03a962e3be5d5c458d1a6e728f220c4fe9f87a74
[oota-llvm.git] / lib / Linker / LinkModules.cpp
1 //===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the LLVM module linker.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Linker.h"
15 #include "llvm/Constants.h"
16 #include "llvm/DerivedTypes.h"
17 #include "llvm/Instructions.h"
18 #include "llvm/Module.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/Support/raw_ostream.h"
21 #include "llvm/Support/Path.h"
22 #include "llvm/Transforms/Utils/Cloning.h"
23 #include "llvm/Transforms/Utils/ValueMapper.h"
24 using namespace llvm;
25
26 //===----------------------------------------------------------------------===//
27 // TypeMap implementation.
28 //===----------------------------------------------------------------------===//
29
30 namespace {
31 class TypeMapTy : public ValueMapTypeRemapper {
32   /// MappedTypes - This is a mapping from a source type to a destination type
33   /// to use.
34   DenseMap<Type*, Type*> MappedTypes;
35
36   /// SpeculativeTypes - When checking to see if two subgraphs are isomorphic,
37   /// we speculatively add types to MappedTypes, but keep track of them here in
38   /// case we need to roll back.
39   SmallVector<Type*, 16> SpeculativeTypes;
40   
41   /// DefinitionsToResolve - This is a list of non-opaque structs in the source
42   /// module that are mapped to an opaque struct in the destination module.
43   SmallVector<StructType*, 16> DefinitionsToResolve;
44 public:
45   
46   /// addTypeMapping - Indicate that the specified type in the destination
47   /// module is conceptually equivalent to the specified type in the source
48   /// module.
49   void addTypeMapping(Type *DstTy, Type *SrcTy);
50
51   /// linkDefinedTypeBodies - Produce a body for an opaque type in the dest
52   /// module from a type definition in the source module.
53   void linkDefinedTypeBodies();
54   
55   /// get - Return the mapped type to use for the specified input type from the
56   /// source module.
57   Type *get(Type *SrcTy);
58
59   FunctionType *get(FunctionType *T) {return cast<FunctionType>(get((Type*)T));}
60
61 private:
62   Type *getImpl(Type *T);
63   /// remapType - Implement the ValueMapTypeRemapper interface.
64   Type *remapType(Type *SrcTy) {
65     return get(SrcTy);
66   }
67   
68   bool areTypesIsomorphic(Type *DstTy, Type *SrcTy);
69 };
70 }
71
72 void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) {
73   Type *&Entry = MappedTypes[SrcTy];
74   if (Entry) return;
75   
76   if (DstTy == SrcTy) {
77     Entry = DstTy;
78     return;
79   }
80   
81   // Check to see if these types are recursively isomorphic and establish a
82   // mapping between them if so.
83   if (!areTypesIsomorphic(DstTy, SrcTy)) {
84     // Oops, they aren't isomorphic.  Just discard this request by rolling out
85     // any speculative mappings we've established.
86     for (unsigned i = 0, e = SpeculativeTypes.size(); i != e; ++i)
87       MappedTypes.erase(SpeculativeTypes[i]);
88   }
89   SpeculativeTypes.clear();
90 }
91
92 /// areTypesIsomorphic - Recursively walk this pair of types, returning true
93 /// if they are isomorphic, false if they are not.
94 bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) {
95   // Two types with differing kinds are clearly not isomorphic.
96   if (DstTy->getTypeID() != SrcTy->getTypeID()) return false;
97
98   // If we have an entry in the MappedTypes table, then we have our answer.
99   Type *&Entry = MappedTypes[SrcTy];
100   if (Entry)
101     return Entry == DstTy;
102
103   // Two identical types are clearly isomorphic.  Remember this
104   // non-speculatively.
105   if (DstTy == SrcTy) {
106     Entry = DstTy;
107     return true;
108   }
109   
110   // Okay, we have two types with identical kinds that we haven't seen before.
111
112   // If this is an opaque struct type, special case it.
113   if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) {
114     // Mapping an opaque type to any struct, just keep the dest struct.
115     if (SSTy->isOpaque()) {
116       Entry = DstTy;
117       SpeculativeTypes.push_back(SrcTy);
118       return true;
119     }
120
121     // Mapping a non-opaque source type to an opaque dest.  Keep the dest, but
122     // fill it in later.  This doesn't need to be speculative.
123     if (cast<StructType>(DstTy)->isOpaque()) {
124       Entry = DstTy;
125       DefinitionsToResolve.push_back(SSTy);
126       return true;
127     }
128   }
129   
130   // If the number of subtypes disagree between the two types, then we fail.
131   if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes())
132     return false;
133   
134   // Fail if any of the extra properties (e.g. array size) of the type disagree.
135   if (isa<IntegerType>(DstTy))
136     return false;  // bitwidth disagrees.
