eeb79eed640c56afffefac9dad82185a5f66c610
[oota-llvm.git] / lib / Target / AMDGPU / SIInsertWaits.cpp
1 //===-- SILowerControlFlow.cpp - Use predicates for control flow ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// \brief Insert wait instructions for memory reads and writes.
12 ///
13 /// Memory reads and writes are issued asynchronously, so we need to insert
14 /// S_WAITCNT instructions when we want to access any of their results or
15 /// overwrite any register that's used asynchronously.
16 //
17 //===----------------------------------------------------------------------===//
18
19 #include "AMDGPU.h"
20 #include "AMDGPUSubtarget.h"
21 #include "SIDefines.h"
22 #include "SIInstrInfo.h"
23 #include "SIMachineFunctionInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineFunctionPass.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28
29 using namespace llvm;
30
31 namespace {
32
33 /// \brief One variable for each of the hardware counters
34 typedef union {
35   struct {
36     unsigned VM;
37     unsigned EXP;
38     unsigned LGKM;
39   } Named;
40   unsigned Array[3];
41
42 } Counters;
43
44 typedef enum {
45   OTHER,
46   SMEM,
47   VMEM
48 } InstType;
49
50 typedef Counters RegCounters[512];
51 typedef std::pair<unsigned, unsigned> RegInterval;
52
53 class SIInsertWaits : public MachineFunctionPass {
54
55 private:
56   static char ID;
57   const SIInstrInfo *TII;
58   const SIRegisterInfo *TRI;
59   const MachineRegisterInfo *MRI;
60
61   /// \brief Constant hardware limits
62   static const Counters WaitCounts;
63
64   /// \brief Constant zero value
65   static const Counters ZeroCounts;
66
67   /// \brief Counter values we have already waited on.
68   Counters WaitedOn;
69
70   /// \brief Counter values for last instruction issued.
71   Counters LastIssued;
72
73   /// \brief Registers used by async instructions.
74   RegCounters UsedRegs;
75
76   /// \brief Registers defined by async instructions.
77   RegCounters DefinedRegs;
78
79   /// \brief Different export instruction types seen since last wait.
80   unsigned ExpInstrTypesSeen;
81
82   /// \brief Type of the last opcode.
83   InstType LastOpcodeType;
84
85   bool LastInstWritesM0;
86
87   /// \brief Get increment/decrement amount for this instruction.
88   Counters getHwCounts(MachineInstr &MI);
89
90   /// \brief Is operand relevant for async execution?
91   bool isOpRelevant(MachineOperand &Op);
92
93   /// \brief Get register interval an operand affects.
94   RegInterval getRegInterval(const TargetRegisterClass *RC,
95                              const MachineOperand &Reg) const;
96
97   /// \brief Handle instructions async components
98   void pushInstruction(MachineBasicBlock &MBB,
99                        MachineBasicBlock::iterator I);
100
101   /// \brief Insert the actual wait instruction
102   bool insertWait(MachineBasicBlock &MBB,
103                   MachineBasicBlock::iterator I,
104                   const Counters &Counts);
105
106   /// \brief Do we need def2def checks?
107   bool unorderedDefines(MachineInstr &MI);
108
109   /// \brief Resolve all operand dependencies to counter requirements
110   Counters handleOperands(MachineInstr &MI);
111
112   /// \brief Insert S_NOP between an instruction writing M0 and S_SENDMSG.
