a3cba64b9ed209fee8316637e8eec8953ddaa241
[oota-llvm.git] / lib / Target / SystemZ / SystemZSelectionDAGInfo.cpp
1 //===-- SystemZSelectionDAGInfo.cpp - SystemZ SelectionDAG Info -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SystemZSelectionDAGInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "SystemZTargetMachine.h"
15 #include "llvm/CodeGen/SelectionDAG.h"
16
17 using namespace llvm;
18
19 #define DEBUG_TYPE "systemz-selectiondag-info"
20
21 SystemZSelectionDAGInfo::SystemZSelectionDAGInfo(const DataLayout &DL)
22     : TargetSelectionDAGInfo(&DL) {}
23
24 SystemZSelectionDAGInfo::~SystemZSelectionDAGInfo() {
25 }
26
27 // Decide whether it is best to use a loop or straight-line code for
28 // a block operation of Size bytes with source address Src and destination
29 // address Dest.  Sequence is the opcode to use for straight-line code
30 // (such as MVC) and Loop is the opcode to use for loops (such as MVC_LOOP).
31 // Return the chain for the completed operation.
32 static SDValue emitMemMem(SelectionDAG &DAG, SDLoc DL, unsigned Sequence,
33                           unsigned Loop, SDValue Chain, SDValue Dst,
34                           SDValue Src, uint64_t Size) {
35   EVT PtrVT = Src.getValueType();
36   // The heuristic we use is to prefer loops for anything that would
37   // require 7 or more MVCs.  With these kinds of sizes there isn't
38   // much to choose between straight-line code and looping code,
39   // since the time will be dominated by the MVCs themselves.
40   // However, the loop has 4 or 5 instructions (depending on whether
41   // the base addresses can be proved equal), so there doesn't seem
42   // much point using a loop for 5 * 256 bytes or fewer.  Anything in
43   // the range (5 * 256, 6 * 256) will need another instruction after
44   // the loop, so it doesn't seem worth using a loop then either.
45   // The next value up, 6 * 256, can be implemented in the same
46   // number of straight-line MVCs as 6 * 256 - 1.
47   if (Size > 6 * 256)
48     return DAG.getNode(Loop, DL, MVT::Other, Chain, Dst, Src,
49                        DAG.getConstant(Size, PtrVT),
50                        DAG.getConstant(Size / 256, PtrVT));
51   return DAG.getNode(Sequence, DL, MVT::Other, Chain, Dst, Src,
52                      DAG.getConstant(Size, PtrVT));
53 }
54
55 SDValue SystemZSelectionDAGInfo::
56 EmitTargetCodeForMemcpy(SelectionDAG &DAG, SDLoc DL, SDValue Chain,
57                         SDValue Dst, SDValue Src, SDValue Size, unsigned Align,
58                         bool IsVolatile, bool AlwaysInline,
59                         MachinePointerInfo DstPtrInfo,
60                         MachinePointerInfo SrcPtrInfo) const {
61   if (IsVolatile)
62     return SDValue();
63
64   if (auto *CSize = dyn_cast<ConstantSDNode>(Size))
65     return emitMemMem(DAG, DL, SystemZISD::MVC, SystemZISD::MVC_LOOP,
66                       Chain, Dst, Src, CSize->getZExtValue());
67   return SDValue();
68 }
69
70 // Handle a memset of 1, 2, 4 or 8 bytes with the operands given by
71 // Chain, Dst, ByteVal and Size.  These cases are expected to use
72 // MVI, MVHHI, MVHI and MVGHI respectively.