137   if (PointerType *PT = dyn_cast<PointerType>(DstTy)) {
138     if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace())
139       return false;
140   } else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) {
141     if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg())
142       return false;
143   } else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) {
144     StructType *SSTy = cast<StructType>(SrcTy);
145     if (DSTy->isLiteral() != SSTy->isLiteral() ||
146         DSTy->isPacked() != SSTy->isPacked())
147       return false;
148   } else if (ArrayType *DATy = dyn_cast<ArrayType>(DstTy)) {
149     if (DATy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements())
150       return false;
151   } else if (VectorType *DVTy = dyn_cast<VectorType>(DstTy)) {
152     if (DVTy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements())
153       return false;
154   }
155
156   // Otherwise, we speculate that these two types will line up and recursively
157   // check the subelements.
158   Entry = DstTy;
159   SpeculativeTypes.push_back(SrcTy);
160
161   for (unsigned i = 0, e = SrcTy->getNumContainedTypes(); i != e; ++i)
162     if (!areTypesIsomorphic(DstTy->getContainedType(i),
163                             SrcTy->getContainedType(i)))
164       return false;
165   
166   // If everything seems to have lined up, then everything is great.
167   return true;
168 }
169
170 /// linkDefinedTypeBodies - Produce a body for an opaque type in the dest
171 /// module from a type definition in the source module.
172 void TypeMapTy::linkDefinedTypeBodies() {
173   SmallVector<Type*, 16> Elements;
174   SmallString<16> TmpName;
175   
176   // Note that processing entries in this loop (calling 'get') can add new
177   // entries to the DefinitionsToResolve vector.
178   while (!DefinitionsToResolve.empty()) {
179     StructType *SrcSTy = DefinitionsToResolve.pop_back_val();
180     StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]);
181     
182     // TypeMap is a many-to-one mapping, if there were multiple types that
183     // provide a body for DstSTy then previous iterations of this loop may have
184     // already handled it.  Just ignore this case.
185     if (!DstSTy->isOpaque()) continue;
186     assert(!SrcSTy->isOpaque() && "Not resolving a definition?");
187     
188     // Map the body of the source type over to a new body for the dest type.
189     Elements.resize(SrcSTy->getNumElements());
190     for (unsigned i = 0, e = Elements.size(); i != e; ++i)
191       Elements[i] = getImpl(SrcSTy->getElementType(i));
192     
193     DstSTy->setBody(Elements, SrcSTy->isPacked());
194     
195     // If DstSTy has no name or has a longer name than STy, then viciously steal
196     // STy's name.
197     if (!SrcSTy->hasName()) continue;
198     StringRef SrcName = SrcSTy->getName();
199     
200     if (!DstSTy->hasName() || DstSTy->getName().size() > SrcName.size()) {
201       TmpName.insert(TmpName.end(), SrcName.begin(), SrcName.end());
202       SrcSTy->setName("");
203       DstSTy->setName(TmpName.str());
204       TmpName.clear();
205     }
206   }
207 }
208
209
210 /// get - Return the mapped type to use for the specified input type from the
211 /// source module.
212 Type *TypeMapTy::get(Type *Ty) {
213   Type *Result = getImpl(Ty);
214   
215   // If this caused a reference to any struct type, resolve it before returning.
216   if (!DefinitionsToResolve.empty())
217     linkDefinedTypeBodies();
218   return Result;
219 }
220
221 /// getImpl - This is the recursive version of get().
222 Type *TypeMapTy::getImpl(Type *Ty) {
223   // If we already have an entry for this type, return it.
224   Type **Entry = &MappedTypes[Ty];
225   if (*Entry) return *Entry;
226   
227   // If this is not a named struct type, then just map all of the elements and
228   // then rebuild the type from inside out.
229   if (!isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral()) {
230     // If there are no element types to map, then the type is itself.  This is
231     // true for the anonymous {} struct, things like 'float', integers, etc.
232     if (Ty->getNumContainedTypes() == 0)
233       return *Entry = Ty;
234     
235     // Remap all of the elements, keeping track of whether any of them change.
236     bool AnyChange = false;
237     SmallVector<Type*, 4> ElementTypes;
238     ElementTypes.resize(Ty->getNumContainedTypes());
239     for (unsigned i = 0, e = Ty->getNumContainedTypes(); i != e; ++i) {
240       ElementTypes[i] = getImpl(Ty->getContainedType(i));
241       AnyChange |= ElementTypes[i] != Ty->getContainedType(i);
242     }
243     
244     // If we found our type while recursively processing stuff, just use it.
245     Entry = &MappedTypes[Ty];
246     if (*Entry) return *Entry;
247     
248     // If all of the element types mapped directly over, then the type is usable
249     // as-is.
250     if (!AnyChange)
251       return *Entry = Ty;
252     
253     // Otherwise, rebuild a modified type.
254     switch (Ty->getTypeID()) {
255     default: assert(0 && "unknown derived type to remap");
256     case Type::ArrayTyID:
257       return *Entry = ArrayType::get(ElementTypes[0],
258                                      cast<ArrayType>(Ty)->getNumElements());
259     case Type::VectorTyID: 
260       return *Entry = VectorType::get(ElementTypes[0],
261                                       cast<VectorType>(Ty)->getNumElements());
262     case Type::PointerTyID:
263       return *Entry = PointerType::get(ElementTypes[0],
264                                       cast<PointerType>(Ty)->getAddressSpace());
265     case Type::FunctionTyID:
266       return *Entry = FunctionType::get(ElementTypes[0],
267                                         makeArrayRef(ElementTypes).slice(1),
268                                         cast<FunctionType>(Ty)->isVarArg());
269     case Type::StructTyID:
270       // Note that this is only reached for anonymous structs.
