::VPCMPESTRIrr, X86::VPCMPESTRIrm, 0 },
586 { X86::VPCMPESTRM128rr, X86::VPCMPESTRM128rm, 0 },
587 { X86::VPCMPISTRIrr, X86::VPCMPISTRIrm, 0 },
588 { X86::VPCMPISTRM128rr, X86::VPCMPISTRM128rm, 0 },
589 { X86::VPHMINPOSUWrr128, X86::VPHMINPOSUWrm128, 0 },
590 { X86::VPERMILPDri, X86::VPERMILPDmi, 0 },
591 { X86::VPERMILPSri, X86::VPERMILPSmi, 0 },
592 { X86::VPMOVSXBDrr, X86::VPMOVSXBDrm, 0 },
593 { X86::VPMOVSXBQrr, X86::VPMOVSXBQrm, 0 },
594 { X86::VPMOVSXBWrr, X86::VPMOVSXBWrm, 0 },
595 { X86::VPMOVSXDQrr, X86::VPMOVSXDQrm, 0 },
596 { X86::VPMOVSXWDrr, X86::VPMOVSXWDrm, 0 },
597 { X86::VPMOVSXWQrr, X86::VPMOVSXWQrm, 0 },
598 { X86::VPMOVZXBDrr, X86::VPMOVZXBDrm, 0 },
599 { X86::VPMOVZXBQrr, X86::VPMOVZXBQrm, 0 },
600 { X86::VPMOVZXBWrr, X86::VPMOVZXBWrm, 0 },
601 { X86::VPMOVZXDQrr, X86::VPMOVZXDQrm, 0 },
602 { X86::VPMOVZXWDrr, X86::VPMOVZXWDrm, 0 },
603 { X86::VPMOVZXWQrr, X86::VPMOVZXWQrm, 0 },
604 { X86::VPSHUFDri, X86::VPSHUFDmi, 0 },
605 { X86::VPSHUFHWri, X86::VPSHUFHWmi, 0 },
606 { X86::VPSHUFLWri, X86::VPSHUFLWmi, 0 },
607 { X86::VPTESTrr, X86::VPTESTrm, 0 },
608 { X86::VRCPPSr, X86::VRCPPSm, 0 },
609 { X86::VRCPPSr_Int, X86::VRCPPSm_Int, 0 },
610 { X86::VROUNDPDr, X86::VROUNDPDm, 0 },
611 { X86::VROUNDPSr, X86::VROUNDPSm, 0 },
612 { X86::VRSQRTPSr, X86::VRSQRTPSm, 0 },
613 { X86::VRSQRTPSr_Int, X86::VRSQRTPSm_Int, 0 },
614 { X86::VSQRTPDr, X86::VSQRTPDm, 0 },
615 { X86::VSQRTPSr, X86::VSQRTPSm, 0 },
616 { X86::VTESTPDrr, X86::VTESTPDrm, 0 },
617 { X86::VTESTPSrr, X86::VTESTPSrm, 0 },
618 { X86::VUCOMISDrr, X86::VUCOMISDrm, 0 },
619 { X86::VUCOMISSrr, X86::VUCOMISSrm, 0 },
621 // AVX 256-bit foldable instructions
622 { X86::VCVTDQ2PDYrr, X86::VCVTDQ2PDYrm, 0 },
623 { X86::VCVTDQ2PSYrr, X86::VCVTDQ2PSYrm, 0 },
624 { X86::VCVTPD2DQYrr, X86::VCVTPD2DQYrm, 0 },
625 { X86::VCVTPD2PSYrr, X86::VCVTPD2PSYrm, 0 },
626 { X86::VCVTPS2DQYrr, X86::VCVTPS2DQYrm, 0 },
627 { X86::VCVTPS2PDYrr, X86::VCVTPS2PDYrm, 0 },
628 { X86::VCVTTPD2DQYrr, X86::VCVTTPD2DQYrm, 0 },
629 { X86::VCVTTPS2DQYrr, X86::VCVTTPS2DQYrm, 0 },
630 { X86::VMOVAPDYrr, X86::VMOVAPDYrm, TB_ALIGN_32 },
631 { X86::VMOVAPSYrr, X86::VMOVAPSYrm, TB_ALIGN_32 },
632 { X86::VMOVDDUPYrr, X86::VMOVDDUPYrm, 0 },
633 { X86::VMOVDQAYrr, X86::VMOVDQAYrm, TB_ALIGN_32 },
634 { X86::VMOVSLDUPYrr, X86::VMOVSLDUPYrm, 0 },
635 { X86::VMOVSHDUPYrr, X86::VMOVSHDUPYrm, 0 },
636 { X86::VMOVUPDYrr, X86::VMOVUPDYrm, 0 },
637 { X86::VMOVUPSYrr, X86::VMOVUPSYrm, 0 },
638 { X86::VPERMILPDYri, X86::VPERMILPDYmi, 0 },
639 { X86::VPERMILPSYri, X86::VPERMILPSYmi, 0 },
640 { X86::VPTESTYrr, X86::VPTESTYrm, 0 },
641 { X86::VRCPPSYr, X86::VRCPPSYm, 0 },
642 { X86::VRCPPSYr_Int, X86::VRCPPSYm_Int, 0 },
643 { X86::VROUNDYPDr, X86::VROUNDYPDm, 0 },
644 { X86::VROUNDYPSr, X86::VROUNDYPSm, 0 },
645 { X86::VRSQRTPSYr, X86::VRSQRTPSYm, 0 },
646 { X86::VRSQRTPSYr_Int, X86::VRSQRTPSYm_Int, 0 },
647 { X86::VSQRTPDYr, X86::VSQRTPDYm, 0 },
648 { X86::VSQRTPSYr, X86::VSQRTPSYm, 0 },
649 { X86::VTESTPDYrr, X86::VTESTPDYrm, 0 },
650 { X86::VTESTPSYrr, X86::VTESTPSYrm, 0 },
652 // AVX2 foldable instructions
653 { X86::VBROADCASTSSrr, X86::VBROADCASTSSrm, TB_NO_REVERSE },
654 { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrm, TB_NO_REVERSE },
655 { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrm, TB_NO_REVERSE },
656 { X86::VPABSBrr256, X86::VPABSBrm256, 0 },
657 { X86::VPABSDrr256, X86::VPABSDrm256, 0 },
658 { X86::VPABSWrr256, X86::VPABSWrm256, 0 },
659 { X86::VPSHUFDYri, X86::VPSHUFDYmi, 0 },
660 { X86::VPSHUFHWYri, X86::VPSHUFHWYmi, 0 },
661 { X86::VPSHUFLWYri, X86::VPSHUFLWYmi, 0 },
663 // BMI/BMI2/LZCNT/POPCNT/TBM foldable instructions
664 { X86::BEXTR32rr, X86::BEXTR32rm, 0 },
665 { X86::BEXTR64rr, X86::BEXTR64rm, 0 },
666 { X86::BEXTRI32ri, X86::BEXTRI32mi, 0 },
667 { X86::BEXTRI64ri, X86::BEXTRI64mi, 0 },
668 { X86::BLCFILL32rr, X86::BLCFILL32rm, 0 },
669 { X86::BLCFILL64rr, X86::BLCFILL64rm, 0 },
670 { X86::BLCI32rr, X86::BLCI32rm, 0 },
671 { X86::BLCI64rr, X86::BLCI64rm, 0 },
672 { X86::BLCIC32rr, X86::BLCIC32rm, 0 },
673 { X86::BLCIC64rr, X86::BLCIC64rm, 0 },
674 { X86::BLCMSK32rr, X86::BLCMSK32rm, 0 },
675 { X86::BLCMSK64rr, X86::BLCMSK64rm, 0 },
676 { X86::BLCS32rr, X86::BLCS32rm, 0 },
677 { X86::BLCS64rr, X86::BLCS64rm, 0 },
678 { X86::BLSFILL32rr, X86::BLSFILL32rm, 0 },
679 { X86::BLSFILL64rr, X86::BLSFILL64rm, 0 },
680 { X86::BLSI32rr, X86::BLSI32rm, 0 },
681 { X86::BLSI64rr, X86::BLSI64rm, 0 },
682 { X86::BLSIC32rr, X86::BLSIC32rm, 0 },
683 { X86::BLSIC64rr, X86::BLSIC64rm, 0 },
684 { X86::BLSMSK32rr, X86::BLSMSK32rm, 0 },
685 { X86::BLSMSK64rr, X86::BLSMSK64rm, 0 },
686 { X86::BLSR32rr, X86::BLSR32rm, 0 },
687 { X86::BLSR64rr, X86::BLSR64rm, 0 },
688 { X86::BZHI32rr, X86::BZHI32rm, 0 },
689 { X86::BZHI64rr, X86::BZHI64rm, 0 },
690 { X86::LZCNT16rr, X86::LZCNT16rm, 0 },
691 { X86::LZCNT32rr, X86::LZCNT32rm, 0 },
692 { X86::LZCNT64rr, X86::LZCNT64rm, 0 },
693 { X86::POPCNT16rr, X86::POPCNT16rm, 0 },
694 { X86::POPCNT32rr, X86::POPCNT32rm, 0 },
695 { X86::POPCNT64rr, X86::POPCNT64rm, 0 },
696 { X86::RORX32ri, X86::RORX32mi, 0 },
697 { X86::RORX64ri, X86::RORX64mi, 0 },
698 { X86::SARX32rr, X86::SARX32rm, 0 },
699 { X86::SARX64rr, X86::SARX64rm, 0 },
700 { X86::SHRX32rr, X86::SHRX32rm, 0 },
701 { X86::SHRX64rr, X86::SHRX64rm, 0 },
702 { X86::SHLX32rr, X86::SHLX32rm, 0 },
703 { X86::SHLX64rr, X86::SHLX64rm, 0 },
704 { X86::T1MSKC32rr, X86::T1MSKC32rm, 0 },
705 { X86::T1MSKC64rr, X86::T1MSKC64rm, 0 },
706 { X86::TZCNT16rr, X86::TZCNT16rm, 0 },
707 { X86::TZCNT32rr, X86::TZCNT32rm, 0 },
708 { X86::TZCNT64rr, X86::TZCNT64rm, 0 },
709 { X86::TZMSK32rr, X86::TZMSK32rm, 0 },
710 { X86::TZMSK64rr, X86::TZMSK64rm, 0 },
712 // AVX-512 foldable instructions
713 { X86::VMOV64toPQIZrr, X86::VMOVQI2PQIZrm, 0 },
714 { X86::VMOVDI2SSZrr, X86::VMOVDI2SSZrm, 0 },
715 { X86::VMOVAPDZrr, X86::VMOVAPDZrm, TB_ALIGN_64 },
716 { X86::VMOVAPSZrr, X86::VMOVAPSZrm, TB_ALIGN_64 },
717 { X86::VMOVDQA32Zrr, X86::VMOVDQA32Zrm, TB_ALIGN_64 },
718 { X86::VMOVDQA64Zrr, X86::VMOVDQA64Zrm, TB_ALIGN_64 },
719 { X86::VMOVDQU8Zrr, X86::VMOVDQU8Zrm, 0 },
720 { X86::VMOVDQU16Zrr, X86::VMOVDQU16Zrm, 0 },
721 { X86::VMOVDQU32Zrr, X86::VMOVDQU32Zrm, 0 },
722 { X86::VMOVDQU64Zrr, X86::VMOVDQU64Zrm, 0 },
723 { X86::VMOVUPDZrr, X86::VMOVUPDZrm, 0 },
724 { X86::VMOVUPSZrr, X86::VMOVUPSZrm, 0 },
725 { X86::VPABSDZrr, X86::VPABSDZrm, 0 },
726 { X86::VPABSQZrr, X86::VPABSQZrm, 0 },
727 { X86::VBROADCASTSSZr, X86::VBROADCASTSSZm, TB_NO_REVERSE },
728 { X86::VBROADCASTSDZr, X86::VBROADCASTSDZm, TB_NO_REVERSE },
729 // AVX-512 foldable instructions (256-bit versions)
730 { X86::VMOVAPDZ256rr, X86::VMOVAPDZ256rm, TB_ALIGN_32 },
731 { X86::VMOVAPSZ256rr, X86::VMOVAPSZ256rm, TB_ALIGN_32 },
732 { X86::VMOVDQA32Z256rr, X86::VMOVDQA32Z256rm, TB_ALIGN_32 },
733 { X86::VMOVDQA64Z256rr, X86::VMOVDQA64Z256rm, TB_ALIGN_32 },
734 { X86::VMOVDQU8Z256rr, X86::VMOVDQU8Z256rm, 0 },
735 { X86::VMOVDQU16Z256rr, X86::VMOVDQU16Z256rm, 0 },
736 { X86::VMOVDQU32Z256rr, X86::VMOVDQU32Z256rm, 0 },
737 { X86::VMOVDQU64Z256rr, X86::VMOVDQU64Z256rm, 0 },
738 { X86::VMOVUPDZ256rr, X86::VMOVUPDZ256rm, 0 },
739 { X86::VMOVUPSZ256rr, X86::VMOVUPSZ256rm, 0 },
740 { X86::VBROADCASTSSZ256r, X86::VBROADCASTSSZ256m, TB_NO_REVERSE },
741 { X86::VBROADCASTSDZ256r, X86::VBROADCASTSDZ256m, TB_NO_REVERSE },
742 // AVX-512 foldable instructions (256-bit versions)
743 { X86::VMOVAPDZ128rr, X86::VMOVAPDZ128rm, TB_ALIGN_16 },
744 { X86::VMOVAPSZ128rr, X86::VMOVAPSZ128rm, TB_ALIGN_16 },
745 { X86::VMOVDQA32Z128rr, X86::VMOVDQA32Z128rm, TB_ALIGN_16 },
746 { X86::VMOVDQA64Z128rr, X86::VMOVDQA64Z128rm, TB_ALIGN_16 },
747 { X86::VMOVDQU8Z128rr, X86::VMOVDQU8Z128rm, 0 },
748 { X86::VMOVDQU16Z128rr, X86::VMOVDQU16Z128rm, 0 },
749 { X86::VMOVDQU32Z128rr, X86::VMOVDQU32Z128rm, 0 },
750 { X86::VMOVDQU64Z128rr, X86::VMOVDQU64Z128rm, 0 },
751 { X86::VMOVUPDZ128rr, X86::VMOVUPDZ128rm, 0 },
752 { X86::VMOVUPSZ128rr, X86::VMOVUPSZ128rm, 0 },
753 { X86::VBROADCASTSSZ128r, X86::VBROADCASTSSZ128m, TB_NO_REVERSE },
754 // F16C foldable instructions
755 { X86::VCVTPH2PSrr, X86::VCVTPH2PSrm, 0 },
756 { X86::VCVTPH2PSYrr, X86::VCVTPH2PSYrm, 0 },
757 // AES foldable instructions
758 { X86::AESIMCrr, X86::AESIMCrm, TB_ALIGN_16 },
759 { X86::AESKEYGENASSIST128rr, X86::AESKEYGENASSIST128rm, TB_ALIGN_16 },
760 { X86::VAESIMCrr, X86::VAESIMCrm, TB_ALIGN_16 },
761 { X86::VAESKEYGENASSIST128rr, X86::VAESKEYGENASSIST128rm, TB_ALIGN_16 }
764 for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
765 unsigned RegOp = OpTbl1[i].RegOp;
766 unsigned MemOp = OpTbl1[i].MemOp;
767 unsigned Flags = OpTbl1[i].Flags;
768 AddTableEntry(RegOp2MemOpTable1, MemOp2RegOpTable,
770 // Index 1, folded load
771 Flags | TB_INDEX_1 | TB_FOLDED_LOAD);
774 static const X86OpTblEntry OpTbl2[] = {
775 { X86::ADC32rr, X86::ADC32rm, 0 },
776 { X86::ADC64rr, X86::ADC64rm, 0 },
777 { X86::ADD16rr, X86::ADD16rm, 0 },
778 { X86::ADD16rr_DB, X86::ADD16rm, TB_NO_REVERSE },
779 { X86::ADD32rr, X86::ADD32rm, 0 },
780 { X86::ADD32rr_DB, X86::ADD32rm, TB_NO_REVERSE },
781 { X86::ADD64rr, X86::ADD64rm, 0 },
782 { X86::ADD64rr_DB, X86::ADD64rm, TB_NO_REVERSE },
783 { X86::ADD8rr, X86::ADD8rm, 0 },
784 { X86::ADDPDrr, X86::ADDPDrm, TB_ALIGN_16 },
785 { X86::ADDPSrr, X86::ADDPSrm, TB_ALIGN_16 },
786 { X86::ADDSDrr, X86::ADDSDrm, 0 },
787 { X86::ADDSDrr_Int, X86::ADDSDrm_Int, 0 },
788 { X86::ADDSSrr, X86::ADDSSrm, 0 },
789 { X86::ADDSSrr_Int, X86::ADDSSrm_Int, 0 },
790 { X86::ADDSUBPDrr, X86::ADDSUBPDrm, TB_ALIGN_16 },
791 { X86::ADDSUBPSrr, X86::ADDSUBPSrm, TB_ALIGN_16 },
792 { X86::AND16rr, X86::AND16rm, 0 },
793 { X86::AND32rr, X86::AND32rm, 0 },
794 { X86::AND64rr, X86::AND64rm, 0 },
795 { X86::AND8rr, X86::AND8rm, 0 },
796 { X86::ANDNPDrr, X86::ANDNPDrm, TB_ALIGN_16 },
797 { X86::ANDNPSrr, X86::ANDNPSrm, TB_ALIGN_16 },
798 { X86::ANDPDrr, X86::ANDPDrm, TB_ALIGN_16 },
799 { X86::ANDPSrr, X86::ANDPSrm, TB_ALIGN_16 },
800 { X86::BLENDPDrri, X86::BLENDPDrmi, TB_ALIGN_16 },
801 { X86::BLENDPSrri, X86::BLENDPSrmi, TB_ALIGN_16 },
802 { X86::BLENDVPDrr0, X86::BLENDVPDrm0, TB_ALIGN_16 },
803 { X86::BLENDVPSrr0, X86::BLENDVPSrm0, TB_ALIGN_16 },
804 { X86::CMOVA16rr, X86::CMOVA16rm, 0 },
805 { X86::CMOVA32rr, X86::CMOVA32rm, 0 },
806 { X86::CMOVA64rr, X86::CMOVA64rm, 0 },
