b53e26e018f8bc9ea2ff542bac48ca8759303392
[oota-llvm.git] / lib / Target / Mips / MipsSEISelDAGToDAG.cpp
1 //===-- MipsSEISelDAGToDAG.cpp - A Dag to Dag Inst Selector for MipsSE ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Subclass of MipsDAGToDAGISel specialized for mips32/64.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "MipsSEISelDAGToDAG.h"
15 #include "MCTargetDesc/MipsBaseInfo.h"
16 #include "Mips.h"
17 #include "MipsAnalyzeImmediate.h"
18 #include "MipsMachineFunction.h"
19 #include "MipsRegisterInfo.h"
20 #include "llvm/CodeGen/MachineConstantPool.h"
21 #include "llvm/CodeGen/MachineFrameInfo.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/SelectionDAGNodes.h"
26 #include "llvm/IR/CFG.h"
27 #include "llvm/IR/GlobalValue.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/Type.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Target/TargetMachine.h"
35 using namespace llvm;
36
37 #define DEBUG_TYPE "mips-isel"
38
39 bool MipsSEDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) {
40   if (Subtarget.inMips16Mode())
41     return false;
42   return MipsDAGToDAGISel::runOnMachineFunction(MF);
43 }
44
45 void MipsSEDAGToDAGISel::addDSPCtrlRegOperands(bool IsDef, MachineInstr &MI,
46                                                MachineFunction &MF) {
47   MachineInstrBuilder MIB(MF, &MI);
48   unsigned Mask = MI.getOperand(1).getImm();
49   unsigned Flag = IsDef ? RegState::ImplicitDefine : RegState::Implicit;
50
51   if (Mask & 1)
52     MIB.addReg(Mips::DSPPos, Flag);
53
54   if (Mask & 2)
55     MIB.addReg(Mips::DSPSCount, Flag);
56
57   if (Mask & 4)
58     MIB.addReg(Mips::DSPCarry, Flag);
59
60   if (Mask & 8)
61     MIB.addReg(Mips::DSPOutFlag, Flag);
62
63   if (Mask & 16)
64     MIB.addReg(Mips::DSPCCond, Flag);
65
66   if (Mask & 32)
67     MIB.addReg(Mips::DSPEFI, Flag);
68 }
69
70 unsigned MipsSEDAGToDAGISel::getMSACtrlReg(const SDValue RegIdx) const {
71   switch (cast<ConstantSDNode>(RegIdx)->getZExtValue()) {
72   default:
73     llvm_unreachable("Could not map int to register");
74   case 0: return Mips::MSAIR;
75   case 1: return Mips::MSACSR;
76   case 2: return Mips::MSAAccess;
77   case 3: return Mips::MSASave;
78   case 4: return Mips::MSAModify;
79   case 5: return Mips::MSARequest;
80   case 6: return Mips::MSAMap;
81   case 7: return Mips::MSAUnmap;
82   }
83 }
84
85 bool MipsSEDAGToDAGISel::replaceUsesWithZeroReg(MachineRegisterInfo *MRI,
86                                                 const MachineInstr& MI) {
87   unsigned DstReg = 0, ZeroReg = 0;
88
89   // Check if MI is "addiu $dst, $zero, 0" or "daddiu $dst, $zero, 0".
90   if ((MI.getOpcode() == Mips::ADDiu) &&
91       (MI.getOperand(1).getReg() == Mips::ZERO) &&
92       (MI.getOperand(2).getImm() == 0)) {
93     DstReg = MI.getOperand(0).getReg();
94     ZeroReg = Mips::ZERO;
95   } else if ((MI.getOpcode() == Mips::DADDiu) &&
96              (MI.getOperand(1).getReg() == Mips::ZERO_64) &&
97              (MI.getOperand(2).getImm() == 0)) {
98     DstReg = MI.getOperand(0).getReg();
99     ZeroReg = Mips::ZERO_64;
100   }
101
102   if (!DstReg)
103     return false;
104
105   // Replace uses with ZeroReg.
106   for (MachineRegisterInfo::use_iterator U = MRI->use_begin(DstReg),
107        E = MRI->use_end(); U != E;) {
108     MachineOperand &MO = *U;
109     unsigned OpNo = U.getOperandNo();
110     MachineInstr *MI = MO.getParent();
111     ++U;
112
113     // Do not replace if it is a phi's operand or is tied to def operand.
