1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
12 //===----------------------------------------------------------------------===//
14 #include "SelectionDAGBuilder.h"
15 #include "SDNodeDbgValue.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/BranchProbabilityInfo.h"
22 #include "llvm/Analysis/ConstantFolding.h"
23 #include "llvm/Analysis/TargetLibraryInfo.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/CodeGen/Analysis.h"
26 #include "llvm/CodeGen/FastISel.h"
27 #include "llvm/CodeGen/FunctionLoweringInfo.h"
28 #include "llvm/CodeGen/GCMetadata.h"
29 #include "llvm/CodeGen/GCStrategy.h"
30 #include "llvm/CodeGen/MachineFrameInfo.h"
31 #include "llvm/CodeGen/MachineFunction.h"
32 #include "llvm/CodeGen/MachineInstrBuilder.h"
33 #include "llvm/CodeGen/MachineJumpTableInfo.h"
34 #include "llvm/CodeGen/MachineModuleInfo.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/SelectionDAG.h"
37 #include "llvm/CodeGen/StackMaps.h"
38 #include "llvm/CodeGen/WinEHFuncInfo.h"
39 #include "llvm/IR/CallingConv.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DataLayout.h"
42 #include "llvm/IR/DebugInfo.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GlobalVariable.h"
46 #include "llvm/IR/InlineAsm.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/IntrinsicInst.h"
49 #include "llvm/IR/Intrinsics.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/Statepoint.h"
53 #include "llvm/MC/MCSymbol.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/MathExtras.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include "llvm/Target/TargetFrameLowering.h"
60 #include "llvm/Target/TargetInstrInfo.h"
61 #include "llvm/Target/TargetIntrinsicInfo.h"
62 #include "llvm/Target/TargetLowering.h"
63 #include "llvm/Target/TargetOptions.h"
64 #include "llvm/Target/TargetSelectionDAGInfo.h"
65 #include "llvm/Target/TargetSubtargetInfo.h"
69 #define DEBUG_TYPE "isel"
71 /// LimitFloatPrecision - Generate low-precision inline sequences for
72 /// some float libcalls (6, 8 or 12 bits).
73 static unsigned LimitFloatPrecision;
75 static cl::opt<unsigned, true>
76 LimitFPPrecision("limit-float-precision",
77 cl::desc("Generate low-precision inline sequences "
78 "for some float libcalls"),
79 cl::location(LimitFloatPrecision),
82 // Limit the width of DAG chains. This is important in general to prevent
83 // prevent DAG-based analysis from blowing up. For example, alias analysis and
84 // load clustering may not complete in reasonable time. It is difficult to
85 // recognize and avoid this situation within each individual analysis, and
86 // future analyses are likely to have the same behavior. Limiting DAG width is
87 // the safe approach, and will be especially important with global DAGs.
89 // MaxParallelChains default is arbitrarily high to avoid affecting
90 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
91 // sequence over this should have been converted to llvm.memcpy by the
92 // frontend. It easy to induce this behavior with .ll code such as:
93 // %buffer = alloca [4096 x i8]
94 // %data = load [4096 x i8]* %argPtr
95 // store [4096 x i8] %data, [4096 x i8]* %buffer
96 static const unsigned MaxParallelChains = 64;
98 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
99 const SDValue *Parts, unsigned NumParts,
100 MVT PartVT, EVT ValueVT, const Value *V);
102 /// getCopyFromParts - Create a value that contains the specified legal parts
103 /// combined into the value they represent. If the parts combine to a type
104 /// larger then ValueVT then AssertOp can be used to specify whether the extra
105 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
106 /// (ISD::AssertSext).
107 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL,
108 const SDValue *Parts,
109 unsigned NumParts, MVT PartVT, EVT ValueVT,
111 ISD::NodeType AssertOp = ISD::DELETED_NODE) {
112 if (ValueVT.isVector())
113 return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
116 assert(NumParts > 0 && "No parts to assemble!");
117 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
118 SDValue Val = Parts[0];
121 // Assemble the value from multiple parts.
122 if (ValueVT.isInteger()) {
123 unsigned PartBits = PartVT.getSizeInBits();
124 unsigned ValueBits = ValueVT.getSizeInBits();
126 // Assemble the power of 2 part.
127 unsigned RoundParts = NumParts & (NumParts - 1) ?
128 1 << Log2_32(NumParts) : NumParts;
129 unsigned RoundBits = PartBits * RoundParts;
130 EVT RoundVT = RoundBits == ValueBits ?
131 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
134 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
136 if (RoundParts > 2) {
137 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
139 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
140 RoundParts / 2, PartVT, HalfVT, V);
142 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
143 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
146 if (TLI.isBigEndian())
149 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
151 if (RoundParts < NumParts) {
152 // Assemble the trailing non-power-of-2 part.
153 unsigned OddParts = NumParts - RoundParts;
154 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
155 Hi = getCopyFromParts(DAG, DL,
156 Parts + RoundParts, OddParts, PartVT, OddVT, V);
158 // Combine the round and odd parts.
160 if (TLI.isBigEndian())
162 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
163 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
164 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
165 DAG.getConstant(Lo.getValueType().getSizeInBits(),
166 TLI.getPointerTy()));
167 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
168 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
170 } else if (PartVT.isFloatingPoint()) {
171 // FP split into multiple FP parts (for ppcf128)
172 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
175 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
176 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
177 if (TLI.hasBigEndianPartOrdering(ValueVT))
179 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
181 // FP split into integer parts (soft fp)
182 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
183 !PartVT.isVector() && "Unexpected split");
184 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
185 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
189 // There is now one part, held in Val. Correct it to match ValueVT.
190 EVT PartEVT = Val.getValueType();
192 if (PartEVT == ValueVT)
195 if (PartEVT.isInteger() && ValueVT.isInteger()) {
196 if (ValueVT.bitsLT(PartEVT)) {
197 // For a truncate, see if we have any information to
198 // indicate whether the truncated bits will always be
199 // zero or sign-extension.
200 if (AssertOp != ISD::DELETED_NODE)
201 Val = DAG.getNode(AssertOp, DL, PartEVT, Val,
202 DAG.getValueType(ValueVT));
203 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
205 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
208 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
209 // FP_ROUND's are always exact here.
210 if (ValueVT.bitsLT(Val.getValueType()))
211 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
212 DAG.getTargetConstant(1, TLI.getPointerTy()));
214 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
217 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
218 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
220 llvm_unreachable("Unknown mismatch!");
223 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
224 const Twine &ErrMsg) {
225 const Instruction *I = dyn_cast_or_null<Instruction>(V);
227 return Ctx.emitError(ErrMsg);
229 const char *AsmError = ", possible invalid constraint for vector type";
230 if (const CallInst *CI = dyn_cast<CallInst>(I))
231 if (isa<InlineAsm>(CI->getCalledValue()))
232 return Ctx.emitError(I, ErrMsg + AsmError);
234 return Ctx.emitError(I, ErrMsg);
237 /// getCopyFromPartsVector - Create a value that contains the specified legal
238 /// parts combined into the value they represent. If the parts combine to a
239 /// type larger then ValueVT then AssertOp can be used to specify whether the
240 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
241 /// ValueVT (ISD::AssertSext).
242 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
243 const SDValue *Parts, unsigned NumParts,
244 MVT PartVT, EVT ValueVT, const Value *V) {
245 assert(ValueVT.isVector() && "Not a vector value");
246 assert(NumParts > 0 && "No parts to assemble!");
247 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
248 SDValue Val = Parts[0];
250 // Handle a multi-element vector.
254 unsigned NumIntermediates;
256 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
257 NumIntermediates, RegisterVT);
258 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
259 NumParts = NumRegs; // Silence a compiler warning.
260 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
261 assert(RegisterVT == Parts[0].getSimpleValueType() &&
262 "Part type doesn't match part!");
264 // Assemble the parts into intermediate operands.
265 SmallVector<SDValue, 8> Ops(NumIntermediates);
266 if (NumIntermediates == NumParts) {
267 // If the register was not expanded, truncate or copy the value,
269 for (unsigned i = 0; i != NumParts; ++i)
270 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
271 PartVT, IntermediateVT, V);
272 } else if (NumParts > 0) {
273 // If the intermediate type was expanded, build the intermediate
274 // operands from the parts.
275 assert(NumParts % NumIntermediates == 0 &&
276 "Must expand into a divisible number of parts!");
277 unsigned Factor = NumParts / NumIntermediates;
278 for (unsigned i = 0; i != NumIntermediates; ++i)
279 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
280 PartVT, IntermediateVT, V);
283 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
284 // intermediate operands.
285 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
290 // There is now one part, held in Val. Correct it to match ValueVT.
291 EVT PartEVT = Val.getValueType();
293 if (PartEVT == ValueVT)
296 if (PartEVT.isVector()) {
297 // If the element type of the source/dest vectors are the same, but the
298 // parts vector has more elements than the value vector, then we have a
299 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the
301 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
302 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
303 "Cannot narrow, it would be a lossy transformation");
304 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
305 DAG.getConstant(0, TLI.getVectorIdxTy()));
308 // Vector/Vector bitcast.
309 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
310 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
312 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
313 "Cannot handle this kind of promotion");
314 // Promoted vector extract
315 bool Smaller = ValueVT.bitsLE(PartEVT);
316 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
321 // Trivial bitcast if the types are the same size and the destination
322 // vector type is legal.
323 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
324 TLI.isTypeLegal(ValueVT))
325 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
327 // Handle cases such as i8 -> <1 x i1>
328 if (ValueVT.getVectorNumElements() != 1) {
329 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
330 "non-trivial scalar-to-vector conversion");
331 return DAG.getUNDEF(ValueVT);
334 if (ValueVT.getVectorNumElements() == 1 &&
335 ValueVT.getVectorElementType() != PartEVT) {
336 bool Smaller = ValueVT.bitsLE(PartEVT);
337 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
338 DL, ValueVT.getScalarType(), Val);
341 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
344 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl,
345 SDValue Val, SDValue *Parts, unsigned NumParts,
346 MVT PartVT, const Value *V);
348 /// getCopyToParts - Create a series of nodes that contain the specified value
349 /// split into legal parts. If the parts contain more bits than Val, then, for
350 /// integers, ExtendKind can be used to specify how to generate the extra bits.
351 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL,
352 SDValue Val, SDValue *Parts, unsigned NumParts,
353 MVT PartVT, const Value *V,
354 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
355 EVT ValueVT = Val.getValueType();
357 // Handle the vector case separately.
358 if (ValueVT.isVector())
359 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V);
361 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
362 unsigned PartBits = PartVT.getSizeInBits();
363 unsigned OrigNumParts = NumParts;
364 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
369 assert(!ValueVT.isVector() && "Vector case handled elsewhere");
370 EVT PartEVT = PartVT;
371 if (PartEVT == ValueVT) {
372 assert(NumParts == 1 && "No-op copy with multiple parts!");
377 if (NumParts * PartBits > ValueVT.getSizeInBits()) {
378 // If the parts cover more bits than the value has, promote the value.
379 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
380 assert(NumParts == 1 && "Do not know what to promote to!");
381 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
383 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
384 ValueVT.isInteger() &&
385 "Unknown mismatch!");
386 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
387 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
388 if (PartVT == MVT::x86mmx)
389 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
391 } else if (PartBits == ValueVT.getSizeInBits()) {
392 // Different types of the same size.
393 assert(NumParts == 1 && PartEVT != ValueVT);
394 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
395 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
396 // If the parts cover less bits than value has, truncate the value.
397 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
398 ValueVT.isInteger() &&
399 "Unknown mismatch!");
400 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
401 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
402 if (PartVT == MVT::x86mmx)
403 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
406 // The value may have changed - recompute ValueVT.
407 ValueVT = Val.getValueType();
408 assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
409 "Failed to tile the value with PartVT!");
412 if (PartEVT != ValueVT)
413 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
414 "scalar-to-vector conversion failed");
420 // Expand the value into multiple parts.
421 if (NumParts & (NumParts - 1)) {
422 // The number of parts is not a power of 2. Split off and copy the tail.
423 assert(PartVT.isInteger() && ValueVT.isInteger() &&
424 "Do not know what to expand to!");
425 unsigned RoundParts = 1 << Log2_32(NumParts);
426 unsigned RoundBits = RoundParts * PartBits;
427 unsigned OddParts = NumParts - RoundParts;
428 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
429 DAG.getIntPtrConstant(RoundBits));
430 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
432 if (TLI.isBigEndian())
433 // The odd parts were reversed by getCopyToParts - unreverse them.
434 std::reverse(Parts + RoundParts, Parts + NumParts);
436 NumParts = RoundParts;
437 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
438 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
441 // The number of parts is a power of 2. Repeatedly bisect the value using
443 Parts[0] = DAG.getNode(ISD::BITCAST, DL,
444 EVT::getIntegerVT(*DAG.getContext(),
445 ValueVT.getSizeInBits()),
448 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
449 for (unsigned i = 0; i < NumParts; i += StepSize) {
450 unsigned ThisBits = StepSize * PartBits / 2;
451 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
452 SDValue &Part0 = Parts[i];
453 SDValue &Part1 = Parts[i+StepSize/2];
455 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
456 ThisVT, Part0, DAG.getIntPtrConstant(1));
457 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
458 ThisVT, Part0, DAG.getIntPtrConstant(0));
460 if (ThisBits == PartBits && ThisVT != PartVT) {
461 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
462 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
467 if (TLI.isBigEndian())
468 std::reverse(Parts, Parts + OrigNumParts);
472 /// getCopyToPartsVector - Create a series of nodes that contain the specified
473 /// value split into legal parts.
