1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
12 //===----------------------------------------------------------------------===//
14 #include "SelectionDAGBuilder.h"
15 #include "SDNodeDbgValue.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/BranchProbabilityInfo.h"
22 #include "llvm/Analysis/ConstantFolding.h"
23 #include "llvm/Analysis/TargetLibraryInfo.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/CodeGen/FastISel.h"
26 #include "llvm/CodeGen/FunctionLoweringInfo.h"
27 #include "llvm/CodeGen/GCMetadata.h"
28 #include "llvm/CodeGen/GCStrategy.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineFunction.h"
31 #include "llvm/CodeGen/MachineInstrBuilder.h"
32 #include "llvm/CodeGen/MachineJumpTableInfo.h"
33 #include "llvm/CodeGen/MachineModuleInfo.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/SelectionDAG.h"
36 #include "llvm/CodeGen/StackMaps.h"
37 #include "llvm/CodeGen/WinEHFuncInfo.h"
38 #include "llvm/IR/CallingConv.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/DebugInfo.h"
42 #include "llvm/IR/DerivedTypes.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/GlobalVariable.h"
45 #include "llvm/IR/InlineAsm.h"
46 #include "llvm/IR/Instructions.h"
47 #include "llvm/IR/IntrinsicInst.h"
48 #include "llvm/IR/Intrinsics.h"
49 #include "llvm/IR/LLVMContext.h"
50 #include "llvm/IR/Module.h"
51 #include "llvm/IR/Statepoint.h"
52 #include "llvm/MC/MCSymbol.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/ErrorHandling.h"
56 #include "llvm/Support/MathExtras.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include "llvm/Target/TargetFrameLowering.h"
59 #include "llvm/Target/TargetInstrInfo.h"
60 #include "llvm/Target/TargetIntrinsicInfo.h"
61 #include "llvm/Target/TargetLowering.h"
62 #include "llvm/Target/TargetOptions.h"
63 #include "llvm/Target/TargetSelectionDAGInfo.h"
64 #include "llvm/Target/TargetSubtargetInfo.h"
68 #define DEBUG_TYPE "isel"
70 /// LimitFloatPrecision - Generate low-precision inline sequences for
71 /// some float libcalls (6, 8 or 12 bits).
72 static unsigned LimitFloatPrecision;
74 static cl::opt<unsigned, true>
75 LimitFPPrecision("limit-float-precision",
76 cl::desc("Generate low-precision inline sequences "
77 "for some float libcalls"),
78 cl::location(LimitFloatPrecision),
81 // Limit the width of DAG chains. This is important in general to prevent
82 // prevent DAG-based analysis from blowing up. For example, alias analysis and
83 // load clustering may not complete in reasonable time. It is difficult to
84 // recognize and avoid this situation within each individual analysis, and
85 // future analyses are likely to have the same behavior. Limiting DAG width is
86 // the safe approach, and will be especially important with global DAGs.
88 // MaxParallelChains default is arbitrarily high to avoid affecting
89 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
90 // sequence over this should have been converted to llvm.memcpy by the
91 // frontend. It easy to induce this behavior with .ll code such as:
92 // %buffer = alloca [4096 x i8]
93 // %data = load [4096 x i8]* %argPtr
94 // store [4096 x i8] %data, [4096 x i8]* %buffer
95 static const unsigned MaxParallelChains = 64;
97 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
98 const SDValue *Parts, unsigned NumParts,
99 MVT PartVT, EVT ValueVT, const Value *V);
101 /// getCopyFromParts - Create a value that contains the specified legal parts
102 /// combined into the value they represent. If the parts combine to a type
103 /// larger then ValueVT then AssertOp can be used to specify whether the extra
104 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
105 /// (ISD::AssertSext).
106 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL,
107 const SDValue *Parts,
108 unsigned NumParts, MVT PartVT, EVT ValueVT,
110 ISD::NodeType AssertOp = ISD::DELETED_NODE) {
111 if (ValueVT.isVector())
112 return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
115 assert(NumParts > 0 && "No parts to assemble!");
116 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
117 SDValue Val = Parts[0];
120 // Assemble the value from multiple parts.