271       return *Entry = StructType::get(Ty->getContext(), ElementTypes,
272                                       cast<StructType>(Ty)->isPacked());
273     }
274   }
275
276   // Otherwise, this is an unmapped named struct.  If the struct can be directly
277   // mapped over, just use it as-is.  This happens in a case when the linked-in
278   // module has something like:
279   //   %T = type {%T*, i32}
280   //   @GV = global %T* null
281   // where T does not exist at all in the destination module.
282   //
283   // The other case we watch for is when the type is not in the destination
284   // module, but that it has to be rebuilt because it refers to something that
285   // is already mapped.  For example, if the destination module has:
286   //  %A = type { i32 }
287   // and the source module has something like
288   //  %A' = type { i32 }
289   //  %B = type { %A'* }
290   //  @GV = global %B* null
291   // then we want to create a new type: "%B = type { %A*}" and have it take the
292   // pristine "%B" name from the source module.
293   //
294   // To determine which case this is, we have to recursively walk the type graph
295   // speculating that we'll be able to reuse it unmodified.  Only if this is
296   // safe would we map the entire thing over.  Because this is an optimization,
297   // and is not required for the prettiness of the linked module, we just skip
298   // it and always rebuild a type here.
299   StructType *STy = cast<StructType>(Ty);
300   
301   // If the type is opaque, we can just use it directly.
302   if (STy->isOpaque())
303     return *Entry = STy;
304   
305   // Otherwise we create a new type and resolve its body later.  This will be
306   // resolved by the top level of get().
307   DefinitionsToResolve.push_back(STy);
308   return *Entry = StructType::create(STy->getContext());
309 }
310
311
312
313 //===----------------------------------------------------------------------===//
314 // ModuleLinker implementation.
315 //===----------------------------------------------------------------------===//
316
317 namespace {
318   /// ModuleLinker - This is an implementation class for the LinkModules
319   /// function, which is the entrypoint for this file.
320   class ModuleLinker {
321     Module *DstM, *SrcM;
322     
323     TypeMapTy TypeMap; 
324
325     /// ValueMap - Mapping of values from what they used to be in Src, to what
326     /// they are now in DstM.  ValueToValueMapTy is a ValueMap, which involves
327     /// some overhead due to the use of Value handles which the Linker doesn't
328     /// actually need, but this allows us to reuse the ValueMapper code.
329     ValueToValueMapTy ValueMap;
330     
331     struct AppendingVarInfo {
332       GlobalVariable *NewGV;  // New aggregate global in dest module.
333       Constant *DstInit;      // Old initializer from dest module.
334       Constant *SrcInit;      // Old initializer from src module.
335     };
336     
337     std::vector<AppendingVarInfo> AppendingVars;
338     
339     unsigned Mode; // Mode to treat source module.
340     
341     // Set of items not to link in from source.
342     SmallPtrSet<const Value*, 16> DoNotLinkFromSource;
343     
344   public:
345     std::string ErrorMsg;
346     
347     ModuleLinker(Module *dstM, Module *srcM, unsigned mode)
348       : DstM(dstM), SrcM(srcM), Mode(mode) { }
349     
350     bool run();
351     
352   private:
353     /// emitError - Helper method for setting a message and returning an error
354     /// code.
355     bool emitError(const Twine &Message) {
356       ErrorMsg = Message.str();
357       return true;
358     }
359     
360     /// getLinkageResult - This analyzes the two global values and determines
361     /// what the result will look like in the destination module.
362     bool getLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
363                           GlobalValue::LinkageTypes &LT, bool &LinkFromSrc);
364
365     /// getLinkedToGlobal - Given a global in the source module, return the
366     /// global in the destination module that is being linked to, if any.
367     GlobalValue *getLinkedToGlobal(GlobalValue *SrcGV) {
368       // If the source has no name it can't link.  If it has local linkage,
369       // there is no name match-up going on.
370       if (!SrcGV->hasName() || SrcGV->hasLocalLinkage())
371         return 0;
372       
373       // Otherwise see if we have a match in the destination module's symtab.
374       GlobalValue *DGV = DstM->getNamedValue(SrcGV->getName());
375       if (DGV == 0) return 0;
376         
377       // If we found a global with the same name in the dest module, but it has
378       // internal linkage, we are really not doing any linkage here.
379       if (DGV->hasLocalLinkage())
380         return 0;
381
382       // Otherwise, we do in fact link to the destination global.
383       return DGV;
384     }
385     
386     void computeTypeMapping();
387     
388     bool linkAppendingVarProto(GlobalVariable *DstGV, GlobalVariable *SrcGV);
389     bool linkGlobalProto(GlobalVariable *SrcGV);
390     bool linkFunctionProto(Function *SrcF);
391     bool linkAliasProto(GlobalAlias *SrcA);
392     
393     void linkAppendingVarInit(const AppendingVarInfo &AVI);
394     void linkGlobalInits();
395     void linkFunctionBody(Function *Dst, Function *Src);
396     void linkAliasBodies();
397     void linkNamedMDNodes();
398   };
399 }
400
401
402
403 /// forceRenaming - The LLVM SymbolTable class autorenames globals that conflict
404 /// in the symbol table.  This is good for all clients except for us.  Go
405 /// through the trouble to force this back.