807 { X86::CMOVAE16rr, X86::CMOVAE16rm, 0 },
808 { X86::CMOVAE32rr, X86::CMOVAE32rm, 0 },
809 { X86::CMOVAE64rr, X86::CMOVAE64rm, 0 },
810 { X86::CMOVB16rr, X86::CMOVB16rm, 0 },
811 { X86::CMOVB32rr, X86::CMOVB32rm, 0 },
812 { X86::CMOVB64rr, X86::CMOVB64rm, 0 },
813 { X86::CMOVBE16rr, X86::CMOVBE16rm, 0 },
814 { X86::CMOVBE32rr, X86::CMOVBE32rm, 0 },
815 { X86::CMOVBE64rr, X86::CMOVBE64rm, 0 },
816 { X86::CMOVE16rr, X86::CMOVE16rm, 0 },
817 { X86::CMOVE32rr, X86::CMOVE32rm, 0 },
818 { X86::CMOVE64rr, X86::CMOVE64rm, 0 },
819 { X86::CMOVG16rr, X86::CMOVG16rm, 0 },
820 { X86::CMOVG32rr, X86::CMOVG32rm, 0 },
821 { X86::CMOVG64rr, X86::CMOVG64rm, 0 },
822 { X86::CMOVGE16rr, X86::CMOVGE16rm, 0 },
823 { X86::CMOVGE32rr, X86::CMOVGE32rm, 0 },
824 { X86::CMOVGE64rr, X86::CMOVGE64rm, 0 },
825 { X86::CMOVL16rr, X86::CMOVL16rm, 0 },
826 { X86::CMOVL32rr, X86::CMOVL32rm, 0 },
827 { X86::CMOVL64rr, X86::CMOVL64rm, 0 },
828 { X86::CMOVLE16rr, X86::CMOVLE16rm, 0 },
829 { X86::CMOVLE32rr, X86::CMOVLE32rm, 0 },
830 { X86::CMOVLE64rr, X86::CMOVLE64rm, 0 },
831 { X86::CMOVNE16rr, X86::CMOVNE16rm, 0 },
832 { X86::CMOVNE32rr, X86::CMOVNE32rm, 0 },
833 { X86::CMOVNE64rr, X86::CMOVNE64rm, 0 },
834 { X86::CMOVNO16rr, X86::CMOVNO16rm, 0 },
835 { X86::CMOVNO32rr, X86::CMOVNO32rm, 0 },
836 { X86::CMOVNO64rr, X86::CMOVNO64rm, 0 },
837 { X86::CMOVNP16rr, X86::CMOVNP16rm, 0 },
838 { X86::CMOVNP32rr, X86::CMOVNP32rm, 0 },
839 { X86::CMOVNP64rr, X86::CMOVNP64rm, 0 },
840 { X86::CMOVNS16rr, X86::CMOVNS16rm, 0 },
841 { X86::CMOVNS32rr, X86::CMOVNS32rm, 0 },
842 { X86::CMOVNS64rr, X86::CMOVNS64rm, 0 },
843 { X86::CMOVO16rr, X86::CMOVO16rm, 0 },
844 { X86::CMOVO32rr, X86::CMOVO32rm, 0 },
845 { X86::CMOVO64rr, X86::CMOVO64rm, 0 },
846 { X86::CMOVP16rr, X86::CMOVP16rm, 0 },
847 { X86::CMOVP32rr, X86::CMOVP32rm, 0 },
848 { X86::CMOVP64rr, X86::CMOVP64rm, 0 },
849 { X86::CMOVS16rr, X86::CMOVS16rm, 0 },
850 { X86::CMOVS32rr, X86::CMOVS32rm, 0 },
851 { X86::CMOVS64rr, X86::CMOVS64rm, 0 },
852 { X86::CMPPDrri, X86::CMPPDrmi, TB_ALIGN_16 },
853 { X86::CMPPSrri, X86::CMPPSrmi, TB_ALIGN_16 },
854 { X86::CMPSDrr, X86::CMPSDrm, 0 },
855 { X86::CMPSSrr, X86::CMPSSrm, 0 },
856 { X86::DIVPDrr, X86::DIVPDrm, TB_ALIGN_16 },
857 { X86::DIVPSrr, X86::DIVPSrm, TB_ALIGN_16 },
858 { X86::DIVSDrr, X86::DIVSDrm, 0 },
859 { X86::DIVSDrr_Int, X86::DIVSDrm_Int, 0 },
860 { X86::DIVSSrr, X86::DIVSSrm, 0 },
861 { X86::DIVSSrr_Int, X86::DIVSSrm_Int, 0 },
862 { X86::DPPDrri, X86::DPPDrmi, TB_ALIGN_16 },
863 { X86::DPPSrri, X86::DPPSrmi, TB_ALIGN_16 },
864 { X86::FsANDNPDrr, X86::FsANDNPDrm, TB_ALIGN_16 },
865 { X86::FsANDNPSrr, X86::FsANDNPSrm, TB_ALIGN_16 },
866 { X86::FsANDPDrr, X86::FsANDPDrm, TB_ALIGN_16 },
867 { X86::FsANDPSrr, X86::FsANDPSrm, TB_ALIGN_16 },
868 { X86::FsORPDrr, X86::FsORPDrm, TB_ALIGN_16 },
869 { X86::FsORPSrr, X86::FsORPSrm, TB_ALIGN_16 },
870 { X86::FsXORPDrr, X86::FsXORPDrm, TB_ALIGN_16 },
871 { X86::FsXORPSrr, X86::FsXORPSrm, TB_ALIGN_16 },
872 { X86::HADDPDrr, X86::HADDPDrm, TB_ALIGN_16 },
873 { X86::HADDPSrr, X86::HADDPSrm, TB_ALIGN_16 },
874 { X86::HSUBPDrr, X86::HSUBPDrm, TB_ALIGN_16 },
875 { X86::HSUBPSrr, X86::HSUBPSrm, TB_ALIGN_16 },
876 { X86::IMUL16rr, X86::IMUL16rm, 0 },
877 { X86::IMUL32rr, X86::IMUL32rm, 0 },
878 { X86::IMUL64rr, X86::IMUL64rm, 0 },
879 { X86::Int_CMPSDrr, X86::Int_CMPSDrm, 0 },
880 { X86::Int_CMPSSrr, X86::Int_CMPSSrm, 0 },
881 { X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm, 0 },
882 { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm, 0 },
883 { X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm, 0 },
884 { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm, 0 },
885 { X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm, 0 },
886 { X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm, 0 },
887 { X86::MAXPDrr, X86::MAXPDrm, TB_ALIGN_16 },
888 { X86::MAXPSrr, X86::MAXPSrm, TB_ALIGN_16 },
889 { X86::MAXSDrr, X86::MAXSDrm, 0 },
890 { X86::MAXSDrr_Int, X86::MAXSDrm_Int, 0 },
891 { X86::MAXSSrr, X86::MAXSSrm, 0 },
892 { X86::MAXSSrr_Int, X86::MAXSSrm_Int, 0 },
893 { X86::MINPDrr, X86::MINPDrm, TB_ALIGN_16 },
894 { X86::MINPSrr, X86::MINPSrm, TB_ALIGN_16 },
895 { X86::MINSDrr, X86::MINSDrm, 0 },
896 { X86::MINSDrr_Int, X86::MINSDrm_Int, 0 },
897 { X86::MINSSrr, X86::MINSSrm, 0 },
898 { X86::MINSSrr_Int, X86::MINSSrm_Int, 0 },
899 { X86::MPSADBWrri, X86::MPSADBWrmi, TB_ALIGN_16 },
900 { X86::MULPDrr, X86::MULPDrm, TB_ALIGN_16 },
901 { X86::MULPSrr, X86::MULPSrm, TB_ALIGN_16 },
902 { X86::MULSDrr, X86::MULSDrm, 0 },
903 { X86::MULSDrr_Int, X86::MULSDrm_Int, 0 },
904 { X86::MULSSrr, X86::MULSSrm, 0 },
905 { X86::MULSSrr_Int, X86::MULSSrm_Int, 0 },
906 { X86::OR16rr, X86::OR16rm, 0 },
907 { X86::OR32rr, X86::OR32rm, 0 },
908 { X86::OR64rr, X86::OR64rm, 0 },
909 { X86::OR8rr, X86::OR8rm, 0 },
910 { X86::ORPDrr, X86::ORPDrm, TB_ALIGN_16 },
911 { X86::ORPSrr, X86::ORPSrm, TB_ALIGN_16 },
912 { X86::PACKSSDWrr, X86::PACKSSDWrm, TB_ALIGN_16 },
913 { X86::PACKSSWBrr, X86::PACKSSWBrm, TB_ALIGN_16 },
914 { X86::PACKUSDWrr, X86::PACKUSDWrm, TB_ALIGN_16 },
915 { X86::PACKUSWBrr, X86::PACKUSWBrm, TB_ALIGN_16 },
916 { X86::PADDBrr, X86::PADDBrm, TB_ALIGN_16 },
917 { X86::PADDDrr, X86::PADDDrm, TB_ALIGN_16 },
918 { X86::PADDQrr, X86::PADDQrm, TB_ALIGN_16 },
919 { X86::PADDSBrr, X86::PADDSBrm, TB_ALIGN_16 },
920 { X86::PADDSWrr, X86::PADDSWrm, TB_ALIGN_16 },
921 { X86::PADDUSBrr, X86::PADDUSBrm, TB_ALIGN_16 },
922 { X86::PADDUSWrr, X86::PADDUSWrm, TB_ALIGN_16 },
923 { X86::PADDWrr, X86::PADDWrm, TB_ALIGN_16 },
924 { X86::PALIGNR128rr, X86::PALIGNR128rm, TB_ALIGN_16 },
925 { X86::PANDNrr, X86::PANDNrm, TB_ALIGN_16 },
926 { X86::PANDrr, X86::PANDrm, TB_ALIGN_16 },
927 { X86::PAVGBrr, X86::PAVGBrm, TB_ALIGN_16 },
928 { X86::PAVGWrr, X86::PAVGWrm, TB_ALIGN_16 },
929 { X86::PBLENDVBrr0, X86::PBLENDVBrm0, TB_ALIGN_16 },
930 { X86::PBLENDWrri, X86::PBLENDWrmi, TB_ALIGN_16 },
931 { X86::PCLMULQDQrr, X86::PCLMULQDQrm, TB_ALIGN_16 },
932 { X86::PCMPEQBrr, X86::PCMPEQBrm, TB_ALIGN_16 },
933 { X86::PCMPEQDrr, X86::PCMPEQDrm, TB_ALIGN_16 },
934 { X86::PCMPEQQrr, X86::PCMPEQQrm, TB_ALIGN_16 },
935 { X86::PCMPEQWrr, X86::PCMPEQWrm, TB_ALIGN_16 },
936 { X86::PCMPGTBrr, X86::PCMPGTBrm, TB_ALIGN_16 },
937 { X86::PCMPGTDrr, X86::PCMPGTDrm, TB_ALIGN_16 },
938 { X86::PCMPGTQrr, X86::PCMPGTQrm, TB_ALIGN_16 },
939 { X86::PCMPGTWrr, X86::PCMPGTWrm, TB_ALIGN_16 },
940 { X86::PHADDDrr, X86::PHADDDrm, TB_ALIGN_16 },
941 { X86::PHADDWrr, X86::PHADDWrm, TB_ALIGN_16 },
942 { X86::PHADDSWrr128, X86::PHADDSWrm128, TB_ALIGN_16 },
943 { X86::PHSUBDrr, X86::PHSUBDrm, TB_ALIGN_16 },
944 { X86::PHSUBSWrr128, X86::PHSUBSWrm128, TB_ALIGN_16 },
945 { X86::PHSUBWrr, X86::PHSUBWrm, TB_ALIGN_16 },
946 { X86::PINSRBrr, X86::PINSRBrm, 0 },
947 { X86::PINSRDrr, X86::PINSRDrm, 0 },
948 { X86::PINSRQrr, X86::PINSRQrm, 0 },
949 { X86::PINSRWrri, X86::PINSRWrmi, 0 },
950 { X86::PMADDUBSWrr128, X86::PMADDUBSWrm128, TB_ALIGN_16 },
951 { X86::PMADDWDrr, X86::PMADDWDrm, TB_ALIGN_16 },
952 { X86::PMAXSWrr, X86::PMAXSWrm, TB_ALIGN_16 },
953 { X86::PMAXUBrr, X86::PMAXUBrm, TB_ALIGN_16 },
954 { X86::PMINSWrr, X86::PMINSWrm, TB_ALIGN_16 },
955 { X86::PMINUBrr, X86::PMINUBrm, TB_ALIGN_16 },
956 { X86::PMINSBrr, X86::PMINSBrm, TB_ALIGN_16 },
957 { X86::PMINSDrr, X86::PMINSDrm, TB_ALIGN_16 },
958 { X86::PMINUDrr, X86::PMINUDrm, TB_ALIGN_16 },
959 { X86::PMINUWrr, X86::PMINUWrm, TB_ALIGN_16 },
960 { X86::PMAXSBrr, X86::PMAXSBrm, TB_ALIGN_16 },
961 { X86::PMAXSDrr, X86::PMAXSDrm, TB_ALIGN_16 },
962 { X86::PMAXUDrr, X86::PMAXUDrm, TB_ALIGN_16 },
963 { X86::PMAXUWrr, X86::PMAXUWrm, TB_ALIGN_16 },
964 { X86::PMULDQrr, X86::PMULDQrm, TB_ALIGN_16 },
965 { X86::PMULHRSWrr128, X86::PMULHRSWrm128, TB_ALIGN_16 },
966 { X86::PMULHUWrr, X86::PMULHUWrm, TB_ALIGN_16 },
967 { X86::PMULHWrr, X86::PMULHWrm, TB_ALIGN_16 },
968 { X86::PMULLDrr, X86::PMULLDrm, TB_ALIGN_16 },
969 { X86::PMULLWrr, X86::PMULLWrm, TB_ALIGN_16 },
970 { X86::PMULUDQrr, X86::PMULUDQrm, TB_ALIGN_16 },
971 { X86::PORrr, X86::PORrm, TB_ALIGN_16 },
972 { X86::PSADBWrr, X86::PSADBWrm, TB_ALIGN_16 },
973 { X86::PSHUFBrr, X86::PSHUFBrm, TB_ALIGN_16 },
974 { X86::PSIGNBrr, X86::PSIGNBrm, TB_ALIGN_16 },
975 { X86::PSIGNWrr, X86::PSIGNWrm, TB_ALIGN_16 },
976 { X86::PSIGNDrr, X86::PSIGNDrm, TB_ALIGN_16 },
977 { X86::PSLLDrr, X86::PSLLDrm, TB_ALIGN_16 },
978 { X86::PSLLQrr, X86::PSLLQrm, TB_ALIGN_16 },
979 { X86::PSLLWrr, X86::PSLLWrm, TB_ALIGN_16 },
980 { X86::PSRADrr, X86::PSRADrm, TB_ALIGN_16 },
981 { X86::PSRAWrr, X86::PSRAWrm, TB_ALIGN_16 },
982 { X86::PSRLDrr, X86::PSRLDrm, TB_ALIGN_16 },
983 { X86::PSRLQrr, X86::PSRLQrm, TB_ALIGN_16 },
984 { X86::PSRLWrr, X86::PSRLWrm, TB_ALIGN_16 },
985 { X86::PSUBBrr, X86::PSUBBrm, TB_ALIGN_16 },
986 { X86::PSUBDrr, X86::PSUBDrm, TB_ALIGN_16 },
987 { X86::PSUBQrr, X86::PSUBQrm, TB_ALIGN_16 },
988 { X86::PSUBSBrr, X86::PSUBSBrm, TB_ALIGN_16 },
989 { X86::PSUBSWrr, X86::PSUBSWrm, TB_ALIGN_16 },
990 { X86::PSUBUSBrr, X86::PSUBUSBrm, TB_ALIGN_16 },
991 { X86::PSUBUSWrr, X86::PSUBUSWrm, TB_ALIGN_16 },
992 { X86::PSUBWrr, X86::PSUBWrm, TB_ALIGN_16 },
993 { X86::PUNPCKHBWrr, X86::PUNPCKHBWrm, TB_ALIGN_16 },
994 { X86::PUNPCKHDQrr, X86::PUNPCKHDQrm, TB_ALIGN_16 },
995 { X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm, TB_ALIGN_16 },
996 { X86::PUNPCKHWDrr, X86::PUNPCKHWDrm, TB_ALIGN_16 },
997 { X86::PUNPCKLBWrr, X86::PUNPCKLBWrm, TB_ALIGN_16 },
998 { X86::PUNPCKLDQrr, X86::PUNPCKLDQrm, TB_ALIGN_16 },
999 { X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm, TB_ALIGN_16 },
1000 { X86::PUNPCKLWDrr, X86::PUNPCKLWDrm, TB_ALIGN_16 },
1001 { X86::PXORrr, X86::PXORrm, TB_ALIGN_16 },
1002 { X86::SBB32rr, X86::SBB32rm, 0 },
1003 { X86::SBB64rr, X86::SBB64rm, 0 },
1004 { X86::SHUFPDrri, X86::SHUFPDrmi, TB_ALIGN_16 },
1005 { X86::SHUFPSrri, X86::SHUFPSrmi, TB_ALIGN_16 },
1006 { X86::SUB16rr, X86::SUB16rm, 0 },
1007 { X86::SUB32rr, X86::SUB32rm, 0 },
1008 { X86::SUB64rr, X86::SUB64rm, 0 },
1009 { X86::SUB8rr, X86::SUB8rm, 0 },
1010 { X86::SUBPDrr, X86::SUBPDrm, TB_ALIGN_16 },
1011 { X86::SUBPSrr, X86::SUBPSrm, TB_ALIGN_16 },
1012 { X86::SUBSDrr, X86::SUBSDrm, 0 },
1013 { X86::SUBSDrr_Int, X86::SUBSDrm_Int, 0 },
1014 { X86::SUBSSrr, X86::SUBSSrm, 0 },
1015 { X86::SUBSSrr_Int, X86::SUBSSrm_Int, 0 },
1016 // FIXME: TEST*rr -> swapped operand of TEST*mr.