474 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL,
475 SDValue Val, SDValue *Parts, unsigned NumParts,
476 MVT PartVT, const Value *V) {
477 EVT ValueVT = Val.getValueType();
478 assert(ValueVT.isVector() && "Not a vector");
479 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
482 EVT PartEVT = PartVT;
483 if (PartEVT == ValueVT) {
485 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
486 // Bitconvert vector->vector case.
487 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
488 } else if (PartVT.isVector() &&
489 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
490 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
491 EVT ElementVT = PartVT.getVectorElementType();
492 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in
494 SmallVector<SDValue, 16> Ops;
495 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
496 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
497 ElementVT, Val, DAG.getConstant(i,
498 TLI.getVectorIdxTy())));
500 for (unsigned i = ValueVT.getVectorNumElements(),
501 e = PartVT.getVectorNumElements(); i != e; ++i)
502 Ops.push_back(DAG.getUNDEF(ElementVT));
504 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops);
506 // FIXME: Use CONCAT for 2x -> 4x.
508 //SDValue UndefElts = DAG.getUNDEF(VectorTy);
509 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
510 } else if (PartVT.isVector() &&
511 PartEVT.getVectorElementType().bitsGE(
512 ValueVT.getVectorElementType()) &&
513 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
515 // Promoted vector extract
516 bool Smaller = PartEVT.bitsLE(ValueVT);
517 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
520 // Vector -> scalar conversion.
521 assert(ValueVT.getVectorNumElements() == 1 &&
522 "Only trivial vector-to-scalar conversions should get here!");
523 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
524 PartVT, Val, DAG.getConstant(0, TLI.getVectorIdxTy()));
526 bool Smaller = ValueVT.bitsLE(PartVT);
527 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
535 // Handle a multi-element vector.
538 unsigned NumIntermediates;
539 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
541 NumIntermediates, RegisterVT);
542 unsigned NumElements = ValueVT.getVectorNumElements();
544 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
545 NumParts = NumRegs; // Silence a compiler warning.
546 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
548 // Split the vector into intermediate operands.
549 SmallVector<SDValue, 8> Ops(NumIntermediates);
550 for (unsigned i = 0; i != NumIntermediates; ++i) {
551 if (IntermediateVT.isVector())
552 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
554 DAG.getConstant(i * (NumElements / NumIntermediates),
555 TLI.getVectorIdxTy()));
557 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
559 DAG.getConstant(i, TLI.getVectorIdxTy()));
562 // Split the intermediate operands into legal parts.
563 if (NumParts == NumIntermediates) {
564 // If the register was not expanded, promote or copy the value,
566 for (unsigned i = 0; i != NumParts; ++i)
567 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
568 } else if (NumParts > 0) {
569 // If the intermediate type was expanded, split each the value into
571 assert(NumIntermediates != 0 && "division by zero");
572 assert(NumParts % NumIntermediates == 0 &&
573 "Must expand into a divisible number of parts!");
574 unsigned Factor = NumParts / NumIntermediates;
575 for (unsigned i = 0; i != NumIntermediates; ++i)
576 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
581 /// RegsForValue - This struct represents the registers (physical or virtual)
582 /// that a particular set of values is assigned, and the type information
583 /// about the value. The most common situation is to represent one value at a
584 /// time, but struct or array values are handled element-wise as multiple
585 /// values. The splitting of aggregates is performed recursively, so that we
586 /// never have aggregate-typed registers. The values at this point do not
587 /// necessarily have legal types, so each value may require one or more
588 /// registers of some legal type.
590 struct RegsForValue {
591 /// ValueVTs - The value types of the values, which may not be legal, and
592 /// may need be promoted or synthesized from one or more registers.
594 SmallVector<EVT, 4> ValueVTs;
596 /// RegVTs - The value types of the registers. This is the same size as
597 /// ValueVTs and it records, for each value, what the type of the assigned
598 /// register or registers are. (Individual values are never synthesized
599 /// from more than one type of register.)
601 /// With virtual registers, the contents of RegVTs is redundant with TLI's
602 /// getRegisterType member function, however when with physical registers
603 /// it is necessary to have a separate record of the types.
605 SmallVector<MVT, 4> RegVTs;
607 /// Regs - This list holds the registers assigned to the values.
608 /// Each legal or promoted value requires one register, and each
609 /// expanded value requires multiple registers.
611 SmallVector<unsigned, 4> Regs;
615 RegsForValue(const SmallVector<unsigned, 4> ®s,
616 MVT regvt, EVT valuevt)
617 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
619 RegsForValue(LLVMContext &Context, const TargetLowering &tli,
620 unsigned Reg, Type *Ty) {
621 ComputeValueVTs(tli, Ty, ValueVTs);
623 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
624 EVT ValueVT = ValueVTs[Value];
625 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
626 MVT RegisterVT = tli.getRegisterType(Context, ValueVT);
627 for (unsigned i = 0; i != NumRegs; ++i)
628 Regs.push_back(Reg + i);
629 RegVTs.push_back(RegisterVT);
634 /// append - Add the specified values to this one.
635 void append(const RegsForValue &RHS) {
636 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
637 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
638 Regs.append(RHS.Regs.begin(), RHS.Regs.end());
641 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
642 /// this value and returns the result as a ValueVTs value. This uses
643 /// Chain/Flag as the input and updates them for the output Chain/Flag.
644 /// If the Flag pointer is NULL, no flag is used.
645 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
647 SDValue &Chain, SDValue *Flag,
648 const Value *V = nullptr) const;
650 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
651 /// specified value into the registers specified by this object. This uses
652 /// Chain/Flag as the input and updates them for the output Chain/Flag.
653 /// If the Flag pointer is NULL, no flag is used.
655 getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, SDValue &Chain,
656 SDValue *Flag, const Value *V,
657 ISD::NodeType PreferredExtendType = ISD::ANY_EXTEND) const;
659 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
660 /// operand list. This adds the code marker, matching input operand index
661 /// (if applicable), and includes the number of values added into it.
662 void AddInlineAsmOperands(unsigned Kind,
663 bool HasMatching, unsigned MatchingIdx,
665 std::vector<SDValue> &Ops) const;
669 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
670 /// this value and returns the result as a ValueVT value. This uses
671 /// Chain/Flag as the input and updates them for the output Chain/Flag.
672 /// If the Flag pointer is NULL, no flag is used.
673 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
674 FunctionLoweringInfo &FuncInfo,
676 SDValue &Chain, SDValue *Flag,
677 const Value *V) const {
678 // A Value with type {} or [0 x %t] needs no registers.
679 if (ValueVTs.empty())
682 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
684 // Assemble the legal parts into the final values.
685 SmallVector<SDValue, 4> Values(ValueVTs.size());
686 SmallVector<SDValue, 8> Parts;
687 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
688 // Copy the legal parts from the registers.
689 EVT ValueVT = ValueVTs[Value];
690 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
691 MVT RegisterVT = RegVTs[Value];
693 Parts.resize(NumRegs);
694 for (unsigned i = 0; i != NumRegs; ++i) {
697 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
699 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
700 *Flag = P.getValue(2);
703 Chain = P.getValue(1);
706 // If the source register was virtual and if we know something about it,
707 // add an assert node.
708 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
709 !RegisterVT.isInteger() || RegisterVT.isVector())
712 const FunctionLoweringInfo::LiveOutInfo *LOI =
713 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
717 unsigned RegSize = RegisterVT.getSizeInBits();
718 unsigned NumSignBits = LOI->NumSignBits;
719 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
721 if (NumZeroBits == RegSize) {
722 // The current value is a zero.
723 // Explicitly express that as it would be easier for
724 // optimizations to kick in.
725 Parts[i] = DAG.getConstant(0, RegisterVT);
729 // FIXME: We capture more information than the dag can represent. For
730 // now, just use the tightest assertzext/assertsext possible.
732 EVT FromVT(MVT::Other);
733 if (NumSignBits == RegSize)
734 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1
735 else if (NumZeroBits >= RegSize-1)
736 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1
737 else if (NumSignBits > RegSize-8)
738 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8
739 else if (NumZeroBits >= RegSize-8)
740 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8
741 else if (NumSignBits > RegSize-16)
742 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16
743 else if (NumZeroBits >= RegSize-16)
744 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
745 else if (NumSignBits > RegSize-32)
746 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32
747 else if (NumZeroBits >= RegSize-32)
748 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
752 // Add an assertion node.
753 assert(FromVT != MVT::Other);
754 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
755 RegisterVT, P, DAG.getValueType(FromVT));
758 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
759 NumRegs, RegisterVT, ValueVT, V);
764 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
767 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
768 /// specified value into the registers specified by this object. This uses
769 /// Chain/Flag as the input and updates them for the output Chain/Flag.
770 /// If the Flag pointer is NULL, no flag is used.
771 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl,
772 SDValue &Chain, SDValue *Flag, const Value *V,
773 ISD::NodeType PreferredExtendType) const {
774 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
775 ISD::NodeType ExtendKind = PreferredExtendType;
777 // Get the list of the values's legal parts.
778 unsigned NumRegs = Regs.size();
779 SmallVector<SDValue, 8> Parts(NumRegs);
780 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
781 EVT ValueVT = ValueVTs[Value];
782 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
783 MVT RegisterVT = RegVTs[Value];
785 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
786 ExtendKind = ISD::ZERO_EXTEND;
788 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
789 &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
793 // Copy the parts into the registers.
794 SmallVector<SDValue, 8> Chains(NumRegs);
795 for (unsigned i = 0; i != NumRegs; ++i) {
798 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
800 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
801 *Flag = Part.getValue(1);
804 Chains[i] = Part.getValue(0);
807 if (NumRegs == 1 || Flag)
808 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
809 // flagged to it. That is the CopyToReg nodes and the user are considered
810 // a single scheduling unit. If we create a TokenFactor and return it as
811 // chain, then the TokenFactor is both a predecessor (operand) of the
812 // user as well as a successor (the TF operands are flagged to the user).
813 // c1, f1 = CopyToReg
814 // c2, f2 = CopyToReg
815 // c3 = TokenFactor c1, c2
818 Chain = Chains[NumRegs-1];
820 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
823 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
824 /// operand list. This adds the code marker and includes the number of
825 /// values added into it.
826 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
827 unsigned MatchingIdx,
829 std::vector<SDValue> &Ops) const {
830 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
832 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
834 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
835 else if (!Regs.empty() &&
836 TargetRegisterInfo::isVirtualRegister(Regs.front())) {
837 // Put the register class of the virtual registers in the flag word. That
838 // way, later passes can recompute register class constraints for inline
839 // assembly as well as normal instructions.
840 // Don't do this for tied operands that can use the regclass information
842 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
843 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
844 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
847 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
850 unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
851 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
852 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
853 MVT RegisterVT = RegVTs[Value];
854 for (unsigned i = 0; i != NumRegs; ++i) {
855 assert(Reg < Regs.size() && "Mismatch in # registers expected");
856 unsigned TheReg = Regs[Reg++];
857 Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
859 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) {
860 // If we clobbered the stack pointer, MFI should know about it.
861 assert(DAG.getMachineFunction().getFrameInfo()->
862 hasInlineAsmWithSPAdjust());
868 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
869 const TargetLibraryInfo *li) {
873 DL = DAG.getTarget().getDataLayout();
874 Context = DAG.getContext();
875 LPadToCallSiteMap.clear();
878 /// clear - Clear out the current SelectionDAG and the associated
879 /// state and prepare this SelectionDAGBuilder object to be used
880 /// for a new block. This doesn't clear out information about
881 /// additional blocks that are needed to complete switch lowering
882 /// or PHI node updating; that information is cleared out as it is
884 void SelectionDAGBuilder::clear() {
886 UnusedArgNodeMap.clear();
887 PendingLoads.clear();
888 PendingExports.clear();
891 SDNodeOrder = LowestSDNodeOrder;
892 StatepointLowering.clear();
895 /// clearDanglingDebugInfo - Clear the dangling debug information
896 /// map. This function is separated from the clear so that debug
897 /// information that is dangling in a basic block can be properly
898 /// resolved in a different basic block. This allows the
899 /// SelectionDAG to resolve dangling debug information attached
901 void SelectionDAGBuilder::clearDanglingDebugInfo() {
902 DanglingDebugInfoMap.clear();
905 /// getRoot - Return the current virtual root of the Selection DAG,
906 /// flushing any PendingLoad items. This must be done before emitting
907 /// a store or any other node that may need to be ordered after any
908 /// prior load instructions.
910 SDValue SelectionDAGBuilder::getRoot() {
911 if (PendingLoads.empty())
912 return DAG.getRoot();
914 if (PendingLoads.size() == 1) {
915 SDValue Root = PendingLoads[0];
917 PendingLoads.clear();
921 // Otherwise, we have to make a token factor node.
922 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
924 PendingLoads.clear();
929 /// getControlRoot - Similar to getRoot, but instead of flushing all the
930 /// PendingLoad items, flush all the PendingExports items. It is necessary
931 /// to do this before emitting a terminator instruction.
933 SDValue SelectionDAGBuilder::getControlRoot() {
934 SDValue Root = DAG.getRoot();
936 if (PendingExports.empty())
939 // Turn all of the CopyToReg chains into one factored node.
940 if (Root.getOpcode() != ISD::EntryToken) {
941 unsigned i = 0, e = PendingExports.size();
942 for (; i != e; ++i) {
943 assert(PendingExports[i].getNode()->getNumOperands() > 1);
944 if (PendingExports[i].getNode()->getOperand(0) == Root)
945 break; // Don't add the root if we already indirectly depend on it.
949 PendingExports.push_back(Root);
952 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
954 PendingExports.clear();
959 void SelectionDAGBuilder::visit(const Instruction &I) {
960 // Set up outgoing PHI node register values before emitting the terminator.
961 if (isa<TerminatorInst>(&I))
962 HandlePHINodesInSuccessorBlocks(I.getParent());
968 visit(I.getOpcode(), I);
970 if (!isa<TerminatorInst>(&I) && !HasTailCall)
971 CopyToExportRegsIfNeeded(&I);
976 void SelectionDAGBuilder::visitPHI(const PHINode &) {
977 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
980 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
981 // Note: this doesn't use InstVisitor, because it has to work with
982 // ConstantExpr's in addition to instructions.
984 default: llvm_unreachable("Unknown instruction type encountered!");
985 // Build the switch statement using the Instruction.def file.
986 #define HANDLE_INST(NUM, OPCODE, CLASS) \
987 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
988 #include "llvm/IR/Instruction.def"
992 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
993 // generate the debug data structures now that we've seen its definition.
994 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
996 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
998 const DbgValueInst *DI = DDI.getDI();
999 DebugLoc dl = DDI.getdl();
1000 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1001 MDLocalVariable *Variable = DI->getVariable();
1002 MDExpression *Expr = DI->getExpression();
1003 assert(Variable->isValidLocationForIntrinsic(dl) &&
1004 "Expected inlined-at fields to agree");
1005 uint64_t Offset = DI->getOffset();
1006 // A dbg.value for an alloca is always indirect.
1007 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0;
1009 if (Val.getNode()) {
1010 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, IsIndirect,
1012 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(),
1013 IsIndirect, Offset, dl, DbgSDNodeOrder);
1014 DAG.AddDbgValue(SDV, Val.getNode(), false);
1017 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1018 DanglingDebugInfoMap[V] = DanglingDebugInfo();
1022 /// getCopyFromRegs - If there was virtual register allocated for the value V
1023 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1024 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1025 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1028 if (It != FuncInfo.ValueMap.end()) {
1029 unsigned InReg = It->second;
1030 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), InReg,
1032 SDValue Chain = DAG.getEntryNode();
1033 res = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1034 resolveDanglingDebugInfo(V, res);
1040 /// getValue - Return an SDValue for the given Value.
1041 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1042 // If we already have an SDValue for this value, use it. It's important
1043 // to do this first, so that we don't create a CopyFromReg if we already
1044 // have a regular SDValue.
1045 SDValue &N = NodeMap[V];
1046 if (N.getNode()) return N;
1048 // If there's a virtual register allocated and initialized for this
1050 SDValue copyFromReg = getCopyFromRegs(V, V->getType());
1051 if (copyFromReg.getNode()) {
1055 // Otherwise create a new SDValue and remember it.
1056 SDValue Val = getValueImpl(V);
1058 resolveDanglingDebugInfo(V, Val);
1062 /// getNonRegisterValue - Return an SDValue for the given Value, but
1063 /// don't look in FuncInfo.ValueMap for a virtual register.
1064 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1065 // If we already have an SDValue for this value, use it.
1066 SDValue &N = NodeMap[V];
1067 if (N.getNode()) return N;
1069 // Otherwise create a new SDValue and remember it.
1070 SDValue Val = getValueImpl(V);
1072 resolveDanglingDebugInfo(V, Val);
1076 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1077 /// Create an SDValue for the given value.
1078 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1079 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1081 if (const Constant *C = dyn_cast<Constant>(V)) {
1082 EVT VT = TLI.getValueType(V->getType(), true);
1084 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1085 return DAG.getConstant(*CI, VT);
1087 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1088 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1090 if (isa<ConstantPointerNull>(C)) {
1091 unsigned AS = V->getType()->getPointerAddressSpace();
1092 return DAG.getConstant(0, TLI.getPointerTy(AS));
1095 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1096 return DAG.getConstantFP(*CFP, VT);
1098 if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1099 return DAG.getUNDEF(VT);
1101 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1102 visit(CE->getOpcode(), *CE);
1103 SDValue N1 = NodeMap[V];
1104 assert(N1.getNode() && "visit didn't populate the NodeMap!");
1108 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1109 SmallVector<SDValue, 4> Constants;
1110 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1112 SDNode *Val = getValue(*OI).getNode();
1113 // If the operand is an empty aggregate, there are no values.
1115 // Add each leaf value from the operand to the Constants list
1116 // to form a flattened list of all the values.
1117 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1118 Constants.push_back(SDValue(Val, i));
1121 return DAG.getMergeValues(Constants, getCurSDLoc());
1124 if (const ConstantDataSequential *CDS =
1125 dyn_cast<ConstantDataSequential>(C)) {
1126 SmallVector<SDValue, 4> Ops;
1127 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1128 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1129 // Add each leaf value from the operand to the Constants list
1130 // to form a flattened list of all the values.
1131 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1132 Ops.push_back(SDValue(Val, i));
1135 if (isa<ArrayType>(CDS->getType()))
1136 return DAG.getMergeValues(Ops, getCurSDLoc());
1137 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
1141 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1142 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1143 "Unknown struct or array constant!");
1145 SmallVector<EVT, 4> ValueVTs;
1146 ComputeValueVTs(TLI, C->getType(), ValueVTs);
1147 unsigned NumElts = ValueVTs.size();
1149 return SDValue(); // empty struct
1150 SmallVector<SDValue, 4> Constants(NumElts);
1151 for (unsigned i = 0; i != NumElts; ++i) {
1152 EVT EltVT = ValueVTs[i];
1153 if (isa<UndefValue>(C))
1154 Constants[i] = DAG.getUNDEF(EltVT);
1155 else if (EltVT.isFloatingPoint())
1156 Constants[i] = DAG.getConstantFP(0, EltVT);
1158 Constants[i] = DAG.getConstant(0, EltVT);
1161 return DAG.getMergeValues(Constants, getCurSDLoc());
1164 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1165 return DAG.getBlockAddress(BA, VT);
1167 VectorType *VecTy = cast<VectorType>(V->getType());
1168 unsigned NumElements = VecTy->getNumElements();
1170 // Now that we know the number and type of the elements, get that number of
1171 // elements into the Ops array based on what kind of constant it is.
1172 SmallVector<SDValue, 16> Ops;
1173 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1174 for (unsigned i = 0; i != NumElements; ++i)
1175 Ops.push_back(getValue(CV->getOperand(i)));
1177 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1178 EVT EltVT = TLI.getValueType(VecTy->getElementType());
1181 if (EltVT.isFloatingPoint())
1182 Op = DAG.getConstantFP(0, EltVT);
1184 Op = DAG.getConstant(0, EltVT);
1185 Ops.assign(NumElements, Op);
1188 // Create a BUILD_VECTOR node.
1189 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops);
1192 // If this is a static alloca, generate it as the frameindex instead of
1194 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1195 DenseMap<const AllocaInst*, int>::iterator SI =
1196 FuncInfo.StaticAllocaMap.find(AI);
1197 if (SI != FuncInfo.StaticAllocaMap.end())
1198 return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1201 // If this is an instruction which fast-isel has deferred, select it now.
1202 if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1203 unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1204 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1205 SDValue Chain = DAG.getEntryNode();
1206 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1209 llvm_unreachable("Can't get register for value!");
1212 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1213 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1214 SDValue Chain = getControlRoot();
1215 SmallVector<ISD::OutputArg, 8> Outs;
1216 SmallVector<SDValue, 8> OutVals;
1218 if (!FuncInfo.CanLowerReturn) {
1219 unsigned DemoteReg = FuncInfo.DemoteRegister;
1220 const Function *F = I.getParent()->getParent();
1222 // Emit a store of the return value through the virtual register.
1223 // Leave Outs empty so that LowerReturn won't try to load return
1224 // registers the usual way.
1225 SmallVector<EVT, 1> PtrValueVTs;
1226 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1229 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1230 SDValue RetOp = getValue(I.getOperand(0));
1232 SmallVector<EVT, 4> ValueVTs;
1233 SmallVector<uint64_t, 4> Offsets;
1234 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1235 unsigned NumValues = ValueVTs.size();
1237 SmallVector<SDValue, 4> Chains(NumValues);
1238 for (unsigned i = 0; i != NumValues; ++i) {
1239 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(),
1240 RetPtr.getValueType(), RetPtr,
1241 DAG.getIntPtrConstant(Offsets[i]));
1243 DAG.getStore(Chain, getCurSDLoc(),
1244 SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1245 // FIXME: better loc info would be nice.
1246 Add, MachinePointerInfo(), false, false, 0);
1249 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1250 MVT::Other, Chains);
1251 } else if (I.getNumOperands() != 0) {
1252 SmallVector<EVT, 4> ValueVTs;
1253 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1254 unsigned NumValues = ValueVTs.size();
1256 SDValue RetOp = getValue(I.getOperand(0));
1258 const Function *F = I.getParent()->getParent();
1260 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1261 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1263 ExtendKind = ISD::SIGN_EXTEND;
1264 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1266 ExtendKind = ISD::ZERO_EXTEND;
1268 LLVMContext &Context = F->getContext();
1269 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1272 for (unsigned j = 0; j != NumValues; ++j) {
1273 EVT VT = ValueVTs[j];
1275 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1276 VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind);
1278 unsigned NumParts = TLI.getNumRegisters(Context, VT);
1279 MVT PartVT = TLI.getRegisterType(Context, VT);
1280 SmallVector<SDValue, 4> Parts(NumParts);
1281 getCopyToParts(DAG, getCurSDLoc(),
1282 SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1283 &Parts[0], NumParts, PartVT, &I, ExtendKind);
1285 // 'inreg' on function refers to return value
1286 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1290 // Propagate extension type if any
1291 if (ExtendKind == ISD::SIGN_EXTEND)
1293 else if (ExtendKind == ISD::ZERO_EXTEND)
1296 for (unsigned i = 0; i < NumParts; ++i) {
1297 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1298 VT, /*isfixed=*/true, 0, 0));
1299 OutVals.push_back(Parts[i]);
1305 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1306 CallingConv::ID CallConv =
1307 DAG.getMachineFunction().getFunction()->getCallingConv();
1308 Chain = DAG.getTargetLoweringInfo().LowerReturn(
1309 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1311 // Verify that the target's LowerReturn behaved as expected.
1312 assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1313 "LowerReturn didn't return a valid chain!");
1315 // Update the DAG with the new chain value resulting from return lowering.
1319 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1320 /// created for it, emit nodes to copy the value into the virtual
1322 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1324 if (V->getType()->isEmptyTy())
1327 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1328 if (VMI != FuncInfo.ValueMap.end()) {
1329 assert(!V->use_empty() && "Unused value assigned virtual registers!");
1330 CopyValueToVirtualRegister(V, VMI->second);
1334 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1335 /// the current basic block, add it to ValueMap now so that we'll get a
1337 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1338 // No need to export constants.
1339 if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1341 // Already exported?
1342 if (FuncInfo.isExportedInst(V)) return;
1344 unsigned Reg = FuncInfo.InitializeRegForValue(V);
1345 CopyValueToVirtualRegister(V, Reg);
1348 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1349 const BasicBlock *FromBB) {
1350 // The operands of the setcc have to be in this block. We don't know
1351 // how to export them from some other block.
1352 if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1353 // Can export from current BB.
1354 if (VI->getParent() == FromBB)
1357 // Is already exported, noop.
1358 return FuncInfo.isExportedInst(V);
1361 // If this is an argument, we can export it if the BB is the entry block or
1362 // if it is already exported.
1363 if (isa<Argument>(V)) {
1364 if (FromBB == &FromBB->getParent()->getEntryBlock())
1367 // Otherwise, can only export this if it is already exported.
1368 return FuncInfo.isExportedInst(V);
1371 // Otherwise, constants can always be exported.
1375 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1376 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src,
1377 const MachineBasicBlock *Dst) const {
1378 BranchProbabilityInfo *BPI = FuncInfo.BPI;
1381 const BasicBlock *SrcBB = Src->getBasicBlock();
1382 const BasicBlock *DstBB = Dst->getBasicBlock();
1383 return BPI->getEdgeWeight(SrcBB, DstBB);
1386 void SelectionDAGBuilder::
1387 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
1388 uint32_t Weight /* = 0 */) {
1390 Weight = getEdgeWeight(Src, Dst);
1391 Src->addSuccessor(Dst, Weight);
1395 static bool InBlock(const Value *V, const BasicBlock *BB) {
1396 if (const Instruction *I = dyn_cast<Instruction>(V))
1397 return I->getParent() == BB;
1401 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1402 /// This function emits a branch and is used at the leaves of an OR or an
1403 /// AND operator tree.
1406 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1407 MachineBasicBlock *TBB,
1408 MachineBasicBlock *FBB,
1409 MachineBasicBlock *CurBB,
1410 MachineBasicBlock *SwitchBB,
1413 const BasicBlock *BB = CurBB->getBasicBlock();
1415 // If the leaf of the tree is a comparison, merge the condition into
1417 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1418 // The operands of the cmp have to be in this block. We don't know
1419 // how to export them from some other block. If this is the first block
1420 // of the sequence, no exporting is needed.
1421 if (CurBB == SwitchBB ||
1422 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1423 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1424 ISD::CondCode Condition;
1425 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1426 Condition = getICmpCondCode(IC->getPredicate());
1427 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1428 Condition = getFCmpCondCode(FC->getPredicate());
1429 if (TM.Options.NoNaNsFPMath)
1430 Condition = getFCmpCodeWithoutNaN(Condition);
1432 (void)Condition; // silence warning.
1433 llvm_unreachable("Unknown compare instruction");
1436 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
1437 TBB, FBB, CurBB, TWeight, FWeight);
1438 SwitchCases.push_back(CB);
1443 // Create a CaseBlock record representing this branch.
1444 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1445 nullptr, TBB, FBB, CurBB, TWeight, FWeight);
1446 SwitchCases.push_back(CB);
1449 /// Scale down both weights to fit into uint32_t.