406 static void forceRenaming(GlobalValue *GV, StringRef Name) {
407   // If the global doesn't force its name or if it already has the right name,
408   // there is nothing for us to do.
409   if (GV->hasLocalLinkage() || GV->getName() == Name)
410     return;
411
412   Module *M = GV->getParent();
413
414   // If there is a conflict, rename the conflict.
415   if (GlobalValue *ConflictGV = M->getNamedValue(Name)) {
416     GV->takeName(ConflictGV);
417     ConflictGV->setName(Name);    // This will cause ConflictGV to get renamed
418     assert(ConflictGV->getName() != Name && "forceRenaming didn't work");
419   } else {
420     GV->setName(Name);              // Force the name back
421   }
422 }
423
424 /// CopyGVAttributes - copy additional attributes (those not needed to construct
425 /// a GlobalValue) from the SrcGV to the DestGV.
426 static void CopyGVAttributes(GlobalValue *DestGV, const GlobalValue *SrcGV) {
427   // Use the maximum alignment, rather than just copying the alignment of SrcGV.
428   unsigned Alignment = std::max(DestGV->getAlignment(), SrcGV->getAlignment());
429   DestGV->copyAttributesFrom(SrcGV);
430   DestGV->setAlignment(Alignment);
431   
432   forceRenaming(DestGV, SrcGV->getName());
433 }
434
435 /// getLinkageResult - This analyzes the two global values and determines what
436 /// the result will look like in the destination module.  In particular, it
437 /// computes the resultant linkage type, computes whether the global in the
438 /// source should be copied over to the destination (replacing the existing
439 /// one), and computes whether this linkage is an error or not. It also performs
440 /// visibility checks: we cannot link together two symbols with different
441 /// visibilities.
442 bool ModuleLinker::getLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
443                                     GlobalValue::LinkageTypes &LT, 
444                                     bool &LinkFromSrc) {
445   assert(Dest && "Must have two globals being queried");
446   assert(!Src->hasLocalLinkage() &&
447          "If Src has internal linkage, Dest shouldn't be set!");
448   
449   bool SrcIsDeclaration = Src->isDeclaration();
450   bool DestIsDeclaration = Dest->isDeclaration();
451   
452   if (SrcIsDeclaration) {
453     // If Src is external or if both Src & Dest are external..  Just link the
454     // external globals, we aren't adding anything.
455     if (Src->hasDLLImportLinkage()) {
456       // If one of GVs has DLLImport linkage, result should be dllimport'ed.
457       if (DestIsDeclaration) {
458         LinkFromSrc = true;
459         LT = Src->getLinkage();
460       }
461     } else if (Dest->hasExternalWeakLinkage()) {
462       // If the Dest is weak, use the source linkage.
463       LinkFromSrc = true;
464       LT = Src->getLinkage();
465     } else {
466       LinkFromSrc = false;
467       LT = Dest->getLinkage();
468     }
469   } else if (DestIsDeclaration && !Dest->hasDLLImportLinkage()) {
470     // If Dest is external but Src is not:
471     LinkFromSrc = true;
472     LT = Src->getLinkage();
473   } else if (Src->isWeakForLinker()) {
474     // At this point we know that Dest has LinkOnce, External*, Weak, Common,
475     // or DLL* linkage.
476     if (Dest->hasExternalWeakLinkage() ||
477         Dest->hasAvailableExternallyLinkage() ||
478         (Dest->hasLinkOnceLinkage() &&
479          (Src->hasWeakLinkage() || Src->hasCommonLinkage()))) {
480       LinkFromSrc = true;
481       LT = Src->getLinkage();
482     } else {
483       LinkFromSrc = false;
484       LT = Dest->getLinkage();
485     }
486   } else if (Dest->isWeakForLinker()) {
487     // At this point we know that Src has External* or DLL* linkage.
488     if (Src->hasExternalWeakLinkage()) {
489       LinkFromSrc = false;
490       LT = Dest->getLinkage();
491     } else {
492       LinkFromSrc = true;
493       LT = GlobalValue::ExternalLinkage;
494     }
495   } else {
496     assert((Dest->hasExternalLinkage()  || Dest->hasDLLImportLinkage() ||
497             Dest->hasDLLExportLinkage() || Dest->hasExternalWeakLinkage()) &&
498            (Src->hasExternalLinkage()   || Src->hasDLLImportLinkage() ||
499             Src->hasDLLExportLinkage()  || Src->hasExternalWeakLinkage()) &&
500            "Unexpected linkage type!");
501     return emitError("Linking globals named '" + Src->getName() +
502                  "': symbol multiply defined!");
503   }
504
505   // Check visibility
506   if (Src->getVisibility() != Dest->getVisibility() &&
507       !SrcIsDeclaration && !DestIsDeclaration &&
508       !Src->hasAvailableExternallyLinkage() &&
509       !Dest->hasAvailableExternallyLinkage())
510     return emitError("Linking globals named '" + Src->getName() +
511                    "': symbols have different visibilities!");
512   return false;
513 }
514
515 /// computeTypeMapping - Loop over all of the linked values to compute type
516 /// mappings.  For example, if we link "extern Foo *x" and "Foo *x = NULL", then
517 /// we have two struct types 'Foo' but one got renamed when the module was
518 /// loaded into the same LLVMContext.