114     if (MI->isPHI() || MI->isRegTiedToDefOperand(OpNo) || MI->isPseudo())
115       continue;
116
117     MO.setReg(ZeroReg);
118   }
119
120   return true;
121 }
122
123 void MipsSEDAGToDAGISel::initGlobalBaseReg(MachineFunction &MF) {
124   MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
125
126   if (!MipsFI->globalBaseRegSet())
127     return;
128
129   MachineBasicBlock &MBB = MF.front();
130   MachineBasicBlock::iterator I = MBB.begin();
131   MachineRegisterInfo &RegInfo = MF.getRegInfo();
132   const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
133   DebugLoc DL = I != MBB.end() ? I->getDebugLoc() : DebugLoc();
134   unsigned V0, V1, GlobalBaseReg = MipsFI->getGlobalBaseReg();
135   const TargetRegisterClass *RC;
136
137   if (Subtarget.isABI_N64())
138     RC = (const TargetRegisterClass*)&Mips::GPR64RegClass;
139   else
140     RC = (const TargetRegisterClass*)&Mips::GPR32RegClass;
141
142   V0 = RegInfo.createVirtualRegister(RC);
143   V1 = RegInfo.createVirtualRegister(RC);
144
145   if (Subtarget.isABI_N64()) {
146     MF.getRegInfo().addLiveIn(Mips::T9_64);
147     MBB.addLiveIn(Mips::T9_64);
148
149     // lui $v0, %hi(%neg(%gp_rel(fname)))
150     // daddu $v1, $v0, $t9
151     // daddiu $globalbasereg, $v1, %lo(%neg(%gp_rel(fname)))
152     const GlobalValue *FName = MF.getFunction();
153     BuildMI(MBB, I, DL, TII.get(Mips::LUi64), V0)
154       .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_HI);
155     BuildMI(MBB, I, DL, TII.get(Mips::DADDu), V1).addReg(V0)
156       .addReg(Mips::T9_64);
157     BuildMI(MBB, I, DL, TII.get(Mips::DADDiu), GlobalBaseReg).addReg(V1)
158       .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_LO);
159     return;
160   }
161
162   if (MF.getTarget().getRelocationModel() == Reloc::Static) {
163     // Set global register to __gnu_local_gp.
164     //
165     // lui   $v0, %hi(__gnu_local_gp)
166     // addiu $globalbasereg, $v0, %lo(__gnu_local_gp)
167     BuildMI(MBB, I, DL, TII.get(Mips::LUi), V0)
168       .addExternalSymbol("__gnu_local_gp", MipsII::MO_ABS_HI);
169     BuildMI(MBB, I, DL, TII.get(Mips::ADDiu), GlobalBaseReg).addReg(V0)
170       .addExternalSymbol("__gnu_local_gp", MipsII::MO_ABS_LO);
171     return;
172   }
173
174   MF.getRegInfo().addLiveIn(Mips::T9);
175   MBB.addLiveIn(Mips::T9);
176
177   if (Subtarget.isABI_N32()) {
178     // lui $v0, %hi(%neg(%gp_rel(fname)))
179     // addu $v1, $v0, $t9
180     // addiu $globalbasereg, $v1, %lo(%neg(%gp_rel(fname)))
181     const GlobalValue *FName = MF.getFunction();
182     BuildMI(MBB, I, DL, TII.get(Mips::LUi), V0)
183       .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_HI);
184     BuildMI(MBB, I, DL, TII.get(Mips::ADDu), V1).addReg(V0).addReg(Mips::T9);
185     BuildMI(MBB, I, DL, TII.get(Mips::ADDiu), GlobalBaseReg).addReg(V1)
186       .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_LO);
187     return;
188   }
189
190   assert(Subtarget.isABI_O32());
191
192   // For O32 ABI, the following instruction sequence is emitted to initialize
193   // the global base register:
194   //
195   //  0. lui   $2, %hi(_gp_disp)
196   //  1. addiu $2, $2, %lo(_gp_disp)
197   //  2. addu  $globalbasereg, $2, $t9
198   //
199   // We emit only the last instruction here.
200   //
201   // GNU linker requires that the first two instructions appear at the beginning
202   // of a function and no instructions be inserted before or between them.
203   // The two instructions are emitted during lowering to MC layer in order to
204   // avoid any reordering.
205   //
206   // Register $2 (Mips::V0) is added to the list of live-in registers to ensure
207   // the value instruction 1 (addiu) defines is valid when instruction 2 (addu)
208   // reads it.
