111d3b4d01f93778aff7cbf09b33a67039a1488c
[oota-llvm.git] / lib / Target / Hexagon / BitTracker.cpp
1 //===--- BitTracker.cpp ---------------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 // SSA-based bit propagation.
11 //
12 // The purpose of this code is, for a given virtual register, to provide
13 // information about the value of each bit in the register. The values
14 // of bits are represented by the class BitValue, and take one of four
15 // cases: 0, 1, "ref" and "bottom". The 0 and 1 are rather clear, the
16 // "ref" value means that the bit is a copy of another bit (which itself
17 // cannot be a copy of yet another bit---such chains are not allowed).
18 // A "ref" value is associated with a BitRef structure, which indicates
19 // which virtual register, and which bit in that register is the origin
20 // of the value. For example, given an instruction
21 //   vreg2 = ASL vreg1, 1
22 // assuming that nothing is known about bits of vreg1, bit 1 of vreg2
23 // will be a "ref" to (vreg1, 0). If there is a subsequent instruction
24 //   vreg3 = ASL vreg2, 2
25 // then bit 3 of vreg3 will be a "ref" to (vreg1, 0) as well.
26 // The "bottom" case means that the bit's value cannot be determined,
27 // and that this virtual register actually defines it. The "bottom" case
28 // is discussed in detail in BitTracker.h. In fact, "bottom" is a "ref
29 // to self", so for the vreg1 above, the bit 0 of it will be a "ref" to
30 // (vreg1, 0), bit 1 will be a "ref" to (vreg1, 1), etc.
31 //
32 // The tracker implements the Wegman-Zadeck algorithm, originally developed
33 // for SSA-based constant propagation. Each register is represented as
34 // a sequence of bits, with the convention that bit 0 is the least signi-
35 // ficant bit. Each bit is propagated individually. The class RegisterCell
36 // implements the register's representation, and is also the subject of
37 // the lattice operations in the tracker.
38 //
39 // The intended usage of the bit tracker is to create a target-specific
40 // machine instruction evaluator, pass the evaluator to the BitTracker
41 // object, and run the tracker. The tracker will then collect the bit
42 // value information for a given machine function. After that, it can be
43 // queried for the cells for each virtual register.
44 // Sample code:
45 //   const TargetSpecificEvaluator TSE(TRI, MRI);
46 //   BitTracker BT(TSE, MF);
47 //   BT.run();
48 //   ...
49 //   unsigned Reg = interestingRegister();
50 //   RegisterCell RC = BT.get(Reg);
51 //   if (RC[3].is(1))
52 //      Reg0bit3 = 1;
53 //
54 // The code below is intended to be fully target-independent.
55
56 #include "llvm/CodeGen/MachineBasicBlock.h"
57 #include "llvm/CodeGen/MachineFunction.h"
58 #include "llvm/CodeGen/MachineInstr.h"
59 #include "llvm/CodeGen/MachineRegisterInfo.h"
60 #include "llvm/IR/Constants.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/raw_ostream.h"
63 #include "llvm/Target/TargetRegisterInfo.h"
64
65 #include "BitTracker.h"
66
67 using namespace llvm;
68
69 typedef BitTracker BT;
70
71 namespace {
72   // Local trickery to pretty print a register (without the whole "%vreg"
73   // business).
74   struct printv {
75     printv(unsigned r) : R(r) {}
76     unsigned R;
77   };
78   raw_ostream &operator<< (raw_ostream &OS, const printv &PV) {
79     if (PV.R)
80       OS << 'v' << TargetRegisterInfo::virtReg2Index(PV.R);
81     else
82       OS << 's';
83     return OS;
84   }
85 }
86
87 raw_ostream &llvm::operator<<(raw_ostream &OS, const BT::BitValue &BV) {
88   switch (BV.Type) {
89     case BT::BitValue::Top:
90       OS << 'T';
91       break;
92     case BT::BitValue::Zero:
93       OS << '0';
94       break;
95     case BT::BitValue::One:
96       OS << '1';
97       break;
98     case BT::BitValue::Ref:
99       OS << printv(BV.RefI.Reg) << '[' << BV.RefI.Pos << ']';
100       break;
101   }
102   return OS;
103 }
104
105 raw_ostream &llvm::operator<<(raw_ostream &OS, const BT::RegisterCell &RC) {
106   unsigned n = RC.Bits.size();
107   OS << "{ w:" << n;
108   // Instead of printing each bit value individually, try to group them
109   // into logical segments, such as sequences of 0 or 1 bits or references
110   // to consecutive bits (e.g. "bits 3-5 are same as bits 7-9 of reg xyz").
111   // "Start" will be the index of the beginning of the most recent segment.
112   unsigned Start = 0;
113   bool SeqRef = false;    // A sequence of refs to consecutive bits.
114   bool ConstRef = false;  // A sequence of refs to the same bit.
115
116   for (unsigned i = 1, n = RC.Bits.size(); i < n; ++i) {
117     const BT::BitValue &V = RC[i];
118     const BT::BitValue &SV = RC[Start];
119     bool IsRef = (V.Type == BT::BitValue::Ref);
120     // If the current value is the same as Start, skip to the next one.
121     if (!IsRef && V == SV)
122       continue;
123     if (IsRef && SV.Type == BT::BitValue::Ref && V.RefI.Reg == SV.RefI.Reg) {
124       if (Start+1 == i) {
125         SeqRef = (V.RefI.Pos == SV.RefI.Pos+1);
126         ConstRef = (V.RefI.Pos == SV.RefI.Pos);
127       }
128       if (SeqRef && V.RefI.Pos == SV.RefI.Pos+(i-Start))
129         continue;
130       if (ConstRef && V.RefI.Pos == SV.RefI.Pos)
131         continue;
132     }
133
134     // The current value is different. Print the previous one and reset
135     // the Start.
