cc520ee91c7b99470c2e04a0a219e587f55820c9
[oota-llvm.git] / lib / CodeGen / ShadowStackGCLowering.cpp
1 //===-- ShadowStackGCLowering.cpp - Custom lowering for shadow-stack gc ---===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the custom lowering code required by the shadow-stack GC
11 // strategy.  
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/CodeGen/Passes.h"
16 #include "llvm/CodeGen/GCStrategy.h"
17 #include "llvm/ADT/StringExtras.h"
18 #include "llvm/IR/CallSite.h"
19 #include "llvm/IR/IRBuilder.h"
20 #include "llvm/IR/IntrinsicInst.h"
21 #include "llvm/IR/Module.h"
22
23 using namespace llvm;
24
25 #define DEBUG_TYPE "shadowstackgclowering"
26
27 namespace {
28
29 class ShadowStackGCLowering : public FunctionPass {
30   /// RootChain - This is the global linked-list that contains the chain of GC
31   /// roots.
32   GlobalVariable *Head;
33
34   /// StackEntryTy - Abstract type of a link in the shadow stack.
35   ///
36   StructType *StackEntryTy;
37   StructType *FrameMapTy;
38
39   /// Roots - GC roots in the current function. Each is a pair of the
40   /// intrinsic call and its corresponding alloca.
41   std::vector<std::pair<CallInst *, AllocaInst *>> Roots;
42
43 public:
44   static char ID;
45   ShadowStackGCLowering();
46
47   bool doInitialization(Module &M) override;
48   bool runOnFunction(Function &F) override;
49
50 private:
51   bool IsNullValue(Value *V);
52   Constant *GetFrameMap(Function &F);
53   Type *GetConcreteStackEntryType(Function &F);
54   void CollectRoots(Function &F);
55   static GetElementPtrInst *CreateGEP(LLVMContext &Context, IRBuilder<> &B,
56                                       Value *BasePtr, int Idx1,
57                                       const char *Name);
58   static GetElementPtrInst *CreateGEP(LLVMContext &Context, IRBuilder<> &B,
59                                       Value *BasePtr, int Idx1, int Idx2,
60                                       const char *Name);
61 };
62 }
63
64 INITIALIZE_PASS_BEGIN(ShadowStackGCLowering, "shadow-stack-gc-lowering",
65                       "Shadow Stack GC Lowering", false, false)
66 INITIALIZE_PASS_DEPENDENCY(GCModuleInfo)
67 INITIALIZE_PASS_END(ShadowStackGCLowering, "shadow-stack-gc-lowering",
68                     "Shadow Stack GC Lowering", false, false)
69
70 FunctionPass *llvm::createShadowStackGCLoweringPass() { return new ShadowStackGCLowering(); }
71
72 char ShadowStackGCLowering::ID = 0;
73
74 ShadowStackGCLowering::ShadowStackGCLowering()
75   : FunctionPass(ID), Head(nullptr), StackEntryTy(nullptr),
76     FrameMapTy(nullptr) {
77   initializeShadowStackGCLoweringPass(*PassRegistry::getPassRegistry());
78 }
79
80 namespace {
81 /// EscapeEnumerator - This is a little algorithm to find all escape points
82 /// from a function so that "finally"-style code can be inserted. In addition
83 /// to finding the existing return and unwind instructions, it also (if
84 /// necessary) transforms any call instructions into invokes and sends them to
85 /// a landing pad.
86 ///
87 /// It's wrapped up in a state machine using the same transform C# uses for
88 /// 'yield return' enumerators, This transform allows it to be non-allocating.
89 class EscapeEnumerator {
90   Function &F;
91   const char *CleanupBBName;
92
93   // State.
94   int State;
95   Function::iterator StateBB, StateE;
96   IRBuilder<> Builder;
97
98 public:
99   EscapeEnumerator(Function &F, const char *N = "cleanup")
100       : F(F), CleanupBBName(N), State(0), Builder(F.getContext()) {}
101
102   IRBuilder<> *Next() {
103     switch (State) {
104     default:
105       return nullptr;
106
107     case 0:
108       StateBB = F.begin();
109       StateE = F.end();
110       State = 1;
111
112     case 1:
113       // Find all 'return', 'resume', and 'unwind' instructions.