209   MF.getRegInfo().addLiveIn(Mips::V0);
210   MBB.addLiveIn(Mips::V0);
211   BuildMI(MBB, I, DL, TII.get(Mips::ADDu), GlobalBaseReg)
212     .addReg(Mips::V0).addReg(Mips::T9);
213 }
214
215 void MipsSEDAGToDAGISel::processFunctionAfterISel(MachineFunction &MF) {
216   initGlobalBaseReg(MF);
217
218   MachineRegisterInfo *MRI = &MF.getRegInfo();
219
220   for (MachineFunction::iterator MFI = MF.begin(), MFE = MF.end(); MFI != MFE;
221        ++MFI)
222     for (MachineBasicBlock::iterator I = MFI->begin(); I != MFI->end(); ++I) {
223       if (I->getOpcode() == Mips::RDDSP)
224         addDSPCtrlRegOperands(false, *I, MF);
225       else if (I->getOpcode() == Mips::WRDSP)
226         addDSPCtrlRegOperands(true, *I, MF);
227       else
228         replaceUsesWithZeroReg(MRI, *I);
229     }
230 }
231
232 SDNode *MipsSEDAGToDAGISel::selectAddESubE(unsigned MOp, SDValue InFlag,
233                                            SDValue CmpLHS, SDLoc DL,
234                                            SDNode *Node) const {
235   unsigned Opc = InFlag.getOpcode(); (void)Opc;
236
237   assert(((Opc == ISD::ADDC || Opc == ISD::ADDE) ||
238           (Opc == ISD::SUBC || Opc == ISD::SUBE)) &&
239          "(ADD|SUB)E flag operand must come from (ADD|SUB)C/E insn");
240
241   SDValue Ops[] = { CmpLHS, InFlag.getOperand(1) };
242   SDValue LHS = Node->getOperand(0), RHS = Node->getOperand(1);
243   EVT VT = LHS.getValueType();
244
245   SDNode *Carry = CurDAG->getMachineNode(Mips::SLTu, DL, VT, Ops);
246   SDNode *AddCarry = CurDAG->getMachineNode(Mips::ADDu, DL, VT,
247                                             SDValue(Carry, 0), RHS);
248   return CurDAG->SelectNodeTo(Node, MOp, VT, MVT::Glue, LHS,
249                               SDValue(AddCarry, 0));
250 }
251
252 /// Match frameindex
253 bool MipsSEDAGToDAGISel::selectAddrFrameIndex(SDValue Addr, SDValue &Base,
254                                               SDValue &Offset) const {
255   if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
256     EVT ValTy = Addr.getValueType();
257
258     Base   = CurDAG->getTargetFrameIndex(FIN->getIndex(), ValTy);
259     Offset = CurDAG->getTargetConstant(0, ValTy);
260     return true;
261   }
262   return false;
263 }
264
265 /// Match frameindex+offset and frameindex|offset
266 bool MipsSEDAGToDAGISel::selectAddrFrameIndexOffset(SDValue Addr, SDValue &Base,
267                                                     SDValue &Offset,
268                                                     unsigned OffsetBits) const {
269   if (CurDAG->isBaseWithConstantOffset(Addr)) {
270     ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Addr.getOperand(1));
271     if (isIntN(OffsetBits, CN->getSExtValue())) {
272       EVT ValTy = Addr.getValueType();
273
274       // If the first operand is a FI, get the TargetFI Node
275       if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>
276                                   (Addr.getOperand(0)))
277         Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), ValTy);
278       else
279         Base = Addr.getOperand(0);
280
281       Offset = CurDAG->getTargetConstant(CN->getZExtValue(), ValTy);
282       return true;
283     }
284   }
285   return false;
286 }
287
288 /// ComplexPattern used on MipsInstrInfo
289 /// Used on Mips Load/Store instructions
290 bool MipsSEDAGToDAGISel::selectAddrRegImm(SDValue Addr, SDValue &Base,
291                                           SDValue &Offset) const {
292   // if Address is FI, get the TargetFrameIndex.
293   if (selectAddrFrameIndex(Addr, Base, Offset))
294     return true;
295
296   // on PIC code Load GA
297   if (Addr.getOpcode() == MipsISD::Wrapper) {
298     Base   = Addr.getOperand(0);
299     Offset = Addr.getOperand(1);
300     return true;
301   }
302
303   if (TM.getRelocationModel() != Reloc::PIC_) {
304     if ((Addr.getOpcode() == ISD::TargetExternalSymbol ||
305         Addr.getOpcode() == ISD::TargetGlobalAddress))
306       return false;
307   }
308
309   // Addresses of the form FI+const or FI|const
310   if (selectAddrFrameIndexOffset(Addr, Base, Offset, 16))
311     return true;
312
313   // Operand is a result from an ADD.