73 static SDValue memsetStore(SelectionDAG &DAG, SDLoc DL, SDValue Chain,
74                            SDValue Dst, uint64_t ByteVal, uint64_t Size,
75                            unsigned Align,
76                            MachinePointerInfo DstPtrInfo) {
77   uint64_t StoreVal = ByteVal;
78   for (unsigned I = 1; I < Size; ++I)
79     StoreVal |= ByteVal << (I * 8);
80   return DAG.getStore(Chain, DL,
81                       DAG.getConstant(StoreVal, MVT::getIntegerVT(Size * 8)),
82                       Dst, DstPtrInfo, false, false, Align);
83 }
84
85 SDValue SystemZSelectionDAGInfo::
86 EmitTargetCodeForMemset(SelectionDAG &DAG, SDLoc DL, SDValue Chain,
87                         SDValue Dst, SDValue Byte, SDValue Size,
88                         unsigned Align, bool IsVolatile,
89                         MachinePointerInfo DstPtrInfo) const {
90   EVT PtrVT = Dst.getValueType();
91
92   if (IsVolatile)
93     return SDValue();
94
95   if (auto *CSize = dyn_cast<ConstantSDNode>(Size)) {
96     uint64_t Bytes = CSize->getZExtValue();
97     if (Bytes == 0)
98       return SDValue();
99     if (auto *CByte = dyn_cast<ConstantSDNode>(Byte)) {
100       // Handle cases that can be done using at most two of
101       // MVI, MVHI, MVHHI and MVGHI.  The latter two can only be
102       // used if ByteVal is all zeros or all ones; in other casees,
103       // we can move at most 2 halfwords.
104       uint64_t ByteVal = CByte->getZExtValue();
105       if (ByteVal == 0 || ByteVal == 255 ?
106           Bytes <= 16 && CountPopulation_64(Bytes) <= 2 :
107           Bytes <= 4) {
108         unsigned Size1 = Bytes == 16 ? 8 : 1 << findLastSet(Bytes);
109         unsigned Size2 = Bytes - Size1;
110         SDValue Chain1 = memsetStore(DAG, DL, Chain, Dst, ByteVal, Size1,
111                                      Align, DstPtrInfo);
112         if (Size2 == 0)
113           return Chain1;
114         Dst = DAG.getNode(ISD::ADD, DL, PtrVT, Dst,
115                           DAG.getConstant(Size1, PtrVT));
116         DstPtrInfo = DstPtrInfo.getWithOffset(Size1);
117         SDValue Chain2 = memsetStore(DAG, DL, Chain, Dst, ByteVal, Size2,
118                                      std::min(Align, Size1), DstPtrInfo);
119         return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chain1, Chain2);
120       }
121     } else {
122       // Handle one and two bytes using STC.
123       if (Bytes <= 2) {
124         SDValue Chain1 = DAG.getStore(Chain, DL, Byte, Dst, DstPtrInfo,
125                                       false, false, Align);
126         if (Bytes == 1)
127           return Chain1;
128         SDValue Dst2 = DAG.getNode(ISD::ADD, DL, PtrVT, Dst,
129                                    DAG.getConstant(1, PtrVT));
130         SDValue Chain2 = DAG.getStore(Chain, DL, Byte, Dst2,
131                                       DstPtrInfo.getWithOffset(1),
132                                       false, false, 1);
133         return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chain1, Chain2);
134       }
135     }
136     assert(Bytes >= 2 && "Should have dealt with 0- and 1-byte cases already");
137
138     // Handle the special case of a memset of 0, which can use XC.
139     auto *CByte = dyn_cast<ConstantSDNode>(Byte);
140     if (CByte && CByte->getZExtValue() == 0)
141       return emitMemMem(DAG, DL, SystemZISD::XC, SystemZISD::XC_LOOP,
142                         Chain, Dst, Dst, Bytes);
143
144     // Copy the byte to the first location and then use MVC to copy
145     // it to the rest.
146     Chain = DAG.getStore(Chain, DL, Byte, Dst, DstPtrInfo,
147                          false, false, Align);
148     SDValue DstPlus1 = DAG.getNode(ISD::ADD, DL, PtrVT, Dst,
149                                    DAG.getConstant(1, PtrVT));
150     return emitMemMem(DAG, DL, SystemZISD::MVC, SystemZISD::MVC_LOOP,
151                       Chain, DstPlus1, Dst, Bytes - 1);
152   }
153   return SDValue();
154 }
155
156 // Use CLC to compare [Src1, Src1 + Size) with [Src2, Src2 + Size),
157 // deciding whether to use a loop or straight-line code.