114       while (StateBB != StateE) {
115         BasicBlock *CurBB = StateBB++;
116
117         // Branches and invokes do not escape, only unwind, resume, and return
118         // do.
119         TerminatorInst *TI = CurBB->getTerminator();
120         if (!isa<ReturnInst>(TI) && !isa<ResumeInst>(TI))
121           continue;
122
123         Builder.SetInsertPoint(TI->getParent(), TI);
124         return &Builder;
125       }
126
127       State = 2;
128
129       // Find all 'call' instructions.
130       SmallVector<Instruction *, 16> Calls;
131       for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
132         for (BasicBlock::iterator II = BB->begin(), EE = BB->end(); II != EE;
133              ++II)
134           if (CallInst *CI = dyn_cast<CallInst>(II))
135             if (!CI->getCalledFunction() ||
136                 !CI->getCalledFunction()->getIntrinsicID())
137               Calls.push_back(CI);
138
139       if (Calls.empty())
140         return nullptr;
141
142       // Create a cleanup block.
143       LLVMContext &C = F.getContext();
144       BasicBlock *CleanupBB = BasicBlock::Create(C, CleanupBBName, &F);
145       Type *ExnTy =
146           StructType::get(Type::getInt8PtrTy(C), Type::getInt32Ty(C), nullptr);
147       Constant *PersFn = F.getParent()->getOrInsertFunction(
148           "__gcc_personality_v0", FunctionType::get(Type::getInt32Ty(C), true));
149       LandingPadInst *LPad =
150           LandingPadInst::Create(ExnTy, PersFn, 1, "cleanup.lpad", CleanupBB);
151       LPad->setCleanup(true);
152       ResumeInst *RI = ResumeInst::Create(LPad, CleanupBB);
153
154       // Transform the 'call' instructions into 'invoke's branching to the
155       // cleanup block. Go in reverse order to make prettier BB names.
156       SmallVector<Value *, 16> Args;
157       for (unsigned I = Calls.size(); I != 0;) {
158         CallInst *CI = cast<CallInst>(Calls[--I]);
159
160         // Split the basic block containing the function call.
161         BasicBlock *CallBB = CI->getParent();
162         BasicBlock *NewBB =
163             CallBB->splitBasicBlock(CI, CallBB->getName() + ".cont");
164
165         // Remove the unconditional branch inserted at the end of CallBB.
166         CallBB->getInstList().pop_back();
167         NewBB->getInstList().remove(CI);
168
169         // Create a new invoke instruction.
170         Args.clear();
171         CallSite CS(CI);
172         Args.append(CS.arg_begin(), CS.arg_end());
173
174         InvokeInst *II =
175             InvokeInst::Create(CI->getCalledValue(), NewBB, CleanupBB, Args,
176                                CI->getName(), CallBB);
177         II->setCallingConv(CI->getCallingConv());
178         II->setAttributes(CI->getAttributes());
179         CI->replaceAllUsesWith(II);
180         delete CI;
181       }
182
183       Builder.SetInsertPoint(RI->getParent(), RI);
184       return &Builder;
185     }
186   }
187 };
188 }
189
190
191 Constant *ShadowStackGCLowering::GetFrameMap(Function &F) {
192   // doInitialization creates the abstract type of this value.
193   Type *VoidPtr = Type::getInt8PtrTy(F.getContext());
194
195   // Truncate the ShadowStackDescriptor if some metadata is null.