121 if (ValueVT.isInteger()) {
122 unsigned PartBits = PartVT.getSizeInBits();
123 unsigned ValueBits = ValueVT.getSizeInBits();
125 // Assemble the power of 2 part.
126 unsigned RoundParts = NumParts & (NumParts - 1) ?
127 1 << Log2_32(NumParts) : NumParts;
128 unsigned RoundBits = PartBits * RoundParts;
129 EVT RoundVT = RoundBits == ValueBits ?
130 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
133 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
135 if (RoundParts > 2) {
136 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
138 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
139 RoundParts / 2, PartVT, HalfVT, V);
141 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
142 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
145 if (TLI.isBigEndian())
148 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
150 if (RoundParts < NumParts) {
151 // Assemble the trailing non-power-of-2 part.
152 unsigned OddParts = NumParts - RoundParts;
153 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
154 Hi = getCopyFromParts(DAG, DL,
155 Parts + RoundParts, OddParts, PartVT, OddVT, V);
157 // Combine the round and odd parts.
159 if (TLI.isBigEndian())
161 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
162 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
163 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
164 DAG.getConstant(Lo.getValueType().getSizeInBits(), DL,
165 TLI.getPointerTy()));
166 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
167 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
169 } else if (PartVT.isFloatingPoint()) {
170 // FP split into multiple FP parts (for ppcf128)
171 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
174 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
175 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
176 if (TLI.hasBigEndianPartOrdering(ValueVT))
178 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
180 // FP split into integer parts (soft fp)
181 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
182 !PartVT.isVector() && "Unexpected split");
183 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
184 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
188 // There is now one part, held in Val. Correct it to match ValueVT.
189 EVT PartEVT = Val.getValueType();
191 if (PartEVT == ValueVT)
194 if (PartEVT.isInteger() && ValueVT.isInteger()) {
195 if (ValueVT.bitsLT(PartEVT)) {
196 // For a truncate, see if we have any information to
197 // indicate whether the truncated bits will always be
198 // zero or sign-extension.
199 if (AssertOp != ISD::DELETED_NODE)
200 Val = DAG.getNode(AssertOp, DL, PartEVT, Val,
201 DAG.getValueType(ValueVT));
202 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
204 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
207 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
208 // FP_ROUND's are always exact here.
209 if (ValueVT.bitsLT(Val.getValueType()))
210 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
211 DAG.getTargetConstant(1, DL, TLI.getPointerTy()));
213 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
216 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
217 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
219 llvm_unreachable("Unknown mismatch!");
222 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
223 const Twine &ErrMsg) {
224 const Instruction *I = dyn_cast_or_null<Instruction>(V);
226 return Ctx.emitError(ErrMsg);
228 const char *AsmError = ", possible invalid constraint for vector type";
229 if (const CallInst *CI = dyn_cast<CallInst>(I))
230 if (isa<InlineAsm>(CI->getCalledValue()))
231 return Ctx.emitError(I, ErrMsg + AsmError);
233 return Ctx.emitError(I, ErrMsg);
236 /// getCopyFromPartsVector - Create a value that contains the specified legal
237 /// parts combined into the value they represent. If the parts combine to a
238 /// type larger then ValueVT then AssertOp can be used to specify whether the
239 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
240 /// ValueVT (ISD::AssertSext).
241 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
242 const SDValue *Parts, unsigned NumParts,
243 MVT PartVT, EVT ValueVT, const Value *V) {
244 assert(ValueVT.isVector() && "Not a vector value");
245 assert(NumParts > 0 && "No parts to assemble!");
246 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
247 SDValue Val = Parts[0];
249 // Handle a multi-element vector.