113   void handleSendMsg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I);
114
115 public:
116   SIInsertWaits(TargetMachine &tm) :
117     MachineFunctionPass(ID),
118     TII(nullptr),
119     TRI(nullptr),
120     ExpInstrTypesSeen(0) { }
121
122   bool runOnMachineFunction(MachineFunction &MF) override;
123
124   const char *getPassName() const override {
125     return "SI insert wait instructions";
126   }
127
128   void getAnalysisUsage(AnalysisUsage &AU) const override {
129     AU.setPreservesCFG();
130     MachineFunctionPass::getAnalysisUsage(AU);
131   }
132 };
133
134 } // End anonymous namespace
135
136 char SIInsertWaits::ID = 0;
137
138 const Counters SIInsertWaits::WaitCounts = { { 15, 7, 7 } };
139 const Counters SIInsertWaits::ZeroCounts = { { 0, 0, 0 } };
140
141 FunctionPass *llvm::createSIInsertWaits(TargetMachine &tm) {
142   return new SIInsertWaits(tm);
143 }
144
145 Counters SIInsertWaits::getHwCounts(MachineInstr &MI) {
146   uint64_t TSFlags = MI.getDesc().TSFlags;
147   Counters Result = { { 0, 0, 0 } };
148
149   Result.Named.VM = !!(TSFlags & SIInstrFlags::VM_CNT);
150
151   // Only consider stores or EXP for EXP_CNT
152   Result.Named.EXP = !!(TSFlags & SIInstrFlags::EXP_CNT &&
153       (MI.getOpcode() == AMDGPU::EXP || MI.getDesc().mayStore()));
154
155   // LGKM may uses larger values
156   if (TSFlags & SIInstrFlags::LGKM_CNT) {
157
158     if (TII->isSMRD(MI.getOpcode())) {
159
160       if (MI.getNumOperands() != 0) {
161         assert(MI.getOperand(0).isReg() &&
162                "First LGKM operand must be a register!");
163
164         // XXX - What if this is a write into a super register?
165         const TargetRegisterClass *RC = TII->getOpRegClass(MI, 0);
166         unsigned Size = RC->getSize();
167         Result.Named.LGKM = Size > 4 ? 2 : 1;
168       } else {
169         // s_dcache_inv etc. do not have a a destination register. Assume we
170         // want a wait on these.
171         // XXX - What is the right value?
172         Result.Named.LGKM = 1;
173       }
174     } else {
175       // DS
176       Result.Named.LGKM = 1;
177     }
178
179   } else {
180     Result.Named.LGKM = 0;
181   }
182
183   return Result;
184 }
185
186 bool SIInsertWaits::isOpRelevant(MachineOperand &Op) {
187   // Constants are always irrelevant
188   if (!Op.isReg() || !TRI->isInAllocatableClass(Op.getReg()))
189     return false;
190
191   // Defines are always relevant
192   if (Op.isDef())
193     return true;
194
195   // For exports all registers are relevant
196   MachineInstr &MI = *Op.getParent();
197   if (MI.getOpcode() == AMDGPU::EXP)
198     return true;
199
200   // For stores the stored value is also relevant
201   if (!MI.getDesc().mayStore())
202     return false;
203
204   // Check if this operand is the value being stored.
205   // Special case for DS instructions, since the address
206   // operand comes before the value operand and it may have
207   // multiple data operands.
208
209   if (TII->isDS(MI.getOpcode())) {
210     MachineOperand *Data = TII->getNamedOperand(MI, AMDGPU::OpName::data);
211     if (Data && Op.isIdenticalTo(*Data))
212       return true;
213
214     MachineOperand *Data0 = TII->getNamedOperand(MI, AMDGPU::OpName::data0);
215     if (Data0 && Op.isIdenticalTo(*Data0))
216       return true;
217
218     MachineOperand *Data1 = TII->getNamedOperand(MI, AMDGPU::OpName::data1);
219     if (Data1 && Op.isIdenticalTo(*Data1))
220       return true;
221
222     return false;
223   }
224
225   // NOTE: This assumes that the value operand is before the
226   // address operand, and that there is only one value operand.
227   for (MachineInstr::mop_iterator I = MI.operands_begin(),
228        E = MI.operands_end(); I != E; ++I) {
229
230     if (I->isReg() && I->isUse())
231       return Op.isIdenticalTo(*I);
232   }
233
234   return false;
235 }
236
237 RegInterval SIInsertWaits::getRegInterval(const TargetRegisterClass *RC,
238                                           const MachineOperand &Reg) const {
239   unsigned Size = RC->getSize();
240   assert(Size >= 4);
241
242   RegInterval Result;
243   Result.first = TRI->getEncodingValue(Reg.getReg());
244   Result.second = Result.first + Size / 4;
245
246   return Result;
247 }
248
249 void SIInsertWaits::pushInstruction(MachineBasicBlock &MBB,
250                                     MachineBasicBlock::iterator I) {
251
252   // Get the hardware counter increments and sum them up
253   Counters Increment = getHwCounts(*I);
254   Counters Limit = ZeroCounts;
255   unsigned Sum = 0;
256
257   for (unsigned i = 0; i < 3; ++i) {
258     LastIssued.Array[i] += Increment.Array[i];
259     if (Increment.Array[i])
260       Limit.Array[i] = LastIssued.Array[i];
261     Sum += Increment.Array[i];
262   }
263
264   // If we don't increase anything then that's it
265   if (Sum == 0) {
266     LastOpcodeType = OTHER;
267     return;
268   }
269
270   if (MBB.getParent()->getSubtarget<AMDGPUSubtarget>().getGeneration() >=
271       AMDGPUSubtarget::VOLCANIC_ISLANDS) {
272     // Any occurrence of consecutive VMEM or SMEM instructions forms a VMEM
273     // or SMEM clause, respectively.