314   if (Addr.getOpcode() == ISD::ADD) {
315     // When loading from constant pools, load the lower address part in
316     // the instruction itself. Example, instead of:
317     //  lui $2, %hi($CPI1_0)
318     //  addiu $2, $2, %lo($CPI1_0)
319     //  lwc1 $f0, 0($2)
320     // Generate:
321     //  lui $2, %hi($CPI1_0)
322     //  lwc1 $f0, %lo($CPI1_0)($2)
323     if (Addr.getOperand(1).getOpcode() == MipsISD::Lo ||
324         Addr.getOperand(1).getOpcode() == MipsISD::GPRel) {
325       SDValue Opnd0 = Addr.getOperand(1).getOperand(0);
326       if (isa<ConstantPoolSDNode>(Opnd0) || isa<GlobalAddressSDNode>(Opnd0) ||
327           isa<JumpTableSDNode>(Opnd0)) {
328         Base = Addr.getOperand(0);
329         Offset = Opnd0;
330         return true;
331       }
332     }
333   }
334
335   return false;
336 }
337
338 /// ComplexPattern used on MipsInstrInfo
339 /// Used on Mips Load/Store instructions
340 bool MipsSEDAGToDAGISel::selectAddrRegReg(SDValue Addr, SDValue &Base,
341                                           SDValue &Offset) const {
342   // Operand is a result from an ADD.
343   if (Addr.getOpcode() == ISD::ADD) {
344     Base = Addr.getOperand(0);
345     Offset = Addr.getOperand(1);
346     return true;
347   }
348
349   return false;
350 }
351
352 bool MipsSEDAGToDAGISel::selectAddrDefault(SDValue Addr, SDValue &Base,
353                                            SDValue &Offset) const {
354   Base = Addr;
355   Offset = CurDAG->getTargetConstant(0, Addr.getValueType());
356   return true;
357 }
358
359 bool MipsSEDAGToDAGISel::selectIntAddr(SDValue Addr, SDValue &Base,
360                                        SDValue &Offset) const {
361   return selectAddrRegImm(Addr, Base, Offset) ||
362     selectAddrDefault(Addr, Base, Offset);
363 }
364
365 bool MipsSEDAGToDAGISel::selectAddrRegImm10(SDValue Addr, SDValue &Base,
366                                             SDValue &Offset) const {
367   if (selectAddrFrameIndex(Addr, Base, Offset))
368     return true;
369
370   if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10))
371     return true;
372
373   return false;
374 }
375
376 /// Used on microMIPS Load/Store unaligned instructions (12-bit offset)
377 bool MipsSEDAGToDAGISel::selectAddrRegImm12(SDValue Addr, SDValue &Base,
378                                             SDValue &Offset) const {
379   if (selectAddrFrameIndex(Addr, Base, Offset))
380     return true;
381
382   if (selectAddrFrameIndexOffset(Addr, Base, Offset, 12))
383     return true;
384
385   return false;
386 }
387
388 bool MipsSEDAGToDAGISel::selectIntAddrMM(SDValue Addr, SDValue &Base,
389                                          SDValue &Offset) const {
390   return selectAddrRegImm12(Addr, Base, Offset) ||
391     selectAddrDefault(Addr, Base, Offset);
392 }
393
394 bool MipsSEDAGToDAGISel::selectIntAddrMSA(SDValue Addr, SDValue &Base,
395                                           SDValue &Offset) const {
396   if (selectAddrRegImm10(Addr, Base, Offset))
397     return true;
398
399   if (selectAddrDefault(Addr, Base, Offset))
400     return true;
401
402   return false;
403 }
404
405 // Select constant vector splats.
406 //
407 // Returns true and sets Imm if:
408 // * MSA is enabled
409 // * N is a ISD::BUILD_VECTOR representing a constant splat
410 bool MipsSEDAGToDAGISel::selectVSplat(SDNode *N, APInt &Imm) const {
411   if (!Subtarget.hasMSA())
412     return false;
413
414   BuildVectorSDNode *Node = dyn_cast<BuildVectorSDNode>(N);
415
416   if (Node == NULL)
417     return false;
418
419   APInt SplatValue, SplatUndef;
420   unsigned SplatBitSize;
421   bool HasAnyUndefs;
422
423   if (!Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
424                              HasAnyUndefs, 8,
425                              !Subtarget.isLittle()))
426     return false;
427
428   Imm = SplatValue;
429
430   return true;
431 }
432
433 // Select constant vector splats.