136     OS << " [" << Start;
137     unsigned Count = i - Start;
138     if (Count == 1) {
139       OS << "]:" << SV;
140     } else {
141       OS << '-' << i-1 << "]:";
142       if (SV.Type == BT::BitValue::Ref && SeqRef)
143         OS << printv(SV.RefI.Reg) << '[' << SV.RefI.Pos << '-'
144            << SV.RefI.Pos+(Count-1) << ']';
145       else
146         OS << SV;
147     }
148     Start = i;
149     SeqRef = ConstRef = false;
150   }
151
152   OS << " [" << Start;
153   unsigned Count = n - Start;
154   if (n-Start == 1) {
155     OS << "]:" << RC[Start];
156   } else {
157     OS << '-' << n-1 << "]:";
158     const BT::BitValue &SV = RC[Start];
159     if (SV.Type == BT::BitValue::Ref && SeqRef)
160       OS << printv(SV.RefI.Reg) << '[' << SV.RefI.Pos << '-'
161          << SV.RefI.Pos+(Count-1) << ']';
162     else
163       OS << SV;
164   }
165   OS << " }";
166
167   return OS;
168 }
169
170 BitTracker::BitTracker(const MachineEvaluator &E, MachineFunction &F)
171     : Trace(false), ME(E), MF(F), MRI(F.getRegInfo()), Map(*new CellMapType) {}
172
173 BitTracker::~BitTracker() {
174   delete &Map;
175 }
176
177
178 // If we were allowed to update a cell for a part of a register, the meet
179 // operation would need to be parametrized by the register number and the
180 // exact part of the register, so that the computer BitRefs correspond to
181 // the actual bits of the "self" register.
182 // While this cannot happen in the current implementation, I'm not sure
183 // if this should be ruled out in the future.
184 bool BT::RegisterCell::meet(const RegisterCell &RC, unsigned SelfR) {
185   // An example when "meet" can be invoked with SelfR == 0 is a phi node
186   // with a physical register as an operand.
187   assert(SelfR == 0 || TargetRegisterInfo::isVirtualRegister(SelfR));
188   bool Changed = false;
189   for (uint16_t i = 0, n = Bits.size(); i < n; ++i) {
190     const BitValue &RCV = RC[i];
191     Changed |= Bits[i].meet(RCV, BitRef(SelfR, i));
192   }
193   return Changed;
194 }
195
196
197 // Insert the entire cell RC into the current cell at position given by M.
198 BT::RegisterCell &BT::RegisterCell::insert(const BT::RegisterCell &RC,
199       const BitMask &M) {
200   uint16_t B = M.first(), E = M.last(), W = width();
201   // Sanity: M must be a valid mask for *this.
202   assert(B < W && E < W);
203   // Sanity: the masked part of *this must have the same number of bits
204   // as the source.
205   assert(B > E || E-B+1 == RC.width());      // B <= E  =>  E-B+1 = |RC|.
206   assert(B <= E || E+(W-B)+1 == RC.width()); // E < B   =>  E+(W-B)+1 = |RC|.
207   if (B <= E) {
208     for (uint16_t i = 0; i <= E-B; ++i)
209       Bits[i+B] = RC[i];
210   } else {
211     for (uint16_t i = 0; i < W-B; ++i)
212       Bits[i+B] = RC[i];
213     for (uint16_t i = 0; i <= E; ++i)
214       Bits[i] = RC[i+(W-B)];
215   }
216   return *this;
217 }
218
219
220 BT::RegisterCell BT::RegisterCell::extract(const BitMask &M) const {
221   uint16_t B = M.first(), E = M.last(), W = width();
222   assert(B < W && E < W);
223   if (B <= E) {
224     RegisterCell RC(E-B+1);
225     for (uint16_t i = B; i <= E; ++i)
226       RC.Bits[i-B] = Bits[i];
227     return RC;
228   }
229
230   RegisterCell RC(E+(W-B)+1);
231   for (uint16_t i = 0; i < W-B; ++i)
232     RC.Bits[i] = Bits[i+B];
233   for (uint16_t i = 0; i <= E; ++i)
234     RC.Bits[i+(W-B)] = Bits[i];
235   return RC;
236 }
237
238
239 BT::RegisterCell &BT::RegisterCell::rol(uint16_t Sh) {
240   // Rotate left (i.e. towards increasing bit indices).
241   // Swap the two parts:  [0..W-Sh-1] [W-Sh..W-1]
242   uint16_t W = width();
243   Sh = Sh % W;
244   if (Sh == 0)
245     return *this;
246
247   RegisterCell Tmp(W-Sh);
248   // Tmp = [0..W-Sh-1].
249   for (uint16_t i = 0; i < W-Sh; ++i)
250     Tmp[i] = Bits[i];
251   // Shift [W-Sh..W-1] to [0..Sh-1].
252   for (uint16_t i = 0; i < Sh; ++i)
253     Bits[i] = Bits[W-Sh+i];
254   // Copy Tmp to [Sh..W-1].
255   for (uint16_t i = 0; i < W-Sh; ++i)
256     Bits[i+Sh] = Tmp.Bits[i];
257   return *this;
258 }
259
260
261 BT::RegisterCell &BT::RegisterCell::fill(uint16_t B, uint16_t E,
262       const BitValue &V) {
263   assert(B <= E);
264   while (B < E)
265     Bits[B++] = V;
266   return *this;
267 }
268
269
270 BT::RegisterCell &BT::RegisterCell::cat(const RegisterCell &RC) {
271   // Append the cell given as the argument to the "this" cell.