196   unsigned NumMeta = 0;
197   SmallVector<Constant *, 16> Metadata;
198   for (unsigned I = 0; I != Roots.size(); ++I) {
199     Constant *C = cast<Constant>(Roots[I].first->getArgOperand(1));
200     if (!C->isNullValue())
201       NumMeta = I + 1;
202     Metadata.push_back(ConstantExpr::getBitCast(C, VoidPtr));
203   }
204   Metadata.resize(NumMeta);
205
206   Type *Int32Ty = Type::getInt32Ty(F.getContext());
207
208   Constant *BaseElts[] = {
209       ConstantInt::get(Int32Ty, Roots.size(), false),
210       ConstantInt::get(Int32Ty, NumMeta, false),
211   };
212
213   Constant *DescriptorElts[] = {
214       ConstantStruct::get(FrameMapTy, BaseElts),
215       ConstantArray::get(ArrayType::get(VoidPtr, NumMeta), Metadata)};
216
217   Type *EltTys[] = {DescriptorElts[0]->getType(), DescriptorElts[1]->getType()};
218   StructType *STy = StructType::create(EltTys, "gc_map." + utostr(NumMeta));
219
220   Constant *FrameMap = ConstantStruct::get(STy, DescriptorElts);
221
222   // FIXME: Is this actually dangerous as WritingAnLLVMPass.html claims? Seems
223   //        that, short of multithreaded LLVM, it should be safe; all that is
224   //        necessary is that a simple Module::iterator loop not be invalidated.
225   //        Appending to the GlobalVariable list is safe in that sense.
226   //
227   //        All of the output passes emit globals last. The ExecutionEngine
228   //        explicitly supports adding globals to the module after
229   //        initialization.
230   //
231   //        Still, if it isn't deemed acceptable, then this transformation needs
232   //        to be a ModulePass (which means it cannot be in the 'llc' pipeline
233   //        (which uses a FunctionPassManager (which segfaults (not asserts) if
234   //        provided a ModulePass))).
235   Constant *GV = new GlobalVariable(*F.getParent(), FrameMap->getType(), true,
236                                     GlobalVariable::InternalLinkage, FrameMap,
237                                     "__gc_" + F.getName());
238
239   Constant *GEPIndices[2] = {
240       ConstantInt::get(Type::getInt32Ty(F.getContext()), 0),
241       ConstantInt::get(Type::getInt32Ty(F.getContext()), 0)};
242   return ConstantExpr::getGetElementPtr(GV, GEPIndices);
243 }
244
245 Type *ShadowStackGCLowering::GetConcreteStackEntryType(Function &F) {
246   // doInitialization creates the generic version of this type.
247   std::vector<Type *> EltTys;
248   EltTys.push_back(StackEntryTy);
249   for (size_t I = 0; I != Roots.size(); I++)
250     EltTys.push_back(Roots[I].second->getAllocatedType());
251
252   return StructType::create(EltTys, "gc_stackentry." + F.getName().str());
253 }
254
255 /// doInitialization - If this module uses the GC intrinsics, find them now. If
256 /// not, exit fast.
257 bool ShadowStackGCLowering::doInitialization(Module &M) {
258   bool Active = false;
259   for (Function &F : M) {
260     if (F.hasGC() && F.getGC() == std::string("shadow-stack")) {
261       Active = true;
262       break;
263     }
264   }
265   if (!Active)
266     return false;
267   
268   // struct FrameMap {
269   //   int32_t NumRoots; // Number of roots in stack frame.
270   //   int32_t NumMeta;  // Number of metadata descriptors. May be < NumRoots.
271   //   void *Meta[];     // May be absent for roots without metadata.
272   // };
273   std::vector<Type *> EltTys;
274   // 32 bits is ok up to a 32GB stack frame. :)
275   EltTys.push_back(Type::getInt32Ty(M.getContext()));
276   // Specifies length of variable length array.
277   EltTys.push_back(Type::getInt32Ty(M.getContext()));
278   FrameMapTy = StructType::create(EltTys, "gc_map");
279   PointerType *FrameMapPtrTy = PointerType::getUnqual(FrameMapTy);
280
281   // struct StackEntry {
282   //   ShadowStackEntry *Next; // Caller's stack entry.
283   //   FrameMap *Map;          // Pointer to constant FrameMap.
284   //   void *Roots[];          // Stack roots (in-place array, so we pretend).