158 static SDValue emitCLC(SelectionDAG &DAG, SDLoc DL, SDValue Chain,
159                        SDValue Src1, SDValue Src2, uint64_t Size) {
160   SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
161   EVT PtrVT = Src1.getValueType();
162   // A two-CLC sequence is a clear win over a loop, not least because it
163   // needs only one branch.  A three-CLC sequence needs the same number
164   // of branches as a loop (i.e. 2), but is shorter.  That brings us to
165   // lengths greater than 768 bytes.  It seems relatively likely that
166   // a difference will be found within the first 768 bytes, so we just
167   // optimize for the smallest number of branch instructions, in order
168   // to avoid polluting the prediction buffer too much.  A loop only ever
169   // needs 2 branches, whereas a straight-line sequence would need 3 or more.
170   if (Size > 3 * 256)
171     return DAG.getNode(SystemZISD::CLC_LOOP, DL, VTs, Chain, Src1, Src2,
172                        DAG.getConstant(Size, PtrVT),
173                        DAG.getConstant(Size / 256, PtrVT));
174   return DAG.getNode(SystemZISD::CLC, DL, VTs, Chain, Src1, Src2,
175                      DAG.getConstant(Size, PtrVT));
176 }
177
178 // Convert the current CC value into an integer that is 0 if CC == 0,
179 // less than zero if CC == 1 and greater than zero if CC >= 2.
180 // The sequence starts with IPM, which puts CC into bits 29 and 28
181 // of an integer and clears bits 30 and 31.
182 static SDValue addIPMSequence(SDLoc DL, SDValue Glue, SelectionDAG &DAG) {
183   SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue);
184   SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i32, IPM,
185                             DAG.getConstant(SystemZ::IPM_CC, MVT::i32));
186   SDValue ROTL = DAG.getNode(ISD::ROTL, DL, MVT::i32, SRL,
187                              DAG.getConstant(31, MVT::i32));
188   return ROTL;
189 }
190
191 std::pair<SDValue, SDValue> SystemZSelectionDAGInfo::
192 EmitTargetCodeForMemcmp(SelectionDAG &DAG, SDLoc DL, SDValue Chain,
193                         SDValue Src1, SDValue Src2, SDValue Size,
194                         MachinePointerInfo Op1PtrInfo,
195                         MachinePointerInfo Op2PtrInfo) const {
196   if (auto *CSize = dyn_cast<ConstantSDNode>(Size)) {
197     uint64_t Bytes = CSize->getZExtValue();
198     assert(Bytes > 0 && "Caller should have handled 0-size case");
199     Chain = emitCLC(DAG, DL, Chain, Src1, Src2, Bytes);
200     SDValue Glue = Chain.getValue(1);
201     return std::make_pair(addIPMSequence(DL, Glue, DAG), Chain);
202   }
203   return std::make_pair(SDValue(), SDValue());
204 }
205
206 std::pair<SDValue, SDValue> SystemZSelectionDAGInfo::
207 EmitTargetCodeForMemchr(SelectionDAG &DAG, SDLoc DL, SDValue Chain,
208                         SDValue Src, SDValue Char, SDValue Length,
209                         MachinePointerInfo SrcPtrInfo) const {
210   // Use SRST to find the character.  End is its address on success.
211   EVT PtrVT = Src.getValueType();
212   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other, MVT::Glue);
213   Length = DAG.getZExtOrTrunc(Length, DL, PtrVT);
214   Char = DAG.getZExtOrTrunc(Char, DL, MVT::i32);
215   Char = DAG.getNode(ISD::AND, DL, MVT::i32, Char,
216                      DAG.getConstant(255, MVT::i32));
217   SDValue Limit = DAG.getNode(ISD::ADD, DL, PtrVT, Src, Length);
218   SDValue End = DAG.getNode(SystemZISD::SEARCH_STRING, DL, VTs, Chain,
219                             Limit, Src, Char);
220   Chain = End.getValue(1);
221   SDValue Glue = End.getValue(2);
222
223   // Now select between End and null, depending on whether the character
224   // was found.