272   // Bit 0 of RC becomes bit W of the result, where W is this->width().
273   uint16_t W = width(), WRC = RC.width();
274   Bits.resize(W+WRC);
275   for (uint16_t i = 0; i < WRC; ++i)
276     Bits[i+W] = RC.Bits[i];
277   return *this;
278 }
279
280
281 uint16_t BT::RegisterCell::ct(bool B) const {
282   uint16_t W = width();
283   uint16_t C = 0;
284   BitValue V = B;
285   while (C < W && Bits[C] == V)
286     C++;
287   return C;
288 }
289
290
291 uint16_t BT::RegisterCell::cl(bool B) const {
292   uint16_t W = width();
293   uint16_t C = 0;
294   BitValue V = B;
295   while (C < W && Bits[W-(C+1)] == V)
296     C++;
297   return C;
298 }
299
300
301 bool BT::RegisterCell::operator== (const RegisterCell &RC) const {
302   uint16_t W = Bits.size();
303   if (RC.Bits.size() != W)
304     return false;
305   for (uint16_t i = 0; i < W; ++i)
306     if (Bits[i] != RC[i])
307       return false;
308   return true;
309 }
310
311
312 uint16_t BT::MachineEvaluator::getRegBitWidth(const RegisterRef &RR) const {
313   // The general problem is with finding a register class that corresponds
314   // to a given reference reg:sub. There can be several such classes, and
315   // since we only care about the register size, it does not matter which
316   // such class we would find.
317   // The easiest way to accomplish what we want is to
318   // 1. find a physical register PhysR from the same class as RR.Reg,
319   // 2. find a physical register PhysS that corresponds to PhysR:RR.Sub,
320   // 3. find a register class that contains PhysS.
321   unsigned PhysR;
322   if (TargetRegisterInfo::isVirtualRegister(RR.Reg)) {
323     const TargetRegisterClass *VC = MRI.getRegClass(RR.Reg);
324     assert(VC->begin() != VC->end() && "Empty register class");
325     PhysR = *VC->begin();
326   } else {
327     assert(TargetRegisterInfo::isPhysicalRegister(RR.Reg));
328     PhysR = RR.Reg;
329   }
330
331   unsigned PhysS = (RR.Sub == 0) ? PhysR : TRI.getSubReg(PhysR, RR.Sub);
332   const TargetRegisterClass *RC = TRI.getMinimalPhysRegClass(PhysS);
333   uint16_t BW = RC->getSize()*8;
334   return BW;
335 }
336
337
338 BT::RegisterCell BT::MachineEvaluator::getCell(const RegisterRef &RR,
339       const CellMapType &M) const {
340   uint16_t BW = getRegBitWidth(RR);
341
342   // Physical registers are assumed to be present in the map with an unknown
343   // value. Don't actually insert anything in the map, just return the cell.
344   if (TargetRegisterInfo::isPhysicalRegister(RR.Reg))
345     return RegisterCell::self(0, BW);
346
347   assert(TargetRegisterInfo::isVirtualRegister(RR.Reg));
348   // For virtual registers that belong to a class that is not tracked,
349   // generate an "unknown" value as well.
350   const TargetRegisterClass *C = MRI.getRegClass(RR.Reg);
351   if (!track(C))
352     return RegisterCell::self(0, BW);
353
354   CellMapType::const_iterator F = M.find(RR.Reg);
355   if (F != M.end()) {
356     if (!RR.Sub)
357       return F->second;
358     BitMask M = mask(RR.Reg, RR.Sub);
359     return F->second.extract(M);
360   }
361   // If not found, create a "top" entry, but do not insert it in the map.
362   return RegisterCell::top(BW);
363 }
364
365
366 void BT::MachineEvaluator::putCell(const RegisterRef &RR, RegisterCell RC,
367       CellMapType &M) const {
368   // While updating the cell map can be done in a meaningful way for
369   // a part of a register, it makes little sense to implement it as the
370   // SSA representation would never contain such "partial definitions".
371   if (!TargetRegisterInfo::isVirtualRegister(RR.Reg))
372     return;
373   assert(RR.Sub == 0 && "Unexpected sub-register in definition");
374   // Eliminate all ref-to-reg-0 bit values: replace them with "self".
375   for (unsigned i = 0, n = RC.width(); i < n; ++i) {
376     const BitValue &V = RC[i];
377     if (V.Type == BitValue::Ref && V.RefI.Reg == 0)
378       RC[i].RefI = BitRef(RR.Reg, i);
379   }
380   M[RR.Reg] = RC;
381 }
382
383
384 // Check if the cell represents a compile-time integer value.
385 bool BT::MachineEvaluator::isInt(const RegisterCell &A) const {
386   uint16_t W = A.width();
387   for (uint16_t i = 0; i < W; ++i)
388     if (!A[i].is(0) && !A[i].is(1))
389       return false;
390   return true;
391 }
392
393
394 // Convert a cell to the integer value. The result must fit in uint64_t.
395 uint64_t BT::MachineEvaluator::toInt(const RegisterCell &A) const {
396   assert(isInt(A));
397   uint64_t Val = 0;
398   uint16_t W = A.width();
399   for (uint16_t i = 0; i < W; ++i) {
400     Val <<= 1;
401     Val |= A[i].is(1);
402   }
403   return Val;
404 }
405
406
407 // Evaluator helper functions. These implement some common operation on
408 // register cells that can be used to implement target-specific instructions
409 // in a target-specific evaluator.