519 void ModuleLinker::computeTypeMapping() {
520   // Incorporate globals.
521   for (Module::global_iterator I = SrcM->global_begin(),
522        E = SrcM->global_end(); I != E; ++I) {
523     GlobalValue *DGV = getLinkedToGlobal(I);
524     if (DGV == 0) continue;
525     
526     if (!DGV->hasAppendingLinkage() || !I->hasAppendingLinkage()) {
527       TypeMap.addTypeMapping(DGV->getType(), I->getType());
528       continue;      
529     }
530     
531     // Unify the element type of appending arrays.
532     ArrayType *DAT = cast<ArrayType>(DGV->getType()->getElementType());
533     ArrayType *SAT = cast<ArrayType>(I->getType()->getElementType());
534     TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType());
535   }
536   
537   // Incorporate functions.
538   for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I) {
539     if (GlobalValue *DGV = getLinkedToGlobal(I))
540       TypeMap.addTypeMapping(DGV->getType(), I->getType());
541   }
542   
543   // Don't bother incorporating aliases, they aren't generally typed well.
544   
545   // Now that we have discovered all of the type equivalences, get a body for
546   // any 'opaque' types in the dest module that are now resolved. 
547   TypeMap.linkDefinedTypeBodies();
548 }
549
550 /// linkAppendingVarProto - If there were any appending global variables, link
551 /// them together now.  Return true on error.
552 bool ModuleLinker::linkAppendingVarProto(GlobalVariable *DstGV,
553                                          GlobalVariable *SrcGV) {
554  
555   if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage())
556     return emitError("Linking globals named '" + SrcGV->getName() +
557            "': can only link appending global with another appending global!");
558   
559   ArrayType *DstTy = cast<ArrayType>(DstGV->getType()->getElementType());
560   ArrayType *SrcTy =
561     cast<ArrayType>(TypeMap.get(SrcGV->getType()->getElementType()));
562   Type *EltTy = DstTy->getElementType();
563   
564   // Check to see that they two arrays agree on type.
565   if (EltTy != SrcTy->getElementType())
566     return emitError("Appending variables with different element types!");
567   if (DstGV->isConstant() != SrcGV->isConstant())
568     return emitError("Appending variables linked with different const'ness!");
569   
570   if (DstGV->getAlignment() != SrcGV->getAlignment())
571     return emitError(
572              "Appending variables with different alignment need to be linked!");
573   
574   if (DstGV->getVisibility() != SrcGV->getVisibility())
575     return emitError(
576             "Appending variables with different visibility need to be linked!");
577   
578   if (DstGV->getSection() != SrcGV->getSection())
579     return emitError(
580           "Appending variables with different section name need to be linked!");
581   
582   uint64_t NewSize = DstTy->getNumElements() + SrcTy->getNumElements();
583   ArrayType *NewType = ArrayType::get(EltTy, NewSize);
584   
585   // Create the new global variable.
586   GlobalVariable *NG =
587     new GlobalVariable(*DstGV->getParent(), NewType, SrcGV->isConstant(),
588                        DstGV->getLinkage(), /*init*/0, /*name*/"", DstGV,
589                        DstGV->isThreadLocal(),
590                        DstGV->getType()->getAddressSpace());
591   
592   // Propagate alignment, visibility and section info.
593   CopyGVAttributes(NG, DstGV);
594   
595   AppendingVarInfo AVI;
596   AVI.NewGV = NG;
597   AVI.DstInit = DstGV->getInitializer();
598   AVI.SrcInit = SrcGV->getInitializer();
599   AppendingVars.push_back(AVI);
600
601   // Replace any uses of the two global variables with uses of the new
602   // global.
603   ValueMap[SrcGV] = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType()));
604
605   DstGV->replaceAllUsesWith(ConstantExpr::getBitCast(NG, DstGV->getType()));
606   DstGV->eraseFromParent();
607   
608   // Track the source variable so we don't try to link it.
609   DoNotLinkFromSource.insert(SrcGV);
610   
611   return false;
612 }
613
614 /// linkGlobalProto - Loop through the global variables in the src module and
615 /// merge them into the dest module.
616 bool ModuleLinker::linkGlobalProto(GlobalVariable *SGV) {
617   GlobalValue *DGV = getLinkedToGlobal(SGV);
618
619   if (DGV) {
620     // Concatenation of appending linkage variables is magic and handled later.
621     if (DGV->hasAppendingLinkage() || SGV->hasAppendingLinkage())
622       return linkAppendingVarProto(cast<GlobalVariable>(DGV), SGV);
623     
624     // Determine whether linkage of these two globals follows the source
625     // module's definition or the destination module's definition.
626     GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
627     bool LinkFromSrc = false;
628     if (getLinkageResult(DGV, SGV, NewLinkage, LinkFromSrc))
629       return true;
630
631     // If we're not linking from the source, then keep the definition that we
632     // have.