1450 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
1451 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
1452 uint32_t Scale = (NewMax / UINT32_MAX) + 1;
1453 NewTrue = NewTrue / Scale;
1454 NewFalse = NewFalse / Scale;
1457 /// FindMergedConditions - If Cond is an expression like
1458 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1459 MachineBasicBlock *TBB,
1460 MachineBasicBlock *FBB,
1461 MachineBasicBlock *CurBB,
1462 MachineBasicBlock *SwitchBB,
1463 unsigned Opc, uint32_t TWeight,
1465 // If this node is not part of the or/and tree, emit it as a branch.
1466 const Instruction *BOp = dyn_cast<Instruction>(Cond);
1467 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1468 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1469 BOp->getParent() != CurBB->getBasicBlock() ||
1470 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1471 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1472 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
1477 // Create TmpBB after CurBB.
1478 MachineFunction::iterator BBI = CurBB;
1479 MachineFunction &MF = DAG.getMachineFunction();
1480 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1481 CurBB->getParent()->insert(++BBI, TmpBB);
1483 if (Opc == Instruction::Or) {
1484 // Codegen X | Y as:
1493 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1494 // The requirement is that
1495 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
1496 // = TrueProb for orignal BB.
1497 // Assuming the orignal weights are A and B, one choice is to set BB1's
1498 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
1500 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
1501 // Another choice is to assume TrueProb for BB1 equals to TrueProb for
1502 // TmpBB, but the math is more complicated.
1504 uint64_t NewTrueWeight = TWeight;
1505 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight;
1506 ScaleWeights(NewTrueWeight, NewFalseWeight);
1507 // Emit the LHS condition.
1508 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
1509 NewTrueWeight, NewFalseWeight);
1511 NewTrueWeight = TWeight;
1512 NewFalseWeight = 2 * (uint64_t)FWeight;
1513 ScaleWeights(NewTrueWeight, NewFalseWeight);
1514 // Emit the RHS condition into TmpBB.
1515 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1516 NewTrueWeight, NewFalseWeight);
1518 assert(Opc == Instruction::And && "Unknown merge op!");
1519 // Codegen X & Y as:
1527 // This requires creation of TmpBB after CurBB.
1529 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1530 // The requirement is that
1531 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
1532 // = FalseProb for orignal BB.
1533 // Assuming the orignal weights are A and B, one choice is to set BB1's
1534 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
1536 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
1538 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight;
1539 uint64_t NewFalseWeight = FWeight;
1540 ScaleWeights(NewTrueWeight, NewFalseWeight);
1541 // Emit the LHS condition.
1542 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
1543 NewTrueWeight, NewFalseWeight);
1545 NewTrueWeight = 2 * (uint64_t)TWeight;
1546 NewFalseWeight = FWeight;
1547 ScaleWeights(NewTrueWeight, NewFalseWeight);
1548 // Emit the RHS condition into TmpBB.
1549 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1550 NewTrueWeight, NewFalseWeight);
1554 /// If the set of cases should be emitted as a series of branches, return true.
1555 /// If we should emit this as a bunch of and/or'd together conditions, return
1558 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
1559 if (Cases.size() != 2) return true;
1561 // If this is two comparisons of the same values or'd or and'd together, they
1562 // will get folded into a single comparison, so don't emit two blocks.
1563 if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1564 Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1565 (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1566 Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1570 // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1571 // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1572 if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1573 Cases[0].CC == Cases[1].CC &&
1574 isa<Constant>(Cases[0].CmpRHS) &&
1575 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1576 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1578 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1585 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1586 MachineBasicBlock *BrMBB = FuncInfo.MBB;
1588 // Update machine-CFG edges.
1589 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1591 if (I.isUnconditional()) {
1592 // Update machine-CFG edges.
1593 BrMBB->addSuccessor(Succ0MBB);
1595 // If this is not a fall-through branch or optimizations are switched off,
1597 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
1598 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1599 MVT::Other, getControlRoot(),
1600 DAG.getBasicBlock(Succ0MBB)));
1605 // If this condition is one of the special cases we handle, do special stuff
1607 const Value *CondVal = I.getCondition();
1608 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1610 // If this is a series of conditions that are or'd or and'd together, emit
1611 // this as a sequence of branches instead of setcc's with and/or operations.
1612 // As long as jumps are not expensive, this should improve performance.
1613 // For example, instead of something like:
1626 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1627 if (!DAG.getTargetLoweringInfo().isJumpExpensive() &&
1628 BOp->hasOneUse() && (BOp->getOpcode() == Instruction::And ||
1629 BOp->getOpcode() == Instruction::Or)) {
1630 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1631 BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB),
1632 getEdgeWeight(BrMBB, Succ1MBB));
1633 // If the compares in later blocks need to use values not currently
1634 // exported from this block, export them now. This block should always
1635 // be the first entry.
1636 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1638 // Allow some cases to be rejected.
1639 if (ShouldEmitAsBranches(SwitchCases)) {
1640 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1641 ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1642 ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1645 // Emit the branch for this block.
1646 visitSwitchCase(SwitchCases[0], BrMBB);
1647 SwitchCases.erase(SwitchCases.begin());
1651 // Okay, we decided not to do this, remove any inserted MBB's and clear
1653 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1654 FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1656 SwitchCases.clear();
1660 // Create a CaseBlock record representing this branch.
1661 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1662 nullptr, Succ0MBB, Succ1MBB, BrMBB);
1664 // Use visitSwitchCase to actually insert the fast branch sequence for this
1666 visitSwitchCase(CB, BrMBB);
1669 /// visitSwitchCase - Emits the necessary code to represent a single node in
1670 /// the binary search tree resulting from lowering a switch instruction.
1671 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1672 MachineBasicBlock *SwitchBB) {
1674 SDValue CondLHS = getValue(CB.CmpLHS);
1675 SDLoc dl = getCurSDLoc();
1677 // Build the setcc now.
1679 // Fold "(X == true)" to X and "(X == false)" to !X to
1680 // handle common cases produced by branch lowering.
1681 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1682 CB.CC == ISD::SETEQ)
1684 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1685 CB.CC == ISD::SETEQ) {
1686 SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1687 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1689 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1691 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1693 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1694 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
1696 SDValue CmpOp = getValue(CB.CmpMHS);
1697 EVT VT = CmpOp.getValueType();
1699 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1700 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1703 SDValue SUB = DAG.getNode(ISD::SUB, dl,
1704 VT, CmpOp, DAG.getConstant(Low, VT));
1705 Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1706 DAG.getConstant(High-Low, VT), ISD::SETULE);
1710 // Update successor info
1711 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight);
1712 // TrueBB and FalseBB are always different unless the incoming IR is
1713 // degenerate. This only happens when running llc on weird IR.
1714 if (CB.TrueBB != CB.FalseBB)
1715 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight);
1717 // If the lhs block is the next block, invert the condition so that we can
1718 // fall through to the lhs instead of the rhs block.
1719 if (CB.TrueBB == NextBlock(SwitchBB)) {
1720 std::swap(CB.TrueBB, CB.FalseBB);
1721 SDValue True = DAG.getConstant(1, Cond.getValueType());
1722 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1725 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1726 MVT::Other, getControlRoot(), Cond,
1727 DAG.getBasicBlock(CB.TrueBB));
1729 // Insert the false branch. Do this even if it's a fall through branch,
1730 // this makes it easier to do DAG optimizations which require inverting
1731 // the branch condition.
1732 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1733 DAG.getBasicBlock(CB.FalseBB));
1735 DAG.setRoot(BrCond);
1738 /// visitJumpTable - Emit JumpTable node in the current MBB
1739 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1740 // Emit the code for the jump table
1741 assert(JT.Reg != -1U && "Should lower JT Header first!");
1742 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy();
1743 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1745 SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1746 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
1747 MVT::Other, Index.getValue(1),
1749 DAG.setRoot(BrJumpTable);
1752 /// visitJumpTableHeader - This function emits necessary code to produce index
1753 /// in the JumpTable from switch case.
1754 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1755 JumpTableHeader &JTH,
1756 MachineBasicBlock *SwitchBB) {
1757 // Subtract the lowest switch case value from the value being switched on and
1758 // conditional branch to default mbb if the result is greater than the
1759 // difference between smallest and largest cases.
1760 SDValue SwitchOp = getValue(JTH.SValue);
1761 EVT VT = SwitchOp.getValueType();
1762 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp,
1763 DAG.getConstant(JTH.First, VT));
1765 // The SDNode we just created, which holds the value being switched on minus
1766 // the smallest case value, needs to be copied to a virtual register so it
1767 // can be used as an index into the jump table in a subsequent basic block.
1768 // This value may be smaller or larger than the target's pointer type, and
1769 // therefore require extension or truncating.
1770 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1771 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI.getPointerTy());
1773 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1774 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(),
1775 JumpTableReg, SwitchOp);
1776 JT.Reg = JumpTableReg;
1778 // Emit the range check for the jump table, and branch to the default block
1779 // for the switch statement if the value being switched on exceeds the largest
1780 // case in the switch.
1782 DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(),
1783 Sub.getValueType()),
1784 Sub, DAG.getConstant(JTH.Last - JTH.First, VT), ISD::SETUGT);
1786 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1787 MVT::Other, CopyTo, CMP,
1788 DAG.getBasicBlock(JT.Default));
1790 // Avoid emitting unnecessary branches to the next block.
1791 if (JT.MBB != NextBlock(SwitchBB))
1792 BrCond = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond,
1793 DAG.getBasicBlock(JT.MBB));
1795 DAG.setRoot(BrCond);
1798 /// Codegen a new tail for a stack protector check ParentMBB which has had its
1799 /// tail spliced into a stack protector check success bb.
1801 /// For a high level explanation of how this fits into the stack protector
1802 /// generation see the comment on the declaration of class
1803 /// StackProtectorDescriptor.
1804 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
1805 MachineBasicBlock *ParentBB) {
1807 // First create the loads to the guard/stack slot for the comparison.
1808 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1809 EVT PtrTy = TLI.getPointerTy();
1811 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo();
1812 int FI = MFI->getStackProtectorIndex();
1814 const Value *IRGuard = SPD.getGuard();
1815 SDValue GuardPtr = getValue(IRGuard);
1816 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
1819 TLI.getDataLayout()->getPrefTypeAlignment(IRGuard->getType());
1823 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the
1824 // guard value from the virtual register holding the value. Otherwise, emit a
1825 // volatile load to retrieve the stack guard value.
1826 unsigned GuardReg = SPD.getGuardReg();
1828 if (GuardReg && TLI.useLoadStackGuardNode())
1829 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), GuardReg,
1832 Guard = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(),
1833 GuardPtr, MachinePointerInfo(IRGuard, 0),
1834 true, false, false, Align);
1836 SDValue StackSlot = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(),
1838 MachinePointerInfo::getFixedStack(FI),
1839 true, false, false, Align);
1841 // Perform the comparison via a subtract/getsetcc.
1842 EVT VT = Guard.getValueType();
1843 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, Guard, StackSlot);
1846 DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(),
1847 Sub.getValueType()),
1848 Sub, DAG.getConstant(0, VT), ISD::SETNE);
1850 // If the sub is not 0, then we know the guard/stackslot do not equal, so
1851 // branch to failure MBB.
1852 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1853 MVT::Other, StackSlot.getOperand(0),
1854 Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
1855 // Otherwise branch to success MBB.
1856 SDValue Br = DAG.getNode(ISD::BR, getCurSDLoc(),
1858 DAG.getBasicBlock(SPD.getSuccessMBB()));
1863 /// Codegen the failure basic block for a stack protector check.
1865 /// A failure stack protector machine basic block consists simply of a call to
1866 /// __stack_chk_fail().
1868 /// For a high level explanation of how this fits into the stack protector
1869 /// generation see the comment on the declaration of class
1870 /// StackProtectorDescriptor.
1872 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
1873 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1875 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
1876 nullptr, 0, false, getCurSDLoc(), false, false).second;
1880 /// visitBitTestHeader - This function emits necessary code to produce value
1881 /// suitable for "bit tests"
1882 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1883 MachineBasicBlock *SwitchBB) {
1884 // Subtract the minimum value
1885 SDValue SwitchOp = getValue(B.SValue);
1886 EVT VT = SwitchOp.getValueType();
1887 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp,
1888 DAG.getConstant(B.First, VT));
1891 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1893 DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(),
1894 Sub.getValueType()),
1895 Sub, DAG.getConstant(B.Range, VT), ISD::SETUGT);
1897 // Determine the type of the test operands.
1898 bool UsePtrType = false;
1899 if (!TLI.isTypeLegal(VT))
1902 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1903 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
1904 // Switch table case range are encoded into series of masks.
1905 // Just use pointer type, it's guaranteed to fit.
1911 VT = TLI.getPointerTy();
1912 Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT);
1915 B.RegVT = VT.getSimpleVT();
1916 B.Reg = FuncInfo.CreateReg(B.RegVT);
1917 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(),
1920 MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1922 addSuccessorWithWeight(SwitchBB, B.Default);
1923 addSuccessorWithWeight(SwitchBB, MBB);
1925 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1926 MVT::Other, CopyTo, RangeCmp,
1927 DAG.getBasicBlock(B.Default));
1929 // Avoid emitting unnecessary branches to the next block.
1930 if (MBB != NextBlock(SwitchBB))
1931 BrRange = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, CopyTo,
1932 DAG.getBasicBlock(MBB));
1934 DAG.setRoot(BrRange);
1937 /// visitBitTestCase - this function produces one "bit test"
1938 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1939 MachineBasicBlock* NextMBB,
1940 uint32_t BranchWeightToNext,
1943 MachineBasicBlock *SwitchBB) {
1945 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1948 unsigned PopCount = countPopulation(B.Mask);
1949 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1950 if (PopCount == 1) {
1951 // Testing for a single bit; just compare the shift count with what it
1952 // would need to be to shift a 1 bit in that position.
1954 getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp,
1955 DAG.getConstant(countTrailingZeros(B.Mask), VT), ISD::SETEQ);
1956 } else if (PopCount == BB.Range) {
1957 // There is only one zero bit in the range, test for it directly.
1959 getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp,
1960 DAG.getConstant(countTrailingOnes(B.Mask), VT), ISD::SETNE);
1962 // Make desired shift
1963 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT,
1964 DAG.getConstant(1, VT), ShiftOp);
1966 // Emit bit tests and jumps
1967 SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(),
1968 VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1969 Cmp = DAG.getSetCC(getCurSDLoc(),
1970 TLI.getSetCCResultType(*DAG.getContext(), VT), AndOp,
1971 DAG.getConstant(0, VT), ISD::SETNE);
1974 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight.
1975 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight);
1976 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext.
1977 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext);
1979 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1980 MVT::Other, getControlRoot(),
1981 Cmp, DAG.getBasicBlock(B.TargetBB));
1983 // Avoid emitting unnecessary branches to the next block.
1984 if (NextMBB != NextBlock(SwitchBB))
1985 BrAnd = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrAnd,
1986 DAG.getBasicBlock(NextMBB));
1991 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1992 MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1994 // Retrieve successors.
1995 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1996 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1998 const Value *Callee(I.getCalledValue());
1999 const Function *Fn = dyn_cast<Function>(Callee);
2000 if (isa<InlineAsm>(Callee))
2002 else if (Fn && Fn->isIntrinsic()) {
2003 switch (Fn->getIntrinsicID()) {
2005 llvm_unreachable("Cannot invoke this intrinsic");
2006 case Intrinsic::donothing:
2007 // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2009 case Intrinsic::experimental_patchpoint_void:
2010 case Intrinsic::experimental_patchpoint_i64:
2011 visitPatchpoint(&I, LandingPad);
2013 case Intrinsic::experimental_gc_statepoint:
2014 LowerStatepoint(ImmutableStatepoint(&I), LandingPad);
2018 LowerCallTo(&I, getValue(Callee), false, LandingPad);
2020 // If the value of the invoke is used outside of its defining block, make it
2021 // available as a virtual register.
2022 // We already took care of the exported value for the statepoint instruction
2023 // during call to the LowerStatepoint.
2024 if (!isStatepoint(I)) {
2025 CopyToExportRegsIfNeeded(&I);
2028 // Update successor info
2029 addSuccessorWithWeight(InvokeMBB, Return);
2030 addSuccessorWithWeight(InvokeMBB, LandingPad);
2032 // Drop into normal successor.
2033 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2034 MVT::Other, getControlRoot(),
2035 DAG.getBasicBlock(Return)));
2038 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2039 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2042 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2043 assert(FuncInfo.MBB->isLandingPad() &&
2044 "Call to landingpad not in landing pad!");
2046 MachineBasicBlock *MBB = FuncInfo.MBB;
2047 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
2048 AddLandingPadInfo(LP, MMI, MBB);
2050 // If there aren't registers to copy the values into (e.g., during SjLj
2051 // exceptions), then don't bother to create these DAG nodes.
2052 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2053 if (TLI.getExceptionPointerRegister() == 0 &&
2054 TLI.getExceptionSelectorRegister() == 0)
2057 SmallVector<EVT, 2> ValueVTs;
2058 ComputeValueVTs(TLI, LP.getType(), ValueVTs);
2059 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2061 // Get the two live-in registers as SDValues. The physregs have already been
2062 // copied into virtual registers.
2064 if (FuncInfo.ExceptionPointerVirtReg) {
2065 Ops[0] = DAG.getZExtOrTrunc(
2066 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
2067 FuncInfo.ExceptionPointerVirtReg, TLI.getPointerTy()),
2068 getCurSDLoc(), ValueVTs[0]);
2070 Ops[0] = DAG.getConstant(0, TLI.getPointerTy());
2072 Ops[1] = DAG.getZExtOrTrunc(
2073 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
2074 FuncInfo.ExceptionSelectorVirtReg, TLI.getPointerTy()),
2075 getCurSDLoc(), ValueVTs[1]);
2078 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2079 DAG.getVTList(ValueVTs), Ops);
2084 SelectionDAGBuilder::visitLandingPadClauseBB(GlobalValue *ClauseGV,
2085 MachineBasicBlock *LPadBB) {
2086 SDValue Chain = getControlRoot();
2088 // Get the typeid that we will dispatch on later.
2089 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2090 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy());
2091 unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC);
2092 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(ClauseGV);
2093 SDValue Sel = DAG.getConstant(TypeID, TLI.getPointerTy());
2094 Chain = DAG.getCopyToReg(Chain, getCurSDLoc(), VReg, Sel);
2096 // Branch to the main landing pad block.
2097 MachineBasicBlock *ClauseMBB = FuncInfo.MBB;
2098 ClauseMBB->addSuccessor(LPadBB);
2099 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, Chain,
2100 DAG.getBasicBlock(LPadBB)));
2104 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
2105 /// small case ranges).
2106 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
2107 CaseRecVector& WorkList,
2109 MachineBasicBlock *Default,
2110 MachineBasicBlock *SwitchBB) {
2111 // Size is the number of Cases represented by this range.
2112 size_t Size = CR.Range.second - CR.Range.first;
2116 // Get the MachineFunction which holds the current MBB. This is used when
2117 // inserting any additional MBBs necessary to represent the switch.
2118 MachineFunction *CurMF = FuncInfo.MF;
2120 // Figure out which block is immediately after the current one.
2121 MachineBasicBlock *NextMBB = nullptr;
2122 MachineFunction::iterator BBI = CR.CaseBB;
2123 if (++BBI != FuncInfo.MF->end())
2126 BranchProbabilityInfo *BPI = FuncInfo.BPI;
2127 // If any two of the cases has the same destination, and if one value
2128 // is the same as the other, but has one bit unset that the other has set,
2129 // use bit manipulation to do two compares at once. For example:
2130 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
2131 // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
2132 // TODO: Handle cases where CR.CaseBB != SwitchBB.
2133 if (Size == 2 && CR.CaseBB == SwitchBB) {
2134 Case &Small = *CR.Range.first;
2135 Case &Big = *(CR.Range.second-1);
2137 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
2138 const APInt& SmallValue = Small.Low->getValue();
2139 const APInt& BigValue = Big.Low->getValue();
2141 // Check that there is only one bit different.
2142 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
2143 (SmallValue | BigValue) == BigValue) {
2144 // Isolate the common bit.
2145 APInt CommonBit = BigValue & ~SmallValue;
2146 assert((SmallValue | CommonBit) == BigValue &&
2147 CommonBit.countPopulation() == 1 && "Not a common bit?");
2149 SDValue CondLHS = getValue(SV);
2150 EVT VT = CondLHS.getValueType();
2151 SDLoc DL = getCurSDLoc();
2153 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
2154 DAG.getConstant(CommonBit, VT));
2155 SDValue Cond = DAG.getSetCC(DL, MVT::i1,
2156 Or, DAG.getConstant(BigValue, VT),
2159 // Update successor info.
2160 // Both Small and Big will jump to Small.BB, so we sum up the weights.
2161 addSuccessorWithWeight(SwitchBB, Small.BB,
2162 Small.ExtraWeight + Big.ExtraWeight);
2163 addSuccessorWithWeight(SwitchBB, Default,
2164 // The default destination is the first successor in IR.
2165 BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0);
2167 // Insert the true branch.
2168 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
2169 getControlRoot(), Cond,
2170 DAG.getBasicBlock(Small.BB));
2172 // Insert the false branch.
2173 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
2174 DAG.getBasicBlock(Default));
2176 DAG.setRoot(BrCond);
2182 // Order cases by weight so the most likely case will be checked first.
2183 uint32_t UnhandledWeights = 0;
2185 for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) {
2186 uint32_t IWeight = I->ExtraWeight;
2187 UnhandledWeights += IWeight;
2188 for (CaseItr J = CR.Range.first; J < I; ++J) {
2189 uint32_t JWeight = J->ExtraWeight;
2190 if (IWeight > JWeight)
2195 // Rearrange the case blocks so that the last one falls through if possible.
2196 Case &BackCase = *(CR.Range.second-1);
2197 if (Size > 1 && NextMBB && Default != NextMBB && BackCase.BB != NextMBB) {
2198 // The last case block won't fall through into 'NextMBB' if we emit the
2199 // branches in this order. See if rearranging a case value would help.
2200 // We start at the bottom as it's the case with the least weight.
2201 for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I)
2202 if (I->BB == NextMBB) {
2203 std::swap(*I, BackCase);
2208 // Create a CaseBlock record representing a conditional branch to
2209 // the Case's target mbb if the value being switched on SV is equal
2211 MachineBasicBlock *CurBlock = CR.CaseBB;
2212 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2213 MachineBasicBlock *FallThrough;
2215 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
2216 CurMF->insert(BBI, FallThrough);
2218 // Put SV in a virtual register to make it available from the new blocks.
2219 ExportFromCurrentBlock(SV);
2221 // If the last case doesn't match, go to the default block.
2222 FallThrough = Default;
2225 const Value *RHS, *LHS, *MHS;
2227 if (I->High == I->Low) {
2228 // This is just small small case range :) containing exactly 1 case
2230 LHS = SV; RHS = I->High; MHS = nullptr;
2233 LHS = I->Low; MHS = SV; RHS = I->High;
2236 // The false weight should be sum of all un-handled cases.
2237 UnhandledWeights -= I->ExtraWeight;
2238 CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough,
2240 /* trueweight */ I->ExtraWeight,
2241 /* falseweight */ UnhandledWeights);
2243 // If emitting the first comparison, just call visitSwitchCase to emit the
2244 // code into the current block. Otherwise, push the CaseBlock onto the
2245 // vector to be later processed by SDISel, and insert the node's MBB
2246 // before the next MBB.
2247 if (CurBlock == SwitchBB)
2248 visitSwitchCase(CB, SwitchBB);
2250 SwitchCases.push_back(CB);
2252 CurBlock = FallThrough;
2258 static inline bool areJTsAllowed(const TargetLowering &TLI) {
2259 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
2260 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
2263 static APInt ComputeRange(const APInt &First, const APInt &Last) {
2264 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
2265 APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth);
2266 return (LastExt - FirstExt + 1ULL);
2269 /// handleJTSwitchCase - Emit jumptable for current switch case range
2270 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR,
2271 CaseRecVector &WorkList,
2273 MachineBasicBlock *Default,
2274 MachineBasicBlock *SwitchBB) {
2275 Case& FrontCase = *CR.Range.first;
2276 Case& BackCase = *(CR.Range.second-1);
2278 const APInt &First = FrontCase.Low->getValue();
2279 const APInt &Last = BackCase.High->getValue();
2281 APInt TSize(First.getBitWidth(), 0);
2282 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I)
2285 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2286 if (!areJTsAllowed(TLI) || TSize.ult(TLI.getMinimumJumpTableEntries()))
2289 APInt Range = ComputeRange(First, Last);
2290 // The density is TSize / Range. Require at least 40%.
2291 // It should not be possible for IntTSize to saturate for sane code, but make
2292 // sure we handle Range saturation correctly.
2293 uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10);
2294 uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10);
2295 if (IntTSize * 10 < IntRange * 4)
2298 DEBUG(dbgs() << "Lowering jump table\n"
2299 << "First entry: " << First << ". Last entry: " << Last << '\n'
2300 << "Range: " << Range << ". Size: " << TSize << ".\n\n");
2302 // Get the MachineFunction which holds the current MBB. This is used when
2303 // inserting any additional MBBs necessary to represent the switch.
2304 MachineFunction *CurMF = FuncInfo.MF;
2306 // Figure out which block is immediately after the current one.
2307 MachineFunction::iterator BBI = CR.CaseBB;
2310 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2312 // Create a new basic block to hold the code for loading the address
2313 // of the jump table, and jumping to it. Update successor information;
2314 // we will either branch to the default case for the switch, or the jump
2316 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2317 CurMF->insert(BBI, JumpTableBB);
2319 addSuccessorWithWeight(CR.CaseBB, Default);
2320 addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
2322 // Build a vector of destination BBs, corresponding to each target
2323 // of the jump table. If the value of the jump table slot corresponds to
2324 // a case statement, push the case's BB onto the vector, otherwise, push
2326 std::vector<MachineBasicBlock*> DestBBs;
2328 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
2329 const APInt &Low = I->Low->getValue();
2330 const APInt &High = I->High->getValue();
2332 if (Low.sle(TEI) && TEI.sle(High)) {
2333 DestBBs.push_back(I->BB);
2337 DestBBs.push_back(Default);
2341 // Calculate weight for each unique destination in CR.
2342 DenseMap<MachineBasicBlock*, uint32_t> DestWeights;
2344 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I)
2345 DestWeights[I->BB] += I->ExtraWeight;
2348 // Update successor info. Add one edge to each unique successor.
2349 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
2350 for (MachineBasicBlock *DestBB : DestBBs) {
2351 if (!SuccsHandled[DestBB->getNumber()]) {
2352 SuccsHandled[DestBB->getNumber()] = true;
2353 auto I = DestWeights.find(DestBB);
2354 addSuccessorWithWeight(JumpTableBB, DestBB,
2355 I != DestWeights.end() ? I->second : 0);
2359 // Create a jump table index for this jump table.
2360 unsigned JTEncoding = TLI.getJumpTableEncoding();
2361 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
2362 ->createJumpTableIndex(DestBBs);
2364 // Set the jump table information so that we can codegen it as a second
2365 // MachineBasicBlock
2366 JumpTable JT(-1U, JTI, JumpTableBB, Default);
2367 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
2368 if (CR.CaseBB == SwitchBB)
2369 visitJumpTableHeader(JT, JTH, SwitchBB);
2371 JTCases.push_back(JumpTableBlock(JTH, JT));
2375 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2377 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
2378 CaseRecVector& WorkList,
2380 MachineBasicBlock* SwitchBB) {
2381 Case& FrontCase = *CR.Range.first;
2382 Case& BackCase = *(CR.Range.second-1);
2384 // Size is the number of Cases represented by this range.