410
411 BT::RegisterCell BT::MachineEvaluator::eIMM(int64_t V, uint16_t W) const {
412   RegisterCell Res(W);
413   // For bits beyond the 63rd, this will generate the sign bit of V.
414   for (uint16_t i = 0; i < W; ++i) {
415     Res[i] = BitValue(V & 1);
416     V >>= 1;
417   }
418   return Res;
419 }
420
421
422 BT::RegisterCell BT::MachineEvaluator::eIMM(const ConstantInt *CI) const {
423   APInt A = CI->getValue();
424   uint16_t BW = A.getBitWidth();
425   assert((unsigned)BW == A.getBitWidth() && "BitWidth overflow");
426   RegisterCell Res(BW);
427   for (uint16_t i = 0; i < BW; ++i)
428     Res[i] = A[i];
429   return Res;
430 }
431
432
433 BT::RegisterCell BT::MachineEvaluator::eADD(const RegisterCell &A1,
434       const RegisterCell &A2) const {
435   uint16_t W = A1.width();
436   assert(W == A2.width());
437   RegisterCell Res(W);
438   bool Carry = false;
439   uint16_t I;
440   for (I = 0; I < W; ++I) {
441     const BitValue &V1 = A1[I];
442     const BitValue &V2 = A2[I];
443     if (!V1.num() || !V2.num())
444       break;
445     unsigned S = bool(V1) + bool(V2) + Carry;
446     Res[I] = BitValue(S & 1);
447     Carry = (S > 1);
448   }
449   for (; I < W; ++I) {
450     const BitValue &V1 = A1[I];
451     const BitValue &V2 = A2[I];
452     // If the next bit is same as Carry, the result will be 0 plus the
453     // other bit. The Carry bit will remain unchanged.
454     if (V1.is(Carry))
455       Res[I] = BitValue::ref(V2);
456     else if (V2.is(Carry))
457       Res[I] = BitValue::ref(V1);
458     else
459       break;
460   }
461   for (; I < W; ++I)
462     Res[I] = BitValue::self();
463   return Res;
464 }
465
466
467 BT::RegisterCell BT::MachineEvaluator::eSUB(const RegisterCell &A1,
468       const RegisterCell &A2) const {
469   uint16_t W = A1.width();
470   assert(W == A2.width());
471   RegisterCell Res(W);
472   bool Borrow = false;
473   uint16_t I;
474   for (I = 0; I < W; ++I) {
475     const BitValue &V1 = A1[I];
476     const BitValue &V2 = A2[I];
477     if (!V1.num() || !V2.num())
478       break;
479     unsigned S = bool(V1) - bool(V2) - Borrow;
480     Res[I] = BitValue(S & 1);
481     Borrow = (S > 1);
482   }
483   for (; I < W; ++I) {
484     const BitValue &V1 = A1[I];
485     const BitValue &V2 = A2[I];
486     if (V1.is(Borrow)) {
487       Res[I] = BitValue::ref(V2);
488       break;
489     }
490     if (V2.is(Borrow))
491       Res[I] = BitValue::ref(V1);
492     else
493       break;
494   }
495   for (; I < W; ++I)
496     Res[I] = BitValue::self();
497   return Res;
498 }
499
500
501 BT::RegisterCell BT::MachineEvaluator::eMLS(const RegisterCell &A1,
502       const RegisterCell &A2) const {
503   uint16_t W = A1.width() + A2.width();
504   uint16_t Z = A1.ct(0) + A2.ct(0);
505   RegisterCell Res(W);
506   Res.fill(0, Z, BitValue::Zero);
507   Res.fill(Z, W, BitValue::self());
508   return Res;
509 }
510
511
512 BT::RegisterCell BT::MachineEvaluator::eMLU(const RegisterCell &A1,
513       const RegisterCell &A2) const {
514   uint16_t W = A1.width() + A2.width();
515   uint16_t Z = A1.ct(0) + A2.ct(0);
516   RegisterCell Res(W);
517   Res.fill(0, Z, BitValue::Zero);
518   Res.fill(Z, W, BitValue::self());
519   return Res;
520 }
521
522
523 BT::RegisterCell BT::MachineEvaluator::eASL(const RegisterCell &A1,
524       uint16_t Sh) const {
525   assert(Sh <= A1.width());
526   RegisterCell Res = RegisterCell::ref(A1);
527   Res.rol(Sh);
528   Res.fill(0, Sh, BitValue::Zero);
529   return Res;
530 }
531
532
533 BT::RegisterCell BT::MachineEvaluator::eLSR(const RegisterCell &A1,
534       uint16_t Sh) const {
535   uint16_t W = A1.width();
536   assert(Sh <= W);
537   RegisterCell Res = RegisterCell::ref(A1);
538   Res.rol(W-Sh);
539   Res.fill(W-Sh, W, BitValue::Zero);
540   return Res;
541 }
542
543
544 BT::RegisterCell BT::MachineEvaluator::eASR(const RegisterCell &A1,
545       uint16_t Sh) const {
546   uint16_t W = A1.width();
547   assert(Sh <= W);
548   RegisterCell Res = RegisterCell::ref(A1);
549   BitValue Sign = Res[W-1];
550   Res.rol(W-Sh);
551   Res.fill(W-Sh, W, Sign);
552   return Res;
553 }
554
555
556 BT::RegisterCell BT::MachineEvaluator::eAND(const RegisterCell &A1,
557       const RegisterCell &A2) const {
558   uint16_t W = A1.width();
559   assert(W == A2.width());
560   RegisterCell Res(W);
561   for (uint16_t i = 0; i < W; ++i) {