633     if (!LinkFromSrc) {
634       // Special case for const propagation.
635       if (GlobalVariable *DGVar = dyn_cast<GlobalVariable>(DGV))
636         if (DGVar->isDeclaration() && SGV->isConstant() && !DGVar->isConstant())
637           DGVar->setConstant(true);
638       
639       // Set calculated linkage.
640       DGV->setLinkage(NewLinkage);
641       
642       // Make sure to remember this mapping.
643       ValueMap[SGV] = ConstantExpr::getBitCast(DGV,TypeMap.get(SGV->getType()));
644       
645       // Track the source global so that we don't attempt to copy it over when 
646       // processing global initializers.
647       DoNotLinkFromSource.insert(SGV);
648       
649       return false;
650     }
651   }
652   
653   // No linking to be performed or linking from the source: simply create an
654   // identical version of the symbol over in the dest module... the
655   // initializer will be filled in later by LinkGlobalInits.
656   GlobalVariable *NewDGV =
657     new GlobalVariable(*DstM, TypeMap.get(SGV->getType()->getElementType()),
658                        SGV->isConstant(), SGV->getLinkage(), /*init*/0,
659                        SGV->getName(), /*insertbefore*/0,
660                        SGV->isThreadLocal(),
661                        SGV->getType()->getAddressSpace());
662   // Propagate alignment, visibility and section info.
663   CopyGVAttributes(NewDGV, SGV);
664
665   if (DGV) {
666     DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDGV, DGV->getType()));
667     DGV->eraseFromParent();
668   }
669   
670   // Make sure to remember this mapping.
671   ValueMap[SGV] = NewDGV;
672   return false;
673 }
674
675 /// linkFunctionProto - Link the function in the source module into the
676 /// destination module if needed, setting up mapping information.
677 bool ModuleLinker::linkFunctionProto(Function *SF) {
678   GlobalValue *DGV = getLinkedToGlobal(SF);
679
680   if (DGV) {
681     GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
682     bool LinkFromSrc = false;
683     if (getLinkageResult(DGV, SF, NewLinkage, LinkFromSrc))
684       return true;
685     
686     if (!LinkFromSrc) {
687       // Set calculated linkage
688       DGV->setLinkage(NewLinkage);
689       
690       // Make sure to remember this mapping.
691       ValueMap[SF] = ConstantExpr::getBitCast(DGV, TypeMap.get(SF->getType()));
692       
693       // Track the function from the source module so we don't attempt to remap 
694       // it.
695       DoNotLinkFromSource.insert(SF);
696       
697       return false;
698     }
699   }
700   
701   // If there is no linkage to be performed or we are linking from the source,
702   // bring SF over.
703   Function *NewDF = Function::Create(TypeMap.get(SF->getFunctionType()),
704                                      SF->getLinkage(), SF->getName(), DstM);
705   CopyGVAttributes(NewDF, SF);
706
707   if (DGV) {
708     // Any uses of DF need to change to NewDF, with cast.
709     DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDF, DGV->getType()));
710     DGV->eraseFromParent();
711   }
712   
713   ValueMap[SF] = NewDF;
714   return false;
715 }
716
717 /// LinkAliasProto - Set up prototypes for any aliases that come over from the
718 /// source module.
719 bool ModuleLinker::linkAliasProto(GlobalAlias *SGA) {
720   GlobalValue *DGV = getLinkedToGlobal(SGA);
721   
722   if (DGV) {
723     GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
724     bool LinkFromSrc = false;
725     if (getLinkageResult(DGV, SGA, NewLinkage, LinkFromSrc))
726       return true;
727     
728     if (!LinkFromSrc) {
729       // Set calculated linkage.
730       DGV->setLinkage(NewLinkage);
731       
732       // Make sure to remember this mapping.
733       ValueMap[SGA] = ConstantExpr::getBitCast(DGV,TypeMap.get(SGA->getType()));
734       
735       // Track the alias from the source module so we don't attempt to remap it.
736       DoNotLinkFromSource.insert(SGA);
737       
738       return false;
739     }
740   }
741   
742   // If there is no linkage to be performed or we're linking from the source,
743   // bring over SGA.
744   GlobalAlias *NewDA = new GlobalAlias(TypeMap.get(SGA->getType()),
745                                        SGA->getLinkage(), SGA->getName(),
746                                        /*aliasee*/0, DstM);
747   CopyGVAttributes(NewDA, SGA);
748
749   if (DGV) {
750     // Any uses of DGV need to change to NewDA, with cast.
751     DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDA, DGV->getType()));
752     DGV->eraseFromParent();
753   }
754   
755   ValueMap[SGA] = NewDA;
756   return false;
757 }
758
759 void ModuleLinker::linkAppendingVarInit(const AppendingVarInfo &AVI) {
760   // Merge the initializer.