1017 { X86::UNPCKHPDrr, X86::UNPCKHPDrm, TB_ALIGN_16 },
1018 { X86::UNPCKHPSrr, X86::UNPCKHPSrm, TB_ALIGN_16 },
1019 { X86::UNPCKLPDrr, X86::UNPCKLPDrm, TB_ALIGN_16 },
1020 { X86::UNPCKLPSrr, X86::UNPCKLPSrm, TB_ALIGN_16 },
1021 { X86::XOR16rr, X86::XOR16rm, 0 },
1022 { X86::XOR32rr, X86::XOR32rm, 0 },
1023 { X86::XOR64rr, X86::XOR64rm, 0 },
1024 { X86::XOR8rr, X86::XOR8rm, 0 },
1025 { X86::XORPDrr, X86::XORPDrm, TB_ALIGN_16 },
1026 { X86::XORPSrr, X86::XORPSrm, TB_ALIGN_16 },
1027 // AVX 128-bit versions of foldable instructions
1028 { X86::VCVTSD2SSrr, X86::VCVTSD2SSrm, 0 },
1029 { X86::Int_VCVTSD2SSrr, X86::Int_VCVTSD2SSrm, 0 },
1030 { X86::VCVTSI2SD64rr, X86::VCVTSI2SD64rm, 0 },
1031 { X86::Int_VCVTSI2SD64rr, X86::Int_VCVTSI2SD64rm, 0 },
1032 { X86::VCVTSI2SDrr, X86::VCVTSI2SDrm, 0 },
1033 { X86::Int_VCVTSI2SDrr, X86::Int_VCVTSI2SDrm, 0 },
1034 { X86::VCVTSI2SS64rr, X86::VCVTSI2SS64rm, 0 },
1035 { X86::Int_VCVTSI2SS64rr, X86::Int_VCVTSI2SS64rm, 0 },
1036 { X86::VCVTSI2SSrr, X86::VCVTSI2SSrm, 0 },
1037 { X86::Int_VCVTSI2SSrr, X86::Int_VCVTSI2SSrm, 0 },
1038 { X86::VCVTSS2SDrr, X86::VCVTSS2SDrm, 0 },
1039 { X86::Int_VCVTSS2SDrr, X86::Int_VCVTSS2SDrm, 0 },
1040 { X86::VRCPSSr, X86::VRCPSSm, 0 },
1041 { X86::VRSQRTSSr, X86::VRSQRTSSm, 0 },
1042 { X86::VSQRTSDr, X86::VSQRTSDm, 0 },
1043 { X86::VSQRTSSr, X86::VSQRTSSm, 0 },
1044 { X86::VADDPDrr, X86::VADDPDrm, 0 },
1045 { X86::VADDPSrr, X86::VADDPSrm, 0 },
1046 { X86::VADDSDrr, X86::VADDSDrm, 0 },
1047 { X86::VADDSDrr_Int, X86::VADDSDrm_Int, 0 },
1048 { X86::VADDSSrr, X86::VADDSSrm, 0 },
1049 { X86::VADDSSrr_Int, X86::VADDSSrm_Int, 0 },
1050 { X86::VADDSUBPDrr, X86::VADDSUBPDrm, 0 },
1051 { X86::VADDSUBPSrr, X86::VADDSUBPSrm, 0 },
1052 { X86::VANDNPDrr, X86::VANDNPDrm, 0 },
1053 { X86::VANDNPSrr, X86::VANDNPSrm, 0 },
1054 { X86::VANDPDrr, X86::VANDPDrm, 0 },
1055 { X86::VANDPSrr, X86::VANDPSrm, 0 },
1056 { X86::VBLENDPDrri, X86::VBLENDPDrmi, 0 },
1057 { X86::VBLENDPSrri, X86::VBLENDPSrmi, 0 },
1058 { X86::VBLENDVPDrr, X86::VBLENDVPDrm, 0 },
1059 { X86::VBLENDVPSrr, X86::VBLENDVPSrm, 0 },
1060 { X86::VCMPPDrri, X86::VCMPPDrmi, 0 },
1061 { X86::VCMPPSrri, X86::VCMPPSrmi, 0 },
1062 { X86::VCMPSDrr, X86::VCMPSDrm, 0 },
1063 { X86::VCMPSSrr, X86::VCMPSSrm, 0 },
1064 { X86::VDIVPDrr, X86::VDIVPDrm, 0 },
1065 { X86::VDIVPSrr, X86::VDIVPSrm, 0 },
1066 { X86::VDIVSDrr, X86::VDIVSDrm, 0 },
1067 { X86::VDIVSDrr_Int, X86::VDIVSDrm_Int, 0 },
1068 { X86::VDIVSSrr, X86::VDIVSSrm, 0 },
1069 { X86::VDIVSSrr_Int, X86::VDIVSSrm_Int, 0 },
1070 { X86::VDPPDrri, X86::VDPPDrmi, 0 },
1071 { X86::VDPPSrri, X86::VDPPSrmi, 0 },
1072 { X86::VFsANDNPDrr, X86::VFsANDNPDrm, 0 },
1073 { X86::VFsANDNPSrr, X86::VFsANDNPSrm, 0 },
1074 { X86::VFsANDPDrr, X86::VFsANDPDrm, 0 },
1075 { X86::VFsANDPSrr, X86::VFsANDPSrm, 0 },
1076 { X86::VFsORPDrr, X86::VFsORPDrm, 0 },
1077 { X86::VFsORPSrr, X86::VFsORPSrm, 0 },
1078 { X86::VFsXORPDrr, X86::VFsXORPDrm, 0 },
1079 { X86::VFsXORPSrr, X86::VFsXORPSrm, 0 },
1080 { X86::VHADDPDrr, X86::VHADDPDrm, 0 },
1081 { X86::VHADDPSrr, X86::VHADDPSrm, 0 },
1082 { X86::VHSUBPDrr, X86::VHSUBPDrm, 0 },
1083 { X86::VHSUBPSrr, X86::VHSUBPSrm, 0 },
1084 { X86::Int_VCMPSDrr, X86::Int_VCMPSDrm, 0 },
1085 { X86::Int_VCMPSSrr, X86::Int_VCMPSSrm, 0 },
1086 { X86::VMAXPDrr, X86::VMAXPDrm, 0 },
1087 { X86::VMAXPSrr, X86::VMAXPSrm, 0 },
1088 { X86::VMAXSDrr, X86::VMAXSDrm, 0 },
1089 { X86::VMAXSDrr_Int, X86::VMAXSDrm_Int, 0 },
1090 { X86::VMAXSSrr, X86::VMAXSSrm, 0 },
1091 { X86::VMAXSSrr_Int, X86::VMAXSSrm_Int, 0 },
1092 { X86::VMINPDrr, X86::VMINPDrm, 0 },
1093 { X86::VMINPSrr, X86::VMINPSrm, 0 },
1094 { X86::VMINSDrr, X86::VMINSDrm, 0 },
1095 { X86::VMINSDrr_Int, X86::VMINSDrm_Int, 0 },
1096 { X86::VMINSSrr, X86::VMINSSrm, 0 },
1097 { X86::VMINSSrr_Int, X86::VMINSSrm_Int, 0 },
1098 { X86::VMPSADBWrri, X86::VMPSADBWrmi, 0 },
1099 { X86::VMULPDrr, X86::VMULPDrm, 0 },
1100 { X86::VMULPSrr, X86::VMULPSrm, 0 },
1101 { X86::VMULSDrr, X86::VMULSDrm, 0 },
1102 { X86::VMULSDrr_Int, X86::VMULSDrm_Int, 0 },
1103 { X86::VMULSSrr, X86::VMULSSrm, 0 },
1104 { X86::VMULSSrr_Int, X86::VMULSSrm_Int, 0 },
1105 { X86::VORPDrr, X86::VORPDrm, 0 },
1106 { X86::VORPSrr, X86::VORPSrm, 0 },
1107 { X86::VPACKSSDWrr, X86::VPACKSSDWrm, 0 },
1108 { X86::VPACKSSWBrr, X86::VPACKSSWBrm, 0 },
1109 { X86::VPACKUSDWrr, X86::VPACKUSDWrm, 0 },
1110 { X86::VPACKUSWBrr, X86::VPACKUSWBrm, 0 },
1111 { X86::VPADDBrr, X86::VPADDBrm, 0 },
1112 { X86::VPADDDrr, X86::VPADDDrm, 0 },
1113 { X86::VPADDQrr, X86::VPADDQrm, 0 },
1114 { X86::VPADDSBrr, X86::VPADDSBrm, 0 },
1115 { X86::VPADDSWrr, X86::VPADDSWrm, 0 },
1116 { X86::VPADDUSBrr, X86::VPADDUSBrm, 0 },
1117 { X86::VPADDUSWrr, X86::VPADDUSWrm, 0 },
1118 { X86::VPADDWrr, X86::VPADDWrm, 0 },
1119 { X86::VPALIGNR128rr, X86::VPALIGNR128rm, 0 },
1120 { X86::VPANDNrr, X86::VPANDNrm, 0 },
1121 { X86::VPANDrr, X86::VPANDrm, 0 },
1122 { X86::VPAVGBrr, X86::VPAVGBrm, 0 },
1123 { X86::VPAVGWrr, X86::VPAVGWrm, 0 },
1124 { X86::VPBLENDVBrr, X86::VPBLENDVBrm, 0 },
1125 { X86::VPBLENDWrri, X86::VPBLENDWrmi, 0 },
1126 { X86::VPCLMULQDQrr, X86::VPCLMULQDQrm, 0 },
1127 { X86::VPCMPEQBrr, X86::VPCMPEQBrm, 0 },
1128 { X86::VPCMPEQDrr, X86::VPCMPEQDrm, 0 },
1129 { X86::VPCMPEQQrr, X86::VPCMPEQQrm, 0 },
1130 { X86::VPCMPEQWrr, X86::VPCMPEQWrm, 0 },
1131 { X86::VPCMPGTBrr, X86::VPCMPGTBrm, 0 },
1132 { X86::VPCMPGTDrr, X86::VPCMPGTDrm, 0 },
1133 { X86::VPCMPGTQrr, X86::VPCMPGTQrm, 0 },
1134 { X86::VPCMPGTWrr, X86::VPCMPGTWrm, 0 },
1135 { X86::VPHADDDrr, X86::VPHADDDrm, 0 },
1136 { X86::VPHADDSWrr128, X86::VPHADDSWrm128, 0 },
1137 { X86::VPHADDWrr, X86::VPHADDWrm, 0 },
1138 { X86::VPHSUBDrr, X86::VPHSUBDrm, 0 },
1139 { X86::VPHSUBSWrr128, X86::VPHSUBSWrm128, 0 },
1140 { X86::VPHSUBWrr, X86::VPHSUBWrm, 0 },
1141 { X86::VPERMILPDrr, X86::VPERMILPDrm, 0 },
1142 { X86::VPERMILPSrr, X86::VPERMILPSrm, 0 },
1143 { X86::VPINSRBrr, X86::VPINSRBrm, 0 },
1144 { X86::VPINSRDrr, X86::VPINSRDrm, 0 },
1145 { X86::VPINSRQrr, X86::VPINSRQrm, 0 },
1146 { X86::VPINSRWrri, X86::VPINSRWrmi, 0 },
1147 { X86::VPMADDUBSWrr128, X86::VPMADDUBSWrm128, 0 },
1148 { X86::VPMADDWDrr, X86::VPMADDWDrm, 0 },
1149 { X86::VPMAXSWrr, X86::VPMAXSWrm, 0 },
1150 { X86::VPMAXUBrr, X86::VPMAXUBrm, 0 },
1151 { X86::VPMINSWrr, X86::VPMINSWrm, 0 },
1152 { X86::VPMINUBrr, X86::VPMINUBrm, 0 },
1153 { X86::VPMINSBrr, X86::VPMINSBrm, 0 },
1154 { X86::VPMINSDrr, X86::VPMINSDrm, 0 },
1155 { X86::VPMINUDrr, X86::VPMINUDrm, 0 },
1156 { X86::VPMINUWrr, X86::VPMINUWrm, 0 },
1157 { X86::VPMAXSBrr, X86::VPMAXSBrm, 0 },
1158 { X86::VPMAXSDrr, X86::VPMAXSDrm, 0 },
1159 { X86::VPMAXUDrr, X86::VPMAXUDrm, 0 },
1160 { X86::VPMAXUWrr, X86::VPMAXUWrm, 0 },
1161 { X86::VPMULDQrr, X86::VPMULDQrm, 0 },
1162 { X86::VPMULHRSWrr128, X86::VPMULHRSWrm128, 0 },
1163 { X86::VPMULHUWrr, X86::VPMULHUWrm, 0 },
1164 { X86::VPMULHWrr, X86::VPMULHWrm, 0 },
1165 { X86::VPMULLDrr, X86::VPMULLDrm, 0 },
1166 { X86::VPMULLWrr, X86::VPMULLWrm, 0 },
1167 { X86::VPMULUDQrr, X86::VPMULUDQrm, 0 },
1168 { X86::VPORrr, X86::VPORrm, 0 },
1169 { X86::VPSADBWrr, X86::VPSADBWrm, 0 },
1170 { X86::VPSHUFBrr, X86::VPSHUFBrm, 0 },
1171 { X86::VPSIGNBrr, X86::VPSIGNBrm, 0 },
1172 { X86::VPSIGNWrr, X86::VPSIGNWrm, 0 },
1173 { X86::VPSIGNDrr, X86::VPSIGNDrm, 0 },
1174 { X86::VPSLLDrr, X86::VPSLLDrm, 0 },
1175 { X86::VPSLLQrr, X86::VPSLLQrm, 0 },
1176 { X86::VPSLLWrr, X86::VPSLLWrm, 0 },
1177 { X86::VPSRADrr, X86::VPSRADrm, 0 },
1178 { X86::VPSRAWrr, X86::VPSRAWrm, 0 },
1179 { X86::VPSRLDrr, X86::VPSRLDrm, 0 },
1180 { X86::VPSRLQrr, X86::VPSRLQrm, 0 },
1181 { X86::VPSRLWrr, X86::VPSRLWrm, 0 },
1182 { X86::VPSUBBrr, X86::VPSUBBrm, 0 },
1183 { X86::VPSUBDrr, X86::VPSUBDrm, 0 },
1184 { X86::VPSUBQrr, X86::VPSUBQrm, 0 },
1185 { X86::VPSUBSBrr, X86::VPSUBSBrm, 0 },
1186 { X86::VPSUBSWrr, X86::VPSUBSWrm, 0 },
1187 { X86::VPSUBUSBrr, X86::VPSUBUSBrm, 0 },
1188 { X86::VPSUBUSWrr, X86::VPSUBUSWrm, 0 },
1189 { X86::VPSUBWrr, X86::VPSUBWrm, 0 },
1190 { X86::VPUNPCKHBWrr, X86::VPUNPCKHBWrm, 0 },
1191 { X86::VPUNPCKHDQrr, X86::VPUNPCKHDQrm, 0 },
1192 { X86::VPUNPCKHQDQrr, X86::VPUNPCKHQDQrm, 0 },
1193 { X86::VPUNPCKHWDrr, X86::VPUNPCKHWDrm, 0 },
1194 { X86::VPUNPCKLBWrr, X86::VPUNPCKLBWrm, 0 },
1195 { X86::VPUNPCKLDQrr, X86::VPUNPCKLDQrm, 0 },
1196 { X86::VPUNPCKLQDQrr, X86::VPUNPCKLQDQrm, 0 },
1197 { X86::VPUNPCKLWDrr, X86::VPUNPCKLWDrm, 0 },
1198 { X86::VPXORrr, X86::VPXORrm, 0 },
1199 { X86::VSHUFPDrri, X86::VSHUFPDrmi, 0 },
1200 { X86::VSHUFPSrri, X86::VSHUFPSrmi, 0 },
1201 { X86::VSUBPDrr, X86::VSUBPDrm, 0 },
1202 { X86::VSUBPSrr, X86::VSUBPSrm, 0 },
1203 { X86::VSUBSDrr, X86::VSUBSDrm, 0 },
1204 { X86::VSUBSDrr_Int, X86::VSUBSDrm_Int, 0 },
1205 { X86::VSUBSSrr, X86::VSUBSSrm, 0 },
1206 { X86::VSUBSSrr_Int, X86::VSUBSSrm_Int, 0 },
1207 { X86::VUNPCKHPDrr, X86::VUNPCKHPDrm, 0 },
1208 { X86::VUNPCKHPSrr, X86::VUNPCKHPSrm, 0 },
1209 { X86::VUNPCKLPDrr, X86::VUNPCKLPDrm, 0 },
1210 { X86::VUNPCKLPSrr, X86::VUNPCKLPSrm, 0 },
1211 { X86::VXORPDrr, X86::VXORPDrm, 0 },
1212 { X86::VXORPSrr, X86::VXORPSrm, 0 },
1213 // AVX 256-bit foldable instructions
1214 { X86::VADDPDYrr, X86::VADDPDYrm, 0 },
1215 { X86::VADDPSYrr, X86::VADDPSYrm, 0 },
1216 { X86::VADDSUBPDYrr, X86::VADDSUBPDYrm, 0 },
1217 { X86::VADDSUBPSYrr, X86::VADDSUBPSYrm, 0 },
1218 { X86::VANDNPDYrr, X86::VANDNPDYrm, 0 },
1219 { X86::VANDNPSYrr, X86::VANDNPSYrm, 0 },
1220 { X86::VANDPDYrr, X86::VANDPDYrm, 0 },
1221 { X86::VANDPSYrr, X86::VANDPSYrm, 0 },
1222 { X86::VBLENDPDYrri, X86::VBLENDPDYrmi, 0 },
1223 { X86::VBLENDPSYrri, X86::VBLENDPSYrmi, 0 },
1224 { X86::VBLENDVPDYrr, X86::VBLENDVPDYrm, 0 },
1225 { X86::VBLENDVPSYrr, X86::VBLENDVPSYrm, 0 },
1226 { X86::VCMPPDYrri, X86::VCMPPDYrmi, 0 },
1227 { X86::VCMPPSYrri, X86::VCMPPSYrmi, 0 },
1228 { X86::VDIVPDYrr, X86::VDIVPDYrm, 0 },
1229 { X86::VDIVPSYrr, X86::VDIVPSYrm, 0 },
1230 { X86::VDPPSYrri, X86::VDPPSYrmi, 0 },
1231 { X86::VHADDPDYrr, X86::VHADDPDYrm, 0 },
1232 { X86::VHADDPSYrr, X86::VHADDPSYrm, 0 },
1233 { X86::VHSUBPDYrr, X86::VHSUBPDYrm, 0 },
1234 { X86::VHSUBPSYrr, X86::VHSUBPSYrm, 0 },
1235 { X86::VINSERTF128rr, X86::VINSERTF128rm, 0 },
1236 { X86::VMAXPDYrr, X86::VMAXPDYrm, 0 },
1237 { X86::VMAXPSYrr, X86::VMAXPSYrm, 0 },
1238 { X86::VMINPDYrr, X86::VMINPDYrm, 0 },
1239 { X86::VMINPSYrr, X86::VMINPSYrm, 0 },
1240 { X86::VMULPDYrr, X86::VMULPDYrm, 0 },
1241 { X86::VMULPSYrr, X86::VMULPSYrm, 0 },
1242 { X86::VORPDYrr, X86::VORPDYrm, 0 },
1243 { X86::VORPSYrr, X86::VORPSYrm, 0 },
1244 { X86::VPERM2F128rr, X86::VPERM2F128rm, 0 },
1245 { X86::VPERMILPDYrr, X86::VPERMILPDYrm, 0 },
1246 { X86::VPERMILPSYrr, X86::VPERMILPSYrm, 0 },
1247 { X86::VSHUFPDYrri, X86::VSHUFPDYrmi, 0 },
1248 { X86::VSHUFPSYrri, X86::VSHUFPSYrmi, 0 },
1249 { X86::VSUBPDYrr, X86::VSUBPDYrm, 0 },
1250 { X86::VSUBPSYrr, X86::VSUBPSYrm, 0 },
1251 { X86::VUNPCKHPDYrr, X86::VUNPCKHPDYrm, 0 },
1252 { X86::VUNPCKHPSYrr, X86::VUNPCKHPSYrm, 0 },
1253 { X86::VUNPCKLPDYrr, X86::VUNPCKLPDYrm, 0 },
1254 { X86::VUNPCKLPSYrr, X86::VUNPCKLPSYrm, 0 },
1255 { X86::VXORPDYrr, X86::VXORPDYrm, 0 },
1256 { X86::VXORPSYrr, X86::VXORPSYrm, 0 },
1257 // AVX2 foldable instructions
1258 { X86::VINSERTI128rr, X86::VINSERTI128rm, 0 },
1259 { X86::VPACKSSDWYrr, X86::VPACKSSDWYrm, 0 },
1260 { X86::VPACKSSWBYrr, X86::VPACKSSWBYrm, 0 },
1261 { X86::VPACKUSDWYrr, X86::VPACKUSDWYrm, 0 },
1262 { X86::VPACKUSWBYrr, X86::VPACKUSWBYrm, 0 },
1263 { X86::VPADDBYrr, X86::VPADDBYrm, 0 },
1264 { X86::VPADDDYrr, X86::VPADDDYrm, 0 },
1265 { X86::VPADDQYrr, X86::VPADDQYrm, 0 },
1266 { X86::VPADDSBYrr, X86::VPADDSBYrm, 0 },
1267 { X86::VPADDSWYrr, X86::VPADDSWYrm, 0 },
1268 { X86::VPADDUSBYrr, X86::VPADDUSBYrm, 0 },
1269 { X86::VPADDUSWYrr, X86::VPADDUSWYrm, 0 },
1270 { X86::VPADDWYrr, X86::VPADDWYrm, 0 },
1271 { X86::VPALIGNR256rr, X86::VPALIGNR256rm, 0 },
1272 { X86::VPANDNYrr, X86::VPANDNYrm, 0 },
1273 { X86::VPANDYrr, X86::VPANDYrm, 0 },
1274 { X86::VPAVGBYrr, X86::VPAVGBYrm, 0 },
1275 { X86::VPAVGWYrr, X86::VPAVGWYrm, 0 },
1276 { X86::VPBLENDDrri, X86::VPBLENDDrmi, 0 },
1277 { X86::VPBLENDDYrri, X86::VPBLENDDYrmi, 0 },
1278 { X86::VPBLENDWYrri, X86::VPBLENDWYrmi, 0 },
1279 { X86::VPCMPEQBYrr, X86::VPCMPEQBYrm, 0 },
1280 { X86::VPCMPEQDYrr, X86::VPCMPEQDYrm, 0 },
1281 { X86::VPCMPEQQYrr, X86::VPCMPEQQYrm, 0 },
1282 { X86::VPCMPEQWYrr, X86::VPCMPEQWYrm, 0 },
1283 { X86::VPCMPGTBYrr, X86::VPCMPGTBYrm, 0 },
1284 { X86::VPCMPGTDYrr, X86::VPCMPGTDYrm, 0 },
1285 { X86::VPCMPGTQYrr, X86::VPCMPGTQYrm, 0 },
1286 { X86::VPCMPGTWYrr, X86::VPCMPGTWYrm, 0 },
1287 { X86::VPERM2I128rr, X86::VPERM2I128rm, 0 },
1288 { X86::VPERMDYrr, X86::VPERMDYrm, 0 },
1289 { X86::VPERMPDYri, X86::VPERMPDYmi, 0 },
1290 { X86::VPERMPSYrr, X86::VPERMPSYrm, 0 },
1291 { X86::VPERMQYri, X86::VPERMQYmi, 0 },
1292 { X86::VPHADDDYrr, X86::VPHADDDYrm, 0 },
1293 { X86::VPHADDSWrr256, X86::VPHADDSWrm256, 0 },
1294 { X86::VPHADDWYrr, X86::VPHADDWYrm, 0 },