562     const BitValue &V1 = A1[i];
563     const BitValue &V2 = A2[i];
564     if (V1.is(1))
565       Res[i] = BitValue::ref(V2);
566     else if (V2.is(1))
567       Res[i] = BitValue::ref(V1);
568     else if (V1.is(0) || V2.is(0))
569       Res[i] = BitValue::Zero;
570     else if (V1 == V2)
571       Res[i] = V1;
572     else
573       Res[i] = BitValue::self();
574   }
575   return Res;
576 }
577
578
579 BT::RegisterCell BT::MachineEvaluator::eORL(const RegisterCell &A1,
580       const RegisterCell &A2) const {
581   uint16_t W = A1.width();
582   assert(W == A2.width());
583   RegisterCell Res(W);
584   for (uint16_t i = 0; i < W; ++i) {
585     const BitValue &V1 = A1[i];
586     const BitValue &V2 = A2[i];
587     if (V1.is(1) || V2.is(1))
588       Res[i] = BitValue::One;
589     else if (V1.is(0))
590       Res[i] = BitValue::ref(V2);
591     else if (V2.is(0))
592       Res[i] = BitValue::ref(V1);
593     else if (V1 == V2)
594       Res[i] = V1;
595     else
596       Res[i] = BitValue::self();
597   }
598   return Res;
599 }
600
601
602 BT::RegisterCell BT::MachineEvaluator::eXOR(const RegisterCell &A1,
603       const RegisterCell &A2) const {
604   uint16_t W = A1.width();
605   assert(W == A2.width());
606   RegisterCell Res(W);
607   for (uint16_t i = 0; i < W; ++i) {
608     const BitValue &V1 = A1[i];
609     const BitValue &V2 = A2[i];
610     if (V1.is(0))
611       Res[i] = BitValue::ref(V2);
612     else if (V2.is(0))
613       Res[i] = BitValue::ref(V1);
614     else if (V1 == V2)
615       Res[i] = BitValue::Zero;
616     else
617       Res[i] = BitValue::self();
618   }
619   return Res;
620 }
621
622
623 BT::RegisterCell BT::MachineEvaluator::eNOT(const RegisterCell &A1) const {
624   uint16_t W = A1.width();
625   RegisterCell Res(W);
626   for (uint16_t i = 0; i < W; ++i) {
627     const BitValue &V = A1[i];
628     if (V.is(0))
629       Res[i] = BitValue::One;
630     else if (V.is(1))
631       Res[i] = BitValue::Zero;
632     else
633       Res[i] = BitValue::self();
634   }
635   return Res;
636 }
637
638
639 BT::RegisterCell BT::MachineEvaluator::eSET(const RegisterCell &A1,
640       uint16_t BitN) const {
641   assert(BitN < A1.width());
642   RegisterCell Res = RegisterCell::ref(A1);
643   Res[BitN] = BitValue::One;
644   return Res;
645 }
646
647
648 BT::RegisterCell BT::MachineEvaluator::eCLR(const RegisterCell &A1,
649       uint16_t BitN) const {
650   assert(BitN < A1.width());
651   RegisterCell Res = RegisterCell::ref(A1);
652   Res[BitN] = BitValue::Zero;
653   return Res;
654 }
655
656
657 BT::RegisterCell BT::MachineEvaluator::eCLB(const RegisterCell &A1, bool B,
658       uint16_t W) const {
659   uint16_t C = A1.cl(B), AW = A1.width();
660   // If the last leading non-B bit is not a constant, then we don't know
661   // the real count.
662   if ((C < AW && A1[AW-1-C].num()) || C == AW)
663     return eIMM(C, W);
664   return RegisterCell::self(0, W);
665 }
666
667
668 BT::RegisterCell BT::MachineEvaluator::eCTB(const RegisterCell &A1, bool B,
669       uint16_t W) const {
670   uint16_t C = A1.ct(B), AW = A1.width();
671   // If the last trailing non-B bit is not a constant, then we don't know
672   // the real count.
673   if ((C < AW && A1[C].num()) || C == AW)
674     return eIMM(C, W);
675   return RegisterCell::self(0, W);
676 }
677
678
679 BT::RegisterCell BT::MachineEvaluator::eSXT(const RegisterCell &A1,
680       uint16_t FromN) const {
681   uint16_t W = A1.width();
682   assert(FromN <= W);
683   RegisterCell Res = RegisterCell::ref(A1);
684   BitValue Sign = Res[FromN-1];
685   // Sign-extend "inreg".
686   Res.fill(FromN, W, Sign);
687   return Res;
688 }
689
690
691 BT::RegisterCell BT::MachineEvaluator::eZXT(const RegisterCell &A1,
692       uint16_t FromN) const {
693   uint16_t W = A1.width();
694   assert(FromN <= W);
695   RegisterCell Res = RegisterCell::ref(A1);
696   Res.fill(FromN, W, BitValue::Zero);
697   return Res;
698 }
699
700
701 BT::RegisterCell BT::MachineEvaluator::eXTR(const RegisterCell &A1,
702       uint16_t B, uint16_t E) const {
703   uint16_t W = A1.width();
704   assert(B < W && E <= W);
705   if (B == E)
706     return RegisterCell(0);
707   uint16_t Last = (E > 0) ? E-1 : W-1;
708   RegisterCell Res = RegisterCell::ref(A1).extract(BT::BitMask(B, Last));
709   // Return shorter cell.