761   SmallVector<Constant*, 16> Elements;
762   if (ConstantArray *I = dyn_cast<ConstantArray>(AVI.DstInit)) {
763     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
764       Elements.push_back(I->getOperand(i));
765   } else {
766     assert(isa<ConstantAggregateZero>(AVI.DstInit));
767     ArrayType *DstAT = cast<ArrayType>(AVI.DstInit->getType());
768     Type *EltTy = DstAT->getElementType();
769     Elements.append(DstAT->getNumElements(), Constant::getNullValue(EltTy));
770   }
771   
772   Constant *SrcInit = MapValue(AVI.SrcInit, ValueMap, RF_None, &TypeMap);
773   if (const ConstantArray *I = dyn_cast<ConstantArray>(SrcInit)) {
774     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
775       Elements.push_back(I->getOperand(i));
776   } else {
777     assert(isa<ConstantAggregateZero>(SrcInit));
778     ArrayType *SrcAT = cast<ArrayType>(SrcInit->getType());
779     Type *EltTy = SrcAT->getElementType();
780     Elements.append(SrcAT->getNumElements(), Constant::getNullValue(EltTy));
781   }
782   ArrayType *NewType = cast<ArrayType>(AVI.NewGV->getType()->getElementType());
783   AVI.NewGV->setInitializer(ConstantArray::get(NewType, Elements));
784 }
785
786
787 // linkGlobalInits - Update the initializers in the Dest module now that all
788 // globals that may be referenced are in Dest.
789 void ModuleLinker::linkGlobalInits() {
790   // Loop over all of the globals in the src module, mapping them over as we go
791   for (Module::const_global_iterator I = SrcM->global_begin(),
792        E = SrcM->global_end(); I != E; ++I) {
793     
794     // Only process initialized GV's or ones not already in dest.
795     if (!I->hasInitializer() || DoNotLinkFromSource.count(I)) continue;          
796     
797     // Grab destination global variable.
798     GlobalVariable *DGV = cast<GlobalVariable>(ValueMap[I]);
799     // Figure out what the initializer looks like in the dest module.
800     DGV->setInitializer(MapValue(I->getInitializer(), ValueMap,
801                                  RF_None, &TypeMap));
802   }
803 }
804
805 // linkFunctionBody - Copy the source function over into the dest function and
806 // fix up references to values.  At this point we know that Dest is an external
807 // function, and that Src is not.
808 void ModuleLinker::linkFunctionBody(Function *Dst, Function *Src) {
809   assert(Src && Dst && Dst->isDeclaration() && !Src->isDeclaration());
810
811   // Go through and convert function arguments over, remembering the mapping.
812   Function::arg_iterator DI = Dst->arg_begin();
813   for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
814        I != E; ++I, ++DI) {
815     DI->setName(I->getName());  // Copy the name over.
816
817     // Add a mapping to our mapping.
818     ValueMap[I] = DI;
819   }
820
821   if (Mode == Linker::DestroySource) {
822     // Splice the body of the source function into the dest function.
823     Dst->getBasicBlockList().splice(Dst->end(), Src->getBasicBlockList());
824     
825     // At this point, all of the instructions and values of the function are now
826     // copied over.  The only problem is that they are still referencing values in
827     // the Source function as operands.  Loop through all of the operands of the
828     // functions and patch them up to point to the local versions.
829     for (Function::iterator BB = Dst->begin(), BE = Dst->end(); BB != BE; ++BB)
830       for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
831         RemapInstruction(I, ValueMap, RF_IgnoreMissingEntries, &TypeMap);
832     
833   } else {
834     // Clone the body of the function into the dest function.
835     SmallVector<ReturnInst*, 8> Returns; // Ignore returns.
836     CloneFunctionInto(Dst, Src, ValueMap, false, Returns);
837   }
838   
839   // There is no need to map the arguments anymore.
840   for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
841        I != E; ++I)
842     ValueMap.erase(I);
843   
844 }
845
846
847 void ModuleLinker::linkAliasBodies() {
848   for (Module::alias_iterator I = SrcM->alias_begin(), E = SrcM->alias_end();
849        I != E; ++I) {
850     if (DoNotLinkFromSource.count(I))
851       continue;
852     if (Constant *Aliasee = I->getAliasee()) {
853       GlobalAlias *DA = cast<GlobalAlias>(ValueMap[I]);
854       DA->setAliasee(MapValue(Aliasee, ValueMap, RF_None, &TypeMap));
855     }
856   }
857 }
858
859 /// linkNamedMDNodes - Insert all of the named mdnodes in Src into the Dest
860 /// module.
861 void ModuleLinker::linkNamedMDNodes() {
862   for (Module::const_named_metadata_iterator I = SrcM->named_metadata_begin(),
863        E = SrcM->named_metadata_end(); I != E; ++I) {
864     NamedMDNode *DestNMD = DstM->getOrInsertNamedMetadata(I->getName());
865     // Add Src elements into Dest node.
866     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
867       DestNMD->addOperand(MapValue(I->getOperand(i), ValueMap,
868                                    RF_None, &TypeMap));
869   }
870 }
871   
872 bool ModuleLinker::run() {
873   assert(DstM && "Null Destination module");
874   assert(SrcM && "Null Source Module");
875
876   // Inherit the target data from the source module if the destination module
877   // doesn't have one already.
878   if (DstM->getDataLayout().empty() && !SrcM->getDataLayout().empty())
879     DstM->setDataLayout(SrcM->getDataLayout());
880
881   // Copy the target triple from the source to dest if the dest's is empty.