1295 { X86::VPHSUBDYrr, X86::VPHSUBDYrm, 0 },
1296 { X86::VPHSUBSWrr256, X86::VPHSUBSWrm256, 0 },
1297 { X86::VPHSUBWYrr, X86::VPHSUBWYrm, 0 },
1298 { X86::VPMADDUBSWrr256, X86::VPMADDUBSWrm256, 0 },
1299 { X86::VPMADDWDYrr, X86::VPMADDWDYrm, 0 },
1300 { X86::VPMAXSWYrr, X86::VPMAXSWYrm, 0 },
1301 { X86::VPMAXUBYrr, X86::VPMAXUBYrm, 0 },
1302 { X86::VPMINSWYrr, X86::VPMINSWYrm, 0 },
1303 { X86::VPMINUBYrr, X86::VPMINUBYrm, 0 },
1304 { X86::VPMINSBYrr, X86::VPMINSBYrm, 0 },
1305 { X86::VPMINSDYrr, X86::VPMINSDYrm, 0 },
1306 { X86::VPMINUDYrr, X86::VPMINUDYrm, 0 },
1307 { X86::VPMINUWYrr, X86::VPMINUWYrm, 0 },
1308 { X86::VPMAXSBYrr, X86::VPMAXSBYrm, 0 },
1309 { X86::VPMAXSDYrr, X86::VPMAXSDYrm, 0 },
1310 { X86::VPMAXUDYrr, X86::VPMAXUDYrm, 0 },
1311 { X86::VPMAXUWYrr, X86::VPMAXUWYrm, 0 },
1312 { X86::VMPSADBWYrri, X86::VMPSADBWYrmi, 0 },
1313 { X86::VPMULDQYrr, X86::VPMULDQYrm, 0 },
1314 { X86::VPMULHRSWrr256, X86::VPMULHRSWrm256, 0 },
1315 { X86::VPMULHUWYrr, X86::VPMULHUWYrm, 0 },
1316 { X86::VPMULHWYrr, X86::VPMULHWYrm, 0 },
1317 { X86::VPMULLDYrr, X86::VPMULLDYrm, 0 },
1318 { X86::VPMULLWYrr, X86::VPMULLWYrm, 0 },
1319 { X86::VPMULUDQYrr, X86::VPMULUDQYrm, 0 },
1320 { X86::VPORYrr, X86::VPORYrm, 0 },
1321 { X86::VPSADBWYrr, X86::VPSADBWYrm, 0 },
1322 { X86::VPSHUFBYrr, X86::VPSHUFBYrm, 0 },
1323 { X86::VPSIGNBYrr, X86::VPSIGNBYrm, 0 },
1324 { X86::VPSIGNWYrr, X86::VPSIGNWYrm, 0 },
1325 { X86::VPSIGNDYrr, X86::VPSIGNDYrm, 0 },
1326 { X86::VPSLLDYrr, X86::VPSLLDYrm, 0 },
1327 { X86::VPSLLQYrr, X86::VPSLLQYrm, 0 },
1328 { X86::VPSLLWYrr, X86::VPSLLWYrm, 0 },
1329 { X86::VPSLLVDrr, X86::VPSLLVDrm, 0 },
1330 { X86::VPSLLVDYrr, X86::VPSLLVDYrm, 0 },
1331 { X86::VPSLLVQrr, X86::VPSLLVQrm, 0 },
1332 { X86::VPSLLVQYrr, X86::VPSLLVQYrm, 0 },
1333 { X86::VPSRADYrr, X86::VPSRADYrm, 0 },
1334 { X86::VPSRAWYrr, X86::VPSRAWYrm, 0 },
1335 { X86::VPSRAVDrr, X86::VPSRAVDrm, 0 },
1336 { X86::VPSRAVDYrr, X86::VPSRAVDYrm, 0 },
1337 { X86::VPSRLDYrr, X86::VPSRLDYrm, 0 },
1338 { X86::VPSRLQYrr, X86::VPSRLQYrm, 0 },
1339 { X86::VPSRLWYrr, X86::VPSRLWYrm, 0 },
1340 { X86::VPSRLVDrr, X86::VPSRLVDrm, 0 },
1341 { X86::VPSRLVDYrr, X86::VPSRLVDYrm, 0 },
1342 { X86::VPSRLVQrr, X86::VPSRLVQrm, 0 },
1343 { X86::VPSRLVQYrr, X86::VPSRLVQYrm, 0 },
1344 { X86::VPSUBBYrr, X86::VPSUBBYrm, 0 },
1345 { X86::VPSUBDYrr, X86::VPSUBDYrm, 0 },
1346 { X86::VPSUBSBYrr, X86::VPSUBSBYrm, 0 },
1347 { X86::VPSUBSWYrr, X86::VPSUBSWYrm, 0 },
1348 { X86::VPSUBWYrr, X86::VPSUBWYrm, 0 },
1349 { X86::VPUNPCKHBWYrr, X86::VPUNPCKHBWYrm, 0 },
1350 { X86::VPUNPCKHDQYrr, X86::VPUNPCKHDQYrm, 0 },
1351 { X86::VPUNPCKHQDQYrr, X86::VPUNPCKHQDQYrm, 0 },
1352 { X86::VPUNPCKHWDYrr, X86::VPUNPCKHWDYrm, 0 },
1353 { X86::VPUNPCKLBWYrr, X86::VPUNPCKLBWYrm, 0 },
1354 { X86::VPUNPCKLDQYrr, X86::VPUNPCKLDQYrm, 0 },
1355 { X86::VPUNPCKLQDQYrr, X86::VPUNPCKLQDQYrm, 0 },
1356 { X86::VPUNPCKLWDYrr, X86::VPUNPCKLWDYrm, 0 },
1357 { X86::VPXORYrr, X86::VPXORYrm, 0 },
1358 // FIXME: add AVX 256-bit foldable instructions
1360 // FMA4 foldable patterns
1361 { X86::VFMADDSS4rr, X86::VFMADDSS4mr, 0 },
1362 { X86::VFMADDSD4rr, X86::VFMADDSD4mr, 0 },
1363 { X86::VFMADDPS4rr, X86::VFMADDPS4mr, 0 },
1364 { X86::VFMADDPD4rr, X86::VFMADDPD4mr, 0 },
1365 { X86::VFMADDPS4rrY, X86::VFMADDPS4mrY, 0 },
1366 { X86::VFMADDPD4rrY, X86::VFMADDPD4mrY, 0 },
1367 { X86::VFNMADDSS4rr, X86::VFNMADDSS4mr, 0 },
1368 { X86::VFNMADDSD4rr, X86::VFNMADDSD4mr, 0 },
1369 { X86::VFNMADDPS4rr, X86::VFNMADDPS4mr, 0 },
1370 { X86::VFNMADDPD4rr, X86::VFNMADDPD4mr, 0 },
1371 { X86::VFNMADDPS4rrY, X86::VFNMADDPS4mrY, 0 },
1372 { X86::VFNMADDPD4rrY, X86::VFNMADDPD4mrY, 0 },
1373 { X86::VFMSUBSS4rr, X86::VFMSUBSS4mr, 0 },
1374 { X86::VFMSUBSD4rr, X86::VFMSUBSD4mr, 0 },
1375 { X86::VFMSUBPS4rr, X86::VFMSUBPS4mr, 0 },
1376 { X86::VFMSUBPD4rr, X86::VFMSUBPD4mr, 0 },
1377 { X86::VFMSUBPS4rrY, X86::VFMSUBPS4mrY, 0 },
1378 { X86::VFMSUBPD4rrY, X86::VFMSUBPD4mrY, 0 },
1379 { X86::VFNMSUBSS4rr, X86::VFNMSUBSS4mr, 0 },
1380 { X86::VFNMSUBSD4rr, X86::VFNMSUBSD4mr, 0 },
1381 { X86::VFNMSUBPS4rr, X86::VFNMSUBPS4mr, 0 },
1382 { X86::VFNMSUBPD4rr, X86::VFNMSUBPD4mr, 0 },
1383 { X86::VFNMSUBPS4rrY, X86::VFNMSUBPS4mrY, 0 },
1384 { X86::VFNMSUBPD4rrY, X86::VFNMSUBPD4mrY, 0 },
1385 { X86::VFMADDSUBPS4rr, X86::VFMADDSUBPS4mr, 0 },
1386 { X86::VFMADDSUBPD4rr, X86::VFMADDSUBPD4mr, 0 },
1387 { X86::VFMADDSUBPS4rrY, X86::VFMADDSUBPS4mrY, 0 },
1388 { X86::VFMADDSUBPD4rrY, X86::VFMADDSUBPD4mrY, 0 },
1389 { X86::VFMSUBADDPS4rr, X86::VFMSUBADDPS4mr, 0 },
1390 { X86::VFMSUBADDPD4rr, X86::VFMSUBADDPD4mr, 0 },
1391 { X86::VFMSUBADDPS4rrY, X86::VFMSUBADDPS4mrY, 0 },
1392 { X86::VFMSUBADDPD4rrY, X86::VFMSUBADDPD4mrY, 0 },
1394 // BMI/BMI2 foldable instructions
1395 { X86::ANDN32rr, X86::ANDN32rm, 0 },
1396 { X86::ANDN64rr, X86::ANDN64rm, 0 },
1397 { X86::MULX32rr, X86::MULX32rm, 0 },
1398 { X86::MULX64rr, X86::MULX64rm, 0 },
1399 { X86::PDEP32rr, X86::PDEP32rm, 0 },
1400 { X86::PDEP64rr, X86::PDEP64rm, 0 },
1401 { X86::PEXT32rr, X86::PEXT32rm, 0 },
1402 { X86::PEXT64rr, X86::PEXT64rm, 0 },
1404 // AVX-512 foldable instructions
1405 { X86::VADDPSZrr, X86::VADDPSZrm, 0 },
1406 { X86::VADDPDZrr, X86::VADDPDZrm, 0 },
1407 { X86::VSUBPSZrr, X86::VSUBPSZrm, 0 },
1408 { X86::VSUBPDZrr, X86::VSUBPDZrm, 0 },
1409 { X86::VMULPSZrr, X86::VMULPSZrm, 0 },
1410 { X86::VMULPDZrr, X86::VMULPDZrm, 0 },
1411 { X86::VDIVPSZrr, X86::VDIVPSZrm, 0 },
1412 { X86::VDIVPDZrr, X86::VDIVPDZrm, 0 },
1413 { X86::VMINPSZrr, X86::VMINPSZrm, 0 },
1414 { X86::VMINPDZrr, X86::VMINPDZrm, 0 },
1415 { X86::VMAXPSZrr, X86::VMAXPSZrm, 0 },
1416 { X86::VMAXPDZrr, X86::VMAXPDZrm, 0 },
1417 { X86::VPADDDZrr, X86::VPADDDZrm, 0 },
1418 { X86::VPADDQZrr, X86::VPADDQZrm, 0 },
1419 { X86::VPERMPDZri, X86::VPERMPDZmi, 0 },
1420 { X86::VPERMPSZrr, X86::VPERMPSZrm, 0 },
1421 { X86::VPMAXSDZrr, X86::VPMAXSDZrm, 0 },
1422 { X86::VPMAXSQZrr, X86::VPMAXSQZrm, 0 },
1423 { X86::VPMAXUDZrr, X86::VPMAXUDZrm, 0 },
1424 { X86::VPMAXUQZrr, X86::VPMAXUQZrm, 0 },
1425 { X86::VPMINSDZrr, X86::VPMINSDZrm, 0 },
1426 { X86::VPMINSQZrr, X86::VPMINSQZrm, 0 },
1427 { X86::VPMINUDZrr, X86::VPMINUDZrm, 0 },
1428 { X86::VPMINUQZrr, X86::VPMINUQZrm, 0 },
1429 { X86::VPMULDQZrr, X86::VPMULDQZrm, 0 },
1430 { X86::VPSLLVDZrr, X86::VPSLLVDZrm, 0 },
1431 { X86::VPSLLVQZrr, X86::VPSLLVQZrm, 0 },
1432 { X86::VPSRAVDZrr, X86::VPSRAVDZrm, 0 },
1433 { X86::VPSRLVDZrr, X86::VPSRLVDZrm, 0 },
1434 { X86::VPSRLVQZrr, X86::VPSRLVQZrm, 0 },
1435 { X86::VPSUBDZrr, X86::VPSUBDZrm, 0 },
1436 { X86::VPSUBQZrr, X86::VPSUBQZrm, 0 },
1437 { X86::VSHUFPDZrri, X86::VSHUFPDZrmi, 0 },
1438 { X86::VSHUFPSZrri, X86::VSHUFPSZrmi, 0 },
1439 { X86::VALIGNQrri, X86::VALIGNQrmi, 0 },
1440 { X86::VALIGNDrri, X86::VALIGNDrmi, 0 },
1441 { X86::VPMULUDQZrr, X86::VPMULUDQZrm, 0 },
1442 { X86::VBROADCASTSSZrkz, X86::VBROADCASTSSZmkz, TB_NO_REVERSE },
1443 { X86::VBROADCASTSDZrkz, X86::VBROADCASTSDZmkz, TB_NO_REVERSE },
1445 // AVX-512{F,VL} foldable instructions
1446 { X86::VBROADCASTSSZ256rkz, X86::VBROADCASTSSZ256mkz, TB_NO_REVERSE },
1447 { X86::VBROADCASTSDZ256rkz, X86::VBROADCASTSDZ256mkz, TB_NO_REVERSE },
1448 { X86::VBROADCASTSSZ128rkz, X86::VBROADCASTSSZ128mkz, TB_NO_REVERSE },
1450 // AVX-512{F,VL} foldable instructions
1451 { X86::VADDPDZ128rr, X86::VADDPDZ128rm, 0 },
1452 { X86::VADDPDZ256rr, X86::VADDPDZ256rm, 0 },
1453 { X86::VADDPSZ128rr, X86::VADDPSZ128rm, 0 },
1454 { X86::VADDPSZ256rr, X86::VADDPSZ256rm, 0 },
1456 // AES foldable instructions
1457 { X86::AESDECLASTrr, X86::AESDECLASTrm, TB_ALIGN_16 },
1458 { X86::AESDECrr, X86::AESDECrm, TB_ALIGN_16 },
1459 { X86::AESENCLASTrr, X86::AESENCLASTrm, TB_ALIGN_16 },
1460 { X86::AESENCrr, X86::AESENCrm, TB_ALIGN_16 },
1461 { X86::VAESDECLASTrr, X86::VAESDECLASTrm, 0 },
1462 { X86::VAESDECrr, X86::VAESDECrm, 0 },
1463 { X86::VAESENCLASTrr, X86::VAESENCLASTrm, 0 },
1464 { X86::VAESENCrr, X86::VAESENCrm, 0 },
1466 // SHA foldable instructions
1467 { X86::SHA1MSG1rr, X86::SHA1MSG1rm, TB_ALIGN_16 },
1468 { X86::SHA1MSG2rr, X86::SHA1MSG2rm, TB_ALIGN_16 },
1469 { X86::SHA1NEXTErr, X86::SHA1NEXTErm, TB_ALIGN_16 },
1470 { X86::SHA1RNDS4rri, X86::SHA1RNDS4rmi, TB_ALIGN_16 },
1471 { X86::SHA256MSG1rr, X86::SHA256MSG1rm, TB_ALIGN_16 },
1472 { X86::SHA256MSG2rr, X86::SHA256MSG2rm, TB_ALIGN_16 },
1473 { X86::SHA256RNDS2rr, X86::SHA256RNDS2rm, TB_ALIGN_16 },
1476 for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
1477 unsigned RegOp = OpTbl2[i].RegOp;
1478 unsigned MemOp = OpTbl2[i].MemOp;
1479 unsigned Flags = OpTbl2[i].Flags;
1480 AddTableEntry(RegOp2MemOpTable2, MemOp2RegOpTable,
1482 // Index 2, folded load
1483 Flags | TB_INDEX_2 | TB_FOLDED_LOAD);
1486 static const X86OpTblEntry OpTbl3[] = {
1487 // FMA foldable instructions
1488 { X86::VFMADDSSr231r, X86::VFMADDSSr231m, TB_ALIGN_NONE },
1489 { X86::VFMADDSDr231r, X86::VFMADDSDr231m, TB_ALIGN_NONE },
1490 { X86::VFMADDSSr132r, X86::VFMADDSSr132m, TB_ALIGN_NONE },
1491 { X86::VFMADDSDr132r, X86::VFMADDSDr132m, TB_ALIGN_NONE },
1492 { X86::VFMADDSSr213r, X86::VFMADDSSr213m, TB_ALIGN_NONE },
1493 { X86::VFMADDSDr213r, X86::VFMADDSDr213m, TB_ALIGN_NONE },
1495 { X86::VFMADDPSr231r, X86::VFMADDPSr231m, TB_ALIGN_NONE },
1496 { X86::VFMADDPDr231r, X86::VFMADDPDr231m, TB_ALIGN_NONE },
1497 { X86::VFMADDPSr132r, X86::VFMADDPSr132m, TB_ALIGN_NONE },
1498 { X86::VFMADDPDr132r, X86::VFMADDPDr132m, TB_ALIGN_NONE },
1499 { X86::VFMADDPSr213r, X86::VFMADDPSr213m, TB_ALIGN_NONE },
1500 { X86::VFMADDPDr213r, X86::VFMADDPDr213m, TB_ALIGN_NONE },
1501 { X86::VFMADDPSr231rY, X86::VFMADDPSr231mY, TB_ALIGN_NONE },
1502 { X86::VFMADDPDr231rY, X86::VFMADDPDr231mY, TB_ALIGN_NONE },
1503 { X86::VFMADDPSr132rY, X86::VFMADDPSr132mY, TB_ALIGN_NONE },
1504 { X86::VFMADDPDr132rY, X86::VFMADDPDr132mY, TB_ALIGN_NONE },
1505 { X86::VFMADDPSr213rY, X86::VFMADDPSr213mY, TB_ALIGN_NONE },
1506 { X86::VFMADDPDr213rY, X86::VFMADDPDr213mY, TB_ALIGN_NONE },
1508 { X86::VFNMADDSSr231r, X86::VFNMADDSSr231m, TB_ALIGN_NONE },
1509 { X86::VFNMADDSDr231r, X86::VFNMADDSDr231m, TB_ALIGN_NONE },
1510 { X86::VFNMADDSSr132r, X86::VFNMADDSSr132m, TB_ALIGN_NONE },
1511 { X86::VFNMADDSDr132r, X86::VFNMADDSDr132m, TB_ALIGN_NONE },
1512 { X86::VFNMADDSSr213r, X86::VFNMADDSSr213m, TB_ALIGN_NONE },
1513 { X86::VFNMADDSDr213r, X86::VFNMADDSDr213m, TB_ALIGN_NONE },
1515 { X86::VFNMADDPSr231r, X86::VFNMADDPSr231m, TB_ALIGN_NONE },
1516 { X86::VFNMADDPDr231r, X86::VFNMADDPDr231m, TB_ALIGN_NONE },
1517 { X86::VFNMADDPSr132r, X86::VFNMADDPSr132m, TB_ALIGN_NONE },
1518 { X86::VFNMADDPDr132r, X86::VFNMADDPDr132m, TB_ALIGN_NONE },
1519 { X86::VFNMADDPSr213r, X86::VFNMADDPSr213m, TB_ALIGN_NONE },
1520 { X86::VFNMADDPDr213r, X86::VFNMADDPDr213m, TB_ALIGN_NONE },
1521 { X86::VFNMADDPSr231rY, X86::VFNMADDPSr231mY, TB_ALIGN_NONE },
1522 { X86::VFNMADDPDr231rY, X86::VFNMADDPDr231mY, TB_ALIGN_NONE },
1523 { X86::VFNMADDPSr132rY, X86::VFNMADDPSr132mY, TB_ALIGN_NONE },
1524 { X86::VFNMADDPDr132rY, X86::VFNMADDPDr132mY, TB_ALIGN_NONE },
1525 { X86::VFNMADDPSr213rY, X86::VFNMADDPSr213mY, TB_ALIGN_NONE },
1526 { X86::VFNMADDPDr213rY, X86::VFNMADDPDr213mY, TB_ALIGN_NONE },
1528 { X86::VFMSUBSSr231r, X86::VFMSUBSSr231m, TB_ALIGN_NONE },
1529 { X86::VFMSUBSDr231r, X86::VFMSUBSDr231m, TB_ALIGN_NONE },
1530 { X86::VFMSUBSSr132r, X86::VFMSUBSSr132m, TB_ALIGN_NONE },
1531 { X86::VFMSUBSDr132r, X86::VFMSUBSDr132m, TB_ALIGN_NONE },
1532 { X86::VFMSUBSSr213r, X86::VFMSUBSSr213m, TB_ALIGN_NONE },
1533 { X86::VFMSUBSDr213r, X86::VFMSUBSDr213m, TB_ALIGN_NONE },
1535 { X86::VFMSUBPSr231r, X86::VFMSUBPSr231m, TB_ALIGN_NONE },
1536 { X86::VFMSUBPDr231r, X86::VFMSUBPDr231m, TB_ALIGN_NONE },
1537 { X86::VFMSUBPSr132r, X86::VFMSUBPSr132m, TB_ALIGN_NONE },
1538 { X86::VFMSUBPDr132r, X86::VFMSUBPDr132m, TB_ALIGN_NONE },
1539 { X86::VFMSUBPSr213r, X86::VFMSUBPSr213m, TB_ALIGN_NONE },
1540 { X86::VFMSUBPDr213r, X86::VFMSUBPDr213m, TB_ALIGN_NONE },
1541 { X86::VFMSUBPSr231rY, X86::VFMSUBPSr231mY, TB_ALIGN_NONE },
1542 { X86::VFMSUBPDr231rY, X86::VFMSUBPDr231mY, TB_ALIGN_NONE },
1543 { X86::VFMSUBPSr132rY, X86::VFMSUBPSr132mY, TB_ALIGN_NONE },
1544 { X86::VFMSUBPDr132rY, X86::VFMSUBPDr132mY, TB_ALIGN_NONE },
1545 { X86::VFMSUBPSr213rY, X86::VFMSUBPSr213mY, TB_ALIGN_NONE },
1546 { X86::VFMSUBPDr213rY, X86::VFMSUBPDr213mY, TB_ALIGN_NONE },
1548 { X86::VFNMSUBSSr231r, X86::VFNMSUBSSr231m, TB_ALIGN_NONE },
1549 { X86::VFNMSUBSDr231r, X86::VFNMSUBSDr231m, TB_ALIGN_NONE },
1550 { X86::VFNMSUBSSr132r, X86::VFNMSUBSSr132m, TB_ALIGN_NONE },
1551 { X86::VFNMSUBSDr132r, X86::VFNMSUBSDr132m, TB_ALIGN_NONE },
1552 { X86::VFNMSUBSSr213r, X86::VFNMSUBSSr213m, TB_ALIGN_NONE },
1553 { X86::VFNMSUBSDr213r, X86::VFNMSUBSDr213m, TB_ALIGN_NONE },
1555 { X86::VFNMSUBPSr231r, X86::VFNMSUBPSr231m, TB_ALIGN_NONE },
1556 { X86::VFNMSUBPDr231r, X86::VFNMSUBPDr231m, TB_ALIGN_NONE },
