42770fcdcae77358610ca4e5fce6865c93cb40d8
[oota-llvm.git] / lib / ExecutionEngine / Orc / OrcMCJITReplacement.h
1 //===---- OrcMCJITReplacement.h - Orc based MCJIT replacement ---*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Orc based MCJIT replacement.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_LIB_EXECUTIONENGINE_ORC_ORCMCJITREPLACEMENT_H
15 #define LLVM_LIB_EXECUTIONENGINE_ORC_ORCMCJITREPLACEMENT_H
16
17 #include "llvm/ExecutionEngine/ExecutionEngine.h"
18 #include "llvm/ExecutionEngine/Orc/CompileUtils.h"
19 #include "llvm/ExecutionEngine/Orc/IRCompileLayer.h"
20 #include "llvm/ExecutionEngine/Orc/LazyEmittingLayer.h"
21 #include "llvm/ExecutionEngine/Orc/ObjectLinkingLayer.h"
22 #include "llvm/Object/Archive.h"
23
24 namespace llvm {
25 namespace orc {
26
27 class OrcMCJITReplacement : public ExecutionEngine {
28
29   // OrcMCJITReplacement needs to do a little extra book-keeping to ensure that
30   // Orc's automatic finalization doesn't kick in earlier than MCJIT clients are
31   // expecting - see finalizeMemory.
32   class MCJITReplacementMemMgr : public MCJITMemoryManager {
33   public:
34     MCJITReplacementMemMgr(OrcMCJITReplacement &M,
35                            std::shared_ptr<MCJITMemoryManager> ClientMM)
36       : M(M), ClientMM(std::move(ClientMM)) {}
37
38     uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment,
39                                  unsigned SectionID,
40                                  StringRef SectionName) override {
41       uint8_t *Addr =
42           ClientMM->allocateCodeSection(Size, Alignment, SectionID,
43                                         SectionName);
44       M.SectionsAllocatedSinceLastLoad.insert(Addr);
45       return Addr;
46     }
47
48     uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment,
49                                  unsigned SectionID, StringRef SectionName,
50                                  bool IsReadOnly) override {
51       uint8_t *Addr = ClientMM->allocateDataSection(Size, Alignment, SectionID,
52                                                     SectionName, IsReadOnly);
53       M.SectionsAllocatedSinceLastLoad.insert(Addr);
54       return Addr;
55     }
56
57     void reserveAllocationSpace(uintptr_t CodeSize, uintptr_t DataSizeRO,
58                                 uintptr_t DataSizeRW) override {
59       return ClientMM->reserveAllocationSpace(CodeSize, DataSizeRO,
60                                                 DataSizeRW);
61     }
62
63     bool needsToReserveAllocationSpace() override {
64       return ClientMM->needsToReserveAllocationSpace();
65     }
66
67     void registerEHFrames(uint8_t *Addr, uint64_t LoadAddr,
68                           size_t Size) override {
69       return ClientMM->registerEHFrames(Addr, LoadAddr, Size);
70     }
71
72     void deregisterEHFrames(uint8_t *Addr, uint64_t LoadAddr,
73                             size_t Size) override {
74       return ClientMM->deregisterEHFrames(Addr, LoadAddr, Size);
75     }
76
77     void notifyObjectLoaded(ExecutionEngine *EE,
78                             const object::ObjectFile &O) override {
79       return ClientMM->notifyObjectLoaded(EE, O);
80     }
81
82     bool finalizeMemory(std::string *ErrMsg = nullptr) override {
83       // Each set of objects loaded will be finalized exactly once, but since
84       // symbol lookup during relocation may recursively trigger the
85       // loading/relocation of other modules, and since we're forwarding all
86       // finalizeMemory calls to a single underlying memory manager, we need to
87       // defer forwarding the call on until all necessary objects have been
88       // loaded. Otherwise, during the relocation of a leaf object, we will end
89       // up finalizing memory, causing a crash further up the stack when we
90       // attempt to apply relocations to finalized memory.
91       // To avoid finalizing too early, look at how many objects have been
92       // loaded but not yet finalized. This is a bit of a hack that relies on
93       // the fact that we're lazily emitting object files: The only way you can
94       // get more than one set of objects loaded but not yet finalized is if
95       // they were loaded during relocation of another set.