434 //
435 // In addition to the requirements of selectVSplat(), this function returns
436 // true and sets Imm if:
437 // * The splat value is the same width as the elements of the vector
438 // * The splat value fits in an integer with the specified signed-ness and
439 //   width.
440 //
441 // This function looks through ISD::BITCAST nodes.
442 // TODO: This might not be appropriate for big-endian MSA since BITCAST is
443 //       sometimes a shuffle in big-endian mode.
444 //
445 // It's worth noting that this function is not used as part of the selection
446 // of ldi.[bhwd] since it does not permit using the wrong-typed ldi.[bhwd]
447 // instruction to achieve the desired bit pattern. ldi.[bhwd] is selected in
448 // MipsSEDAGToDAGISel::selectNode.
449 bool MipsSEDAGToDAGISel::
450 selectVSplatCommon(SDValue N, SDValue &Imm, bool Signed,
451                    unsigned ImmBitSize) const {
452   APInt ImmValue;
453   EVT EltTy = N->getValueType(0).getVectorElementType();
454
455   if (N->getOpcode() == ISD::BITCAST)
456     N = N->getOperand(0);
457
458   if (selectVSplat (N.getNode(), ImmValue) &&
459       ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
460     if (( Signed && ImmValue.isSignedIntN(ImmBitSize)) ||
461         (!Signed && ImmValue.isIntN(ImmBitSize))) {
462       Imm = CurDAG->getTargetConstant(ImmValue, EltTy);
463       return true;
464     }
465   }
466
467   return false;
468 }
469
470 // Select constant vector splats.
471 bool MipsSEDAGToDAGISel::
472 selectVSplatUimm1(SDValue N, SDValue &Imm) const {
473   return selectVSplatCommon(N, Imm, false, 1);
474 }
475
476 bool MipsSEDAGToDAGISel::
477 selectVSplatUimm2(SDValue N, SDValue &Imm) const {
478   return selectVSplatCommon(N, Imm, false, 2);
479 }
480
481 bool MipsSEDAGToDAGISel::
482 selectVSplatUimm3(SDValue N, SDValue &Imm) const {
483   return selectVSplatCommon(N, Imm, false, 3);
484 }
485
486 // Select constant vector splats.
487 bool MipsSEDAGToDAGISel::
488 selectVSplatUimm4(SDValue N, SDValue &Imm) const {
489   return selectVSplatCommon(N, Imm, false, 4);
490 }
491
492 // Select constant vector splats.
493 bool MipsSEDAGToDAGISel::
494 selectVSplatUimm5(SDValue N, SDValue &Imm) const {
495   return selectVSplatCommon(N, Imm, false, 5);
496 }
497
498 // Select constant vector splats.
499 bool MipsSEDAGToDAGISel::
500 selectVSplatUimm6(SDValue N, SDValue &Imm) const {
501   return selectVSplatCommon(N, Imm, false, 6);
502 }
503
504 // Select constant vector splats.
505 bool MipsSEDAGToDAGISel::
506 selectVSplatUimm8(SDValue N, SDValue &Imm) const {
507   return selectVSplatCommon(N, Imm, false, 8);
508 }
509
510 // Select constant vector splats.
511 bool MipsSEDAGToDAGISel::
512 selectVSplatSimm5(SDValue N, SDValue &Imm) const {
513   return selectVSplatCommon(N, Imm, true, 5);
514 }
515
516 // Select constant vector splats whose value is a power of 2.
517 //
518 // In addition to the requirements of selectVSplat(), this function returns
519 // true and sets Imm if:
520 // * The splat value is the same width as the elements of the vector
521 // * The splat value is a power of two.
522 //
523 // This function looks through ISD::BITCAST nodes.
524 // TODO: This might not be appropriate for big-endian MSA since BITCAST is
525 //       sometimes a shuffle in big-endian mode.
526 bool MipsSEDAGToDAGISel::selectVSplatUimmPow2(SDValue N, SDValue &Imm) const {
527   APInt ImmValue;
528   EVT EltTy = N->getValueType(0).getVectorElementType();
529
530   if (N->getOpcode() == ISD::BITCAST)
531     N = N->getOperand(0);
532
533   if (selectVSplat (N.getNode(), ImmValue) &&
534       ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
535     int32_t Log2 = ImmValue.exactLogBase2();
536
537     if (Log2 != -1) {
538       Imm = CurDAG->getTargetConstant(Log2, EltTy);
539       return true;
540     }
541   }
542
543   return false;
544 }
545
546 // Select constant vector splats whose value only has a consecutive sequence
547 // of left-most bits set (e.g. 0b11...1100...00).