1557 { X86::VFNMSUBPSr132r, X86::VFNMSUBPSr132m, TB_ALIGN_NONE },
1558 { X86::VFNMSUBPDr132r, X86::VFNMSUBPDr132m, TB_ALIGN_NONE },
1559 { X86::VFNMSUBPSr213r, X86::VFNMSUBPSr213m, TB_ALIGN_NONE },
1560 { X86::VFNMSUBPDr213r, X86::VFNMSUBPDr213m, TB_ALIGN_NONE },
1561 { X86::VFNMSUBPSr231rY, X86::VFNMSUBPSr231mY, TB_ALIGN_NONE },
1562 { X86::VFNMSUBPDr231rY, X86::VFNMSUBPDr231mY, TB_ALIGN_NONE },
1563 { X86::VFNMSUBPSr132rY, X86::VFNMSUBPSr132mY, TB_ALIGN_NONE },
1564 { X86::VFNMSUBPDr132rY, X86::VFNMSUBPDr132mY, TB_ALIGN_NONE },
1565 { X86::VFNMSUBPSr213rY, X86::VFNMSUBPSr213mY, TB_ALIGN_NONE },
1566 { X86::VFNMSUBPDr213rY, X86::VFNMSUBPDr213mY, TB_ALIGN_NONE },
1568 { X86::VFMADDSUBPSr231r, X86::VFMADDSUBPSr231m, TB_ALIGN_NONE },
1569 { X86::VFMADDSUBPDr231r, X86::VFMADDSUBPDr231m, TB_ALIGN_NONE },
1570 { X86::VFMADDSUBPSr132r, X86::VFMADDSUBPSr132m, TB_ALIGN_NONE },
1571 { X86::VFMADDSUBPDr132r, X86::VFMADDSUBPDr132m, TB_ALIGN_NONE },
1572 { X86::VFMADDSUBPSr213r, X86::VFMADDSUBPSr213m, TB_ALIGN_NONE },
1573 { X86::VFMADDSUBPDr213r, X86::VFMADDSUBPDr213m, TB_ALIGN_NONE },
1574 { X86::VFMADDSUBPSr231rY, X86::VFMADDSUBPSr231mY, TB_ALIGN_NONE },
1575 { X86::VFMADDSUBPDr231rY, X86::VFMADDSUBPDr231mY, TB_ALIGN_NONE },
1576 { X86::VFMADDSUBPSr132rY, X86::VFMADDSUBPSr132mY, TB_ALIGN_NONE },
1577 { X86::VFMADDSUBPDr132rY, X86::VFMADDSUBPDr132mY, TB_ALIGN_NONE },
1578 { X86::VFMADDSUBPSr213rY, X86::VFMADDSUBPSr213mY, TB_ALIGN_NONE },
1579 { X86::VFMADDSUBPDr213rY, X86::VFMADDSUBPDr213mY, TB_ALIGN_NONE },
1581 { X86::VFMSUBADDPSr231r, X86::VFMSUBADDPSr231m, TB_ALIGN_NONE },
1582 { X86::VFMSUBADDPDr231r, X86::VFMSUBADDPDr231m, TB_ALIGN_NONE },
1583 { X86::VFMSUBADDPSr132r, X86::VFMSUBADDPSr132m, TB_ALIGN_NONE },
1584 { X86::VFMSUBADDPDr132r, X86::VFMSUBADDPDr132m, TB_ALIGN_NONE },
1585 { X86::VFMSUBADDPSr213r, X86::VFMSUBADDPSr213m, TB_ALIGN_NONE },
1586 { X86::VFMSUBADDPDr213r, X86::VFMSUBADDPDr213m, TB_ALIGN_NONE },
1587 { X86::VFMSUBADDPSr231rY, X86::VFMSUBADDPSr231mY, TB_ALIGN_NONE },
1588 { X86::VFMSUBADDPDr231rY, X86::VFMSUBADDPDr231mY, TB_ALIGN_NONE },
1589 { X86::VFMSUBADDPSr132rY, X86::VFMSUBADDPSr132mY, TB_ALIGN_NONE },
1590 { X86::VFMSUBADDPDr132rY, X86::VFMSUBADDPDr132mY, TB_ALIGN_NONE },
1591 { X86::VFMSUBADDPSr213rY, X86::VFMSUBADDPSr213mY, TB_ALIGN_NONE },
1592 { X86::VFMSUBADDPDr213rY, X86::VFMSUBADDPDr213mY, TB_ALIGN_NONE },
1594 // FMA4 foldable patterns
1595 { X86::VFMADDSS4rr, X86::VFMADDSS4rm, 0 },
1596 { X86::VFMADDSD4rr, X86::VFMADDSD4rm, 0 },
1597 { X86::VFMADDPS4rr, X86::VFMADDPS4rm, TB_ALIGN_16 },
1598 { X86::VFMADDPD4rr, X86::VFMADDPD4rm, TB_ALIGN_16 },
1599 { X86::VFMADDPS4rrY, X86::VFMADDPS4rmY, TB_ALIGN_32 },
1600 { X86::VFMADDPD4rrY, X86::VFMADDPD4rmY, TB_ALIGN_32 },
1601 { X86::VFNMADDSS4rr, X86::VFNMADDSS4rm, 0 },
1602 { X86::VFNMADDSD4rr, X86::VFNMADDSD4rm, 0 },
1603 { X86::VFNMADDPS4rr, X86::VFNMADDPS4rm, TB_ALIGN_16 },
1604 { X86::VFNMADDPD4rr, X86::VFNMADDPD4rm, TB_ALIGN_16 },
1605 { X86::VFNMADDPS4rrY, X86::VFNMADDPS4rmY, TB_ALIGN_32 },
1606 { X86::VFNMADDPD4rrY, X86::VFNMADDPD4rmY, TB_ALIGN_32 },
1607 { X86::VFMSUBSS4rr, X86::VFMSUBSS4rm, 0 },
1608 { X86::VFMSUBSD4rr, X86::VFMSUBSD4rm, 0 },
1609 { X86::VFMSUBPS4rr, X86::VFMSUBPS4rm, TB_ALIGN_16 },
1610 { X86::VFMSUBPD4rr, X86::VFMSUBPD4rm, TB_ALIGN_16 },
1611 { X86::VFMSUBPS4rrY, X86::VFMSUBPS4rmY, TB_ALIGN_32 },
1612 { X86::VFMSUBPD4rrY, X86::VFMSUBPD4rmY, TB_ALIGN_32 },
1613 { X86::VFNMSUBSS4rr, X86::VFNMSUBSS4rm, 0 },
1614 { X86::VFNMSUBSD4rr, X86::VFNMSUBSD4rm, 0 },
1615 { X86::VFNMSUBPS4rr, X86::VFNMSUBPS4rm, TB_ALIGN_16 },
1616 { X86::VFNMSUBPD4rr, X86::VFNMSUBPD4rm, TB_ALIGN_16 },
1617 { X86::VFNMSUBPS4rrY, X86::VFNMSUBPS4rmY, TB_ALIGN_32 },
1618 { X86::VFNMSUBPD4rrY, X86::VFNMSUBPD4rmY, TB_ALIGN_32 },
1619 { X86::VFMADDSUBPS4rr, X86::VFMADDSUBPS4rm, TB_ALIGN_16 },
1620 { X86::VFMADDSUBPD4rr, X86::VFMADDSUBPD4rm, TB_ALIGN_16 },
1621 { X86::VFMADDSUBPS4rrY, X86::VFMADDSUBPS4rmY, TB_ALIGN_32 },
1622 { X86::VFMADDSUBPD4rrY, X86::VFMADDSUBPD4rmY, TB_ALIGN_32 },
1623 { X86::VFMSUBADDPS4rr, X86::VFMSUBADDPS4rm, TB_ALIGN_16 },
1624 { X86::VFMSUBADDPD4rr, X86::VFMSUBADDPD4rm, TB_ALIGN_16 },
1625 { X86::VFMSUBADDPS4rrY, X86::VFMSUBADDPS4rmY, TB_ALIGN_32 },
1626 { X86::VFMSUBADDPD4rrY, X86::VFMSUBADDPD4rmY, TB_ALIGN_32 },
1627 // AVX-512 VPERMI instructions with 3 source operands.
1628 { X86::VPERMI2Drr, X86::VPERMI2Drm, 0 },
1629 { X86::VPERMI2Qrr, X86::VPERMI2Qrm, 0 },
1630 { X86::VPERMI2PSrr, X86::VPERMI2PSrm, 0 },
1631 { X86::VPERMI2PDrr, X86::VPERMI2PDrm, 0 },
1632 { X86::VBLENDMPDZrr, X86::VBLENDMPDZrm, 0 },
1633 { X86::VBLENDMPSZrr, X86::VBLENDMPSZrm, 0 },
1634 { X86::VPBLENDMDZrr, X86::VPBLENDMDZrm, 0 },
1635 { X86::VPBLENDMQZrr, X86::VPBLENDMQZrm, 0 },
1636 { X86::VBROADCASTSSZrk, X86::VBROADCASTSSZmk, TB_NO_REVERSE },
1637 { X86::VBROADCASTSDZrk, X86::VBROADCASTSDZmk, TB_NO_REVERSE },
1638 { X86::VBROADCASTSSZ256rk, X86::VBROADCASTSSZ256mk, TB_NO_REVERSE },
1639 { X86::VBROADCASTSDZ256rk, X86::VBROADCASTSDZ256mk, TB_NO_REVERSE },
1640 { X86::VBROADCASTSSZ128rk, X86::VBROADCASTSSZ128mk, TB_NO_REVERSE },
1641 // AVX-512 arithmetic instructions
1642 { X86::VADDPSZrrkz, X86::VADDPSZrmkz, 0 },
1643 { X86::VADDPDZrrkz, X86::VADDPDZrmkz, 0 },
1644 { X86::VSUBPSZrrkz, X86::VSUBPSZrmkz, 0 },
1645 { X86::VSUBPDZrrkz, X86::VSUBPDZrmkz, 0 },
1646 { X86::VMULPSZrrkz, X86::VMULPSZrmkz, 0 },
1647 { X86::VMULPDZrrkz, X86::VMULPDZrmkz, 0 },
1648 { X86::VDIVPSZrrkz, X86::VDIVPSZrmkz, 0 },
1649 { X86::VDIVPDZrrkz, X86::VDIVPDZrmkz, 0 },
1650 { X86::VMINPSZrrkz, X86::VMINPSZrmkz, 0 },
1651 { X86::VMINPDZrrkz, X86::VMINPDZrmkz, 0 },
1652 { X86::VMAXPSZrrkz, X86::VMAXPSZrmkz, 0 },
1653 { X86::VMAXPDZrrkz, X86::VMAXPDZrmkz, 0 },
1654 // AVX-512{F,VL} arithmetic instructions 256-bit
1655 { X86::VADDPSZ256rrkz, X86::VADDPSZ256rmkz, 0 },
1656 { X86::VADDPDZ256rrkz, X86::VADDPDZ256rmkz, 0 },
1657 { X86::VSUBPSZ256rrkz, X86::VSUBPSZ256rmkz, 0 },
1658 { X86::VSUBPDZ256rrkz, X86::VSUBPDZ256rmkz, 0 },
1659 { X86::VMULPSZ256rrkz, X86::VMULPSZ256rmkz, 0 },
1660 { X86::VMULPDZ256rrkz, X86::VMULPDZ256rmkz, 0 },
1661 { X86::VDIVPSZ256rrkz, X86::VDIVPSZ256rmkz, 0 },
1662 { X86::VDIVPDZ256rrkz, X86::VDIVPDZ256rmkz, 0 },
1663 { X86::VMINPSZ256rrkz, X86::VMINPSZ256rmkz, 0 },
1664 { X86::VMINPDZ256rrkz, X86::VMINPDZ256rmkz, 0 },
1665 { X86::VMAXPSZ256rrkz, X86::VMAXPSZ256rmkz, 0 },
1666 { X86::VMAXPDZ256rrkz, X86::VMAXPDZ256rmkz, 0 },
1667 // AVX-512{F,VL} arithmetic instructions 128-bit
1668 { X86::VADDPSZ128rrkz, X86::VADDPSZ128rmkz, 0 },
1669 { X86::VADDPDZ128rrkz, X86::VADDPDZ128rmkz, 0 },
1670 { X86::VSUBPSZ128rrkz, X86::VSUBPSZ128rmkz, 0 },
1671 { X86::VSUBPDZ128rrkz, X86::VSUBPDZ128rmkz, 0 },
1672 { X86::VMULPSZ128rrkz, X86::VMULPSZ128rmkz, 0 },
1673 { X86::VMULPDZ128rrkz, X86::VMULPDZ128rmkz, 0 },
1674 { X86::VDIVPSZ128rrkz, X86::VDIVPSZ128rmkz, 0 },
1675 { X86::VDIVPDZ128rrkz, X86::VDIVPDZ128rmkz, 0 },
1676 { X86::VMINPSZ128rrkz, X86::VMINPSZ128rmkz, 0 },
1677 { X86::VMINPDZ128rrkz, X86::VMINPDZ128rmkz, 0 },
1678 { X86::VMAXPSZ128rrkz, X86::VMAXPSZ128rmkz, 0 },
1679 { X86::VMAXPDZ128rrkz, X86::VMAXPDZ128rmkz, 0 }
1682 for (unsigned i = 0, e = array_lengthof(OpTbl3); i != e; ++i) {
1683 unsigned RegOp = OpTbl3[i].RegOp;
1684 unsigned MemOp = OpTbl3[i].MemOp;
1685 unsigned Flags = OpTbl3[i].Flags;
1686 AddTableEntry(RegOp2MemOpTable3, MemOp2RegOpTable,
1688 // Index 3, folded load
1689 Flags | TB_INDEX_3 | TB_FOLDED_LOAD);
1692 static const X86OpTblEntry OpTbl4[] = {
1693 // AVX-512 foldable instructions
1694 { X86::VADDPSZrrk, X86::VADDPSZrmk, 0 },
1695 { X86::VADDPDZrrk, X86::VADDPDZrmk, 0 },
1696 { X86::VSUBPSZrrk, X86::VSUBPSZrmk, 0 },
1697 { X86::VSUBPDZrrk, X86::VSUBPDZrmk, 0 },
1698 { X86::VMULPSZrrk, X86::VMULPSZrmk, 0 },
1699 { X86::VMULPDZrrk, X86::VMULPDZrmk, 0 },
1700 { X86::VDIVPSZrrk, X86::VDIVPSZrmk, 0 },
1701 { X86::VDIVPDZrrk, X86::VDIVPDZrmk, 0 },
1702 { X86::VMINPSZrrk, X86::VMINPSZrmk, 0 },
1703 { X86::VMINPDZrrk, X86::VMINPDZrmk, 0 },
1704 { X86::VMAXPSZrrk, X86::VMAXPSZrmk, 0 },
1705 { X86::VMAXPDZrrk, X86::VMAXPDZrmk, 0 },
1706 // AVX-512{F,VL} foldable instructions 256-bit
1707 { X86::VADDPSZ256rrk, X86::VADDPSZ256rmk, 0 },
1708 { X86::VADDPDZ256rrk, X86::VADDPDZ256rmk, 0 },
1709 { X86::VSUBPSZ256rrk, X86::VSUBPSZ256rmk, 0 },
1710 { X86::VSUBPDZ256rrk, X86::VSUBPDZ256rmk, 0 },
1711 { X86::VMULPSZ256rrk, X86::VMULPSZ256rmk, 0 },
1712 { X86::VMULPDZ256rrk, X86::VMULPDZ256rmk, 0 },
1713 { X86::VDIVPSZ256rrk, X86::VDIVPSZ256rmk, 0 },
1714 { X86::VDIVPDZ256rrk, X86::VDIVPDZ256rmk, 0 },
1715 { X86::VMINPSZ256rrk, X86::VMINPSZ256rmk, 0 },
1716 { X86::VMINPDZ256rrk, X86::VMINPDZ256rmk, 0 },
1717 { X86::VMAXPSZ256rrk, X86::VMAXPSZ256rmk, 0 },
1718 { X86::VMAXPDZ256rrk, X86::VMAXPDZ256rmk, 0 },
1719 // AVX-512{F,VL} foldable instructions 128-bit
1720 { X86::VADDPSZ128rrk, X86::VADDPSZ128rmk, 0 },
1721 { X86::VADDPDZ128rrk, X86::VADDPDZ128rmk, 0 },
1722 { X86::VSUBPSZ128rrk, X86::VSUBPSZ128rmk, 0 },
1723 { X86::VSUBPDZ128rrk, X86::VSUBPDZ128rmk, 0 },
1724 { X86::VMULPSZ128rrk, X86::VMULPSZ128rmk, 0 },
1725 { X86::VMULPDZ128rrk, X86::VMULPDZ128rmk, 0 },
1726 { X86::VDIVPSZ128rrk, X86::VDIVPSZ128rmk, 0 },
1727 { X86::VDIVPDZ128rrk, X86::VDIVPDZ128rmk, 0 },
1728 { X86::VMINPSZ128rrk, X86::VMINPSZ128rmk, 0 },
1729 { X86::VMINPDZ128rrk, X86::VMINPDZ128rmk, 0 },
1730 { X86::VMAXPSZ128rrk, X86::VMAXPSZ128rmk, 0 },
1731 { X86::VMAXPDZ128rrk, X86::VMAXPDZ128rmk, 0 }
1734 for (unsigned i = 0, e = array_lengthof(OpTbl4); i != e; ++i) {
1735 unsigned RegOp = OpTbl4[i].RegOp;
1736 unsigned MemOp = OpTbl4[i].MemOp;
1737 unsigned Flags = OpTbl4[i].Flags;
1738 AddTableEntry(RegOp2MemOpTable4, MemOp2RegOpTable,
1740 // Index 4, folded load
1741 Flags | TB_INDEX_4 | TB_FOLDED_LOAD);
1746 X86InstrInfo::AddTableEntry(RegOp2MemOpTableType &R2MTable,
1747 MemOp2RegOpTableType &M2RTable,
1748 unsigned RegOp, unsigned MemOp, unsigned Flags) {
1749 if ((Flags & TB_NO_FORWARD) == 0) {
1750 assert(!R2MTable.count(RegOp) && "Duplicate entry!");
1751 R2MTable[RegOp] = std::make_pair(MemOp, Flags);
1753 if ((Flags & TB_NO_REVERSE) == 0) {
1754 assert(!M2RTable.count(MemOp) &&
1755 "Duplicated entries in unfolding maps?");
1756 M2RTable[MemOp] = std::make_pair(RegOp, Flags);
1761 X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
1762 unsigned &SrcReg, unsigned &DstReg,
1763 unsigned &SubIdx) const {
1764 switch (MI.getOpcode()) {
1766 case X86::MOVSX16rr8:
1767 case X86::MOVZX16rr8:
1768 case X86::MOVSX32rr8:
1769 case X86::MOVZX32rr8:
1770 case X86::MOVSX64rr8:
1771 if (!Subtarget.is64Bit())
1772 // It's not always legal to reference the low 8-bit of the larger
1773 // register in 32-bit mode.
1775 case X86::MOVSX32rr16:
1776 case X86::MOVZX32rr16:
1777 case X86::MOVSX64rr16:
1778 case X86::MOVSX64rr32: {
1779 if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
1782 SrcReg = MI.getOperand(1).getReg();
1783 DstReg = MI.getOperand(0).getReg();
1784 switch (MI.getOpcode()) {
1785 default: llvm_unreachable("Unreachable!");
1786 case X86::MOVSX16rr8:
1787 case X86::MOVZX16rr8:
1788 case X86::MOVSX32rr8:
1789 case X86::MOVZX32rr8:
1790 case X86::MOVSX64rr8:
1791 SubIdx = X86::sub_8bit;
1793 case X86::MOVSX32rr16:
1794 case X86::MOVZX32rr16:
1795 case X86::MOVSX64rr16:
1796 SubIdx = X86::sub_16bit;
1798 case X86::MOVSX64rr32:
1799 SubIdx = X86::sub_32bit;
1808 int X86InstrInfo::getSPAdjust(const MachineInstr *MI) const {
1809 const MachineFunction *MF = MI->getParent()->getParent();
1810 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
1812 if (MI->getOpcode() == getCallFrameSetupOpcode() ||
1813 MI->getOpcode() == getCallFrameDestroyOpcode()) {
1814 unsigned StackAlign = TFI->getStackAlignment();
1815 int SPAdj = (MI->getOperand(0).getImm() + StackAlign - 1) / StackAlign *
1818 SPAdj -= MI->getOperand(1).getImm();
1820 if (MI->getOpcode() == getCallFrameSetupOpcode())
1826 // To know whether a call adjusts the stack, we need information
1827 // that is bound to the following ADJCALLSTACKUP pseudo.
1828 // Look for the next ADJCALLSTACKUP that follows the call.
1830 const MachineBasicBlock* MBB = MI->getParent();
1831 auto I = ++MachineBasicBlock::const_iterator(MI);
1832 for (auto E = MBB->end(); I != E; ++I) {
1833 if (I->getOpcode() == getCallFrameDestroyOpcode() ||
1838 // If we could not find a frame destroy opcode, then it has already
1839 // been simplified, so we don't care.
1840 if (I->getOpcode() != getCallFrameDestroyOpcode())
1843 return -(I->getOperand(1).getImm());
1846 // Currently handle only PUSHes we can reasonably expect to see
1847 // in call sequences
1848 switch (MI->getOpcode()) {
1853 case X86::PUSH32rmm:
1854 case X86::PUSH32rmr:
1860 /// isFrameOperand - Return true and the FrameIndex if the specified
1861 /// operand and follow operands form a reference to the stack frame.