285   // };
286
287   StackEntryTy = StructType::create(M.getContext(), "gc_stackentry");
288
289   EltTys.clear();
290   EltTys.push_back(PointerType::getUnqual(StackEntryTy));
291   EltTys.push_back(FrameMapPtrTy);
292   StackEntryTy->setBody(EltTys);
293   PointerType *StackEntryPtrTy = PointerType::getUnqual(StackEntryTy);
294
295   // Get the root chain if it already exists.
296   Head = M.getGlobalVariable("llvm_gc_root_chain");
297   if (!Head) {
298     // If the root chain does not exist, insert a new one with linkonce
299     // linkage!
300     Head = new GlobalVariable(
301         M, StackEntryPtrTy, false, GlobalValue::LinkOnceAnyLinkage,
302         Constant::getNullValue(StackEntryPtrTy), "llvm_gc_root_chain");
303   } else if (Head->hasExternalLinkage() && Head->isDeclaration()) {
304     Head->setInitializer(Constant::getNullValue(StackEntryPtrTy));
305     Head->setLinkage(GlobalValue::LinkOnceAnyLinkage);
306   }
307
308   return true;
309 }
310
311 bool ShadowStackGCLowering::IsNullValue(Value *V) {
312   if (Constant *C = dyn_cast<Constant>(V))
313     return C->isNullValue();
314   return false;
315 }
316
317 void ShadowStackGCLowering::CollectRoots(Function &F) {
318   // FIXME: Account for original alignment. Could fragment the root array.
319   //   Approach 1: Null initialize empty slots at runtime. Yuck.
320   //   Approach 2: Emit a map of the array instead of just a count.
321
322   assert(Roots.empty() && "Not cleaned up?");
323
324   SmallVector<std::pair<CallInst *, AllocaInst *>, 16> MetaRoots;
325
326   for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
327     for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E;)
328       if (IntrinsicInst *CI = dyn_cast<IntrinsicInst>(II++))
329         if (Function *F = CI->getCalledFunction())
330           if (F->getIntrinsicID() == Intrinsic::gcroot) {
331             std::pair<CallInst *, AllocaInst *> Pair = std::make_pair(
332                 CI,
333                 cast<AllocaInst>(CI->getArgOperand(0)->stripPointerCasts()));
334             if (IsNullValue(CI->getArgOperand(1)))
335               Roots.push_back(Pair);
336             else
337               MetaRoots.push_back(Pair);
338           }
339
340   // Number roots with metadata (usually empty) at the beginning, so that the
341   // FrameMap::Meta array can be elided.
342   Roots.insert(Roots.begin(), MetaRoots.begin(), MetaRoots.end());
343 }
344
345 GetElementPtrInst *ShadowStackGCLowering::CreateGEP(LLVMContext &Context,
346                                             IRBuilder<> &B, Value *BasePtr,
347                                             int Idx, int Idx2,
348                                             const char *Name) {
349   Value *Indices[] = {ConstantInt::get(Type::getInt32Ty(Context), 0),
350                       ConstantInt::get(Type::getInt32Ty(Context), Idx),
351                       ConstantInt::get(Type::getInt32Ty(Context), Idx2)};
352   Value *Val = B.CreateGEP(BasePtr, Indices, Name);
353
354   assert(isa<GetElementPtrInst>(Val) && "Unexpected folded constant");
355
356   return dyn_cast<GetElementPtrInst>(Val);
357 }
358
359 GetElementPtrInst *ShadowStackGCLowering::CreateGEP(LLVMContext &Context,
360                                             IRBuilder<> &B, Value *BasePtr,
361                                             int Idx, const char *Name) {
362   Value *Indices[] = {ConstantInt::get(Type::getInt32Ty(Context), 0),
363                       ConstantInt::get(Type::getInt32Ty(Context), Idx)};
364   Value *Val = B.CreateGEP(BasePtr, Indices, Name);
365
366   assert(isa<GetElementPtrInst>(Val) && "Unexpected folded constant");
367
368   return dyn_cast<GetElementPtrInst>(Val);
369 }
370
371 /// runOnFunction - Insert code to maintain the shadow stack.