96       if (M.UnfinalizedSections.size() == 1)
97         return ClientMM->finalizeMemory(ErrMsg);
98       return false;
99     }
100
101   private:
102     OrcMCJITReplacement &M;
103     std::shared_ptr<MCJITMemoryManager> ClientMM;
104   };
105
106   class LinkingResolver : public RuntimeDyld::SymbolResolver {
107   public:
108     LinkingResolver(OrcMCJITReplacement &M) : M(M) {}
109
110     RuntimeDyld::SymbolInfo findSymbol(const std::string &Name) override {
111       return M.findMangledSymbol(Name);
112     }
113
114     RuntimeDyld::SymbolInfo
115     findSymbolInLogicalDylib(const std::string &Name) override {
116       return M.ClientResolver->findSymbolInLogicalDylib(Name);
117     }
118
119   private:
120     OrcMCJITReplacement &M;
121   };
122
123 private:
124
125   static ExecutionEngine *
126   createOrcMCJITReplacement(std::string *ErrorMsg,
127                             std::shared_ptr<MCJITMemoryManager> MemMgr,
128                             std::shared_ptr<RuntimeDyld::SymbolResolver> Resolver,
129                             std::unique_ptr<TargetMachine> TM) {
130     return new OrcMCJITReplacement(std::move(MemMgr), std::move(Resolver),
131                                    std::move(TM));
132   }
133
134 public:
135   static void Register() {
136     OrcMCJITReplacementCtor = createOrcMCJITReplacement;
137   }
138
139   OrcMCJITReplacement(
140       std::shared_ptr<MCJITMemoryManager> MemMgr,
141       std::shared_ptr<RuntimeDyld::SymbolResolver> ClientResolver,
142       std::unique_ptr<TargetMachine> TM)
143       : ExecutionEngine(TM->createDataLayout()), TM(std::move(TM)),
144         MemMgr(*this, std::move(MemMgr)), Resolver(*this),
145         ClientResolver(std::move(ClientResolver)), NotifyObjectLoaded(*this),
146         NotifyFinalized(*this),
147         ObjectLayer(NotifyObjectLoaded, NotifyFinalized),
148         CompileLayer(ObjectLayer, SimpleCompiler(*this->TM)),
149         LazyEmitLayer(CompileLayer) {}
150
151   void addModule(std::unique_ptr<Module> M) override {
152
153     // If this module doesn't have a DataLayout attached then attach the
154     // default.
155     if (M->getDataLayout().isDefault()) {
156       M->setDataLayout(getDataLayout());
157     } else {
158       assert(M->getDataLayout() == getDataLayout() && "DataLayout Mismatch");
159     }
160     Modules.push_back(std::move(M));
161     std::vector<Module *> Ms;
162     Ms.push_back(&*Modules.back());
163     LazyEmitLayer.addModuleSet(std::move(Ms), &MemMgr, &Resolver);
164   }
165
166   void addObjectFile(std::unique_ptr<object::ObjectFile> O) override {
167     std::vector<std::unique_ptr<object::ObjectFile>> Objs;
168     Objs.push_back(std::move(O));
169     ObjectLayer.addObjectSet(std::move(Objs), &MemMgr, &Resolver);
170   }
171
172   void addObjectFile(object::OwningBinary<object::ObjectFile> O) override {
173     std::unique_ptr<object::ObjectFile> Obj;
174     std::unique_ptr<MemoryBuffer> Buf;
175     std::tie(Obj, Buf) = O.takeBinary();
176     std::vector<std::unique_ptr<object::ObjectFile>> Objs;
177     Objs.push_back(std::move(Obj));
178     ObjectLayer.addObjectSet(std::move(Objs), &MemMgr, &Resolver);
179   }
180
181   void addArchive(object::OwningBinary<object::Archive> A) override {
182     Archives.push_back(std::move(A));
183   }
184
185   uint64_t getSymbolAddress(StringRef Name) {
186     return findSymbol(Name).getAddress();
187   }
188
189   RuntimeDyld::SymbolInfo findSymbol(StringRef Name) {
190     return findMangledSymbol(Mangle(Name));
191   }
192
193   void finalizeObject() override {
194     // This is deprecated - Aim to remove in ExecutionEngine.
195     // REMOVE IF POSSIBLE - Doesn't make sense for New JIT.
196   }
197
198   void mapSectionAddress(const void *LocalAddress,
199                          uint64_t TargetAddress) override {
200     for (auto &P : UnfinalizedSections)
201       if (P.second.count(LocalAddress))
202         ObjectLayer.mapSectionAddress(P.first, LocalAddress, TargetAddress);
203   }
204
205   uint64_t getGlobalValueAddress(const std::string &Name) override {
206     return getSymbolAddress(Name);
207   }
208
209   uint64_t getFunctionAddress(const std::string &Name) override {
210     return getSymbolAddress(Name);
211   }
212
213   void *getPointerToFunction(Function *F) override {
214     uint64_t FAddr = getSymbolAddress(F->getName());
215     return reinterpret_cast<void *>(static_cast<uintptr_t>(FAddr));
216   }
217
218   void *getPointerToNamedFunction(StringRef Name,
219                                   bool AbortOnFailure = true) override {
220     uint64_t Addr = getSymbolAddress(Name);
221     if (!Addr && AbortOnFailure)
222       llvm_unreachable("Missing symbol!");
223     return reinterpret_cast<void *>(static_cast<uintptr_t>(Addr));
224   }
225
226   GenericValue runFunction(Function *F,
227                            ArrayRef<GenericValue> ArgValues) override;
228
229   void setObjectCache(ObjectCache *NewCache) override {
230     CompileLayer.setObjectCache(NewCache);
231   }
232
233 private:
234
235   RuntimeDyld::SymbolInfo findMangledSymbol(StringRef Name) {
236     if (auto Sym = LazyEmitLayer.findSymbol(Name, false))
237       return RuntimeDyld::SymbolInfo(Sym.getAddress(), Sym.getFlags());
238     if (auto Sym = ClientResolver->findSymbol(Name))
239       return RuntimeDyld::SymbolInfo(Sym.getAddress(), Sym.getFlags());
240     if (auto Sym = scanArchives(Name))
241       return RuntimeDyld::SymbolInfo(Sym.getAddress(), Sym.getFlags());
242
243     return nullptr;
244   }
245
246   JITSymbol scanArchives(StringRef Name) {
247     for (object::OwningBinary<object::Archive> &OB : Archives) {
248       object::Archive *A = OB.getBinary();
249       // Look for our symbols in each Archive
250       object::Archive::child_iterator ChildIt = A->findSym(Name);
251       if (ChildIt != A->child_end()) {
252         // FIXME: Support nested archives?