253 unsigned NumIntermediates;
255 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
256 NumIntermediates, RegisterVT);
257 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
258 NumParts = NumRegs; // Silence a compiler warning.
259 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
260 assert(RegisterVT == Parts[0].getSimpleValueType() &&
261 "Part type doesn't match part!");
263 // Assemble the parts into intermediate operands.
264 SmallVector<SDValue, 8> Ops(NumIntermediates);
265 if (NumIntermediates == NumParts) {
266 // If the register was not expanded, truncate or copy the value,
268 for (unsigned i = 0; i != NumParts; ++i)
269 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
270 PartVT, IntermediateVT, V);
271 } else if (NumParts > 0) {
272 // If the intermediate type was expanded, build the intermediate
273 // operands from the parts.
274 assert(NumParts % NumIntermediates == 0 &&
275 "Must expand into a divisible number of parts!");
276 unsigned Factor = NumParts / NumIntermediates;
277 for (unsigned i = 0; i != NumIntermediates; ++i)
278 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
279 PartVT, IntermediateVT, V);
282 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
283 // intermediate operands.
284 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
289 // There is now one part, held in Val. Correct it to match ValueVT.
290 EVT PartEVT = Val.getValueType();
292 if (PartEVT == ValueVT)
295 if (PartEVT.isVector()) {
296 // If the element type of the source/dest vectors are the same, but the
297 // parts vector has more elements than the value vector, then we have a
298 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the
300 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
301 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
302 "Cannot narrow, it would be a lossy transformation");
303 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
304 DAG.getConstant(0, DL, TLI.getVectorIdxTy()));
307 // Vector/Vector bitcast.
308 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
309 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
311 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
312 "Cannot handle this kind of promotion");
313 // Promoted vector extract
314 bool Smaller = ValueVT.bitsLE(PartEVT);
315 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
320 // Trivial bitcast if the types are the same size and the destination
321 // vector type is legal.
322 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
323 TLI.isTypeLegal(ValueVT))
324 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
326 // Handle cases such as i8 -> <1 x i1>
327 if (ValueVT.getVectorNumElements() != 1) {
328 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
329 "non-trivial scalar-to-vector conversion");
330 return DAG.getUNDEF(ValueVT);
333 if (ValueVT.getVectorNumElements() == 1 &&
334 ValueVT.getVectorElementType() != PartEVT) {
335 bool Smaller = ValueVT.bitsLE(PartEVT);
336 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
337 DL, ValueVT.getScalarType(), Val);
340 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
343 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl,
344 SDValue Val, SDValue *Parts, unsigned NumParts,
345 MVT PartVT, const Value *V);
347 /// getCopyToParts - Create a series of nodes that contain the specified value
348 /// split into legal parts. If the parts contain more bits than Val, then, for
349 /// integers, ExtendKind can be used to specify how to generate the extra bits.
350 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL,
351 SDValue Val, SDValue *Parts, unsigned NumParts,
352 MVT PartVT, const Value *V,
353 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
354 EVT ValueVT = Val.getValueType();
356 // Handle the vector case separately.
357 if (ValueVT.isVector())
358 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V);
360 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
361 unsigned PartBits = PartVT.getSizeInBits();
362 unsigned OrigNumParts = NumParts;
363 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
368 assert(!ValueVT.isVector() && "Vector case handled elsewhere");
369 EVT PartEVT = PartVT;
370 if (PartEVT == ValueVT) {
371 assert(NumParts == 1 && "No-op copy with multiple parts!");
376 if (NumParts * PartBits > ValueVT.getSizeInBits()) {
377 // If the parts cover more bits than the value has, promote the value.
378 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
379 assert(NumParts == 1 && "Do not know what to promote to!");
380 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
382 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
383 ValueVT.isInteger() &&
384 "Unknown mismatch!");
385 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
386 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
387 if (PartVT == MVT::x86mmx)
388 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
390 } else if (PartBits == ValueVT.getSizeInBits()) {
391 // Different types of the same size.
392 assert(NumParts == 1 && PartEVT != ValueVT);
393 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
394 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
395 // If the parts cover less bits than value has, truncate the value.