548 //
549 // In addition to the requirements of selectVSplat(), this function returns
550 // true and sets Imm if:
551 // * The splat value is the same width as the elements of the vector
552 // * The splat value is a consecutive sequence of left-most bits.
553 //
554 // This function looks through ISD::BITCAST nodes.
555 // TODO: This might not be appropriate for big-endian MSA since BITCAST is
556 //       sometimes a shuffle in big-endian mode.
557 bool MipsSEDAGToDAGISel::selectVSplatMaskL(SDValue N, SDValue &Imm) const {
558   APInt ImmValue;
559   EVT EltTy = N->getValueType(0).getVectorElementType();
560
561   if (N->getOpcode() == ISD::BITCAST)
562     N = N->getOperand(0);
563
564   if (selectVSplat(N.getNode(), ImmValue) &&
565       ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
566     // Extract the run of set bits starting with bit zero from the bitwise
567     // inverse of ImmValue, and test that the inverse of this is the same
568     // as the original value.
569     if (ImmValue == ~(~ImmValue & ~(~ImmValue + 1))) {
570
571       Imm = CurDAG->getTargetConstant(ImmValue.countPopulation(), EltTy);
572       return true;
573     }
574   }
575
576   return false;
577 }
578
579 // Select constant vector splats whose value only has a consecutive sequence
580 // of right-most bits set (e.g. 0b00...0011...11).
581 //
582 // In addition to the requirements of selectVSplat(), this function returns
583 // true and sets Imm if:
584 // * The splat value is the same width as the elements of the vector
585 // * The splat value is a consecutive sequence of right-most bits.
586 //
587 // This function looks through ISD::BITCAST nodes.
588 // TODO: This might not be appropriate for big-endian MSA since BITCAST is
589 //       sometimes a shuffle in big-endian mode.
590 bool MipsSEDAGToDAGISel::selectVSplatMaskR(SDValue N, SDValue &Imm) const {
591   APInt ImmValue;
592   EVT EltTy = N->getValueType(0).getVectorElementType();
593
594   if (N->getOpcode() == ISD::BITCAST)
595     N = N->getOperand(0);
596
597   if (selectVSplat(N.getNode(), ImmValue) &&
598       ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
599     // Extract the run of set bits starting with bit zero, and test that the
600     // result is the same as the original value
601     if (ImmValue == (ImmValue & ~(ImmValue + 1))) {
602       Imm = CurDAG->getTargetConstant(ImmValue.countPopulation(), EltTy);
603       return true;
604     }
605   }
606
607   return false;
608 }
609
610 bool MipsSEDAGToDAGISel::selectVSplatUimmInvPow2(SDValue N,
611                                                  SDValue &Imm) const {
612   APInt ImmValue;
613   EVT EltTy = N->getValueType(0).getVectorElementType();
614
615   if (N->getOpcode() == ISD::BITCAST)
616     N = N->getOperand(0);
617
618   if (selectVSplat(N.getNode(), ImmValue) &&
619       ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
620     int32_t Log2 = (~ImmValue).exactLogBase2();
621
622     if (Log2 != -1) {
623       Imm = CurDAG->getTargetConstant(Log2, EltTy);
624       return true;
625     }
626   }
627
628   return false;
629 }
630
631 std::pair<bool, SDNode*> MipsSEDAGToDAGISel::selectNode(SDNode *Node) {
632   unsigned Opcode = Node->getOpcode();
633   SDLoc DL(Node);
634
635   ///
636   // Instruction Selection not handled by the auto-generated
637   // tablegen selection should be handled here.
638   ///
639   SDNode *Result;
640
641   switch(Opcode) {
642   default: break;
643
644   case ISD::SUBE: {
645     SDValue InFlag = Node->getOperand(2);
646     Result = selectAddESubE(Mips::SUBu, InFlag, InFlag.getOperand(0), DL, Node);
647     return std::make_pair(true, Result);
648   }
649
650   case ISD::ADDE: {
651     if (Subtarget.hasDSP()) // Select DSP instructions, ADDSC and ADDWC.