1862 bool X86InstrInfo::isFrameOperand(const MachineInstr *MI, unsigned int Op,
1863 int &FrameIndex) const {
1864 if (MI->getOperand(Op+X86::AddrBaseReg).isFI() &&
1865 MI->getOperand(Op+X86::AddrScaleAmt).isImm() &&
1866 MI->getOperand(Op+X86::AddrIndexReg).isReg() &&
1867 MI->getOperand(Op+X86::AddrDisp).isImm() &&
1868 MI->getOperand(Op+X86::AddrScaleAmt).getImm() == 1 &&
1869 MI->getOperand(Op+X86::AddrIndexReg).getReg() == 0 &&
1870 MI->getOperand(Op+X86::AddrDisp).getImm() == 0) {
1871 FrameIndex = MI->getOperand(Op+X86::AddrBaseReg).getIndex();
1877 static bool isFrameLoadOpcode(int Opcode) {
1893 case X86::VMOVAPSrm:
1894 case X86::VMOVAPDrm:
1895 case X86::VMOVDQArm:
1896 case X86::VMOVUPSYrm:
1897 case X86::VMOVAPSYrm:
1898 case X86::VMOVUPDYrm:
1899 case X86::VMOVAPDYrm:
1900 case X86::VMOVDQUYrm:
1901 case X86::VMOVDQAYrm:
1902 case X86::MMX_MOVD64rm:
1903 case X86::MMX_MOVQ64rm:
1904 case X86::VMOVAPSZrm:
1905 case X86::VMOVUPSZrm:
1910 static bool isFrameStoreOpcode(int Opcode) {
1917 case X86::ST_FpP64m:
1925 case X86::VMOVAPSmr:
1926 case X86::VMOVAPDmr:
1927 case X86::VMOVDQAmr:
1928 case X86::VMOVUPSYmr:
1929 case X86::VMOVAPSYmr:
1930 case X86::VMOVUPDYmr:
1931 case X86::VMOVAPDYmr:
1932 case X86::VMOVDQUYmr:
1933 case X86::VMOVDQAYmr:
1934 case X86::VMOVUPSZmr:
1935 case X86::VMOVAPSZmr:
1936 case X86::MMX_MOVD64mr:
1937 case X86::MMX_MOVQ64mr:
1938 case X86::MMX_MOVNTQmr:
1944 unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
1945 int &FrameIndex) const {
1946 if (isFrameLoadOpcode(MI->getOpcode()))
1947 if (MI->getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex))
1948 return MI->getOperand(0).getReg();
1952 unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI,
1953 int &FrameIndex) const {
1954 if (isFrameLoadOpcode(MI->getOpcode())) {
1956 if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
1958 // Check for post-frame index elimination operations
1959 const MachineMemOperand *Dummy;
1960 return hasLoadFromStackSlot(MI, Dummy, FrameIndex);
1965 unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
1966 int &FrameIndex) const {
1967 if (isFrameStoreOpcode(MI->getOpcode()))
1968 if (MI->getOperand(X86::AddrNumOperands).getSubReg() == 0 &&
1969 isFrameOperand(MI, 0, FrameIndex))
1970 return MI->getOperand(X86::AddrNumOperands).getReg();
1974 unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI,
1975 int &FrameIndex) const {
1976 if (isFrameStoreOpcode(MI->getOpcode())) {
1978 if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
1980 // Check for post-frame index elimination operations
1981 const MachineMemOperand *Dummy;
1982 return hasStoreToStackSlot(MI, Dummy, FrameIndex);
1987 /// regIsPICBase - Return true if register is PIC base (i.e.g defined by
1989 static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
1990 // Don't waste compile time scanning use-def chains of physregs.
1991 if (!TargetRegisterInfo::isVirtualRegister(BaseReg))
1993 bool isPICBase = false;
1994 for (MachineRegisterInfo::def_instr_iterator I = MRI.def_instr_begin(BaseReg),
1995 E = MRI.def_instr_end(); I != E; ++I) {
1996 MachineInstr *DefMI = &*I;
1997 if (DefMI->getOpcode() != X86::MOVPC32r)
1999 assert(!isPICBase && "More than one PIC base?");
2006 X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI,
2007 AliasAnalysis *AA) const {
2008 switch (MI->getOpcode()) {
2024 case X86::VMOVAPSrm:
2025 case X86::VMOVUPSrm:
2026 case X86::VMOVAPDrm:
2027 case X86::VMOVDQArm:
2028 case X86::VMOVDQUrm:
2029 case X86::VMOVAPSYrm:
2030 case X86::VMOVUPSYrm:
2031 case X86::VMOVAPDYrm:
2032 case X86::VMOVDQAYrm:
2033 case X86::VMOVDQUYrm:
2034 case X86::MMX_MOVD64rm:
2035 case X86::MMX_MOVQ64rm:
2036 case X86::FsVMOVAPSrm:
2037 case X86::FsVMOVAPDrm:
2038 case X86::FsMOVAPSrm:
2039 case X86::FsMOVAPDrm: {
2040 // Loads from constant pools are trivially rematerializable.
2041 if (MI->getOperand(1+X86::AddrBaseReg).isReg() &&
2042 MI->getOperand(1+X86::AddrScaleAmt).isImm() &&
2043 MI->getOperand(1+X86::AddrIndexReg).isReg() &&
2044 MI->getOperand(1+X86::AddrIndexReg).getReg() == 0 &&
2045 MI->isInvariantLoad(AA)) {
2046 unsigned BaseReg = MI->getOperand(1+X86::AddrBaseReg).getReg();
2047 if (BaseReg == 0 || BaseReg == X86::RIP)
2049 // Allow re-materialization of PIC load.
2050 if (!ReMatPICStubLoad && MI->getOperand(1+X86::AddrDisp).isGlobal())
2052 const MachineFunction &MF = *MI->getParent()->getParent();
2053 const MachineRegisterInfo &MRI = MF.getRegInfo();
2054 return regIsPICBase(BaseReg, MRI);
2061 if (MI->getOperand(1+X86::AddrScaleAmt).isImm() &&
2062 MI->getOperand(1+X86::AddrIndexReg).isReg() &&
2063 MI->getOperand(1+X86::AddrIndexReg).getReg() == 0 &&
2064 !MI->getOperand(1+X86::AddrDisp).isReg()) {
2065 // lea fi#, lea GV, etc. are all rematerializable.
2066 if (!MI->getOperand(1+X86::AddrBaseReg).isReg())
2068 unsigned BaseReg = MI->getOperand(1+X86::AddrBaseReg).getReg();
2071 // Allow re-materialization of lea PICBase + x.
2072 const MachineFunction &MF = *MI->getParent()->getParent();
2073 const MachineRegisterInfo &MRI = MF.getRegInfo();
2074 return regIsPICBase(BaseReg, MRI);
2080 // All other instructions marked M_REMATERIALIZABLE are always trivially
2081 // rematerializable.
2085 bool X86InstrInfo::isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
2086 MachineBasicBlock::iterator I) const {
2087 MachineBasicBlock::iterator E = MBB.end();
2089 // For compile time consideration, if we are not able to determine the
2090 // safety after visiting 4 instructions in each direction, we will assume
2092 MachineBasicBlock::iterator Iter = I;
2093 for (unsigned i = 0; Iter != E && i < 4; ++i) {
2094 bool SeenDef = false;
2095 for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
2096 MachineOperand &MO = Iter->getOperand(j);
2097 if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS))
2101 if (MO.getReg() == X86::EFLAGS) {
2109 // This instruction defines EFLAGS, no need to look any further.
2112 // Skip over DBG_VALUE.
2113 while (Iter != E && Iter->isDebugValue())
2117 // It is safe to clobber EFLAGS at the end of a block of no successor has it
2120 for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(),
2121 SE = MBB.succ_end(); SI != SE; ++SI)
2122 if ((*SI)->isLiveIn(X86::EFLAGS))
2127 MachineBasicBlock::iterator B = MBB.begin();
2129 for (unsigned i = 0; i < 4; ++i) {
2130 // If we make it to the beginning of the block, it's safe to clobber
2131 // EFLAGS iff EFLAGS is not live-in.
2133 return !MBB.isLiveIn(X86::EFLAGS);
2136 // Skip over DBG_VALUE.
2137 while (Iter != B && Iter->isDebugValue())
2140 bool SawKill = false;
2141 for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
2142 MachineOperand &MO = Iter->getOperand(j);
2143 // A register mask may clobber EFLAGS, but we should still look for a
2145 if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS))
2147 if (MO.isReg() && MO.getReg() == X86::EFLAGS) {
2148 if (MO.isDef()) return MO.isDead();
2149 if (MO.isKill()) SawKill = true;
2154 // This instruction kills EFLAGS and doesn't redefine it, so
2155 // there's no need to look further.
2159 // Conservative answer.
2163 void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
2164 MachineBasicBlock::iterator I,
2165 unsigned DestReg, unsigned SubIdx,
2166 const MachineInstr *Orig,
2167 const TargetRegisterInfo &TRI) const {
2168 // MOV32r0 is implemented with a xor which clobbers condition code.
2169 // Re-materialize it as movri instructions to avoid side effects.
2170 unsigned Opc = Orig->getOpcode();
2171 if (Opc == X86::MOV32r0 && !isSafeToClobberEFLAGS(MBB, I)) {
2172 DebugLoc DL = Orig->getDebugLoc();
2173 BuildMI(MBB, I, DL, get(X86::MOV32ri)).addOperand(Orig->getOperand(0))
2176 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
2180 MachineInstr *NewMI = std::prev(I);
2181 NewMI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI);
2184 /// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
2185 /// is not marked dead.
2186 static bool hasLiveCondCodeDef(MachineInstr *MI) {
2187 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2188 MachineOperand &MO = MI->getOperand(i);
2189 if (MO.isReg() && MO.isDef() &&
2190 MO.getReg() == X86::EFLAGS && !MO.isDead()) {
2197 /// getTruncatedShiftCount - check whether the shift count for a machine operand
2199 inline static unsigned getTruncatedShiftCount(MachineInstr *MI,
2200 unsigned ShiftAmtOperandIdx) {
2201 // The shift count is six bits with the REX.W prefix and five bits without.
2202 unsigned ShiftCountMask = (MI->getDesc().TSFlags & X86II::REX_W) ? 63 : 31;
2203 unsigned Imm = MI->getOperand(ShiftAmtOperandIdx).getImm();
2204 return Imm & ShiftCountMask;
2207 /// isTruncatedShiftCountForLEA - check whether the given shift count is appropriate
2208 /// can be represented by a LEA instruction.
2209 inline static bool isTruncatedShiftCountForLEA(unsigned ShAmt) {
2210 // Left shift instructions can be transformed into load-effective-address
2211 // instructions if we can encode them appropriately.
2212 // A LEA instruction utilizes a SIB byte to encode it's scale factor.
2213 // The SIB.scale field is two bits wide which means that we can encode any
2214 // shift amount less than 4.
2215 return ShAmt < 4 && ShAmt > 0;
2218 bool X86InstrInfo::classifyLEAReg(MachineInstr *MI, const MachineOperand &Src,
2219 unsigned Opc, bool AllowSP,
2220 unsigned &NewSrc, bool &isKill, bool &isUndef,
2221 MachineOperand &ImplicitOp) const {
2222 MachineFunction &MF = *MI->getParent()->getParent();
2223 const TargetRegisterClass *RC;
2225 RC = Opc != X86::LEA32r ? &X86::GR64RegClass : &X86::GR32RegClass;
2227 RC = Opc != X86::LEA32r ?
2228 &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass;
2230 unsigned SrcReg = Src.getReg();
2232 // For both LEA64 and LEA32 the register already has essentially the right
2233 // type (32-bit or 64-bit) we may just need to forbid SP.
2234 if (Opc != X86::LEA64_32r) {
2236 isKill = Src.isKill();
2237 isUndef = Src.isUndef();
2239 if (TargetRegisterInfo::isVirtualRegister(NewSrc) &&
2240 !MF.getRegInfo().constrainRegClass(NewSrc, RC))
2246 // This is for an LEA64_32r and incoming registers are 32-bit. One way or
2247 // another we need to add 64-bit registers to the final MI.
2248 if (TargetRegisterInfo::isPhysicalRegister(SrcReg)) {
2250 ImplicitOp.setImplicit();
2252 NewSrc = getX86SubSuperRegister(Src.getReg(), MVT::i64);
2253 MachineBasicBlock::LivenessQueryResult LQR =
2254 MI->getParent()->computeRegisterLiveness(&getRegisterInfo(), NewSrc, MI);
2257 case MachineBasicBlock::LQR_Unknown:
2258 // We can't give sane liveness flags to the instruction, abandon LEA
2261 case MachineBasicBlock::LQR_Live:
2262 isKill = MI->killsRegister(SrcReg);
2266 // The physreg itself is dead, so we have to use it as an <undef>.
2272 // Virtual register of the wrong class, we have to create a temporary 64-bit
2273 // vreg to feed into the LEA.
2274 NewSrc = MF.getRegInfo().createVirtualRegister(RC);
2275 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
2276 get(TargetOpcode::COPY))
2277 .addReg(NewSrc, RegState::Define | RegState::Undef, X86::sub_32bit)
2280 // Which is obviously going to be dead after we're done with it.
2285 // We've set all the parameters without issue.
2289 /// convertToThreeAddressWithLEA - Helper for convertToThreeAddress when
2290 /// 16-bit LEA is disabled, use 32-bit LEA to form 3-address code by promoting
2291 /// to a 32-bit superregister and then truncating back down to a 16-bit
2294 X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc,
2295 MachineFunction::iterator &MFI,
2296 MachineBasicBlock::iterator &MBBI,
2297 LiveVariables *LV) const {
2298 MachineInstr *MI = MBBI;
2299 unsigned Dest = MI->getOperand(0).getReg();
2300 unsigned Src = MI->getOperand(1).getReg();
2301 bool isDead = MI->getOperand(0).isDead();
2302 bool isKill = MI->getOperand(1).isKill();
2304 MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
2305 unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
2306 unsigned Opc, leaInReg;
2307 if (Subtarget.is64Bit()) {
2308 Opc = X86::LEA64_32r;
2309 leaInReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
2312 leaInReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
2315 // Build and insert into an implicit UNDEF value. This is OK because
2316 // well be shifting and then extracting the lower 16-bits.
2317 // This has the potential to cause partial register stall. e.g.
2318 // movw (%rbp,%rcx,2), %dx
2319 // leal -65(%rdx), %esi
2320 // But testing has shown this *does* help performance in 64-bit mode (at
2321 // least on modern x86 machines).
2322 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg);
2323 MachineInstr *InsMI =
2324 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
2325 .addReg(leaInReg, RegState::Define, X86::sub_16bit)
2326 .addReg(Src, getKillRegState(isKill));
2328 MachineInstrBuilder MIB = BuildMI(*MFI, MBBI, MI->getDebugLoc(),
2329 get(Opc), leaOutReg);
2331 default: llvm_unreachable("Unreachable!");
2332 case X86::SHL16ri: {
2333 unsigned ShAmt = MI->getOperand(2).getImm();
2334 MIB.addReg(0).addImm(1 << ShAmt)
2335 .addReg(leaInReg, RegState::Kill).addImm(0).addReg(0);
2339 addRegOffset(MIB, leaInReg, true, 1);
2342 addRegOffset(MIB, leaInReg, true, -1);
2346 case X86::ADD16ri_DB:
2347 case X86::ADD16ri8_DB:
2348 addRegOffset(MIB, leaInReg, true, MI->getOperand(2).getImm());
2351 case X86::ADD16rr_DB: {
2352 unsigned Src2 = MI->getOperand(2).getReg();
2353 bool isKill2 = MI->getOperand(2).isKill();
2354 unsigned leaInReg2 = 0;
2355 MachineInstr *InsMI2 = nullptr;
2357 // ADD16rr %reg1028<kill>, %reg1028
2358 // just a single insert_subreg.
2359 addRegReg(MIB, leaInReg, true, leaInReg, false);
2361 if (Subtarget.is64Bit())
2362 leaInReg2 = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
2364 leaInReg2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
2365 // Build and insert into an implicit UNDEF value. This is OK because
2366 // well be shifting and then extracting the lower 16-bits.
2367 BuildMI(*MFI, &*MIB, MI->getDebugLoc(), get(X86::IMPLICIT_DEF),leaInReg2);
2369 BuildMI(*MFI, &*MIB, MI->getDebugLoc(), get(TargetOpcode::COPY))
2370 .addReg(leaInReg2, RegState::Define, X86::sub_16bit)
2371 .addReg(Src2, getKillRegState(isKill2));
2372 addRegReg(MIB, leaInReg, true, leaInReg2, true);
2374 if (LV && isKill2 && InsMI2)
2375 LV->replaceKillInstruction(Src2, MI, InsMI2);
2380 MachineInstr *NewMI = MIB;
2381 MachineInstr *ExtMI =
2382 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
2383 .addReg(Dest, RegState::Define | getDeadRegState(isDead))
2384 .addReg(leaOutReg, RegState::Kill, X86::sub_16bit);
2387 // Update live variables
2388 LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
2389 LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
2391 LV->replaceKillInstruction(Src, MI, InsMI);
2393 LV->replaceKillInstruction(Dest, MI, ExtMI);
2399 /// convertToThreeAddress - This method must be implemented by targets that
2400 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
2401 /// may be able to convert a two-address instruction into a true
2402 /// three-address instruction on demand. This allows the X86 target (for
2403 /// example) to convert ADD and SHL instructions into LEA instructions if they
2404 /// would require register copies due to two-addressness.
2406 /// This method returns a null pointer if the transformation cannot be
2407 /// performed, otherwise it returns the new instruction.
2410 X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
2411 MachineBasicBlock::iterator &MBBI,
2412 LiveVariables *LV) const {
2413 MachineInstr *MI = MBBI;
2415 // The following opcodes also sets the condition code register(s). Only
2416 // convert them to equivalent lea if the condition code register def's
2418 if (hasLiveCondCodeDef(MI))
2421 MachineFunction &MF = *MI->getParent()->getParent();
2422 // All instructions input are two-addr instructions. Get the known operands.
2423 const MachineOperand &Dest = MI->getOperand(0);
2424 const MachineOperand &Src = MI->getOperand(1);
2426 MachineInstr *NewMI = nullptr;
2427 // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When
2428 // we have better subtarget support, enable the 16-bit LEA generation here.
2429 // 16-bit LEA is also slow on Core2.
2430 bool DisableLEA16 = true;
2431 bool is64Bit = Subtarget.is64Bit();
2433 unsigned MIOpc = MI->getOpcode();
2435 default: return nullptr;
2436 case X86::SHL64ri: {
2437 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
2438 unsigned ShAmt = getTruncatedShiftCount(MI, 2);
2439 if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
2441 // LEA can't handle RSP.
2442 if (TargetRegisterInfo::isVirtualRegister(Src.getReg()) &&
2443 !MF.getRegInfo().constrainRegClass(Src.getReg(),
2444 &X86::GR64_NOSPRegClass))
2447 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
2449 .addReg(0).addImm(1 << ShAmt).addOperand(Src).addImm(0).addReg(0);
2452 case X86::SHL32ri: {
2453 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
2454 unsigned ShAmt = getTruncatedShiftCount(MI, 2);
2455 if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
2457 unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
2459 // LEA can't handle ESP.
2460 bool isKill, isUndef;
2462 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
2463 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
2464 SrcReg, isKill, isUndef, ImplicitOp))
2467 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
2469 .addReg(0).addImm(1 << ShAmt)
2470 .addReg(SrcReg, getKillRegState(isKill) | getUndefRegState(isUndef))
2471 .addImm(0).addReg(0);
2472 if (ImplicitOp.getReg() != 0)
2473 MIB.addOperand(ImplicitOp);
2478 case X86::SHL16ri: {
2479 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
2480 unsigned ShAmt = getTruncatedShiftCount(MI, 2);
2481 if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
2484 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : nullptr;
2485 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
2487 .addReg(0).addImm(1 << ShAmt).addOperand(Src).addImm(0).addReg(0);
2492 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
2493 unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
2494 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
2495 bool isKill, isUndef;
2497 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
2498 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
2499 SrcReg, isKill, isUndef, ImplicitOp))
2502 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
2504 .addReg(SrcReg, getKillRegState(isKill) | getUndefRegState(isUndef));
2505 if (ImplicitOp.getReg() != 0)
2506 MIB.addOperand(ImplicitOp);
2508 NewMI = addOffset(MIB, 1);
2513 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV)
2515 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
2516 NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
2517 .addOperand(Dest).addOperand(Src), 1);
2521 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
2522 unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
2523 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
2525 bool isKill, isUndef;
2527 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
2528 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
2529 SrcReg, isKill, isUndef, ImplicitOp))
2532 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
2534 .addReg(SrcReg, getUndefRegState(isUndef) | getKillRegState(isKill));
2535 if (ImplicitOp.getReg() != 0)
2536 MIB.addOperand(ImplicitOp);
2538 NewMI = addOffset(MIB, -1);
2544 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV)
2546 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
2547 NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
2548 .addOperand(Dest).addOperand(Src), -1);
2551 case X86::ADD64rr_DB:
2553 case X86::ADD32rr_DB: {
2554 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
2556 if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB)
2559 Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
2561 bool isKill, isUndef;
2563 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
2564 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
2565 SrcReg, isKill, isUndef, ImplicitOp))
2568 const MachineOperand &Src2 = MI->getOperand(2);
2569 bool isKill2, isUndef2;
2571 MachineOperand ImplicitOp2 = MachineOperand::CreateReg(0, false);
2572 if (!classifyLEAReg(MI, Src2, Opc, /*AllowSP=*/ false,
2573 SrcReg2, isKill2, isUndef2, ImplicitOp2))
2576 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
2578 if (ImplicitOp.getReg() != 0)
2579 MIB.addOperand(ImplicitOp);
2580 if (ImplicitOp2.getReg() != 0)
2581 MIB.addOperand(ImplicitOp2);
2583 NewMI = addRegReg(MIB, SrcReg, isKill, SrcReg2, isKill2);
2585 // Preserve undefness of the operands.
2586 NewMI->getOperand(1).setIsUndef(isUndef);
2587 NewMI->getOperand(3).setIsUndef(isUndef2);
2589 if (LV && Src2.isKill())
2590 LV->replaceKillInstruction(SrcReg2, MI, NewMI);
2594 case X86::ADD16rr_DB: {
2596 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV)
2598 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
2599 unsigned Src2 = MI->getOperand(2).getReg();
2600 bool isKill2 = MI->getOperand(2).isKill();
2601 NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
2603 Src.getReg(), Src.isKill(), Src2, isKill2);
2605 // Preserve undefness of the operands.