372 bool ShadowStackGCLowering::runOnFunction(Function &F) {
373   // Quick exit for functions that do not use the shadow stack GC.
374   if (!F.hasGC() ||
375       F.getGC() != std::string("shadow-stack"))
376     return false;
377   
378   LLVMContext &Context = F.getContext();
379
380   // Find calls to llvm.gcroot.
381   CollectRoots(F);
382
383   // If there are no roots in this function, then there is no need to add a
384   // stack map entry for it.
385   if (Roots.empty())
386     return false;
387
388   // Build the constant map and figure the type of the shadow stack entry.
389   Value *FrameMap = GetFrameMap(F);
390   Type *ConcreteStackEntryTy = GetConcreteStackEntryType(F);
391
392   // Build the shadow stack entry at the very start of the function.
393   BasicBlock::iterator IP = F.getEntryBlock().begin();
394   IRBuilder<> AtEntry(IP->getParent(), IP);
395
396   Instruction *StackEntry =
397       AtEntry.CreateAlloca(ConcreteStackEntryTy, nullptr, "gc_frame");
398
399   while (isa<AllocaInst>(IP))
400     ++IP;
401   AtEntry.SetInsertPoint(IP->getParent(), IP);
402
403   // Initialize the map pointer and load the current head of the shadow stack.
404   Instruction *CurrentHead = AtEntry.CreateLoad(Head, "gc_currhead");
405   Instruction *EntryMapPtr =
406       CreateGEP(Context, AtEntry, StackEntry, 0, 1, "gc_frame.map");
407   AtEntry.CreateStore(FrameMap, EntryMapPtr);
408
409   // After all the allocas...
410   for (unsigned I = 0, E = Roots.size(); I != E; ++I) {
411     // For each root, find the corresponding slot in the aggregate...
412     Value *SlotPtr = CreateGEP(Context, AtEntry, StackEntry, 1 + I, "gc_root");
413
414     // And use it in lieu of the alloca.
415     AllocaInst *OriginalAlloca = Roots[I].second;
416     SlotPtr->takeName(OriginalAlloca);
417     OriginalAlloca->replaceAllUsesWith(SlotPtr);
418   }
419
420   // Move past the original stores inserted by GCStrategy::InitRoots. This isn't
421   // really necessary (the collector would never see the intermediate state at
422   // runtime), but it's nicer not to push the half-initialized entry onto the
423   // shadow stack.
424   while (isa<StoreInst>(IP))
425     ++IP;
426   AtEntry.SetInsertPoint(IP->getParent(), IP);
427
428   // Push the entry onto the shadow stack.
429   Instruction *EntryNextPtr =
430       CreateGEP(Context, AtEntry, StackEntry, 0, 0, "gc_frame.next");
431   Instruction *NewHeadVal =
432       CreateGEP(Context, AtEntry, StackEntry, 0, "gc_newhead");
433   AtEntry.CreateStore(CurrentHead, EntryNextPtr);
434   AtEntry.CreateStore(NewHeadVal, Head);
435
436   // For each instruction that escapes...
437   EscapeEnumerator EE(F, "gc_cleanup");
438   while (IRBuilder<> *AtExit = EE.Next()) {
439     // Pop the entry from the shadow stack. Don't reuse CurrentHead from
440     // AtEntry, since that would make the value live for the entire function.
441     Instruction *EntryNextPtr2 =
442         CreateGEP(Context, *AtExit, StackEntry, 0, 0, "gc_frame.next");
443     Value *SavedHead = AtExit->CreateLoad(EntryNextPtr2, "gc_savedhead");
444     AtExit->CreateStore(SavedHead, Head);
445   }
446
447   // Delete the original allocas (which are no longer used) and the intrinsic
448   // calls (which are no longer valid). Doing this last avoids invalidating
449   // iterators.
450   for (unsigned I = 0, E = Roots.size(); I != E; ++I) {
451     Roots[I].first->eraseFromParent();
452     Roots[I].second->eraseFromParent();
453   }
454
455   Roots.clear();
456   return true;
457 }