396 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
397 ValueVT.isInteger() &&
398 "Unknown mismatch!");
399 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
400 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
401 if (PartVT == MVT::x86mmx)
402 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
405 // The value may have changed - recompute ValueVT.
406 ValueVT = Val.getValueType();
407 assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
408 "Failed to tile the value with PartVT!");
411 if (PartEVT != ValueVT)
412 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
413 "scalar-to-vector conversion failed");
419 // Expand the value into multiple parts.
420 if (NumParts & (NumParts - 1)) {
421 // The number of parts is not a power of 2. Split off and copy the tail.
422 assert(PartVT.isInteger() && ValueVT.isInteger() &&
423 "Do not know what to expand to!");
424 unsigned RoundParts = 1 << Log2_32(NumParts);
425 unsigned RoundBits = RoundParts * PartBits;
426 unsigned OddParts = NumParts - RoundParts;
427 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
428 DAG.getIntPtrConstant(RoundBits, DL));
429 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
431 if (TLI.isBigEndian())
432 // The odd parts were reversed by getCopyToParts - unreverse them.
433 std::reverse(Parts + RoundParts, Parts + NumParts);
435 NumParts = RoundParts;
436 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
437 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
440 // The number of parts is a power of 2. Repeatedly bisect the value using
442 Parts[0] = DAG.getNode(ISD::BITCAST, DL,
443 EVT::getIntegerVT(*DAG.getContext(),
444 ValueVT.getSizeInBits()),
447 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
448 for (unsigned i = 0; i < NumParts; i += StepSize) {
449 unsigned ThisBits = StepSize * PartBits / 2;
450 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
451 SDValue &Part0 = Parts[i];
452 SDValue &Part1 = Parts[i+StepSize/2];
454 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
455 ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
456 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
457 ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
459 if (ThisBits == PartBits && ThisVT != PartVT) {
460 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
461 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
466 if (TLI.isBigEndian())
467 std::reverse(Parts, Parts + OrigNumParts);
471 /// getCopyToPartsVector - Create a series of nodes that contain the specified
472 /// value split into legal parts.
473 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL,
474 SDValue Val, SDValue *Parts, unsigned NumParts,
475 MVT PartVT, const Value *V) {
476 EVT ValueVT = Val.getValueType();
477 assert(ValueVT.isVector() && "Not a vector");
478 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
481 EVT PartEVT = PartVT;
482 if (PartEVT == ValueVT) {
484 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
485 // Bitconvert vector->vector case.
486 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
487 } else if (PartVT.isVector() &&
488 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
489 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
490 EVT ElementVT = PartVT.getVectorElementType();
491 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in
493 SmallVector<SDValue, 16> Ops;
494 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
495 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
496 ElementVT, Val, DAG.getConstant(i, DL,
497 TLI.getVectorIdxTy())));
499 for (unsigned i = ValueVT.getVectorNumElements(),
500 e = PartVT.getVectorNumElements(); i != e; ++i)
501 Ops.push_back(DAG.getUNDEF(ElementVT));
503 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops);
505 // FIXME: Use CONCAT for 2x -> 4x.
507 //SDValue UndefElts = DAG.getUNDEF(VectorTy);
508 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
509 } else if (PartVT.isVector() &&
510 PartEVT.getVectorElementType().bitsGE(
511 ValueVT.getVectorElementType()) &&
512 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
514 // Promoted vector extract
515 bool Smaller = PartEVT.bitsLE(ValueVT);
516 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
519 // Vector -> scalar conversion.
520 assert(ValueVT.getVectorNumElements() == 1 &&
521 "Only trivial vector-to-scalar conversions should get here!");
522 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
524 DAG.getConstant(0, DL, TLI.getVectorIdxTy()));
526 bool Smaller = ValueVT.bitsLE(PartVT);
527 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
535 // Handle a multi-element vector.