2606 bool isUndef = MI->getOperand(1).isUndef();
2607 bool isUndef2 = MI->getOperand(2).isUndef();
2608 NewMI->getOperand(1).setIsUndef(isUndef);
2609 NewMI->getOperand(3).setIsUndef(isUndef2);
2612 LV->replaceKillInstruction(Src2, MI, NewMI);
2615 case X86::ADD64ri32:
2617 case X86::ADD64ri32_DB:
2618 case X86::ADD64ri8_DB:
2619 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
2620 NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
2621 .addOperand(Dest).addOperand(Src),
2622 MI->getOperand(2).getImm());
2626 case X86::ADD32ri_DB:
2627 case X86::ADD32ri8_DB: {
2628 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
2629 unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
2631 bool isKill, isUndef;
2633 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
2634 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
2635 SrcReg, isKill, isUndef, ImplicitOp))
2638 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
2640 .addReg(SrcReg, getUndefRegState(isUndef) | getKillRegState(isKill));
2641 if (ImplicitOp.getReg() != 0)
2642 MIB.addOperand(ImplicitOp);
2644 NewMI = addOffset(MIB, MI->getOperand(2).getImm());
2649 case X86::ADD16ri_DB:
2650 case X86::ADD16ri8_DB:
2652 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV)
2654 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
2655 NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
2656 .addOperand(Dest).addOperand(Src),
2657 MI->getOperand(2).getImm());
2661 if (!NewMI) return nullptr;
2663 if (LV) { // Update live variables
2665 LV->replaceKillInstruction(Src.getReg(), MI, NewMI);
2667 LV->replaceKillInstruction(Dest.getReg(), MI, NewMI);
2670 MFI->insert(MBBI, NewMI); // Insert the new inst
2674 /// commuteInstruction - We have a few instructions that must be hacked on to
2678 X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
2679 switch (MI->getOpcode()) {
2680 case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
2681 case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
2682 case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
2683 case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
2684 case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
2685 case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
2688 switch (MI->getOpcode()) {
2689 default: llvm_unreachable("Unreachable!");
2690 case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
2691 case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
2692 case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
2693 case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
2694 case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
2695 case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
2697 unsigned Amt = MI->getOperand(3).getImm();
2699 MachineFunction &MF = *MI->getParent()->getParent();
2700 MI = MF.CloneMachineInstr(MI);
2703 MI->setDesc(get(Opc));
2704 MI->getOperand(3).setImm(Size-Amt);
2705 return TargetInstrInfo::commuteInstruction(MI, NewMI);
2707 case X86::BLENDPDrri:
2708 case X86::BLENDPSrri:
2709 case X86::PBLENDWrri:
2710 case X86::VBLENDPDrri:
2711 case X86::VBLENDPSrri:
2712 case X86::VBLENDPDYrri:
2713 case X86::VBLENDPSYrri:
2714 case X86::VPBLENDDrri:
2715 case X86::VPBLENDWrri:
2716 case X86::VPBLENDDYrri:
2717 case X86::VPBLENDWYrri:{
2719 switch (MI->getOpcode()) {
2720 default: llvm_unreachable("Unreachable!");
2721 case X86::BLENDPDrri: Mask = 0x03; break;
2722 case X86::BLENDPSrri: Mask = 0x0F; break;
2723 case X86::PBLENDWrri: Mask = 0xFF; break;
2724 case X86::VBLENDPDrri: Mask = 0x03; break;
2725 case X86::VBLENDPSrri: Mask = 0x0F; break;
2726 case X86::VBLENDPDYrri: Mask = 0x0F; break;
2727 case X86::VBLENDPSYrri: Mask = 0xFF; break;
2728 case X86::VPBLENDDrri: Mask = 0x0F; break;
2729 case X86::VPBLENDWrri: Mask = 0xFF; break;
2730 case X86::VPBLENDDYrri: Mask = 0xFF; break;
2731 case X86::VPBLENDWYrri: Mask = 0xFF; break;
2733 // Only the least significant bits of Imm are used.
2734 unsigned Imm = MI->getOperand(3).getImm() & Mask;
2736 MachineFunction &MF = *MI->getParent()->getParent();
2737 MI = MF.CloneMachineInstr(MI);
2740 MI->getOperand(3).setImm(Mask ^ Imm);
2741 return TargetInstrInfo::commuteInstruction(MI, NewMI);
2743 case X86::PCLMULQDQrr:
2744 case X86::VPCLMULQDQrr:{
2745 // SRC1 64bits = Imm[0] ? SRC1[127:64] : SRC1[63:0]
2746 // SRC2 64bits = Imm[4] ? SRC2[127:64] : SRC2[63:0]
2747 unsigned Imm = MI->getOperand(3).getImm();
2748 unsigned Src1Hi = Imm & 0x01;
2749 unsigned Src2Hi = Imm & 0x10;
2751 MachineFunction &MF = *MI->getParent()->getParent();
2752 MI = MF.CloneMachineInstr(MI);
2755 MI->getOperand(3).setImm((Src1Hi << 4) | (Src2Hi >> 4));
2756 return TargetInstrInfo::commuteInstruction(MI, NewMI);
2760 case X86::VCMPPDrri:
2761 case X86::VCMPPSrri:
2762 case X86::VCMPPDYrri:
2763 case X86::VCMPPSYrri: {
2764 // Float comparison can be safely commuted for
2765 // Ordered/Unordered/Equal/NotEqual tests
2766 unsigned Imm = MI->getOperand(3).getImm() & 0x7;
2769 case 0x03: // UNORDERED
2770 case 0x04: // NOT EQUAL
2771 case 0x07: // ORDERED
2773 MachineFunction &MF = *MI->getParent()->getParent();
2774 MI = MF.CloneMachineInstr(MI);
2777 return TargetInstrInfo::commuteInstruction(MI, NewMI);
2782 case X86::CMOVB16rr: case X86::CMOVB32rr: case X86::CMOVB64rr:
2783 case X86::CMOVAE16rr: case X86::CMOVAE32rr: case X86::CMOVAE64rr:
2784 case X86::CMOVE16rr: case X86::CMOVE32rr: case X86::CMOVE64rr:
2785 case X86::CMOVNE16rr: case X86::CMOVNE32rr: case X86::CMOVNE64rr:
2786 case X86::CMOVBE16rr: case X86::CMOVBE32rr: case X86::CMOVBE64rr:
2787 case X86::CMOVA16rr: case X86::CMOVA32rr: case X86::CMOVA64rr:
2788 case X86::CMOVL16rr: case X86::CMOVL32rr: case X86::CMOVL64rr:
2789 case X86::CMOVGE16rr: case X86::CMOVGE32rr: case X86::CMOVGE64rr:
2790 case X86::CMOVLE16rr: case X86::CMOVLE32rr: case X86::CMOVLE64rr:
2791 case X86::CMOVG16rr: case X86::CMOVG32rr: case X86::CMOVG64rr:
2792 case X86::CMOVS16rr: case X86::CMOVS32rr: case X86::CMOVS64rr:
2793 case X86::CMOVNS16rr: case X86::CMOVNS32rr: case X86::CMOVNS64rr:
2794 case X86::CMOVP16rr: case X86::CMOVP32rr: case X86::CMOVP64rr:
2795 case X86::CMOVNP16rr: case X86::CMOVNP32rr: case X86::CMOVNP64rr:
2796 case X86::CMOVO16rr: case X86::CMOVO32rr: case X86::CMOVO64rr:
2797 case X86::CMOVNO16rr: case X86::CMOVNO32rr: case X86::CMOVNO64rr: {
2799 switch (MI->getOpcode()) {
2800 default: llvm_unreachable("Unreachable!");
2801 case X86::CMOVB16rr: Opc = X86::CMOVAE16rr; break;
2802 case X86::CMOVB32rr: Opc = X86::CMOVAE32rr; break;
2803 case X86::CMOVB64rr: Opc = X86::CMOVAE64rr; break;
2804 case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
2805 case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
2806 case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
2807 case X86::CMOVE16rr: Opc = X86::CMOVNE16rr; break;
2808 case X86::CMOVE32rr: Opc = X86::CMOVNE32rr; break;
2809 case X86::CMOVE64rr: Opc = X86::CMOVNE64rr; break;
2810 case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
2811 case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
2812 case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
2813 case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
2814 case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
2815 case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
2816 case X86::CMOVA16rr: Opc = X86::CMOVBE16rr; break;
2817 case X86::CMOVA32rr: Opc = X86::CMOVBE32rr; break;
2818 case X86::CMOVA64rr: Opc = X86::CMOVBE64rr; break;
2819 case X86::CMOVL16rr: Opc = X86::CMOVGE16rr; break;
2820 case X86::CMOVL32rr: Opc = X86::CMOVGE32rr; break;
2821 case X86::CMOVL64rr: Opc = X86::CMOVGE64rr; break;
2822 case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
2823 case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
2824 case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
2825 case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
2826 case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
2827 case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
2828 case X86::CMOVG16rr: Opc = X86::CMOVLE16rr; break;
2829 case X86::CMOVG32rr: Opc = X86::CMOVLE32rr; break;
2830 case X86::CMOVG64rr: Opc = X86::CMOVLE64rr; break;
2831 case X86::CMOVS16rr: Opc = X86::CMOVNS16rr; break;
2832 case X86::CMOVS32rr: Opc = X86::CMOVNS32rr; break;
2833 case X86::CMOVS64rr: Opc = X86::CMOVNS64rr; break;
2834 case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
2835 case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
2836 case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
2837 case X86::CMOVP16rr: Opc = X86::CMOVNP16rr; break;
2838 case X86::CMOVP32rr: Opc = X86::CMOVNP32rr; break;
2839 case X86::CMOVP64rr: Opc = X86::CMOVNP64rr; break;
2840 case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
2841 case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
2842 case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
2843 case X86::CMOVO16rr: Opc = X86::CMOVNO16rr; break;
2844 case X86::CMOVO32rr: Opc = X86::CMOVNO32rr; break;
2845 case X86::CMOVO64rr: Opc = X86::CMOVNO64rr; break;
2846 case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break;
2847 case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break;
2848 case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break;
2851 MachineFunction &MF = *MI->getParent()->getParent();
2852 MI = MF.CloneMachineInstr(MI);
2855 MI->setDesc(get(Opc));
2856 // Fallthrough intended.
2859 return TargetInstrInfo::commuteInstruction(MI, NewMI);
2863 bool X86InstrInfo::findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
2864 unsigned &SrcOpIdx2) const {
2865 switch (MI->getOpcode()) {
2868 case X86::VCMPPDrri:
2869 case X86::VCMPPSrri:
2870 case X86::VCMPPDYrri:
2871 case X86::VCMPPSYrri: {
2872 // Float comparison can be safely commuted for
2873 // Ordered/Unordered/Equal/NotEqual tests
2874 unsigned Imm = MI->getOperand(3).getImm() & 0x7;
2877 case 0x03: // UNORDERED
2878 case 0x04: // NOT EQUAL
2879 case 0x07: // ORDERED
2886 case X86::VFMADDPDr231r:
2887 case X86::VFMADDPSr231r:
2888 case X86::VFMADDSDr231r:
2889 case X86::VFMADDSSr231r:
2890 case X86::VFMSUBPDr231r:
2891 case X86::VFMSUBPSr231r:
2892 case X86::VFMSUBSDr231r:
2893 case X86::VFMSUBSSr231r:
2894 case X86::VFNMADDPDr231r:
2895 case X86::VFNMADDPSr231r:
2896 case X86::VFNMADDSDr231r:
2897 case X86::VFNMADDSSr231r:
2898 case X86::VFNMSUBPDr231r:
2899 case X86::VFNMSUBPSr231r:
2900 case X86::VFNMSUBSDr231r:
2901 case X86::VFNMSUBSSr231r:
2902 case X86::VFMADDPDr231rY:
2903 case X86::VFMADDPSr231rY:
2904 case X86::VFMSUBPDr231rY:
2905 case X86::VFMSUBPSr231rY:
2906 case X86::VFNMADDPDr231rY:
2907 case X86::VFNMADDPSr231rY:
2908 case X86::VFNMSUBPDr231rY:
2909 case X86::VFNMSUBPSr231rY:
2914 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2918 static X86::CondCode getCondFromBranchOpc(unsigned BrOpc) {
2920 default: return X86::COND_INVALID;
2921 case X86::JE_1: return X86::COND_E;
2922 case X86::JNE_1: return X86::COND_NE;
2923 case X86::JL_1: return X86::COND_L;
2924 case X86::JLE_1: return X86::COND_LE;
2925 case X86::JG_1: return X86::COND_G;
2926 case X86::JGE_1: return X86::COND_GE;
2927 case X86::JB_1: return X86::COND_B;
2928 case X86::JBE_1: return X86::COND_BE;
2929 case X86::JA_1: return X86::COND_A;
2930 case X86::JAE_1: return X86::COND_AE;
2931 case X86::JS_1: return X86::COND_S;
2932 case X86::JNS_1: return X86::COND_NS;
2933 case X86::JP_1: return X86::COND_P;
2934 case X86::JNP_1: return X86::COND_NP;
2935 case X86::JO_1: return X86::COND_O;
2936 case X86::JNO_1: return X86::COND_NO;
2940 /// getCondFromSETOpc - return condition code of a SET opcode.
2941 static X86::CondCode getCondFromSETOpc(unsigned Opc) {
2943 default: return X86::COND_INVALID;
2944 case X86::SETAr: case X86::SETAm: return X86::COND_A;
2945 case X86::SETAEr: case X86::SETAEm: return X86::COND_AE;
2946 case X86::SETBr: case X86::SETBm: return X86::COND_B;
2947 case X86::SETBEr: case X86::SETBEm: return X86::COND_BE;
2948 case X86::SETEr: case X86::SETEm: return X86::COND_E;
2949 case X86::SETGr: case X86::SETGm: return X86::COND_G;
2950 case X86::SETGEr: case X86::SETGEm: return X86::COND_GE;
2951 case X86::SETLr: case X86::SETLm: return X86::COND_L;
2952 case X86::SETLEr: case X86::SETLEm: return X86::COND_LE;
2953 case X86::SETNEr: case X86::SETNEm: return X86::COND_NE;
2954 case X86::SETNOr: case X86::SETNOm: return X86::COND_NO;
2955 case X86::SETNPr: case X86::SETNPm: return X86::COND_NP;
2956 case X86::SETNSr: case X86::SETNSm: return X86::COND_NS;
2957 case X86::SETOr: case X86::SETOm: return X86::COND_O;
2958 case X86::SETPr: case X86::SETPm: return X86::COND_P;
2959 case X86::SETSr: case X86::SETSm: return X86::COND_S;
2963 /// getCondFromCmovOpc - return condition code of a CMov opcode.
2964 X86::CondCode X86::getCondFromCMovOpc(unsigned Opc) {
2966 default: return X86::COND_INVALID;
2967 case X86::CMOVA16rm: case X86::CMOVA16rr: case X86::CMOVA32rm:
2968 case X86::CMOVA32rr: case X86::CMOVA64rm: case X86::CMOVA64rr:
2970 case X86::CMOVAE16rm: case X86::CMOVAE16rr: case X86::CMOVAE32rm:
2971 case X86::CMOVAE32rr: case X86::CMOVAE64rm: case X86::CMOVAE64rr:
2972 return X86::COND_AE;
2973 case X86::CMOVB16rm: case X86::CMOVB16rr: case X86::CMOVB32rm:
2974 case X86::CMOVB32rr: case X86::CMOVB64rm: case X86::CMOVB64rr:
2976 case X86::CMOVBE16rm: case X86::CMOVBE16rr: case X86::CMOVBE32rm:
2977 case X86::CMOVBE32rr: case X86::CMOVBE64rm: case X86::CMOVBE64rr:
2978 return X86::COND_BE;
2979 case X86::CMOVE16rm: case X86::CMOVE16rr: case X86::CMOVE32rm:
2980 case X86::CMOVE32rr: case X86::CMOVE64rm: case X86::CMOVE64rr:
2982 case X86::CMOVG16rm: case X86::CMOVG16rr: case X86::CMOVG32rm:
2983 case X86::CMOVG32rr: case X86::CMOVG64rm: case X86::CMOVG64rr:
2985 case X86::CMOVGE16rm: case X86::CMOVGE16rr: case X86::CMOVGE32rm:
2986 case X86::CMOVGE32rr: case X86::CMOVGE64rm: case X86::CMOVGE64rr:
2987 return X86::COND_GE;
2988 case X86::CMOVL16rm: case X86::CMOVL16rr: case X86::CMOVL32rm:
2989 case X86::CMOVL32rr: case X86::CMOVL64rm: case X86::CMOVL64rr:
2991 case X86::CMOVLE16rm: case X86::CMOVLE16rr: case X86::CMOVLE32rm:
2992 case X86::CMOVLE32rr: case X86::CMOVLE64rm: case X86::CMOVLE64rr:
2993 return X86::COND_LE;
2994 case X86::CMOVNE16rm: case X86::CMOVNE16rr: case X86::CMOVNE32rm:
2995 case X86::CMOVNE32rr: case X86::CMOVNE64rm: case X86::CMOVNE64rr:
2996 return X86::COND_NE;
2997 case X86::CMOVNO16rm: case X86::CMOVNO16rr: case X86::CMOVNO32rm:
2998 case X86::CMOVNO32rr: case X86::CMOVNO64rm: case X86::CMOVNO64rr:
2999 return X86::COND_NO;
3000 case X86::CMOVNP16rm: case X86::CMOVNP16rr: case X86::CMOVNP32rm:
3001 case X86::CMOVNP32rr: case X86::CMOVNP64rm: case X86::CMOVNP64rr:
3002 return X86::COND_NP;
3003 case X86::CMOVNS16rm: case X86::CMOVNS16rr: case X86::CMOVNS32rm:
3004 case X86::CMOVNS32rr: case X86::CMOVNS64rm: case X86::CMOVNS64rr:
3005 return X86::COND_NS;
3006 case X86::CMOVO16rm: case X86::CMOVO16rr: case X86::CMOVO32rm:
3007 case X86::CMOVO32rr: case X86::CMOVO64rm: case X86::CMOVO64rr:
3009 case X86::CMOVP16rm: case X86::CMOVP16rr: case X86::CMOVP32rm:
3010 case X86::CMOVP32rr: case X86::CMOVP64rm: case X86::CMOVP64rr:
3012 case X86::CMOVS16rm: case X86::CMOVS16rr: case X86::CMOVS32rm:
3013 case X86::CMOVS32rr: case X86::CMOVS64rm: case X86::CMOVS64rr:
3018 unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
3020 default: llvm_unreachable("Illegal condition code!");
3021 case X86::COND_E: return X86::JE_1;
3022 case X86::COND_NE: return X86::JNE_1;
3023 case X86::COND_L: return X86::JL_1;
3024 case X86::COND_LE: return X86::JLE_1;
3025 case X86::COND_G: return X86::JG_1;
3026 case X86::COND_GE: return X86::JGE_1;
3027 case X86::COND_B: return X86::JB_1;
3028 case X86::COND_BE: return X86::JBE_1;
3029 case X86::COND_A: return X86::JA_1;
3030 case X86::COND_AE: return X86::JAE_1;
3031 case X86::COND_S: return X86::JS_1;
3032 case X86::COND_NS: return X86::JNS_1;
3033 case X86::COND_P: return X86::JP_1;
3034 case X86::COND_NP: return X86::JNP_1;
3035 case X86::COND_O: return X86::JO_1;
3036 case X86::COND_NO: return X86::JNO_1;
3040 /// GetOppositeBranchCondition - Return the inverse of the specified condition,
3041 /// e.g. turning COND_E to COND_NE.
3042 X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
3044 default: llvm_unreachable("Illegal condition code!");
3045 case X86::COND_E: return X86::COND_NE;
3046 case X86::COND_NE: return X86::COND_E;
3047 case X86::COND_L: return X86::COND_GE;
3048 case X86::COND_LE: return X86::COND_G;
3049 case X86::COND_G: return X86::COND_LE;
3050 case X86::COND_GE: return X86::COND_L;
3051 case X86::COND_B: return X86::COND_AE;
3052 case X86::COND_BE: return X86::COND_A;
3053 case X86::COND_A: return X86::COND_BE;
3054 case X86::COND_AE: return X86::COND_B;
3055 case X86::COND_S: return X86::COND_NS;
3056 case X86::COND_NS: return X86::COND_S;
3057 case X86::COND_P: return X86::COND_NP;
3058 case X86::COND_NP: return X86::COND_P;
3059 case X86::COND_O: return X86::COND_NO;
3060 case X86::COND_NO: return X86::COND_O;
3064 /// getSwappedCondition - assume the flags are set by MI(a,b), return
3065 /// the condition code if we modify the instructions such that flags are
3067 static X86::CondCode getSwappedCondition(X86::CondCode CC) {
3069 default: return X86::COND_INVALID;
3070 case X86::COND_E: return X86::COND_E;
3071 case X86::COND_NE: return X86::COND_NE;
3072 case X86::COND_L: return X86::COND_G;
3073 case X86::COND_LE: return X86::COND_GE;
3074 case X86::COND_G: return X86::COND_L;
3075 case X86::COND_GE: return X86::COND_LE;
3076 case X86::COND_B: return X86::COND_A;
3077 case X86::COND_BE: return X86::COND_AE;
3078 case X86::COND_A: return X86::COND_B;
3079 case X86::COND_AE: return X86::COND_BE;
3083 /// getSETFromCond - Return a set opcode for the given condition and
3084 /// whether it has memory operand.