253         ErrorOr<std::unique_ptr<object::Binary>> ChildBinOrErr =
254             ChildIt->getAsBinary();
255         if (ChildBinOrErr.getError())
256           continue;
257         std::unique_ptr<object::Binary> &ChildBin = ChildBinOrErr.get();
258         if (ChildBin->isObject()) {
259           std::vector<std::unique_ptr<object::ObjectFile>> ObjSet;
260           ObjSet.push_back(std::unique_ptr<object::ObjectFile>(
261               static_cast<object::ObjectFile *>(ChildBin.release())));
262           ObjectLayer.addObjectSet(std::move(ObjSet), &MemMgr, &Resolver);
263           if (auto Sym = ObjectLayer.findSymbol(Name, true))
264             return Sym;
265         }
266       }
267     }
268     return nullptr;
269   }
270
271   class NotifyObjectLoadedT {
272   public:
273     typedef std::vector<std::unique_ptr<object::ObjectFile>> ObjListT;
274     typedef std::vector<std::unique_ptr<RuntimeDyld::LoadedObjectInfo>>
275         LoadedObjInfoListT;
276
277     NotifyObjectLoadedT(OrcMCJITReplacement &M) : M(M) {}
278
279     void operator()(ObjectLinkingLayerBase::ObjSetHandleT H,
280                     const ObjListT &Objects,
281                     const LoadedObjInfoListT &Infos) const {
282       M.UnfinalizedSections[H] = std::move(M.SectionsAllocatedSinceLastLoad);
283       M.SectionsAllocatedSinceLastLoad = SectionAddrSet();
284       assert(Objects.size() == Infos.size() &&
285              "Incorrect number of Infos for Objects.");
286       for (unsigned I = 0; I < Objects.size(); ++I)
287         M.MemMgr.notifyObjectLoaded(&M, *Objects[I]);
288     }
289
290   private:
291     OrcMCJITReplacement &M;
292   };
293
294   class NotifyFinalizedT {
295   public:
296     NotifyFinalizedT(OrcMCJITReplacement &M) : M(M) {}
297     void operator()(ObjectLinkingLayerBase::ObjSetHandleT H) {
298       M.UnfinalizedSections.erase(H);
299     }
300
301   private:
302     OrcMCJITReplacement &M;
303   };
304
305   std::string Mangle(StringRef Name) {
306     std::string MangledName;
307     {
308       raw_string_ostream MangledNameStream(MangledName);
309       Mang.getNameWithPrefix(MangledNameStream, Name, getDataLayout());
310     }
311     return MangledName;
312   }
313
314   typedef ObjectLinkingLayer<NotifyObjectLoadedT> ObjectLayerT;
315   typedef IRCompileLayer<ObjectLayerT> CompileLayerT;
316   typedef LazyEmittingLayer<CompileLayerT> LazyEmitLayerT;
317
318   std::unique_ptr<TargetMachine> TM;
319   MCJITReplacementMemMgr MemMgr;
320   LinkingResolver Resolver;
321   std::shared_ptr<RuntimeDyld::SymbolResolver> ClientResolver;
322   Mangler Mang;
323
324   NotifyObjectLoadedT NotifyObjectLoaded;
325   NotifyFinalizedT NotifyFinalized;
326
327   ObjectLayerT ObjectLayer;
328   CompileLayerT CompileLayer;
329   LazyEmitLayerT LazyEmitLayer;
330
331   // We need to store ObjLayerT::ObjSetHandles for each of the object sets
332   // that have been emitted but not yet finalized so that we can forward the
333   // mapSectionAddress calls appropriately.
334   typedef std::set<const void *> SectionAddrSet;
335   struct ObjSetHandleCompare {
336     bool operator()(ObjectLayerT::ObjSetHandleT H1,
337                     ObjectLayerT::ObjSetHandleT H2) const {
338       return &*H1 < &*H2;
339     }
340   };
341   SectionAddrSet SectionsAllocatedSinceLastLoad;
342   std::map<ObjectLayerT::ObjSetHandleT, SectionAddrSet, ObjSetHandleCompare>
343       UnfinalizedSections;
344
345   std::vector<object::OwningBinary<object::Archive>> Archives;
346 };
347
348 } // End namespace orc.
349 } // End namespace llvm.
350
351 #endif // LLVM_LIB_EXECUTIONENGINE_ORC_MCJITREPLACEMENT_H