710   return Res;
711 }
712
713
714 BT::RegisterCell BT::MachineEvaluator::eINS(const RegisterCell &A1,
715       const RegisterCell &A2, uint16_t AtN) const {
716   uint16_t W1 = A1.width(), W2 = A2.width();
717   (void)W1;
718   assert(AtN < W1 && AtN+W2 <= W1);
719   // Copy bits from A1, insert A2 at position AtN.
720   RegisterCell Res = RegisterCell::ref(A1);
721   if (W2 > 0)
722     Res.insert(RegisterCell::ref(A2), BT::BitMask(AtN, AtN+W2-1));
723   return Res;
724 }
725
726
727 BT::BitMask BT::MachineEvaluator::mask(unsigned Reg, unsigned Sub) const {
728   assert(Sub == 0 && "Generic BitTracker::mask called for Sub != 0");
729   uint16_t W = getRegBitWidth(Reg);
730   assert(W > 0 && "Cannot generate mask for empty register");
731   return BitMask(0, W-1);
732 }
733
734
735 bool BT::MachineEvaluator::evaluate(const MachineInstr *MI,
736       const CellMapType &Inputs, CellMapType &Outputs) const {
737   unsigned Opc = MI->getOpcode();
738   switch (Opc) {
739     case TargetOpcode::REG_SEQUENCE: {
740       RegisterRef RD = MI->getOperand(0);
741       assert(RD.Sub == 0);
742       RegisterRef RS = MI->getOperand(1);
743       unsigned SS = MI->getOperand(2).getImm();
744       RegisterRef RT = MI->getOperand(3);
745       unsigned ST = MI->getOperand(4).getImm();
746       assert(SS != ST);
747
748       uint16_t W = getRegBitWidth(RD);
749       RegisterCell Res(W);
750       Res.insert(RegisterCell::ref(getCell(RS, Inputs)), mask(RD.Reg, SS));
751       Res.insert(RegisterCell::ref(getCell(RT, Inputs)), mask(RD.Reg, ST));
752       putCell(RD, Res, Outputs);
753       break;
754     }
755
756     case TargetOpcode::COPY: {
757       // COPY can transfer a smaller register into a wider one.
758       // If that is the case, fill the remaining high bits with 0.
759       RegisterRef RD = MI->getOperand(0);
760       RegisterRef RS = MI->getOperand(1);
761       assert(RD.Sub == 0);
762       uint16_t WD = getRegBitWidth(RD);
763       uint16_t WS = getRegBitWidth(RS);
764       assert(WD >= WS);
765       RegisterCell Src = getCell(RS, Inputs);
766       RegisterCell Res(WD);
767       Res.insert(Src, BitMask(0, WS-1));
768       Res.fill(WS, WD, BitValue::Zero);
769       putCell(RD, Res, Outputs);
770       break;
771     }
772
773     default:
774       return false;
775   }
776
777   return true;
778 }
779
780
781 // Main W-Z implementation.
782
783 void BT::visitPHI(const MachineInstr *PI) {
784   int ThisN = PI->getParent()->getNumber();
785   if (Trace)
786     dbgs() << "Visit FI(BB#" << ThisN << "): " << *PI;
787
788   const MachineOperand &MD = PI->getOperand(0);
789   assert(MD.getSubReg() == 0 && "Unexpected sub-register in definition");
790   RegisterRef DefRR(MD);
791   uint16_t DefBW = ME.getRegBitWidth(DefRR);
792
793   RegisterCell DefC = ME.getCell(DefRR, Map);
794   if (DefC == RegisterCell::self(DefRR.Reg, DefBW))    // XXX slow
795     return;
796
797   bool Changed = false;
798
799   for (unsigned i = 1, n = PI->getNumOperands(); i < n; i += 2) {
800     const MachineBasicBlock *PB = PI->getOperand(i+1).getMBB();
801     int PredN = PB->getNumber();
802     if (Trace)
803       dbgs() << "  edge BB#" << PredN << "->BB#" << ThisN;
804     if (!EdgeExec.count(CFGEdge(PredN, ThisN))) {
805       if (Trace)
806         dbgs() << " not executable\n";
807       continue;
808     }
809
810     RegisterRef RU = PI->getOperand(i);
811     RegisterCell ResC = ME.getCell(RU, Map);
812     if (Trace)
813       dbgs() << " input reg: " << PrintReg(RU.Reg, &ME.TRI, RU.Sub)
814              << " cell: " << ResC << "\n";
815     Changed |= DefC.meet(ResC, DefRR.Reg);
816   }
817
818   if (Changed) {
819     if (Trace)
820       dbgs() << "Output: " << PrintReg(DefRR.Reg, &ME.TRI, DefRR.Sub)
821              << " cell: " << DefC << "\n";
822     ME.putCell(DefRR, DefC, Map);
823     visitUsesOf(DefRR.Reg);
824   }
825 }
826
827
828 void BT::visitNonBranch(const MachineInstr *MI) {
829   if (Trace) {
830     int ThisN = MI->getParent()->getNumber();
831     dbgs() << "Visit MI(BB#" << ThisN << "): " << *MI;
832   }
833   if (MI->isDebugValue())
834     return;
835   assert(!MI->isBranch() && "Unexpected branch instruction");
836
837   CellMapType ResMap;
838   bool Eval = ME.evaluate(MI, Map, ResMap);
839
840   if (Trace && Eval) {
841     for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
842       const MachineOperand &MO = MI->getOperand(i);
843       if (!MO.isReg() || !MO.isUse())
844         continue;
845       RegisterRef RU(MO);
846       dbgs() << "  input reg: " << PrintReg(RU.Reg, &ME.TRI, RU.Sub)
847              << " cell: " << ME.getCell(RU, Map) << "\n";
848     }
849     dbgs() << "Outputs:\n";
850     for (CellMapType::iterator I = ResMap.begin(), E = ResMap.end();
851          I != E; ++I) {
852       RegisterRef RD(I->first);
853       dbgs() << "  " << PrintReg(I->first, &ME.TRI) << " cell: "
854              << ME.getCell(RD, ResMap) << "\n";
855     }
856   }
857
858   // Iterate over all definitions of the instruction, and update the
859   // cells accordingly.