882   if (DstM->getTargetTriple().empty() && !SrcM->getTargetTriple().empty())
883     DstM->setTargetTriple(SrcM->getTargetTriple());
884
885   if (!SrcM->getDataLayout().empty() && !DstM->getDataLayout().empty() &&
886       SrcM->getDataLayout() != DstM->getDataLayout())
887     errs() << "WARNING: Linking two modules of different data layouts!\n";
888   if (!SrcM->getTargetTriple().empty() &&
889       DstM->getTargetTriple() != SrcM->getTargetTriple()) {
890     errs() << "WARNING: Linking two modules of different target triples: ";
891     if (!SrcM->getModuleIdentifier().empty())
892       errs() << SrcM->getModuleIdentifier() << ": ";
893     errs() << "'" << SrcM->getTargetTriple() << "' and '" 
894            << DstM->getTargetTriple() << "'\n";
895   }
896
897   // Append the module inline asm string.
898   if (!SrcM->getModuleInlineAsm().empty()) {
899     if (DstM->getModuleInlineAsm().empty())
900       DstM->setModuleInlineAsm(SrcM->getModuleInlineAsm());
901     else
902       DstM->setModuleInlineAsm(DstM->getModuleInlineAsm()+"\n"+
903                                SrcM->getModuleInlineAsm());
904   }
905
906   // Update the destination module's dependent libraries list with the libraries
907   // from the source module. There's no opportunity for duplicates here as the
908   // Module ensures that duplicate insertions are discarded.
909   for (Module::lib_iterator SI = SrcM->lib_begin(), SE = SrcM->lib_end();
910        SI != SE; ++SI)
911     DstM->addLibrary(*SI);
912   
913   // If the source library's module id is in the dependent library list of the
914   // destination library, remove it since that module is now linked in.
915   StringRef ModuleId = SrcM->getModuleIdentifier();
916   if (!ModuleId.empty())
917     DstM->removeLibrary(sys::path::stem(ModuleId));
918   
919   // Loop over all of the linked values to compute type mappings.
920   computeTypeMapping();
921
922   // Insert all of the globals in src into the DstM module... without linking
923   // initializers (which could refer to functions not yet mapped over).
924   for (Module::global_iterator I = SrcM->global_begin(),
925        E = SrcM->global_end(); I != E; ++I)
926     if (linkGlobalProto(I))
927       return true;
928
929   // Link the functions together between the two modules, without doing function
930   // bodies... this just adds external function prototypes to the DstM
931   // function...  We do this so that when we begin processing function bodies,
932   // all of the global values that may be referenced are available in our
933   // ValueMap.
934   for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I)
935     if (linkFunctionProto(I))
936       return true;
937
938   // If there were any aliases, link them now.
939   for (Module::alias_iterator I = SrcM->alias_begin(),
940        E = SrcM->alias_end(); I != E; ++I)
941     if (linkAliasProto(I))
942       return true;
943
944   for (unsigned i = 0, e = AppendingVars.size(); i != e; ++i)
945     linkAppendingVarInit(AppendingVars[i]);
946   
947   // Update the initializers in the DstM module now that all globals that may
948   // be referenced are in DstM.
949   linkGlobalInits();
950
951   // Link in the function bodies that are defined in the source module into
952   // DstM.
953   for (Module::iterator SF = SrcM->begin(), E = SrcM->end(); SF != E; ++SF) {
954     
955     // Skip if not linking from source.
956     if (DoNotLinkFromSource.count(SF)) continue;
957     
958     // Skip if no body (function is external) or materialize.
959     if (SF->isDeclaration()) {
960       if (!SF->isMaterializable())
961         continue;
962       if (SF->Materialize(&ErrorMsg))
963         return true;
964     }
965     
966     linkFunctionBody(cast<Function>(ValueMap[SF]), SF);
967   }
968
969   // Resolve all uses of aliases with aliasees.
970   linkAliasBodies();
971
972   // Remap all of the named mdnoes in Src into the DstM module. We do this
973   // after linking GlobalValues so that MDNodes that reference GlobalValues
974   // are properly remapped.
975   linkNamedMDNodes();
976
977   // Now that all of the types from the source are used, resolve any structs
978   // copied over to the dest that didn't exist there.
979   TypeMap.linkDefinedTypeBodies();
980   
981   return false;
982 }
983
984 //===----------------------------------------------------------------------===//
985 // LinkModules entrypoint.
986 //===----------------------------------------------------------------------===//
987
988 // LinkModules - This function links two modules together, with the resulting
989 // left module modified to be the composite of the two input modules.  If an
990 // error occurs, true is returned and ErrorMsg (if not null) is set to indicate
991 // the problem.  Upon failure, the Dest module could be in a modified state, and
992 // shouldn't be relied on to be consistent.
993 bool Linker::LinkModules(Module *Dest, Module *Src, unsigned Mode, 
994                          std::string *ErrorMsg) {
995   ModuleLinker TheLinker(Dest, Src, Mode);
996   if (TheLinker.run()) {
997     if (ErrorMsg) *ErrorMsg = TheLinker.ErrorMsg;
998     return true;
999   }
1000   
1001   return false;
1002 }