652       break;
653     SDValue InFlag = Node->getOperand(2);
654     Result = selectAddESubE(Mips::ADDu, InFlag, InFlag.getValue(0), DL, Node);
655     return std::make_pair(true, Result);
656   }
657
658   case ISD::ConstantFP: {
659     ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(Node);
660     if (Node->getValueType(0) == MVT::f64 && CN->isExactlyValue(+0.0)) {
661       if (Subtarget.isGP64bit()) {
662         SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
663                                               Mips::ZERO_64, MVT::i64);
664         Result = CurDAG->getMachineNode(Mips::DMTC1, DL, MVT::f64, Zero);
665       } else if (Subtarget.isFP64bit()) {
666         SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
667                                               Mips::ZERO, MVT::i32);
668         Result = CurDAG->getMachineNode(Mips::BuildPairF64_64, DL, MVT::f64,
669                                         Zero, Zero);
670       } else {
671         SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
672                                               Mips::ZERO, MVT::i32);
673         Result = CurDAG->getMachineNode(Mips::BuildPairF64, DL, MVT::f64, Zero,
674                                         Zero);
675       }
676
677       return std::make_pair(true, Result);
678     }
679     break;
680   }
681
682   case ISD::Constant: {
683     const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Node);
684     unsigned Size = CN->getValueSizeInBits(0);
685
686     if (Size == 32)
687       break;
688
689     MipsAnalyzeImmediate AnalyzeImm;
690     int64_t Imm = CN->getSExtValue();
691
692     const MipsAnalyzeImmediate::InstSeq &Seq =
693       AnalyzeImm.Analyze(Imm, Size, false);
694
695     MipsAnalyzeImmediate::InstSeq::const_iterator Inst = Seq.begin();
696     SDLoc DL(CN);
697     SDNode *RegOpnd;
698     SDValue ImmOpnd = CurDAG->getTargetConstant(SignExtend64<16>(Inst->ImmOpnd),
699                                                 MVT::i64);
700
701     // The first instruction can be a LUi which is different from other
702     // instructions (ADDiu, ORI and SLL) in that it does not have a register
703     // operand.
704     if (Inst->Opc == Mips::LUi64)
705       RegOpnd = CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64, ImmOpnd);
706     else
707       RegOpnd =
708         CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64,
709                                CurDAG->getRegister(Mips::ZERO_64, MVT::i64),
710                                ImmOpnd);
711
712     // The remaining instructions in the sequence are handled here.
713     for (++Inst; Inst != Seq.end(); ++Inst) {
714       ImmOpnd = CurDAG->getTargetConstant(SignExtend64<16>(Inst->ImmOpnd),
715                                           MVT::i64);
716       RegOpnd = CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64,
717                                        SDValue(RegOpnd, 0), ImmOpnd);
718     }
719
720     return std::make_pair(true, RegOpnd);
721   }
722
723   case ISD::INTRINSIC_W_CHAIN: {
724     switch (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
725     default:
726       break;
727
728     case Intrinsic::mips_cfcmsa: {
729       SDValue ChainIn = Node->getOperand(0);
730       SDValue RegIdx = Node->getOperand(2);
731       SDValue Reg = CurDAG->getCopyFromReg(ChainIn, DL,
732                                            getMSACtrlReg(RegIdx), MVT::i32);
733       return std::make_pair(true, Reg.getNode());
734     }
735     }
736     break;
737   }
738
739   case ISD::INTRINSIC_WO_CHAIN: {
740     switch (cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue()) {
741     default:
742       break;
743
744     case Intrinsic::mips_move_v:
745       // Like an assignment but will always produce a move.v even if
746       // unnecessary.