538 unsigned NumIntermediates;
539 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
541 NumIntermediates, RegisterVT);
542 unsigned NumElements = ValueVT.getVectorNumElements();
544 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
545 NumParts = NumRegs; // Silence a compiler warning.
546 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
548 // Split the vector into intermediate operands.
549 SmallVector<SDValue, 8> Ops(NumIntermediates);
550 for (unsigned i = 0; i != NumIntermediates; ++i) {
551 if (IntermediateVT.isVector())
552 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
554 DAG.getConstant(i * (NumElements / NumIntermediates), DL,
555 TLI.getVectorIdxTy()));
557 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
559 DAG.getConstant(i, DL, TLI.getVectorIdxTy()));
562 // Split the intermediate operands into legal parts.
563 if (NumParts == NumIntermediates) {
564 // If the register was not expanded, promote or copy the value,
566 for (unsigned i = 0; i != NumParts; ++i)
567 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
568 } else if (NumParts > 0) {
569 // If the intermediate type was expanded, split each the value into
571 assert(NumIntermediates != 0 && "division by zero");
572 assert(NumParts % NumIntermediates == 0 &&
573 "Must expand into a divisible number of parts!");
574 unsigned Factor = NumParts / NumIntermediates;
575 for (unsigned i = 0; i != NumIntermediates; ++i)
576 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
580 RegsForValue::RegsForValue() {}
582 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt,
584 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
586 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &tli,
587 unsigned Reg, Type *Ty) {
588 ComputeValueVTs(tli, Ty, ValueVTs);
590 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
591 EVT ValueVT = ValueVTs[Value];
592 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
593 MVT RegisterVT = tli.getRegisterType(Context, ValueVT);
594 for (unsigned i = 0; i != NumRegs; ++i)
595 Regs.push_back(Reg + i);
596 RegVTs.push_back(RegisterVT);
601 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
602 /// this value and returns the result as a ValueVT value. This uses
603 /// Chain/Flag as the input and updates them for the output Chain/Flag.
604 /// If the Flag pointer is NULL, no flag is used.
605 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
606 FunctionLoweringInfo &FuncInfo,
608 SDValue &Chain, SDValue *Flag,
609 const Value *V) const {
610 // A Value with type {} or [0 x %t] needs no registers.
611 if (ValueVTs.empty())
614 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
616 // Assemble the legal parts into the final values.
617 SmallVector<SDValue, 4> Values(ValueVTs.size());
618 SmallVector<SDValue, 8> Parts;
619 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
620 // Copy the legal parts from the registers.
621 EVT ValueVT = ValueVTs[Value];
622 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
623 MVT RegisterVT = RegVTs[Value];
625 Parts.resize(NumRegs);
626 for (unsigned i = 0; i != NumRegs; ++i) {
629 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
631 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
632 *Flag = P.getValue(2);
635 Chain = P.getValue(1);
638 // If the source register was virtual and if we know something about it,
639 // add an assert node.
640 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
641 !RegisterVT.isInteger() || RegisterVT.isVector())
644 const FunctionLoweringInfo::LiveOutInfo *LOI =
645 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
649 unsigned RegSize = RegisterVT.getSizeInBits();
650 unsigned NumSignBits = LOI->NumSignBits;
651 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
653 if (NumZeroBits == RegSize) {
654 // The current value is a zero.
655 // Explicitly express that as it would be easier for
656 // optimizations to kick in.
657 Parts[i] = DAG.getConstant(0, dl, RegisterVT);
661 // FIXME: We capture more information than the dag can represent. For
662 // now, just use the tightest assertzext/assertsext possible.
664 EVT FromVT(MVT::Other);
665 if (NumSignBits == RegSize)
666 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1
667 else if (NumZeroBits >= RegSize-1)
668 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1
669 else if (NumSignBits > RegSize-8)
670 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8
671 else if (NumZeroBits >= RegSize-8)
672 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8
673 else if (NumSignBits > RegSize-16)
674 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16
675 else if (NumZeroBits >= RegSize-16)
676 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
677 else if (NumSignBits > RegSize-32)
678 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32
679 else if (NumZeroBits >= RegSize-32)
680 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
684 // Add an assertion node.