274     //
275     // The temporary workaround is to break the clauses with S_NOP.
276     //
277     // The proper solution would be to allocate registers such that all source
278     // and destination registers don't overlap, e.g. this is illegal:
279     //   r0 = load r2
280     //   r2 = load r0
281     if ((LastOpcodeType == SMEM && TII->isSMRD(I->getOpcode())) ||
282         (LastOpcodeType == VMEM && Increment.Named.VM)) {
283       // Insert a NOP to break the clause.
284       BuildMI(MBB, I, DebugLoc(), TII->get(AMDGPU::S_NOP))
285           .addImm(0);
286       LastInstWritesM0 = false;
287     }
288
289     if (TII->isSMRD(I->getOpcode()))
290       LastOpcodeType = SMEM;
291     else if (Increment.Named.VM)
292       LastOpcodeType = VMEM;
293   }
294
295   // Remember which export instructions we have seen
296   if (Increment.Named.EXP) {
297     ExpInstrTypesSeen |= I->getOpcode() == AMDGPU::EXP ? 1 : 2;
298   }
299
300   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
301     MachineOperand &Op = I->getOperand(i);
302     if (!isOpRelevant(Op))
303       continue;
304
305     const TargetRegisterClass *RC = TII->getOpRegClass(*I, i);
306     RegInterval Interval = getRegInterval(RC, Op);
307     for (unsigned j = Interval.first; j < Interval.second; ++j) {
308
309       // Remember which registers we define
310       if (Op.isDef())
311         DefinedRegs[j] = Limit;
312
313       // and which one we are using
314       if (Op.isUse())
315         UsedRegs[j] = Limit;
316     }
317   }
318 }
319
320 bool SIInsertWaits::insertWait(MachineBasicBlock &MBB,
321                                MachineBasicBlock::iterator I,
322                                const Counters &Required) {
323
324   // End of program? No need to wait on anything
325   if (I != MBB.end() && I->getOpcode() == AMDGPU::S_ENDPGM)
326     return false;
327
328   // Figure out if the async instructions execute in order
329   bool Ordered[3];
330
331   // VM_CNT is always ordered
332   Ordered[0] = true;
333
334   // EXP_CNT is unordered if we have both EXP & VM-writes
335   Ordered[1] = ExpInstrTypesSeen == 3;
336
337   // LGKM_CNT is handled as always unordered. TODO: Handle LDS and GDS
338   Ordered[2] = false;
339
340   // The values we are going to put into the S_WAITCNT instruction
341   Counters Counts = WaitCounts;
342
343   // Do we really need to wait?
344   bool NeedWait = false;
345
346   for (unsigned i = 0; i < 3; ++i) {
347
348     if (Required.Array[i] <= WaitedOn.Array[i])
349       continue;
350
351     NeedWait = true;
352
353     if (Ordered[i]) {
354       unsigned Value = LastIssued.Array[i] - Required.Array[i];
355
356       // Adjust the value to the real hardware possibilities.
357       Counts.Array[i] = std::min(Value, WaitCounts.Array[i]);
358
359     } else
360       Counts.Array[i] = 0;
361
362     // Remember on what we have waited on.
363     WaitedOn.Array[i] = LastIssued.Array[i] - Counts.Array[i];
364   }
365
366   if (!NeedWait)
367     return false;
368
369   // Reset EXP_CNT instruction types
370   if (Counts.Named.EXP == 0)
371     ExpInstrTypesSeen = 0;
372
373   // Build the wait instruction
374   BuildMI(MBB, I, DebugLoc(), TII->get(AMDGPU::S_WAITCNT))
375           .addImm((Counts.Named.VM & 0xF) |
376                   ((Counts.Named.EXP & 0x7) << 4) |
377                   ((Counts.Named.LGKM & 0x7) << 8));
378
379   LastOpcodeType = OTHER;
380   LastInstWritesM0 = false;
381   return true;
382 }
383
384 /// \brief helper function for handleOperands
385 static void increaseCounters(Counters &Dst, const Counters &Src) {
386
387   for (unsigned i = 0; i < 3; ++i)
388     Dst.Array[i] = std::max(Dst.Array[i], Src.Array[i]);
389 }
390
391 Counters SIInsertWaits::handleOperands(MachineInstr &MI) {
392
393   Counters Result = ZeroCounts;
394
395   // S_SENDMSG implicitly waits for all outstanding LGKM transfers to finish,
396   // but we also want to wait for any other outstanding transfers before
397   // signalling other hardware blocks
398   if (MI.getOpcode() == AMDGPU::S_SENDMSG)
399     return LastIssued;
400
401   // For each register affected by this instruction increase the result
402   // sequence.