225   SmallVector<SDValue, 5> Ops;
226   Ops.push_back(End);
227   Ops.push_back(DAG.getConstant(0, PtrVT));
228   Ops.push_back(DAG.getConstant(SystemZ::CCMASK_SRST, MVT::i32));
229   Ops.push_back(DAG.getConstant(SystemZ::CCMASK_SRST_FOUND, MVT::i32));
230   Ops.push_back(Glue);
231   VTs = DAG.getVTList(PtrVT, MVT::Glue);
232   End = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, Ops);
233   return std::make_pair(End, Chain);
234 }
235
236 std::pair<SDValue, SDValue> SystemZSelectionDAGInfo::
237 EmitTargetCodeForStrcpy(SelectionDAG &DAG, SDLoc DL, SDValue Chain,
238                         SDValue Dest, SDValue Src,
239                         MachinePointerInfo DestPtrInfo,
240                         MachinePointerInfo SrcPtrInfo, bool isStpcpy) const {
241   SDVTList VTs = DAG.getVTList(Dest.getValueType(), MVT::Other);
242   SDValue EndDest = DAG.getNode(SystemZISD::STPCPY, DL, VTs, Chain, Dest, Src,
243                                 DAG.getConstant(0, MVT::i32));
244   return std::make_pair(isStpcpy ? EndDest : Dest, EndDest.getValue(1));
245 }
246
247 std::pair<SDValue, SDValue> SystemZSelectionDAGInfo::
248 EmitTargetCodeForStrcmp(SelectionDAG &DAG, SDLoc DL, SDValue Chain,
249                         SDValue Src1, SDValue Src2,
250                         MachinePointerInfo Op1PtrInfo,
251                         MachinePointerInfo Op2PtrInfo) const {
252   SDVTList VTs = DAG.getVTList(Src1.getValueType(), MVT::Other, MVT::Glue);
253   SDValue Unused = DAG.getNode(SystemZISD::STRCMP, DL, VTs, Chain, Src1, Src2,
254                                DAG.getConstant(0, MVT::i32));
255   Chain = Unused.getValue(1);
256   SDValue Glue = Chain.getValue(2);
257   return std::make_pair(addIPMSequence(DL, Glue, DAG), Chain);
258 }
259
260 // Search from Src for a null character, stopping once Src reaches Limit.
261 // Return a pair of values, the first being the number of nonnull characters
262 // and the second being the out chain.
263 //
264 // This can be used for strlen by setting Limit to 0.
265 static std::pair<SDValue, SDValue> getBoundedStrlen(SelectionDAG &DAG, SDLoc DL,
266                                                     SDValue Chain, SDValue Src,
267                                                     SDValue Limit) {
268   EVT PtrVT = Src.getValueType();
269   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other, MVT::Glue);
270   SDValue End = DAG.getNode(SystemZISD::SEARCH_STRING, DL, VTs, Chain,
271                             Limit, Src, DAG.getConstant(0, MVT::i32));
272   Chain = End.getValue(1);
273   SDValue Len = DAG.getNode(ISD::SUB, DL, PtrVT, End, Src);
274   return std::make_pair(Len, Chain);
275 }    
276
277 std::pair<SDValue, SDValue> SystemZSelectionDAGInfo::
278 EmitTargetCodeForStrlen(SelectionDAG &DAG, SDLoc DL, SDValue Chain,
279                         SDValue Src, MachinePointerInfo SrcPtrInfo) const {
280   EVT PtrVT = Src.getValueType();
281   return getBoundedStrlen(DAG, DL, Chain, Src, DAG.getConstant(0, PtrVT));
282 }
283
284 std::pair<SDValue, SDValue> SystemZSelectionDAGInfo::
285 EmitTargetCodeForStrnlen(SelectionDAG &DAG, SDLoc DL, SDValue Chain,
286                          SDValue Src, SDValue MaxLength,
287                          MachinePointerInfo SrcPtrInfo) const {
288   EVT PtrVT = Src.getValueType();
289   MaxLength = DAG.getZExtOrTrunc(MaxLength, DL, PtrVT);
290   SDValue Limit = DAG.getNode(ISD::ADD, DL, PtrVT, Src, MaxLength);
291   return getBoundedStrlen(DAG, DL, Chain, Src, Limit);
292 }