3085 unsigned X86::getSETFromCond(CondCode CC, bool HasMemoryOperand) {
3086 static const uint16_t Opc[16][2] = {
3087 { X86::SETAr, X86::SETAm },
3088 { X86::SETAEr, X86::SETAEm },
3089 { X86::SETBr, X86::SETBm },
3090 { X86::SETBEr, X86::SETBEm },
3091 { X86::SETEr, X86::SETEm },
3092 { X86::SETGr, X86::SETGm },
3093 { X86::SETGEr, X86::SETGEm },
3094 { X86::SETLr, X86::SETLm },
3095 { X86::SETLEr, X86::SETLEm },
3096 { X86::SETNEr, X86::SETNEm },
3097 { X86::SETNOr, X86::SETNOm },
3098 { X86::SETNPr, X86::SETNPm },
3099 { X86::SETNSr, X86::SETNSm },
3100 { X86::SETOr, X86::SETOm },
3101 { X86::SETPr, X86::SETPm },
3102 { X86::SETSr, X86::SETSm }
3105 assert(CC <= LAST_VALID_COND && "Can only handle standard cond codes");
3106 return Opc[CC][HasMemoryOperand ? 1 : 0];
3109 /// getCMovFromCond - Return a cmov opcode for the given condition,
3110 /// register size in bytes, and operand type.
3111 unsigned X86::getCMovFromCond(CondCode CC, unsigned RegBytes,
3112 bool HasMemoryOperand) {
3113 static const uint16_t Opc[32][3] = {
3114 { X86::CMOVA16rr, X86::CMOVA32rr, X86::CMOVA64rr },
3115 { X86::CMOVAE16rr, X86::CMOVAE32rr, X86::CMOVAE64rr },
3116 { X86::CMOVB16rr, X86::CMOVB32rr, X86::CMOVB64rr },
3117 { X86::CMOVBE16rr, X86::CMOVBE32rr, X86::CMOVBE64rr },
3118 { X86::CMOVE16rr, X86::CMOVE32rr, X86::CMOVE64rr },
3119 { X86::CMOVG16rr, X86::CMOVG32rr, X86::CMOVG64rr },
3120 { X86::CMOVGE16rr, X86::CMOVGE32rr, X86::CMOVGE64rr },
3121 { X86::CMOVL16rr, X86::CMOVL32rr, X86::CMOVL64rr },
3122 { X86::CMOVLE16rr, X86::CMOVLE32rr, X86::CMOVLE64rr },
3123 { X86::CMOVNE16rr, X86::CMOVNE32rr, X86::CMOVNE64rr },
3124 { X86::CMOVNO16rr, X86::CMOVNO32rr, X86::CMOVNO64rr },
3125 { X86::CMOVNP16rr, X86::CMOVNP32rr, X86::CMOVNP64rr },
3126 { X86::CMOVNS16rr, X86::CMOVNS32rr, X86::CMOVNS64rr },
3127 { X86::CMOVO16rr, X86::CMOVO32rr, X86::CMOVO64rr },
3128 { X86::CMOVP16rr, X86::CMOVP32rr, X86::CMOVP64rr },
3129 { X86::CMOVS16rr, X86::CMOVS32rr, X86::CMOVS64rr },
3130 { X86::CMOVA16rm, X86::CMOVA32rm, X86::CMOVA64rm },
3131 { X86::CMOVAE16rm, X86::CMOVAE32rm, X86::CMOVAE64rm },
3132 { X86::CMOVB16rm, X86::CMOVB32rm, X86::CMOVB64rm },
3133 { X86::CMOVBE16rm, X86::CMOVBE32rm, X86::CMOVBE64rm },
3134 { X86::CMOVE16rm, X86::CMOVE32rm, X86::CMOVE64rm },
3135 { X86::CMOVG16rm, X86::CMOVG32rm, X86::CMOVG64rm },
3136 { X86::CMOVGE16rm, X86::CMOVGE32rm, X86::CMOVGE64rm },
3137 { X86::CMOVL16rm, X86::CMOVL32rm, X86::CMOVL64rm },
3138 { X86::CMOVLE16rm, X86::CMOVLE32rm, X86::CMOVLE64rm },
3139 { X86::CMOVNE16rm, X86::CMOVNE32rm, X86::CMOVNE64rm },
3140 { X86::CMOVNO16rm, X86::CMOVNO32rm, X86::CMOVNO64rm },
3141 { X86::CMOVNP16rm, X86::CMOVNP32rm, X86::CMOVNP64rm },
3142 { X86::CMOVNS16rm, X86::CMOVNS32rm, X86::CMOVNS64rm },
3143 { X86::CMOVO16rm, X86::CMOVO32rm, X86::CMOVO64rm },
3144 { X86::CMOVP16rm, X86::CMOVP32rm, X86::CMOVP64rm },
3145 { X86::CMOVS16rm, X86::CMOVS32rm, X86::CMOVS64rm }
3148 assert(CC < 16 && "Can only handle standard cond codes");
3149 unsigned Idx = HasMemoryOperand ? 16+CC : CC;
3151 default: llvm_unreachable("Illegal register size!");
3152 case 2: return Opc[Idx][0];
3153 case 4: return Opc[Idx][1];
3154 case 8: return Opc[Idx][2];
3158 bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
3159 if (!MI->isTerminator()) return false;
3161 // Conditional branch is a special case.
3162 if (MI->isBranch() && !MI->isBarrier())
3164 if (!MI->isPredicable())
3166 return !isPredicated(MI);
3169 bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
3170 MachineBasicBlock *&TBB,
3171 MachineBasicBlock *&FBB,
3172 SmallVectorImpl<MachineOperand> &Cond,
3173 bool AllowModify) const {
3174 // Start from the bottom of the block and work up, examining the
3175 // terminator instructions.
3176 MachineBasicBlock::iterator I = MBB.end();
3177 MachineBasicBlock::iterator UnCondBrIter = MBB.end();
3178 while (I != MBB.begin()) {
3180 if (I->isDebugValue())
3183 // Working from the bottom, when we see a non-terminator instruction, we're
3185 if (!isUnpredicatedTerminator(I))
3188 // A terminator that isn't a branch can't easily be handled by this
3193 // Handle unconditional branches.
3194 if (I->getOpcode() == X86::JMP_1) {
3198 TBB = I->getOperand(0).getMBB();
3202 // If the block has any instructions after a JMP, delete them.
3203 while (std::next(I) != MBB.end())
3204 std::next(I)->eraseFromParent();
3209 // Delete the JMP if it's equivalent to a fall-through.
3210 if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
3212 I->eraseFromParent();
3214 UnCondBrIter = MBB.end();
3218 // TBB is used to indicate the unconditional destination.
3219 TBB = I->getOperand(0).getMBB();
3223 // Handle conditional branches.
3224 X86::CondCode BranchCode = getCondFromBranchOpc(I->getOpcode());
3225 if (BranchCode == X86::COND_INVALID)
3226 return true; // Can't handle indirect branch.
3228 // Working from the bottom, handle the first conditional branch.
3230 MachineBasicBlock *TargetBB = I->getOperand(0).getMBB();
3231 if (AllowModify && UnCondBrIter != MBB.end() &&
3232 MBB.isLayoutSuccessor(TargetBB)) {
3233 // If we can modify the code and it ends in something like:
3241 // Then we can change this to:
3248 // Which is a bit more efficient.
3249 // We conditionally jump to the fall-through block.
3250 BranchCode = GetOppositeBranchCondition(BranchCode);
3251 unsigned JNCC = GetCondBranchFromCond(BranchCode);
3252 MachineBasicBlock::iterator OldInst = I;
3254 BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(JNCC))
3255 .addMBB(UnCondBrIter->getOperand(0).getMBB());
3256 BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_1))
3259 OldInst->eraseFromParent();
3260 UnCondBrIter->eraseFromParent();
3262 // Restart the analysis.
3263 UnCondBrIter = MBB.end();
3269 TBB = I->getOperand(0).getMBB();
3270 Cond.push_back(MachineOperand::CreateImm(BranchCode));
3274 // Handle subsequent conditional branches. Only handle the case where all
3275 // conditional branches branch to the same destination and their condition
3276 // opcodes fit one of the special multi-branch idioms.
3277 assert(Cond.size() == 1);
3280 // Only handle the case where all conditional branches branch to the same
3282 if (TBB != I->getOperand(0).getMBB())
3285 // If the conditions are the same, we can leave them alone.
3286 X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
3287 if (OldBranchCode == BranchCode)
3290 // If they differ, see if they fit one of the known patterns. Theoretically,
3291 // we could handle more patterns here, but we shouldn't expect to see them
3292 // if instruction selection has done a reasonable job.
3293 if ((OldBranchCode == X86::COND_NP &&
3294 BranchCode == X86::COND_E) ||
3295 (OldBranchCode == X86::COND_E &&
3296 BranchCode == X86::COND_NP))
3297 BranchCode = X86::COND_NP_OR_E;
3298 else if ((OldBranchCode == X86::COND_P &&
3299 BranchCode == X86::COND_NE) ||
3300 (OldBranchCode == X86::COND_NE &&
3301 BranchCode == X86::COND_P))
3302 BranchCode = X86::COND_NE_OR_P;
3306 // Update the MachineOperand.
3307 Cond[0].setImm(BranchCode);
3313 unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
3314 MachineBasicBlock::iterator I = MBB.end();
3317 while (I != MBB.begin()) {
3319 if (I->isDebugValue())
3321 if (I->getOpcode() != X86::JMP_1 &&
3322 getCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
3324 // Remove the branch.
3325 I->eraseFromParent();
3334 X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
3335 MachineBasicBlock *FBB,
3336 const SmallVectorImpl<MachineOperand> &Cond,
3337 DebugLoc DL) const {
3338 // Shouldn't be a fall through.
3339 assert(TBB && "InsertBranch must not be told to insert a fallthrough");
3340 assert((Cond.size() == 1 || Cond.size() == 0) &&
3341 "X86 branch conditions have one component!");
3344 // Unconditional branch?
3345 assert(!FBB && "Unconditional branch with multiple successors!");
3346 BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(TBB);
3350 // Conditional branch.
3352 X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
3354 case X86::COND_NP_OR_E:
3355 // Synthesize NP_OR_E with two branches.
3356 BuildMI(&MBB, DL, get(X86::JNP_1)).addMBB(TBB);
3358 BuildMI(&MBB, DL, get(X86::JE_1)).addMBB(TBB);
3361 case X86::COND_NE_OR_P:
3362 // Synthesize NE_OR_P with two branches.
3363 BuildMI(&MBB, DL, get(X86::JNE_1)).addMBB(TBB);
3365 BuildMI(&MBB, DL, get(X86::JP_1)).addMBB(TBB);
3369 unsigned Opc = GetCondBranchFromCond(CC);
3370 BuildMI(&MBB, DL, get(Opc)).addMBB(TBB);
3375 // Two-way Conditional branch. Insert the second branch.
3376 BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(FBB);
3383 canInsertSelect(const MachineBasicBlock &MBB,
3384 const SmallVectorImpl<MachineOperand> &Cond,
3385 unsigned TrueReg, unsigned FalseReg,
3386 int &CondCycles, int &TrueCycles, int &FalseCycles) const {
3387 // Not all subtargets have cmov instructions.
3388 if (!Subtarget.hasCMov())
3390 if (Cond.size() != 1)
3392 // We cannot do the composite conditions, at least not in SSA form.
3393 if ((X86::CondCode)Cond[0].getImm() > X86::COND_S)
3396 // Check register classes.
3397 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
3398 const TargetRegisterClass *RC =
3399 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
3403 // We have cmov instructions for 16, 32, and 64 bit general purpose registers.
3404 if (X86::GR16RegClass.hasSubClassEq(RC) ||
3405 X86::GR32RegClass.hasSubClassEq(RC) ||
3406 X86::GR64RegClass.hasSubClassEq(RC)) {
3407 // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy
3408 // Bridge. Probably Ivy Bridge as well.
3415 // Can't do vectors.
3419 void X86InstrInfo::insertSelect(MachineBasicBlock &MBB,
3420 MachineBasicBlock::iterator I, DebugLoc DL,
3422 const SmallVectorImpl<MachineOperand> &Cond,
3423 unsigned TrueReg, unsigned FalseReg) const {
3424 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
3425 assert(Cond.size() == 1 && "Invalid Cond array");
3426 unsigned Opc = getCMovFromCond((X86::CondCode)Cond[0].getImm(),
3427 MRI.getRegClass(DstReg)->getSize(),
3428 false/*HasMemoryOperand*/);
3429 BuildMI(MBB, I, DL, get(Opc), DstReg).addReg(FalseReg).addReg(TrueReg);
3432 /// isHReg - Test if the given register is a physical h register.
3433 static bool isHReg(unsigned Reg) {
3434 return X86::GR8_ABCD_HRegClass.contains(Reg);
3437 // Try and copy between VR128/VR64 and GR64 registers.
3438 static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg,
3439 const X86Subtarget &Subtarget) {
3441 // SrcReg(VR128) -> DestReg(GR64)
3442 // SrcReg(VR64) -> DestReg(GR64)
3443 // SrcReg(GR64) -> DestReg(VR128)
3444 // SrcReg(GR64) -> DestReg(VR64)
3446 bool HasAVX = Subtarget.hasAVX();
3447 bool HasAVX512 = Subtarget.hasAVX512();
3448 if (X86::GR64RegClass.contains(DestReg)) {
3449 if (X86::VR128XRegClass.contains(SrcReg))
3450 // Copy from a VR128 register to a GR64 register.
3451 return HasAVX512 ? X86::VMOVPQIto64Zrr: (HasAVX ? X86::VMOVPQIto64rr :
3453 if (X86::VR64RegClass.contains(SrcReg))
3454 // Copy from a VR64 register to a GR64 register.
3455 return X86::MOVSDto64rr;
3456 } else if (X86::GR64RegClass.contains(SrcReg)) {
3457 // Copy from a GR64 register to a VR128 register.
3458 if (X86::VR128XRegClass.contains(DestReg))
3459 return HasAVX512 ? X86::VMOV64toPQIZrr: (HasAVX ? X86::VMOV64toPQIrr :
3461 // Copy from a GR64 register to a VR64 register.
3462 if (X86::VR64RegClass.contains(DestReg))
3463 return X86::MOV64toSDrr;
3466 // SrcReg(FR32) -> DestReg(GR32)
3467 // SrcReg(GR32) -> DestReg(FR32)
3469 if (X86::GR32RegClass.contains(DestReg) && X86::FR32XRegClass.contains(SrcReg))
3470 // Copy from a FR32 register to a GR32 register.
3471 return HasAVX512 ? X86::VMOVSS2DIZrr : (HasAVX ? X86::VMOVSS2DIrr : X86::MOVSS2DIrr);
3473 if (X86::FR32XRegClass.contains(DestReg) && X86::GR32RegClass.contains(SrcReg))
3474 // Copy from a GR32 register to a FR32 register.
3475 return HasAVX512 ? X86::VMOVDI2SSZrr : (HasAVX ? X86::VMOVDI2SSrr : X86::MOVDI2SSrr);
3479 inline static bool MaskRegClassContains(unsigned Reg) {
3480 return X86::VK8RegClass.contains(Reg) ||
3481 X86::VK16RegClass.contains(Reg) ||
3482 X86::VK32RegClass.contains(Reg) ||
3483 X86::VK64RegClass.contains(Reg) ||
3484 X86::VK1RegClass.contains(Reg);
3487 unsigned copyPhysRegOpcode_AVX512(unsigned& DestReg, unsigned& SrcReg) {
3488 if (X86::VR128XRegClass.contains(DestReg, SrcReg) ||
3489 X86::VR256XRegClass.contains(DestReg, SrcReg) ||
3490 X86::VR512RegClass.contains(DestReg, SrcReg)) {
3491 DestReg = get512BitSuperRegister(DestReg);
3492 SrcReg = get512BitSuperRegister(SrcReg);
3493 return X86::VMOVAPSZrr;
3495 if (MaskRegClassContains(DestReg) &&
3496 MaskRegClassContains(SrcReg))
3497 return X86::KMOVWkk;
3498 if (MaskRegClassContains(DestReg) &&
3499 (X86::GR32RegClass.contains(SrcReg) ||
3500 X86::GR16RegClass.contains(SrcReg) ||
3501 X86::GR8RegClass.contains(SrcReg))) {
3502 SrcReg = getX86SubSuperRegister(SrcReg, MVT::i32);
3503 return X86::KMOVWkr;
3505 if ((X86::GR32RegClass.contains(DestReg) ||
3506 X86::GR16RegClass.contains(DestReg) ||
3507 X86::GR8RegClass.contains(DestReg)) &&
3508 MaskRegClassContains(SrcReg)) {
3509 DestReg = getX86SubSuperRegister(DestReg, MVT::i32);
3510 return X86::KMOVWrk;
3515 void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
3516 MachineBasicBlock::iterator MI, DebugLoc DL,
3517 unsigned DestReg, unsigned SrcReg,
3518 bool KillSrc) const {
3519 // First deal with the normal symmetric copies.
3520 bool HasAVX = Subtarget.hasAVX();
3521 bool HasAVX512 = Subtarget.hasAVX512();
3523 if (X86::GR64RegClass.contains(DestReg, SrcReg))
3525 else if (X86::GR32RegClass.contains(DestReg, SrcReg))
3527 else if (X86::GR16RegClass.contains(DestReg, SrcReg))
3529 else if (X86::GR8RegClass.contains(DestReg, SrcReg)) {
3530 // Copying to or from a physical H register on x86-64 requires a NOREX
3531 // move. Otherwise use a normal move.
3532 if ((isHReg(DestReg) || isHReg(SrcReg)) &&
3533 Subtarget.is64Bit()) {
3534 Opc = X86::MOV8rr_NOREX;
3535 // Both operands must be encodable without an REX prefix.
3536 assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) &&
3537 "8-bit H register can not be copied outside GR8_NOREX");
3541 else if (X86::VR64RegClass.contains(DestReg, SrcReg))
3542 Opc = X86::MMX_MOVQ64rr;
3544 Opc = copyPhysRegOpcode_AVX512(DestReg, SrcReg);
3545 else if (X86::VR128RegClass.contains(DestReg, SrcReg))
3546 Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr;
3547 else if (X86::VR256RegClass.contains(DestReg, SrcReg))
3548 Opc = X86::VMOVAPSYrr;
3550 Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, Subtarget);
3553 BuildMI(MBB, MI, DL, get(Opc), DestReg)
3554 .addReg(SrcReg, getKillRegState(KillSrc));
3558 // Moving EFLAGS to / from another register requires a push and a pop.
3559 // Notice that we have to adjust the stack if we don't want to clobber the
3560 // first frame index. See X86FrameLowering.cpp - clobbersTheStack.
3561 if (SrcReg == X86::EFLAGS) {
3562 if (X86::GR64RegClass.contains(DestReg)) {
3563 BuildMI(MBB, MI, DL, get(X86::PUSHF64));
3564 BuildMI(MBB, MI, DL, get(X86::POP64r), DestReg);
3567 if (X86::GR32RegClass.contains(DestReg)) {
3568 BuildMI(MBB, MI, DL, get(X86::PUSHF32));
3569 BuildMI(MBB, MI, DL, get(X86::POP32r), DestReg);
3573 if (DestReg == X86::EFLAGS) {
3574 if (X86::GR64RegClass.contains(SrcReg)) {
3575 BuildMI(MBB, MI, DL, get(X86::PUSH64r))
3576 .addReg(SrcReg, getKillRegState(KillSrc));
3577 BuildMI(MBB, MI, DL, get(X86::POPF64));
3580 if (X86::GR32RegClass.contains(SrcReg)) {
3581 BuildMI(MBB, MI, DL, get(X86::PUSH32r))
3582 .addReg(SrcReg, getKillRegState(KillSrc));
3583 BuildMI(MBB, MI, DL, get(X86::POPF32));
3588 DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg)
3589 << " to " << RI.getName(DestReg) << '\n');
3590 llvm_unreachable("Cannot emit physreg copy instruction");
3593 static unsigned getLoadStoreRegOpcode(unsigned Reg,
3594 const TargetRegisterClass *RC,
3595 bool isStackAligned,
3596 const X86Subtarget &STI,
3598 if (STI.hasAVX512()) {
3599 if (X86::VK8RegClass.hasSubClassEq(RC) ||
3600 X86::VK16RegClass.hasSubClassEq(RC))
3601 return load ? X86::KMOVWkm : X86::KMOVWmk;
3602 if (RC->getSize() == 4 && X86::FR32XRegClass.hasSubClassEq(RC))
3603 return load ? X86::VMOVSSZrm : X86::VMOVSSZmr;
3604 if (RC->getSize() == 8 && X86::FR64XRegClass.hasSubClassEq(RC))
3605 return load ? X86::VMOVSDZrm : X86::VMOVSDZmr;
3606 if (X86::VR512RegClass.hasSubClassEq(RC))
3607 return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr;
3610 bool HasAVX = STI.hasAVX();
3611 switch (RC->getSize()) {
3613 llvm_unreachable("Unknown spill size");
3615 assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass");