4023344d2f3d5f6f8196b27cd2ddbe75e2ba420d
[oota-llvm.git] / lib / ExecutionEngine / Orc / OrcMCJITReplacement.h
1 //===---- OrcMCJITReplacement.h - Orc based MCJIT replacement ---*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Orc based MCJIT replacement.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_LIB_EXECUTIONENGINE_ORC_ORCMCJITREPLACEMENT_H
15 #define LLVM_LIB_EXECUTIONENGINE_ORC_ORCMCJITREPLACEMENT_H
16
17 #include "llvm/ExecutionEngine/ExecutionEngine.h"
18 #include "llvm/ExecutionEngine/Orc/CompileUtils.h"
19 #include "llvm/ExecutionEngine/Orc/IRCompileLayer.h"
20 #include "llvm/ExecutionEngine/Orc/LazyEmittingLayer.h"
21 #include "llvm/ExecutionEngine/Orc/ObjectLinkingLayer.h"
22 #include "llvm/Object/Archive.h"
23
24 namespace llvm {
25 namespace orc {
26
27 class OrcMCJITReplacement : public ExecutionEngine {
28
29   // OrcMCJITReplacement needs to do a little extra book-keeping to ensure that
30   // Orc's automatic finalization doesn't kick in earlier than MCJIT clients are
31   // expecting - see finalizeMemory.
32   class MCJITReplacementMemMgr : public MCJITMemoryManager {
33   public:
34     MCJITReplacementMemMgr(OrcMCJITReplacement &M,
35                            std::shared_ptr<MCJITMemoryManager> ClientMM)
36       : M(M), ClientMM(std::move(ClientMM)) {}
37
38     uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment,
39                                  unsigned SectionID,
40                                  StringRef SectionName) override {
41       uint8_t *Addr =
42           ClientMM->allocateCodeSection(Size, Alignment, SectionID,
43                                         SectionName);
44       M.SectionsAllocatedSinceLastLoad.insert(Addr);
45       return Addr;
46     }
47
48     uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment,
49                                  unsigned SectionID, StringRef SectionName,
50                                  bool IsReadOnly) override {
51       uint8_t *Addr = ClientMM->allocateDataSection(Size, Alignment, SectionID,
52                                                     SectionName, IsReadOnly);
53       M.SectionsAllocatedSinceLastLoad.insert(Addr);
54       return Addr;
55     }
56
57     void reserveAllocationSpace(uintptr_t CodeSize, uintptr_t DataSizeRO,
58                                 uintptr_t DataSizeRW) override {
59       return ClientMM->reserveAllocationSpace(CodeSize, DataSizeRO,
60                                                 DataSizeRW);
61     }
62
63     bool needsToReserveAllocationSpace() override {
64       return ClientMM->needsToReserveAllocationSpace();
65     }
66
67     void registerEHFrames(uint8_t *Addr, uint64_t LoadAddr,
68                           size_t Size) override {
69       return ClientMM->registerEHFrames(Addr, LoadAddr, Size);
70     }
71
72     void deregisterEHFrames(uint8_t *Addr, uint64_t LoadAddr,
73                             size_t Size) override {
74       return ClientMM->deregisterEHFrames(Addr, LoadAddr, Size);
75     }
76
77     void notifyObjectLoaded(ExecutionEngine *EE,
78                             const object::ObjectFile &O) override {
79       return ClientMM->notifyObjectLoaded(EE, O);
80     }
81
82     bool finalizeMemory(std::string *ErrMsg = nullptr) override {
83       // Each set of objects loaded will be finalized exactly once, but since
84       // symbol lookup during relocation may recursively trigger the
85       // loading/relocation of other modules, and since we're forwarding all
86       // finalizeMemory calls to a single underlying memory manager, we need to
87       // defer forwarding the call on until all necessary objects have been
88       // loaded. Otherwise, during the relocation of a leaf object, we will end
89       // up finalizing memory, causing a crash further up the stack when we
90       // attempt to apply relocations to finalized memory.
91       // To avoid finalizing too early, look at how many objects have been
92       // loaded but not yet finalized. This is a bit of a hack that relies on
93       // the fact that we're lazily emitting object files: The only way you can
94       // get more than one set of objects loaded but not yet finalized is if
95       // they were loaded during relocation of another set.
96       if (M.UnfinalizedSections.size() == 1)
97         return ClientMM->finalizeMemory(ErrMsg);
98       return false;
99     }
100
101   private:
102     OrcMCJITReplacement &M;
103     std::shared_ptr<MCJITMemoryManager> ClientMM;
104   };
105
106   class LinkingResolver : public RuntimeDyld::SymbolResolver {
107   public:
108     LinkingResolver(OrcMCJITReplacement &M) : M(M) {}
109
110     RuntimeDyld::SymbolInfo findSymbol(const std::string &Name) override {
111       return M.findMangledSymbol(Name);
112     }
113
114     RuntimeDyld::SymbolInfo
115     findSymbolInLogicalDylib(const std::string &Name) override {
116       return M.ClientResolver->findSymbolInLogicalDylib(Name);
117     }
118
119   private:
120     OrcMCJITReplacement &M;
121   };
122
123 private:
124
125   static ExecutionEngine *
126   createOrcMCJITReplacement(std::string *ErrorMsg,
127                             std::shared_ptr<MCJITMemoryManager> MemMgr,
128                             std::shared_ptr<RuntimeDyld::SymbolResolver> Resolver,
129                             std::unique_ptr<TargetMachine> TM) {
130     return new OrcMCJITReplacement(std::move(MemMgr), std::move(Resolver),
131                                    std::move(TM));
132   }
133
134 public:
135   static void Register() {
136     OrcMCJITReplacementCtor = createOrcMCJITReplacement;
137   }
138
139   OrcMCJITReplacement(
140                     std::shared_ptr<MCJITMemoryManager> MemMgr,
141                     std::shared_ptr<RuntimeDyld::SymbolResolver> ClientResolver,
142                     std::unique_ptr<TargetMachine> TM)
143       : TM(std::move(TM)), MemMgr(*this, std::move(MemMgr)),
144         Resolver(*this), ClientResolver(std::move(ClientResolver)),
145         Mang(this->TM->getDataLayout()),
146         NotifyObjectLoaded(*this), NotifyFinalized(*this),
147         ObjectLayer(NotifyObjectLoaded, NotifyFinalized),
148         CompileLayer(ObjectLayer, SimpleCompiler(*this->TM)),
149         LazyEmitLayer(CompileLayer) {
150     setDataLayout(this->TM->getDataLayout());
151   }
152
153   void addModule(std::unique_ptr<Module> M) override {
154
155     // If this module doesn't have a DataLayout attached then attach the
156     // default.
157     if (M->getDataLayout().isDefault())
158       M->setDataLayout(*getDataLayout());
159
160     Modules.push_back(std::move(M));
161     std::vector<Module *> Ms;
162     Ms.push_back(&*Modules.back());
163     LazyEmitLayer.addModuleSet(std::move(Ms), &MemMgr, &Resolver);
164   }
165
166   void addObjectFile(std::unique_ptr<object::ObjectFile> O) override {
167     std::vector<std::unique_ptr<object::ObjectFile>> Objs;
168     Objs.push_back(std::move(O));
169     ObjectLayer.addObjectSet(std::move(Objs), &MemMgr, &Resolver);
170   }
171
172   void addObjectFile(object::OwningBinary<object::ObjectFile> O) override {
173     std::unique_ptr<object::ObjectFile> Obj;
174     std::unique_ptr<MemoryBuffer> Buf;
175     std::tie(Obj, Buf) = O.takeBinary();
176     std::vector<std::unique_ptr<object::ObjectFile>> Objs;
177     Objs.push_back(std::move(Obj));
178     auto H =
179       ObjectLayer.addObjectSet(std::move(Objs), &MemMgr, &Resolver);
180
181     std::vector<std::unique_ptr<MemoryBuffer>> Bufs;
182     Bufs.push_back(std::move(Buf));
183     ObjectLayer.takeOwnershipOfBuffers(H, std::move(Bufs));
184   }
185
186   void addArchive(object::OwningBinary<object::Archive> A) override {
187     Archives.push_back(std::move(A));
188   }
189
190   uint64_t getSymbolAddress(StringRef Name) {
191     return findSymbol(Name).getAddress();
192   }
193
194   RuntimeDyld::SymbolInfo findSymbol(StringRef Name) {
195     return findMangledSymbol(Mangle(Name));
196   }
197
198   void finalizeObject() override {
199     // This is deprecated - Aim to remove in ExecutionEngine.
200     // REMOVE IF POSSIBLE - Doesn't make sense for New JIT.
201   }
202
203   void mapSectionAddress(const void *LocalAddress,
204                          uint64_t TargetAddress) override {
205     for (auto &P : UnfinalizedSections)
206       if (P.second.count(LocalAddress))
207         ObjectLayer.mapSectionAddress(P.first, LocalAddress, TargetAddress);
208   }
209
210   uint64_t getGlobalValueAddress(const std::string &Name) override {
211     return getSymbolAddress(Name);
212   }
213
214   uint64_t getFunctionAddress(const std::string &Name) override {
215     return getSymbolAddress(Name);
216   }
217
218   void *getPointerToFunction(Function *F) override {
219     uint64_t FAddr = getSymbolAddress(F->getName());
220     return reinterpret_cast<void *>(static_cast<uintptr_t>(FAddr));
221   }
222
223   void *getPointerToNamedFunction(StringRef Name,
224                                   bool AbortOnFailure = true) override {
225     uint64_t Addr = getSymbolAddress(Name);
226     if (!Addr && AbortOnFailure)
227       llvm_unreachable("Missing symbol!");
228     return reinterpret_cast<void *>(static_cast<uintptr_t>(Addr));
229   }
230
231   GenericValue runFunction(Function *F,
232                            const std::vector<GenericValue> &ArgValues) override;
233
234   void setObjectCache(ObjectCache *NewCache) override {
235     CompileLayer.setObjectCache(NewCache);
236   }
237
238 private:
239
240   RuntimeDyld::SymbolInfo findMangledSymbol(StringRef Name) {
241     if (auto Sym = LazyEmitLayer.findSymbol(Name, false))
242       return RuntimeDyld::SymbolInfo(Sym.getAddress(), Sym.getFlags());
243     if (auto Sym = ClientResolver->findSymbol(Name))
244       return RuntimeDyld::SymbolInfo(Sym.getAddress(), Sym.getFlags());
245     if (auto Sym = scanArchives(Name))
246       return RuntimeDyld::SymbolInfo(Sym.getAddress(), Sym.getFlags());
247
248     return nullptr;
249   }
250
251   JITSymbol scanArchives(StringRef Name) {
252     for (object::OwningBinary<object::Archive> &OB : Archives) {
253       object::Archive *A = OB.getBinary();
254       // Look for our symbols in each Archive
255       object::Archive::child_iterator ChildIt = A->findSym(Name);
256       if (ChildIt != A->child_end()) {
257         // FIXME: Support nested archives?