860   for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
861     const MachineOperand &MO = MI->getOperand(i);
862     // Visit register defs only.
863     if (!MO.isReg() || !MO.isDef())
864       continue;
865     RegisterRef RD(MO);
866     assert(RD.Sub == 0 && "Unexpected sub-register in definition");
867     if (!TargetRegisterInfo::isVirtualRegister(RD.Reg))
868       continue;
869
870     bool Changed = false;
871     if (!Eval || ResMap.count(RD.Reg) == 0) {
872       // Set to "ref" (aka "bottom").
873       uint16_t DefBW = ME.getRegBitWidth(RD);
874       RegisterCell RefC = RegisterCell::self(RD.Reg, DefBW);
875       if (RefC != ME.getCell(RD, Map)) {
876         ME.putCell(RD, RefC, Map);
877         Changed = true;
878       }
879     } else {
880       RegisterCell DefC = ME.getCell(RD, Map);
881       RegisterCell ResC = ME.getCell(RD, ResMap);
882       // This is a non-phi instruction, so the values of the inputs come
883       // from the same registers each time this instruction is evaluated.
884       // During the propagation, the values of the inputs can become lowered
885       // in the sense of the lattice operation, which may cause different
886       // results to be calculated in subsequent evaluations. This should
887       // not cause the bottoming of the result in the map, since the new
888       // result is already reflecting the lowered inputs.
889       for (uint16_t i = 0, w = DefC.width(); i < w; ++i) {
890         BitValue &V = DefC[i];
891         // Bits that are already "bottom" should not be updated.
892         if (V.Type == BitValue::Ref && V.RefI.Reg == RD.Reg)
893           continue;
894         // Same for those that are identical in DefC and ResC.
895         if (V == ResC[i])
896           continue;
897         V = ResC[i];
898         Changed = true;
899       }
900       if (Changed)
901         ME.putCell(RD, DefC, Map);
902     }
903     if (Changed)
904       visitUsesOf(RD.Reg);
905   }
906 }
907
908
909 void BT::visitBranchesFrom(const MachineInstr *BI) {
910   const MachineBasicBlock &B = *BI->getParent();
911   MachineBasicBlock::const_iterator It = BI, End = B.end();
912   BranchTargetList Targets, BTs;
913   bool FallsThrough = true, DefaultToAll = false;
914   int ThisN = B.getNumber();
915
916   do {
917     BTs.clear();
918     const MachineInstr *MI = &*It;
919     if (Trace)
920       dbgs() << "Visit BR(BB#" << ThisN << "): " << *MI;
921     assert(MI->isBranch() && "Expecting branch instruction");
922     InstrExec.insert(MI);
923     bool Eval = ME.evaluate(MI, Map, BTs, FallsThrough);
924     if (!Eval) {
925       // If the evaluation failed, we will add all targets. Keep going in
926       // the loop to mark all executable branches as such.
927       DefaultToAll = true;
928       FallsThrough = true;
929       if (Trace)
930         dbgs() << "  failed to evaluate: will add all CFG successors\n";
931     } else if (!DefaultToAll) {
932       // If evaluated successfully add the targets to the cumulative list.
933       if (Trace) {
934         dbgs() << "  adding targets:";
935         for (unsigned i = 0, n = BTs.size(); i < n; ++i)
936           dbgs() << " BB#" << BTs[i]->getNumber();
937         if (FallsThrough)
938           dbgs() << "\n  falls through\n";
939         else
940           dbgs() << "\n  does not fall through\n";
941       }
942       Targets.insert(BTs.begin(), BTs.end());
943     }
944     ++It;
945   } while (FallsThrough && It != End);
946
947   typedef MachineBasicBlock::const_succ_iterator succ_iterator;
948   if (!DefaultToAll) {
949     // Need to add all CFG successors that lead to EH landing pads.
950     // There won't be explicit branches to these blocks, but they must
951     // be processed.
952     for (succ_iterator I = B.succ_begin(), E = B.succ_end(); I != E; ++I) {
953       const MachineBasicBlock *SB = *I;
954       if (SB->isLandingPad())
955         Targets.insert(SB);
956     }
957     if (FallsThrough) {
958       MachineFunction::const_iterator BIt = &B;
959       MachineFunction::const_iterator Next = std::next(BIt);
960       if (Next != MF.end())
961         Targets.insert(&*Next);
962     }
963   } else {
964     for (succ_iterator I = B.succ_begin(), E = B.succ_end(); I != E; ++I)
965       Targets.insert(*I);
966   }
967
968   for (unsigned i = 0, n = Targets.size(); i < n; ++i) {
969     int TargetN = Targets[i]->getNumber();
970     FlowQ.push(CFGEdge(ThisN, TargetN));
971   }
972 }
973
974
975 void BT::visitUsesOf(unsigned Reg) {
976   if (Trace)
977     dbgs() << "visiting uses of " << PrintReg(Reg, &ME.TRI) << "\n";
978
979   typedef MachineRegisterInfo::use_nodbg_iterator use_iterator;
980   use_iterator End = MRI.use_nodbg_end();
981   for (use_iterator I = MRI.use_nodbg_begin(Reg); I != End; ++I) {
982     MachineInstr *UseI = I->getParent();
983     if (!InstrExec.count(UseI))
984       continue;
985     if (UseI->isPHI())
986       visitPHI(UseI);
987     else if (!UseI->isBranch())
988       visitNonBranch(UseI);
989     else
990       visitBranchesFrom(UseI);
991   }
992 }
993
994
995 BT::RegisterCell BT::get(RegisterRef RR) const {
996   return ME.getCell(RR, Map);
997 }
998
999
1000 void BT::put(RegisterRef RR, const RegisterCell &RC) {
1001   ME.putCell(RR, RC, Map);
1002 }
1003
1004
1005 // Replace all references to bits from OldRR with the corresponding bits
1006 // in NewRR.