747       return std::make_pair(true,
748                             CurDAG->getMachineNode(Mips::MOVE_V, DL,
749                                                    Node->getValueType(0),
750                                                    Node->getOperand(1)));
751     }
752     break;
753   }
754
755   case ISD::INTRINSIC_VOID: {
756     switch (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
757     default:
758       break;
759
760     case Intrinsic::mips_ctcmsa: {
761       SDValue ChainIn = Node->getOperand(0);
762       SDValue RegIdx  = Node->getOperand(2);
763       SDValue Value   = Node->getOperand(3);
764       SDValue ChainOut = CurDAG->getCopyToReg(ChainIn, DL,
765                                               getMSACtrlReg(RegIdx), Value);
766       return std::make_pair(true, ChainOut.getNode());
767     }
768     }
769     break;
770   }
771
772   case MipsISD::ThreadPointer: {
773     EVT PtrVT = getTargetLowering()->getPointerTy();
774     unsigned RdhwrOpc, DestReg;
775
776     if (PtrVT == MVT::i32) {
777       RdhwrOpc = Mips::RDHWR;
778       DestReg = Mips::V1;
779     } else {
780       RdhwrOpc = Mips::RDHWR64;
781       DestReg = Mips::V1_64;
782     }
783
784     SDNode *Rdhwr =
785       CurDAG->getMachineNode(RdhwrOpc, SDLoc(Node),
786                              Node->getValueType(0),
787                              CurDAG->getRegister(Mips::HWR29, MVT::i32));
788     SDValue Chain = CurDAG->getCopyToReg(CurDAG->getEntryNode(), DL, DestReg,
789                                          SDValue(Rdhwr, 0));
790     SDValue ResNode = CurDAG->getCopyFromReg(Chain, DL, DestReg, PtrVT);
791     ReplaceUses(SDValue(Node, 0), ResNode);
792     return std::make_pair(true, ResNode.getNode());
793   }
794
795   case ISD::BUILD_VECTOR: {
796     // Select appropriate ldi.[bhwd] instructions for constant splats of
797     // 128-bit when MSA is enabled. Fixup any register class mismatches that
798     // occur as a result.
799     //
800     // This allows the compiler to use a wider range of immediates than would
801     // otherwise be allowed. If, for example, v4i32 could only use ldi.h then
802     // it would not be possible to load { 0x01010101, 0x01010101, 0x01010101,
803     // 0x01010101 } without using a constant pool. This would be sub-optimal
804     // when // 'ldi.b wd, 1' is capable of producing that bit-pattern in the
805     // same set/ of registers. Similarly, ldi.h isn't capable of producing {
806     // 0x00000000, 0x00000001, 0x00000000, 0x00000001 } but 'ldi.d wd, 1' can.
807
808     BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Node);
809     APInt SplatValue, SplatUndef;
810     unsigned SplatBitSize;
811     bool HasAnyUndefs;
812     unsigned LdiOp;
813     EVT ResVecTy = BVN->getValueType(0);
814     EVT ViaVecTy;
815
816     if (!Subtarget.hasMSA() || !BVN->getValueType(0).is128BitVector())
817       return std::make_pair(false, (SDNode*)NULL);
818
819     if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
820                               HasAnyUndefs, 8,
821                               !Subtarget.isLittle()))
822       return std::make_pair(false, (SDNode*)NULL);
823
824     switch (SplatBitSize) {
825     default:
826       return std::make_pair(false, (SDNode*)NULL);
827     case 8:
828       LdiOp = Mips::LDI_B;
829       ViaVecTy = MVT::v16i8;
830       break;
831     case 16:
832       LdiOp = Mips::LDI_H;
833       ViaVecTy = MVT::v8i16;
834       break;
835     case 32:
836       LdiOp = Mips::LDI_W;
837       ViaVecTy = MVT::v4i32;
838       break;
839     case 64:
840       LdiOp = Mips::LDI_D;
841       ViaVecTy = MVT::v2i64;
842       break;
843     }
844
845     if (!SplatValue.isSignedIntN(10))
846       return std::make_pair(false, (SDNode*)NULL);
847
848     SDValue Imm = CurDAG->getTargetConstant(SplatValue,
849                                             ViaVecTy.getVectorElementType());
850
851     SDNode *Res = CurDAG->getMachineNode(LdiOp, SDLoc(Node), ViaVecTy, Imm);
852
853     if (ResVecTy != ViaVecTy) {
854       // If LdiOp is writing to a different register class to ResVecTy, then
855       // fix it up here. This COPY_TO_REGCLASS should never cause a move.v
856       // since the source and destination register sets contain the same
857       // registers.
858       const TargetLowering *TLI = getTargetLowering();
859       MVT ResVecTySimple = ResVecTy.getSimpleVT();
860       const TargetRegisterClass *RC = TLI->getRegClassFor(ResVecTySimple);
861       Res = CurDAG->getMachineNode(Mips::COPY_TO_REGCLASS, SDLoc(Node),
862                                    ResVecTy, SDValue(Res, 0),
863                                    CurDAG->getTargetConstant(RC->getID(),
864                                                              MVT::i32));
865     }
866
867     return std::make_pair(true, Res);
868   }
869
870   }
871
872   return std::make_pair(false, (SDNode*)NULL);
873 }
874
875 FunctionPass *llvm::createMipsSEISelDag(MipsTargetMachine &TM) {
876   return new MipsSEDAGToDAGISel(TM);
877 }