403   //
404   // TODO: We could probably just look at explicit operands if we removed VCC /
405   // EXEC from SMRD dest reg classes.
406   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
407     MachineOperand &Op = MI.getOperand(i);
408     if (!Op.isReg() || !TRI->isInAllocatableClass(Op.getReg()))
409       continue;
410
411     const TargetRegisterClass *RC = TII->getOpRegClass(MI, i);
412     RegInterval Interval = getRegInterval(RC, Op);
413     for (unsigned j = Interval.first; j < Interval.second; ++j) {
414
415       if (Op.isDef()) {
416         increaseCounters(Result, UsedRegs[j]);
417         increaseCounters(Result, DefinedRegs[j]);
418       }
419
420       if (Op.isUse())
421         increaseCounters(Result, DefinedRegs[j]);
422     }
423   }
424
425   return Result;
426 }
427
428 void SIInsertWaits::handleSendMsg(MachineBasicBlock &MBB,
429                                   MachineBasicBlock::iterator I) {
430   if (MBB.getParent()->getSubtarget<AMDGPUSubtarget>().getGeneration() <
431       AMDGPUSubtarget::VOLCANIC_ISLANDS)
432     return;
433
434   // There must be "S_NOP 0" between an instruction writing M0 and S_SENDMSG.
435   if (LastInstWritesM0 && I->getOpcode() == AMDGPU::S_SENDMSG) {
436     BuildMI(MBB, I, DebugLoc(), TII->get(AMDGPU::S_NOP)).addImm(0);
437     LastInstWritesM0 = false;
438     return;
439   }
440
441   // Set whether this instruction sets M0
442   LastInstWritesM0 = false;
443
444   unsigned NumOperands = I->getNumOperands();
445   for (unsigned i = 0; i < NumOperands; i++) {
446     const MachineOperand &Op = I->getOperand(i);
447
448     if (Op.isReg() && Op.isDef() && Op.getReg() == AMDGPU::M0)
449       LastInstWritesM0 = true;
450   }
451 }
452
453 // FIXME: Insert waits listed in Table 4.2 "Required User-Inserted Wait States"
454 // around other non-memory instructions.
455 bool SIInsertWaits::runOnMachineFunction(MachineFunction &MF) {
456   bool Changes = false;
457
458   TII = static_cast<const SIInstrInfo *>(MF.getSubtarget().getInstrInfo());
459   TRI =
460       static_cast<const SIRegisterInfo *>(MF.getSubtarget().getRegisterInfo());
461
462   MRI = &MF.getRegInfo();
463
464   WaitedOn = ZeroCounts;
465   LastIssued = ZeroCounts;
466   LastOpcodeType = OTHER;
467   LastInstWritesM0 = false;
468
469   memset(&UsedRegs, 0, sizeof(UsedRegs));
470   memset(&DefinedRegs, 0, sizeof(DefinedRegs));
471
472   for (MachineFunction::iterator BI = MF.begin(), BE = MF.end();
473        BI != BE; ++BI) {
474
475     MachineBasicBlock &MBB = *BI;
476     for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
477          I != E; ++I) {
478
479       // Wait for everything before a barrier.
480       if (I->getOpcode() == AMDGPU::S_BARRIER)
481         Changes |= insertWait(MBB, I, LastIssued);
482       else
483         Changes |= insertWait(MBB, I, handleOperands(*I));
484
485       pushInstruction(MBB, I);
486       handleSendMsg(MBB, I);
487     }
488
489     // Wait for everything at the end of the MBB
490     Changes |= insertWait(MBB, MBB.getFirstTerminator(), LastIssued);
491   }
492
493   return Changes;
494 }