2385 unsigned Size = CR.Range.second - CR.Range.first;
2387 const APInt &First = FrontCase.Low->getValue();
2388 const APInt &Last = BackCase.High->getValue();
2390 CaseItr Pivot = CR.Range.first + Size/2;
2392 // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2393 // (heuristically) allow us to emit JumpTable's later.
2394 APInt TSize(First.getBitWidth(), 0);
2395 for (CaseItr I = CR.Range.first, E = CR.Range.second;
2399 APInt LSize = FrontCase.size();
2400 APInt RSize = TSize-LSize;
2401 DEBUG(dbgs() << "Selecting best pivot: \n"
2402 << "First: " << First << ", Last: " << Last <<'\n'
2403 << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2404 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2405 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2407 const APInt &LEnd = I->High->getValue();
2408 const APInt &RBegin = J->Low->getValue();
2409 APInt Range = ComputeRange(LEnd, RBegin);
2410 assert((Range - 2ULL).isNonNegative() &&
2411 "Invalid case distance");
2412 // Use volatile double here to avoid excess precision issues on some hosts,
2413 // e.g. that use 80-bit X87 registers.
2414 // Only consider the density of sub-ranges that actually have sufficient
2415 // entries to be lowered as a jump table.
2416 volatile double LDensity =
2417 LSize.ult(TLI.getMinimumJumpTableEntries())
2419 : LSize.roundToDouble() / (LEnd - First + 1ULL).roundToDouble();
2420 volatile double RDensity =
2421 RSize.ult(TLI.getMinimumJumpTableEntries())
2423 : RSize.roundToDouble() / (Last - RBegin + 1ULL).roundToDouble();
2424 volatile double Metric = Range.logBase2() * (LDensity + RDensity);
2425 // Should always split in some non-trivial place
2426 DEBUG(dbgs() <<"=>Step\n"
2427 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2428 << "LDensity: " << LDensity
2429 << ", RDensity: " << RDensity << '\n'
2430 << "Metric: " << Metric << '\n');
2431 if (FMetric < Metric) {
2434 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2441 if (FMetric == 0 || !areJTsAllowed(TLI))
2442 Pivot = CR.Range.first + Size/2;
2443 splitSwitchCase(CR, Pivot, WorkList, SV, SwitchBB);
2447 void SelectionDAGBuilder::splitSwitchCase(CaseRec &CR, CaseItr Pivot,
2448 CaseRecVector &WorkList,
2450 MachineBasicBlock *SwitchBB) {
2451 // Get the MachineFunction which holds the current MBB. This is used when
2452 // inserting any additional MBBs necessary to represent the switch.
2453 MachineFunction *CurMF = FuncInfo.MF;
2455 // Figure out which block is immediately after the current one.
2456 MachineFunction::iterator BBI = CR.CaseBB;
2459 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2461 CaseRange LHSR(CR.Range.first, Pivot);
2462 CaseRange RHSR(Pivot, CR.Range.second);
2463 const ConstantInt *C = Pivot->Low;
2464 MachineBasicBlock *FalseBB = nullptr, *TrueBB = nullptr;
2466 // We know that we branch to the LHS if the Value being switched on is
2467 // less than the Pivot value, C. We use this to optimize our binary
2468 // tree a bit, by recognizing that if SV is greater than or equal to the
2469 // LHS's Case Value, and that Case Value is exactly one less than the
2470 // Pivot's Value, then we can branch directly to the LHS's Target,
2471 // rather than creating a leaf node for it.
2472 if ((LHSR.second - LHSR.first) == 1 && LHSR.first->High == CR.GE &&
2473 C->getValue() == (CR.GE->getValue() + 1LL)) {
2474 TrueBB = LHSR.first->BB;
2476 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2477 CurMF->insert(BBI, TrueBB);
2478 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2480 // Put SV in a virtual register to make it available from the new blocks.
2481 ExportFromCurrentBlock(SV);
2484 // Similar to the optimization above, if the Value being switched on is
2485 // known to be less than the Constant CR.LT, and the current Case Value
2486 // is CR.LT - 1, then we can branch directly to the target block for
2487 // the current Case Value, rather than emitting a RHS leaf node for it.
2488 if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2489 RHSR.first->Low->getValue() == (CR.LT->getValue() - 1LL)) {
2490 FalseBB = RHSR.first->BB;
2492 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2493 CurMF->insert(BBI, FalseBB);
2494 WorkList.push_back(CaseRec(FalseBB, CR.LT, C, RHSR));
2496 // Put SV in a virtual register to make it available from the new blocks.
2497 ExportFromCurrentBlock(SV);
2500 // Create a CaseBlock record representing a conditional branch to
2501 // the LHS node if the value being switched on SV is less than C.
2502 // Otherwise, branch to LHS.
2503 CaseBlock CB(ISD::SETLT, SV, C, nullptr, TrueBB, FalseBB, CR.CaseBB);
2505 if (CR.CaseBB == SwitchBB)
2506 visitSwitchCase(CB, SwitchBB);
2508 SwitchCases.push_back(CB);
2511 /// handleBitTestsSwitchCase - if current case range has few destination and
2512 /// range span less, than machine word bitwidth, encode case range into series
2513 /// of masks and emit bit tests with these masks.
2514 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2515 CaseRecVector& WorkList,
2517 MachineBasicBlock* Default,
2518 MachineBasicBlock* SwitchBB) {
2519 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2520 EVT PTy = TLI.getPointerTy();
2521 unsigned IntPtrBits = PTy.getSizeInBits();
2523 Case& FrontCase = *CR.Range.first;
2524 Case& BackCase = *(CR.Range.second-1);
2526 // Get the MachineFunction which holds the current MBB. This is used when
2527 // inserting any additional MBBs necessary to represent the switch.
2528 MachineFunction *CurMF = FuncInfo.MF;
2530 // If target does not have legal shift left, do not emit bit tests at all.
2531 if (!TLI.isOperationLegal(ISD::SHL, PTy))
2535 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2536 // Single case counts one, case range - two.
2537 numCmps += (I->Low == I->High ? 1 : 2);
2540 // Count unique destinations
2541 SmallSet<MachineBasicBlock*, 4> Dests;
2542 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2543 Dests.insert(I->BB);
2544 if (Dests.size() > 3)
2545 // Don't bother the code below, if there are too much unique destinations
2548 DEBUG(dbgs() << "Total number of unique destinations: "
2549 << Dests.size() << '\n'
2550 << "Total number of comparisons: " << numCmps << '\n');
2552 // Compute span of values.
2553 const APInt& minValue = FrontCase.Low->getValue();
2554 const APInt& maxValue = BackCase.High->getValue();
2555 APInt cmpRange = maxValue - minValue;
2557 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2558 << "Low bound: " << minValue << '\n'
2559 << "High bound: " << maxValue << '\n');
2561 if (cmpRange.uge(IntPtrBits) ||
2562 (!(Dests.size() == 1 && numCmps >= 3) &&
2563 !(Dests.size() == 2 && numCmps >= 5) &&
2564 !(Dests.size() >= 3 && numCmps >= 6)))
2567 DEBUG(dbgs() << "Emitting bit tests\n");
2568 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2570 // Optimize the case where all the case values fit in a
2571 // word without having to subtract minValue. In this case,
2572 // we can optimize away the subtraction.
2573 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
2574 cmpRange = maxValue;
2576 lowBound = minValue;
2579 CaseBitsVector CasesBits;
2580 unsigned i, count = 0;
2582 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2583 MachineBasicBlock* Dest = I->BB;
2584 for (i = 0; i < count; ++i)
2585 if (Dest == CasesBits[i].BB)
2589 assert((count < 3) && "Too much destinations to test!");
2590 CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/));
2594 const APInt& lowValue = I->Low->getValue();
2595 const APInt& highValue = I->High->getValue();
2597 uint64_t lo = (lowValue - lowBound).getZExtValue();
2598 uint64_t hi = (highValue - lowBound).getZExtValue();
2599 CasesBits[i].ExtraWeight += I->ExtraWeight;
2601 for (uint64_t j = lo; j <= hi; j++) {
2602 CasesBits[i].Mask |= 1ULL << j;
2603 CasesBits[i].Bits++;
2607 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2611 // Figure out which block is immediately after the current one.
2612 MachineFunction::iterator BBI = CR.CaseBB;
2615 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2617 DEBUG(dbgs() << "Cases:\n");
2618 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2619 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2620 << ", Bits: " << CasesBits[i].Bits
2621 << ", BB: " << CasesBits[i].BB << '\n');
2623 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2624 CurMF->insert(BBI, CaseBB);
2625 BTC.push_back(BitTestCase(CasesBits[i].Mask,
2627 CasesBits[i].BB, CasesBits[i].ExtraWeight));
2629 // Put SV in a virtual register to make it available from the new blocks.
2630 ExportFromCurrentBlock(SV);
2633 BitTestBlock BTB(lowBound, cmpRange, SV,
2634 -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2635 CR.CaseBB, Default, std::move(BTC));
2637 if (CR.CaseBB == SwitchBB)
2638 visitBitTestHeader(BTB, SwitchBB);
2640 BitTestCases.push_back(std::move(BTB));
2645 void SelectionDAGBuilder::Clusterify(CaseVector &Cases, const SwitchInst *SI) {
2646 BranchProbabilityInfo *BPI = FuncInfo.BPI;
2648 // Extract cases from the switch and sort them.
2649 typedef std::pair<const ConstantInt*, unsigned> CasePair;
2650 std::vector<CasePair> Sorted;
2651 Sorted.reserve(SI->getNumCases());
2652 for (auto I : SI->cases())
2653 Sorted.push_back(std::make_pair(I.getCaseValue(), I.getSuccessorIndex()));
2654 std::sort(Sorted.begin(), Sorted.end(), [](CasePair a, CasePair b) {
2655 return a.first->getValue().slt(b.first->getValue());
2658 // Merge adjacent cases with the same destination, build Cases vector.
2659 assert(Cases.empty() && "Cases should be empty before Clusterify;");
2660 Cases.reserve(SI->getNumCases());
2661 MachineBasicBlock *PreviousSucc = nullptr;
2662 for (CasePair &CP : Sorted) {
2663 const ConstantInt *CaseVal = CP.first;
2664 unsigned SuccIndex = CP.second;
2665 MachineBasicBlock *Succ = FuncInfo.MBBMap[SI->getSuccessor(SuccIndex)];
2666 uint32_t Weight = BPI ? BPI->getEdgeWeight(SI->getParent(), SuccIndex) : 0;
2668 if (PreviousSucc == Succ &&
2669 (CaseVal->getValue() - Cases.back().High->getValue()) == 1) {
2670 // If this case has the same successor and is a neighbour, merge it into
2671 // the previous cluster.
2672 Cases.back().High = CaseVal;
2673 Cases.back().ExtraWeight += Weight;
2675 Cases.push_back(Case(CaseVal, CaseVal, Succ, Weight));
2678 PreviousSucc = Succ;
2683 for (auto &I : Cases)
2684 // A range counts double, since it requires two compares.
2685 numCmps += I.Low != I.High ? 2 : 1;
2687 dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2688 << ". Total compares: " << numCmps << '\n';
2692 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2693 MachineBasicBlock *Last) {
2695 for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2696 if (JTCases[i].first.HeaderBB == First)
2697 JTCases[i].first.HeaderBB = Last;
2699 // Update BitTestCases.
2700 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2701 if (BitTestCases[i].Parent == First)
2702 BitTestCases[i].Parent = Last;
2705 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2706 MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2708 // Create a vector of Cases, sorted so that we can efficiently create a binary
2709 // search tree from them.
2711 Clusterify(Cases, &SI);
2713 // Get the default destination MBB.
2714 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2716 if (isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()) &&
2718 // Replace an unreachable default destination with the most popular case
2720 DenseMap<const BasicBlock *, unsigned> Popularity;
2721 unsigned MaxPop = 0;
2722 const BasicBlock *MaxBB = nullptr;
2723 for (auto I : SI.cases()) {
2724 const BasicBlock *BB = I.getCaseSuccessor();
2725 if (++Popularity[BB] > MaxPop) {
2726 MaxPop = Popularity[BB];
2734 Default = FuncInfo.MBBMap[MaxBB];
2736 // Remove cases that were pointing to the destination that is now the default.
2737 Cases.erase(std::remove_if(Cases.begin(), Cases.end(),
2738 [&](const Case &C) { return C.BB == Default; }),
2742 // If there is only the default destination, go there directly.
2743 if (Cases.empty()) {
2744 // Update machine-CFG edges.
2745 SwitchMBB->addSuccessor(Default);
2747 // If this is not a fall-through branch, emit the branch.
2748 if (Default != NextBlock(SwitchMBB)) {
2749 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
2750 getControlRoot(), DAG.getBasicBlock(Default)));
2755 // Get the Value to be switched on.
2756 const Value *SV = SI.getCondition();
2758 // Push the initial CaseRec onto the worklist
2759 CaseRecVector WorkList;
2760 WorkList.push_back(CaseRec(SwitchMBB,nullptr,nullptr,
2761 CaseRange(Cases.begin(),Cases.end())));
2763 while (!WorkList.empty()) {
2764 // Grab a record representing a case range to process off the worklist
2765 CaseRec CR = WorkList.back();
2766 WorkList.pop_back();
2768 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2771 // If the range has few cases (two or less) emit a series of specific
2773 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2776 // If the switch has more than N blocks, and is at least 40% dense, and the
2777 // target supports indirect branches, then emit a jump table rather than
2778 // lowering the switch to a binary tree of conditional branches.
2779 // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries().
2780 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2783 // Emit binary tree. We need to pick a pivot, and push left and right ranges
2784 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2785 handleBTSplitSwitchCase(CR, WorkList, SV, SwitchMBB);
2789 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2790 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2792 // Update machine-CFG edges with unique successors.
2793 SmallSet<BasicBlock*, 32> Done;
2794 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2795 BasicBlock *BB = I.getSuccessor(i);
2796 bool Inserted = Done.insert(BB).second;
2800 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2801 addSuccessorWithWeight(IndirectBrMBB, Succ);
2804 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2805 MVT::Other, getControlRoot(),
2806 getValue(I.getAddress())));
2809 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2810 if (DAG.getTarget().Options.TrapUnreachable)
2811 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2814 void SelectionDAGBuilder::visitFSub(const User &I) {
2815 // -0.0 - X --> fneg
2816 Type *Ty = I.getType();
2817 if (isa<Constant>(I.getOperand(0)) &&
2818 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2819 SDValue Op2 = getValue(I.getOperand(1));
2820 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2821 Op2.getValueType(), Op2));
2825 visitBinary(I, ISD::FSUB);
2828 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2829 SDValue Op1 = getValue(I.getOperand(0));
2830 SDValue Op2 = getValue(I.getOperand(1));
2835 if (const OverflowingBinaryOperator *OFBinOp =
2836 dyn_cast<const OverflowingBinaryOperator>(&I)) {
2837 nuw = OFBinOp->hasNoUnsignedWrap();
2838 nsw = OFBinOp->hasNoSignedWrap();
2840 if (const PossiblyExactOperator *ExactOp =
2841 dyn_cast<const PossiblyExactOperator>(&I))
2842 exact = ExactOp->isExact();
2844 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(),
2845 Op1, Op2, nuw, nsw, exact);
2846 setValue(&I, BinNodeValue);
2849 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2850 SDValue Op1 = getValue(I.getOperand(0));
2851 SDValue Op2 = getValue(I.getOperand(1));
2854 DAG.getTargetLoweringInfo().getShiftAmountTy(Op2.getValueType());
2856 // Coerce the shift amount to the right type if we can.
2857 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2858 unsigned ShiftSize = ShiftTy.getSizeInBits();
2859 unsigned Op2Size = Op2.getValueType().getSizeInBits();
2860 SDLoc DL = getCurSDLoc();
2862 // If the operand is smaller than the shift count type, promote it.
2863 if (ShiftSize > Op2Size)
2864 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2866 // If the operand is larger than the shift count type but the shift
2867 // count type has enough bits to represent any shift value, truncate
2868 // it now. This is a common case and it exposes the truncate to
2869 // optimization early.
2870 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2871 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2872 // Otherwise we'll need to temporarily settle for some other convenient
2873 // type. Type legalization will make adjustments once the shiftee is split.
2875 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2882 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
2884 if (const OverflowingBinaryOperator *OFBinOp =
2885 dyn_cast<const OverflowingBinaryOperator>(&I)) {
2886 nuw = OFBinOp->hasNoUnsignedWrap();
2887 nsw = OFBinOp->hasNoSignedWrap();
2889 if (const PossiblyExactOperator *ExactOp =
2890 dyn_cast<const PossiblyExactOperator>(&I))
2891 exact = ExactOp->isExact();
2894 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
2899 void SelectionDAGBuilder::visitSDiv(const User &I) {
2900 SDValue Op1 = getValue(I.getOperand(0));
2901 SDValue Op2 = getValue(I.getOperand(1));
2903 // Turn exact SDivs into multiplications.
2904 // FIXME: This should be in DAGCombiner, but it doesn't have access to the
2906 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
2907 !isa<ConstantSDNode>(Op1) &&
2908 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
2909 setValue(&I, DAG.getTargetLoweringInfo()
2910 .BuildExactSDIV(Op1, Op2, getCurSDLoc(), DAG));
2912 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(),
2916 void SelectionDAGBuilder::visitICmp(const User &I) {
2917 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2918 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2919 predicate = IC->getPredicate();
2920 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2921 predicate = ICmpInst::Predicate(IC->getPredicate());
2922 SDValue Op1 = getValue(I.getOperand(0));
2923 SDValue Op2 = getValue(I.getOperand(1));
2924 ISD::CondCode Opcode = getICmpCondCode(predicate);
2926 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
2927 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2930 void SelectionDAGBuilder::visitFCmp(const User &I) {
2931 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2932 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2933 predicate = FC->getPredicate();
2934 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2935 predicate = FCmpInst::Predicate(FC->getPredicate());
2936 SDValue Op1 = getValue(I.getOperand(0));
2937 SDValue Op2 = getValue(I.getOperand(1));
2938 ISD::CondCode Condition = getFCmpCondCode(predicate);
2939 if (TM.Options.NoNaNsFPMath)
2940 Condition = getFCmpCodeWithoutNaN(Condition);
2941 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
2942 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2945 void SelectionDAGBuilder::visitSelect(const User &I) {
2946 SmallVector<EVT, 4> ValueVTs;
2947 ComputeValueVTs(DAG.getTargetLoweringInfo(), I.getType(), ValueVTs);
2948 unsigned NumValues = ValueVTs.size();
2949 if (NumValues == 0) return;
2951 SmallVector<SDValue, 4> Values(NumValues);
2952 SDValue Cond = getValue(I.getOperand(0));
2953 SDValue TrueVal = getValue(I.getOperand(1));
2954 SDValue FalseVal = getValue(I.getOperand(2));
2955 ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2956 ISD::VSELECT : ISD::SELECT;
2958 for (unsigned i = 0; i != NumValues; ++i)
2959 Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
2960 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2962 SDValue(TrueVal.getNode(),
2963 TrueVal.getResNo() + i),
2964 SDValue(FalseVal.getNode(),
2965 FalseVal.getResNo() + i));
2967 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2968 DAG.getVTList(ValueVTs), Values));
2971 void SelectionDAGBuilder::visitTrunc(const User &I) {
2972 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2973 SDValue N = getValue(I.getOperand(0));
2974 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
2975 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
2978 void SelectionDAGBuilder::visitZExt(const User &I) {
2979 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2980 // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2981 SDValue N = getValue(I.getOperand(0));
2982 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
2983 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
2986 void SelectionDAGBuilder::visitSExt(const User &I) {
2987 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2988 // SExt also can't be a cast to bool for same reason. So, nothing much to do
2989 SDValue N = getValue(I.getOperand(0));
2990 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
2991 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
2994 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2995 // FPTrunc is never a no-op cast, no need to check
2996 SDValue N = getValue(I.getOperand(0));
2997 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2998 EVT DestVT = TLI.getValueType(I.getType());
2999 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(), DestVT, N,
3000 DAG.getTargetConstant(0, TLI.getPointerTy())));
3003 void SelectionDAGBuilder::visitFPExt(const User &I) {
3004 // FPExt is never a no-op cast, no need to check
3005 SDValue N = getValue(I.getOperand(0));
3006 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
3007 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3010 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3011 // FPToUI is never a no-op cast, no need to check
3012 SDValue N = getValue(I.getOperand(0));
3013 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
3014 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3017 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3018 // FPToSI is never a no-op cast, no need to check
3019 SDValue N = getValue(I.getOperand(0));
3020 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
3021 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3024 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3025 // UIToFP is never a no-op cast, no need to check
3026 SDValue N = getValue(I.getOperand(0));
3027 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
3028 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3031 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3032 // SIToFP is never a no-op cast, no need to check
3033 SDValue N = getValue(I.getOperand(0));
3034 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
3035 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3038 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3039 // What to do depends on the size of the integer and the size of the pointer.
3040 // We can either truncate, zero extend, or no-op, accordingly.
3041 SDValue N = getValue(I.getOperand(0));
3042 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
3043 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3046 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3047 // What to do depends on the size of the integer and the size of the pointer.
3048 // We can either truncate, zero extend, or no-op, accordingly.
3049 SDValue N = getValue(I.getOperand(0));
3050 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
3051 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3054 void SelectionDAGBuilder::visitBitCast(const User &I) {
3055 SDValue N = getValue(I.getOperand(0));
3056 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
3058 // BitCast assures us that source and destination are the same size so this is
3059 // either a BITCAST or a no-op.
3060 if (DestVT != N.getValueType())
3061 setValue(&I, DAG.getNode(ISD::BITCAST, getCurSDLoc(),
3062 DestVT, N)); // convert types.
3063 // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3064 // might fold any kind of constant expression to an integer constant and that
3065 // is not what we are looking for. Only regcognize a bitcast of a genuine
3066 // constant integer as an opaque constant.
3067 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3068 setValue(&I, DAG.getConstant(C->getValue(), DestVT, /*isTarget=*/false,
3071 setValue(&I, N); // noop cast.
3074 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3075 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3076 const Value *SV = I.getOperand(0);
3077 SDValue N = getValue(SV);
3078 EVT DestVT = TLI.getValueType(I.getType());
3080 unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3081 unsigned DestAS = I.getType()->getPointerAddressSpace();
3083 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3084 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3089 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3090 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3091 SDValue InVec = getValue(I.getOperand(0));
3092 SDValue InVal = getValue(I.getOperand(1));
3093 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)),
3094 getCurSDLoc(), TLI.getVectorIdxTy());
3095 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3096 TLI.getValueType(I.getType()), InVec, InVal, InIdx));
3099 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3100 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3101 SDValue InVec = getValue(I.getOperand(0));
3102 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)),
3103 getCurSDLoc(), TLI.getVectorIdxTy());
3104 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3105 TLI.getValueType(I.getType()), InVec, InIdx));
3108 // Utility for visitShuffleVector - Return true if every element in Mask,
3109 // beginning from position Pos and ending in Pos+Size, falls within the
3110 // specified sequential range [L, L+Pos). or is undef.
3111 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask,
3112 unsigned Pos, unsigned Size, int Low) {
3113 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3114 if (Mask[i] >= 0 && Mask[i] != Low)
3119 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3120 SDValue Src1 = getValue(I.getOperand(0));
3121 SDValue Src2 = getValue(I.getOperand(1));
3123 SmallVector<int, 8> Mask;
3124 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
3125 unsigned MaskNumElts = Mask.size();
3127 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3128 EVT VT = TLI.getValueType(I.getType());
3129 EVT SrcVT = Src1.getValueType();
3130 unsigned SrcNumElts = SrcVT.getVectorNumElements();
3132 if (SrcNumElts == MaskNumElts) {
3133 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
3138 // Normalize the shuffle vector since mask and vector length don't match.
3139 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
3140 // Mask is longer than the source vectors and is a multiple of the source
3141 // vectors. We can use concatenate vector to make the mask and vectors
3143 if (SrcNumElts*2 == MaskNumElts) {
3144 // First check for Src1 in low and Src2 in high
3145 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) &&
3146 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) {
3147 // The shuffle is concatenating two vectors together.
3148 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
3152 // Then check for Src2 in low and Src1 in high
3153 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) &&
3154 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) {
3155 // The shuffle is concatenating two vectors together.
3156 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
3162 // Pad both vectors with undefs to make them the same length as the mask.
3163 unsigned NumConcat = MaskNumElts / SrcNumElts;
3164 bool Src1U = Src1.getOpcode() == ISD::UNDEF;
3165 bool Src2U = Src2.getOpcode() == ISD::UNDEF;
3166 SDValue UndefVal = DAG.getUNDEF(SrcVT);
3168 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3169 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3173 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
3174 getCurSDLoc(), VT, MOps1);
3175 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
3176 getCurSDLoc(), VT, MOps2);
3178 // Readjust mask for new input vector length.
3179 SmallVector<int, 8> MappedOps;
3180 for (unsigned i = 0; i != MaskNumElts; ++i) {
3182 if (Idx >= (int)SrcNumElts)
3183 Idx -= SrcNumElts - MaskNumElts;
3184 MappedOps.push_back(Idx);
3187 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
3192 if (SrcNumElts > MaskNumElts) {
3193 // Analyze the access pattern of the vector to see if we can extract
3194 // two subvectors and do the shuffle. The analysis is done by calculating
3195 // the range of elements the mask access on both vectors.
3196 int MinRange[2] = { static_cast<int>(SrcNumElts),
3197 static_cast<int>(SrcNumElts)};
3198 int MaxRange[2] = {-1, -1};
3200 for (unsigned i = 0; i != MaskNumElts; ++i) {
3206 if (Idx >= (int)SrcNumElts) {
3210 if (Idx > MaxRange[Input])
3211 MaxRange[Input] = Idx;
3212 if (Idx < MinRange[Input])
3213 MinRange[Input] = Idx;
3216 // Check if the access is smaller than the vector size and can we find
3217 // a reasonable extract index.
3218 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not
3220 int StartIdx[2]; // StartIdx to extract from
3221 for (unsigned Input = 0; Input < 2; ++Input) {
3222 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
3223 RangeUse[Input] = 0; // Unused
3224 StartIdx[Input] = 0;
3228 // Find a good start index that is a multiple of the mask length. Then
3229 // see if the rest of the elements are in range.
3230 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
3231 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
3232 StartIdx[Input] + MaskNumElts <= SrcNumElts)
3233 RangeUse[Input] = 1; // Extract from a multiple of the mask length.
3236 if (RangeUse[0] == 0 && RangeUse[1] == 0) {
3237 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3240 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
3241 // Extract appropriate subvector and generate a vector shuffle
3242 for (unsigned Input = 0; Input < 2; ++Input) {
3243 SDValue &Src = Input == 0 ? Src1 : Src2;
3244 if (RangeUse[Input] == 0)
3245 Src = DAG.getUNDEF(VT);
3248 ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT, Src,
3249 DAG.getConstant(StartIdx[Input], TLI.getVectorIdxTy()));
3252 // Calculate new mask.
3253 SmallVector<int, 8> MappedOps;
3254 for (unsigned i = 0; i != MaskNumElts; ++i) {
3257 if (Idx < (int)SrcNumElts)
3260 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3262 MappedOps.push_back(Idx);
3265 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
3271 // We can't use either concat vectors or extract subvectors so fall back to
3272 // replacing the shuffle with extract and build vector.
3273 // to insert and build vector.
3274 EVT EltVT = VT.getVectorElementType();
3275 EVT IdxVT = TLI.getVectorIdxTy();
3276 SmallVector<SDValue,8> Ops;
3277 for (unsigned i = 0; i != MaskNumElts; ++i) {
3282 Res = DAG.getUNDEF(EltVT);
3284 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3285 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3287 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3288 EltVT, Src, DAG.getConstant(Idx, IdxVT));
3294 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops));
3297 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3298 const Value *Op0 = I.getOperand(0);
3299 const Value *Op1 = I.getOperand(1);
3300 Type *AggTy = I.getType();
3301 Type *ValTy = Op1->getType();
3302 bool IntoUndef = isa<UndefValue>(Op0);
3303 bool FromUndef = isa<UndefValue>(Op1);
3305 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3307 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3308 SmallVector<EVT, 4> AggValueVTs;
3309 ComputeValueVTs(TLI, AggTy, AggValueVTs);
3310 SmallVector<EVT, 4> ValValueVTs;
3311 ComputeValueVTs(TLI, ValTy, ValValueVTs);
3313 unsigned NumAggValues = AggValueVTs.size();
3314 unsigned NumValValues = ValValueVTs.size();
3315 SmallVector<SDValue, 4> Values(NumAggValues);
3317 // Ignore an insertvalue that produces an empty object
3318 if (!NumAggValues) {
3319 setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3323 SDValue Agg = getValue(Op0);
3325 // Copy the beginning value(s) from the original aggregate.
3326 for (; i != LinearIndex; ++i)
3327 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3328 SDValue(Agg.getNode(), Agg.getResNo() + i);
3329 // Copy values from the inserted value(s).
3331 SDValue Val = getValue(Op1);
3332 for (; i != LinearIndex + NumValValues; ++i)
3333 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3334 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3336 // Copy remaining value(s) from the original aggregate.
3337 for (; i != NumAggValues; ++i)
3338 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3339 SDValue(Agg.getNode(), Agg.getResNo() + i);
3341 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3342 DAG.getVTList(AggValueVTs), Values));
3345 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3346 const Value *Op0 = I.getOperand(0);
3347 Type *AggTy = Op0->getType();
3348 Type *ValTy = I.getType();
3349 bool OutOfUndef = isa<UndefValue>(Op0);
3351 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3353 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3354 SmallVector<EVT, 4> ValValueVTs;
3355 ComputeValueVTs(TLI, ValTy, ValValueVTs);
3357 unsigned NumValValues = ValValueVTs.size();
3359 // Ignore a extractvalue that produces an empty object
3360 if (!NumValValues) {
3361 setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3365 SmallVector<SDValue, 4> Values(NumValValues);
3367 SDValue Agg = getValue(Op0);
3368 // Copy out the selected value(s).
3369 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3370 Values[i - LinearIndex] =
3372 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3373 SDValue(Agg.getNode(), Agg.getResNo() + i);
3375 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3376 DAG.getVTList(ValValueVTs), Values));
3379 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3380 Value *Op0 = I.getOperand(0);
3381 // Note that the pointer operand may be a vector of pointers. Take the scalar
3382 // element which holds a pointer.
3383 Type *Ty = Op0->getType()->getScalarType();
3384 unsigned AS = Ty->getPointerAddressSpace();
3385 SDValue N = getValue(Op0);
3387 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
3389 const Value *Idx = *OI;
3390 if (StructType *StTy = dyn_cast<StructType>(Ty)) {
3391 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3394 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3395 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N,
3396 DAG.getConstant(Offset, N.getValueType()));
3399 Ty = StTy->getElementType(Field);
3401 Ty = cast<SequentialType>(Ty)->getElementType();
3402 MVT PtrTy = DAG.getTargetLoweringInfo().getPointerTy(AS);
3403 unsigned PtrSize = PtrTy.getSizeInBits();
3404 APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty));
3406 // If this is a constant subscript, handle it quickly.
3407 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
3410 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize);
3411 SDValue OffsVal = DAG.getConstant(Offs, PtrTy);
3412 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, OffsVal);
3416 // N = N + Idx * ElementSize;
3417 SDValue IdxN = getValue(Idx);
3419 // If the index is smaller or larger than intptr_t, truncate or extend
3421 IdxN = DAG.getSExtOrTrunc(IdxN, getCurSDLoc(), N.getValueType());
3423 // If this is a multiply by a power of two, turn it into a shl
3424 // immediately. This is a very common case.
3425 if (ElementSize != 1) {
3426 if (ElementSize.isPowerOf2()) {
3427 unsigned Amt = ElementSize.logBase2();
3428 IdxN = DAG.getNode(ISD::SHL, getCurSDLoc(),
3429 N.getValueType(), IdxN,
3430 DAG.getConstant(Amt, IdxN.getValueType()));
3432 SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType());
3433 IdxN = DAG.getNode(ISD::MUL, getCurSDLoc(),
3434 N.getValueType(), IdxN, Scale);
3438 N = DAG.getNode(ISD::ADD, getCurSDLoc(),
3439 N.getValueType(), N, IdxN);
3446 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3447 // If this is a fixed sized alloca in the entry block of the function,
3448 // allocate it statically on the stack.
3449 if (FuncInfo.StaticAllocaMap.count(&I))
3450 return; // getValue will auto-populate this.
3452 Type *Ty = I.getAllocatedType();
3453 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3454 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty);
3456 std::max((unsigned)TLI.getDataLayout()->getPrefTypeAlignment(Ty),
3459 SDValue AllocSize = getValue(I.getArraySize());
3461 EVT IntPtr = TLI.getPointerTy();
3462 if (AllocSize.getValueType() != IntPtr)
3463 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr);
3465 AllocSize = DAG.getNode(ISD::MUL, getCurSDLoc(), IntPtr,
3467 DAG.getConstant(TySize, IntPtr));
3469 // Handle alignment. If the requested alignment is less than or equal to
3470 // the stack alignment, ignore it. If the size is greater than or equal to
3471 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3472 unsigned StackAlign =
3473 DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3474 if (Align <= StackAlign)
3477 // Round the size of the allocation up to the stack alignment size
3478 // by add SA-1 to the size.
3479 AllocSize = DAG.getNode(ISD::ADD, getCurSDLoc(),
3480 AllocSize.getValueType(), AllocSize,
3481 DAG.getIntPtrConstant(StackAlign-1));
3483 // Mask out the low bits for alignment purposes.
3484 AllocSize = DAG.getNode(ISD::AND, getCurSDLoc(),
3485 AllocSize.getValueType(), AllocSize,
3486 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
3488 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
3489 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3490 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurSDLoc(), VTs, Ops);
3492 DAG.setRoot(DSA.getValue(1));
3494 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects());
3497 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3499 return visitAtomicLoad(I);
3501 const Value *SV = I.getOperand(0);
3502 SDValue Ptr = getValue(SV);
3504 Type *Ty = I.getType();
3506 bool isVolatile = I.isVolatile();
3507 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3508 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr;
3509 unsigned Alignment = I.getAlignment();
3512 I.getAAMetadata(AAInfo);
3513 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3515 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3516 SmallVector<EVT, 4> ValueVTs;
3517 SmallVector<uint64_t, 4> Offsets;
3518 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
3519 unsigned NumValues = ValueVTs.size();
3524 bool ConstantMemory = false;
3525 if (isVolatile || NumValues > MaxParallelChains)
3526 // Serialize volatile loads with other side effects.
3528 else if (AA->pointsToConstantMemory(
3529 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), AAInfo))) {
3530 // Do not serialize (non-volatile) loads of constant memory with anything.
3531 Root = DAG.getEntryNode();
3532 ConstantMemory = true;
3534 // Do not serialize non-volatile loads against each other.
3535 Root = DAG.getRoot();
3539 Root = TLI.prepareVolatileOrAtomicLoad(Root, getCurSDLoc(), DAG);
3541 SmallVector<SDValue, 4> Values(NumValues);
3542 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3544 EVT PtrVT = Ptr.getValueType();
3545 unsigned ChainI = 0;
3546 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3547 // Serializing loads here may result in excessive register pressure, and
3548 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3549 // could recover a bit by hoisting nodes upward in the chain by recognizing
3550 // they are side-effect free or do not alias. The optimizer should really
3551 // avoid this case by converting large object/array copies to llvm.memcpy
3552 // (MaxParallelChains should always remain as failsafe).
3553 if (ChainI == MaxParallelChains) {
3554 assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3555 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
3556 makeArrayRef(Chains.data(), ChainI));
3560 SDValue A = DAG.getNode(ISD::ADD, getCurSDLoc(),
3562 DAG.getConstant(Offsets[i], PtrVT));
3563 SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root,
3564 A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3565 isNonTemporal, isInvariant, Alignment, AAInfo,
3569 Chains[ChainI] = L.getValue(1);
3572 if (!ConstantMemory) {
3573 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
3574 makeArrayRef(Chains.data(), ChainI));
3578 PendingLoads.push_back(Chain);
3581 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3582 DAG.getVTList(ValueVTs), Values));
3585 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3587 return visitAtomicStore(I);
3589 const Value *SrcV = I.getOperand(0);
3590 const Value *PtrV = I.getOperand(1);
3592 SmallVector<EVT, 4> ValueVTs;
3593 SmallVector<uint64_t, 4> Offsets;
3594 ComputeValueVTs(DAG.getTargetLoweringInfo(), SrcV->getType(),
3595 ValueVTs, &Offsets);
3596 unsigned NumValues = ValueVTs.size();
3600 // Get the lowered operands. Note that we do this after
3601 // checking if NumResults is zero, because with zero results
3602 // the operands won't have values in the map.
3603 SDValue Src = getValue(SrcV);
3604 SDValue Ptr = getValue(PtrV);
3606 SDValue Root = getRoot();
3607 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3609 EVT PtrVT = Ptr.getValueType();
3610 bool isVolatile = I.isVolatile();
3611 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3612 unsigned Alignment = I.getAlignment();
3615 I.getAAMetadata(AAInfo);
3617 unsigned ChainI = 0;
3618 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3619 // See visitLoad comments.
3620 if (ChainI == MaxParallelChains) {
3621 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
3622 makeArrayRef(Chains.data(), ChainI));
3626 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr,
3627 DAG.getConstant(Offsets[i], PtrVT));
3628 SDValue St = DAG.getStore(Root, getCurSDLoc(),
3629 SDValue(Src.getNode(), Src.getResNo() + i),
3630 Add, MachinePointerInfo(PtrV, Offsets[i]),
3631 isVolatile, isNonTemporal, Alignment, AAInfo);
3632 Chains[ChainI] = St;
3635 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
3636 makeArrayRef(Chains.data(), ChainI));
3637 DAG.setRoot(StoreNode);
3640 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) {
3641 SDLoc sdl = getCurSDLoc();
3643 // llvm.masked.store.*(Src0, Ptr, alignemt, Mask)
3644 Value *PtrOperand = I.getArgOperand(1);
3645 SDValue Ptr = getValue(PtrOperand);
3646 SDValue Src0 = getValue(I.getArgOperand(0));
3647 SDValue Mask = getValue(I.getArgOperand(3));
3648 EVT VT = Src0.getValueType();
3649 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
3651 Alignment = DAG.getEVTAlignment(VT);
3654 I.getAAMetadata(AAInfo);
3656 MachineMemOperand *MMO =
3657 DAG.getMachineFunction().
3658 getMachineMemOperand(MachinePointerInfo(PtrOperand),
3659 MachineMemOperand::MOStore, VT.getStoreSize(),
3661 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
3663 DAG.setRoot(StoreNode);
3664 setValue(&I, StoreNode);
3667 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) {
3668 SDLoc sdl = getCurSDLoc();
3670 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
3671 Value *PtrOperand = I.getArgOperand(0);
3672 SDValue Ptr = getValue(PtrOperand);
3673 SDValue Src0 = getValue(I.getArgOperand(3));
3674 SDValue Mask = getValue(I.getArgOperand(2));
3676 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3677 EVT VT = TLI.getValueType(I.getType());
3678 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
3680 Alignment = DAG.getEVTAlignment(VT);
3683 I.getAAMetadata(AAInfo);
3684 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3686 SDValue InChain = DAG.getRoot();
3687 if (AA->pointsToConstantMemory(
3688 AliasAnalysis::Location(PtrOperand,
3689 AA->getTypeStoreSize(I.getType()),
3691 // Do not serialize (non-volatile) loads of constant memory with anything.
3692 InChain = DAG.getEntryNode();
3695 MachineMemOperand *MMO =
3696 DAG.getMachineFunction().
3697 getMachineMemOperand(MachinePointerInfo(PtrOperand),
3698 MachineMemOperand::MOLoad, VT.getStoreSize(),
3699 Alignment, AAInfo, Ranges);
3701 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
3703 SDValue OutChain = Load.getValue(1);
3704 DAG.setRoot(OutChain);
3708 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3709 SDLoc dl = getCurSDLoc();
3710 AtomicOrdering SuccessOrder = I.getSuccessOrdering();
3711 AtomicOrdering FailureOrder = I.getFailureOrdering();
3712 SynchronizationScope Scope = I.getSynchScope();
3714 SDValue InChain = getRoot();