1007 void BT::subst(RegisterRef OldRR, RegisterRef NewRR) {
1008   assert(Map.count(OldRR.Reg) > 0 && "OldRR not present in map");
1009   BitMask OM = ME.mask(OldRR.Reg, OldRR.Sub);
1010   BitMask NM = ME.mask(NewRR.Reg, NewRR.Sub);
1011   uint16_t OMB = OM.first(), OME = OM.last();
1012   uint16_t NMB = NM.first(), NME = NM.last();
1013   (void)NME;
1014   assert((OME-OMB == NME-NMB) &&
1015          "Substituting registers of different lengths");
1016   for (CellMapType::iterator I = Map.begin(), E = Map.end(); I != E; ++I) {
1017     RegisterCell &RC = I->second;
1018     for (uint16_t i = 0, w = RC.width(); i < w; ++i) {
1019       BitValue &V = RC[i];
1020       if (V.Type != BitValue::Ref || V.RefI.Reg != OldRR.Reg)
1021         continue;
1022       if (V.RefI.Pos < OMB || V.RefI.Pos > OME)
1023         continue;
1024       V.RefI.Reg = NewRR.Reg;
1025       V.RefI.Pos += NMB-OMB;
1026     }
1027   }
1028 }
1029
1030
1031 // Check if the block has been "executed" during propagation. (If not, the
1032 // block is dead, but it may still appear to be reachable.)
1033 bool BT::reached(const MachineBasicBlock *B) const {
1034   int BN = B->getNumber();
1035   assert(BN >= 0);
1036   for (EdgeSetType::iterator I = EdgeExec.begin(), E = EdgeExec.end();
1037        I != E; ++I) {
1038     if (I->second == BN)
1039       return true;
1040   }
1041   return false;
1042 }
1043
1044
1045 void BT::reset() {
1046   EdgeExec.clear();
1047   InstrExec.clear();
1048   Map.clear();
1049 }
1050
1051
1052 void BT::run() {
1053   reset();
1054   assert(FlowQ.empty());
1055
1056   typedef GraphTraits<const MachineFunction*> MachineFlowGraphTraits;
1057   const MachineBasicBlock *Entry = MachineFlowGraphTraits::getEntryNode(&MF);
1058
1059   unsigned MaxBN = 0;
1060   for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
1061        I != E; ++I) {
1062     assert(I->getNumber() >= 0 && "Disconnected block");
1063     unsigned BN = I->getNumber();
1064     if (BN > MaxBN)
1065       MaxBN = BN;
1066   }
1067
1068   // Keep track of visited blocks.
1069   BitVector BlockScanned(MaxBN+1);
1070
1071   int EntryN = Entry->getNumber();
1072   // Generate a fake edge to get something to start with.
1073   FlowQ.push(CFGEdge(-1, EntryN));
1074
1075   while (!FlowQ.empty()) {
1076     CFGEdge Edge = FlowQ.front();
1077     FlowQ.pop();
1078
1079     if (EdgeExec.count(Edge))
1080       continue;
1081     EdgeExec.insert(Edge);
1082
1083     const MachineBasicBlock &B = *MF.getBlockNumbered(Edge.second);
1084     MachineBasicBlock::const_iterator It = B.begin(), End = B.end();
1085     // Visit PHI nodes first.
1086     while (It != End && It->isPHI()) {
1087       const MachineInstr *PI = &*It++;
1088       InstrExec.insert(PI);
1089       visitPHI(PI);
1090     }
1091
1092     // If this block has already been visited through a flow graph edge,
1093     // then the instructions have already been processed. Any updates to
1094     // the cells would now only happen through visitUsesOf...
1095     if (BlockScanned[Edge.second])
1096       continue;
1097     BlockScanned[Edge.second] = true;
1098
1099     // Visit non-branch instructions.
1100     while (It != End && !It->isBranch()) {
1101       const MachineInstr *MI = &*It++;
1102       InstrExec.insert(MI);
1103       visitNonBranch(MI);
1104     }
1105     // If block end has been reached, add the fall-through edge to the queue.
1106     if (It == End) {
1107       MachineFunction::const_iterator BIt = &B;
1108       MachineFunction::const_iterator Next = std::next(BIt);
1109       if (Next != MF.end()) {
1110         int ThisN = B.getNumber();
1111         int NextN = Next->getNumber();
1112         FlowQ.push(CFGEdge(ThisN, NextN));
1113       }
1114     } else {
1115       // Handle the remaining sequence of branches. This function will update
1116       // the work queue.
1117       visitBranchesFrom(It);
1118     }
1119   } // while (!FlowQ->empty())
1120
1121   if (Trace) {
1122     dbgs() << "Cells after propagation:\n";
1123     for (CellMapType::iterator I = Map.begin(), E = Map.end(); I != E; ++I)
1124       dbgs() << PrintReg(I->first, &ME.TRI) << " -> " << I->second << "\n";
1125   }
1126 }
1127