258         ErrorOr<std::unique_ptr<object::Binary>> ChildBinOrErr =
259             ChildIt->getAsBinary();
260         if (ChildBinOrErr.getError())
261           continue;
262         std::unique_ptr<object::Binary> &ChildBin = ChildBinOrErr.get();
263         if (ChildBin->isObject()) {
264           std::vector<std::unique_ptr<object::ObjectFile>> ObjSet;
265           ObjSet.push_back(std::unique_ptr<object::ObjectFile>(
266               static_cast<object::ObjectFile *>(ChildBin.release())));
267           ObjectLayer.addObjectSet(std::move(ObjSet), &MemMgr, &Resolver);
268           if (auto Sym = ObjectLayer.findSymbol(Name, true))
269             return Sym;
270         }
271       }
272     }
273     return nullptr;
274   }
275
276   class NotifyObjectLoadedT {
277   public:
278     typedef std::vector<std::unique_ptr<object::ObjectFile>> ObjListT;
279     typedef std::vector<std::unique_ptr<RuntimeDyld::LoadedObjectInfo>>
280         LoadedObjInfoListT;
281
282     NotifyObjectLoadedT(OrcMCJITReplacement &M) : M(M) {}
283
284     void operator()(ObjectLinkingLayerBase::ObjSetHandleT H,
285                     const ObjListT &Objects,
286                     const LoadedObjInfoListT &Infos) const {
287       M.UnfinalizedSections[H] = std::move(M.SectionsAllocatedSinceLastLoad);
288       M.SectionsAllocatedSinceLastLoad = SectionAddrSet();
289       assert(Objects.size() == Infos.size() &&
290              "Incorrect number of Infos for Objects.");
291       for (unsigned I = 0; I < Objects.size(); ++I)
292         M.MemMgr.notifyObjectLoaded(&M, *Objects[I]);
293     };
294
295   private:
296     OrcMCJITReplacement &M;
297   };
298
299   class NotifyFinalizedT {
300   public:
301     NotifyFinalizedT(OrcMCJITReplacement &M) : M(M) {}
302     void operator()(ObjectLinkingLayerBase::ObjSetHandleT H) {
303       M.UnfinalizedSections.erase(H);
304     }
305
306   private:
307     OrcMCJITReplacement &M;
308   };
309
310   std::string Mangle(StringRef Name) {
311     std::string MangledName;
312     {
313       raw_string_ostream MangledNameStream(MangledName);
314       Mang.getNameWithPrefix(MangledNameStream, Name);
315     }
316     return MangledName;
317   }
318
319   typedef ObjectLinkingLayer<NotifyObjectLoadedT> ObjectLayerT;
320   typedef IRCompileLayer<ObjectLayerT> CompileLayerT;
321   typedef LazyEmittingLayer<CompileLayerT> LazyEmitLayerT;
322
323   std::unique_ptr<TargetMachine> TM;
324   MCJITReplacementMemMgr MemMgr;
325   LinkingResolver Resolver;
326   std::shared_ptr<RuntimeDyld::SymbolResolver> ClientResolver;
327   Mangler Mang;
328
329   NotifyObjectLoadedT NotifyObjectLoaded;
330   NotifyFinalizedT NotifyFinalized;
331
332   ObjectLayerT ObjectLayer;
333   CompileLayerT CompileLayer;
334   LazyEmitLayerT LazyEmitLayer;
335
336   // We need to store ObjLayerT::ObjSetHandles for each of the object sets
337   // that have been emitted but not yet finalized so that we can forward the
338   // mapSectionAddress calls appropriately.
339   typedef std::set<const void *> SectionAddrSet;
340   struct ObjSetHandleCompare {
341     bool operator()(ObjectLayerT::ObjSetHandleT H1,
342                     ObjectLayerT::ObjSetHandleT H2) const {
343       return &*H1 < &*H2;
344     }
345   };
346   SectionAddrSet SectionsAllocatedSinceLastLoad;
347   std::map<ObjectLayerT::ObjSetHandleT, SectionAddrSet, ObjSetHandleCompare>
348       UnfinalizedSections;
349
350   std::vector<object::OwningBinary<object::Archive>> Archives;
351 };
352
353 } // End namespace orc.
354 } // End namespace llvm.
355
356 #endif // LLVM_LIB_EXECUTIONENGINE_ORC_MCJITREPLACEMENT_H