685 assert(FromVT != MVT::Other);
686 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
687 RegisterVT, P, DAG.getValueType(FromVT));
690 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
691 NumRegs, RegisterVT, ValueVT, V);
696 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
699 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
700 /// specified value into the registers specified by this object. This uses
701 /// Chain/Flag as the input and updates them for the output Chain/Flag.
702 /// If the Flag pointer is NULL, no flag is used.
703 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl,
704 SDValue &Chain, SDValue *Flag, const Value *V,
705 ISD::NodeType PreferredExtendType) const {
706 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
707 ISD::NodeType ExtendKind = PreferredExtendType;
709 // Get the list of the values's legal parts.
710 unsigned NumRegs = Regs.size();
711 SmallVector<SDValue, 8> Parts(NumRegs);
712 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
713 EVT ValueVT = ValueVTs[Value];
714 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
715 MVT RegisterVT = RegVTs[Value];
717 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
718 ExtendKind = ISD::ZERO_EXTEND;
720 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
721 &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
725 // Copy the parts into the registers.
726 SmallVector<SDValue, 8> Chains(NumRegs);
727 for (unsigned i = 0; i != NumRegs; ++i) {
730 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
732 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
733 *Flag = Part.getValue(1);
736 Chains[i] = Part.getValue(0);
739 if (NumRegs == 1 || Flag)
740 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
741 // flagged to it. That is the CopyToReg nodes and the user are considered
742 // a single scheduling unit. If we create a TokenFactor and return it as
743 // chain, then the TokenFactor is both a predecessor (operand) of the
744 // user as well as a successor (the TF operands are flagged to the user).
745 // c1, f1 = CopyToReg
746 // c2, f2 = CopyToReg
747 // c3 = TokenFactor c1, c2
750 Chain = Chains[NumRegs-1];
752 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
755 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
756 /// operand list. This adds the code marker and includes the number of
757 /// values added into it.
758 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
759 unsigned MatchingIdx, SDLoc dl,
761 std::vector<SDValue> &Ops) const {
762 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
764 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
766 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
767 else if (!Regs.empty() &&
768 TargetRegisterInfo::isVirtualRegister(Regs.front())) {
769 // Put the register class of the virtual registers in the flag word. That
770 // way, later passes can recompute register class constraints for inline
771 // assembly as well as normal instructions.
772 // Don't do this for tied operands that can use the regclass information
774 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
775 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
776 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
779 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
782 unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
783 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
784 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
785 MVT RegisterVT = RegVTs[Value];
786 for (unsigned i = 0; i != NumRegs; ++i) {
787 assert(Reg < Regs.size() && "Mismatch in # registers expected");
788 unsigned TheReg = Regs[Reg++];
789 Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
791 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) {
792 // If we clobbered the stack pointer, MFI should know about it.
793 assert(DAG.getMachineFunction().getFrameInfo()->
794 hasInlineAsmWithSPAdjust());
800 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
801 const TargetLibraryInfo *li) {
805 DL = DAG.getTarget().getDataLayout();
806 Context = DAG.getContext();
807 LPadToCallSiteMap.clear();
810 /// clear - Clear out the current SelectionDAG and the associated
811 /// state and prepare this SelectionDAGBuilder object to be used
812 /// for a new block. This doesn't clear out information about
813 /// additional blocks that are needed to complete switch lowering
814 /// or PHI node updating; that information is cleared out as it is
816 void SelectionDAGBuilder::clear() {
818 UnusedArgNodeMap.clear();
819 PendingLoads.clear();
820 PendingExports.clear();
823 SDNodeOrder = LowestSDNodeOrder;
824 StatepointLowering.clear();
827 /// clearDanglingDebugInfo - Clear the dangling debug information
828 /// map. This function is separated from the clear so that debug
829 /// information that is dangling in a basic block can be properly
830 /// resolved in a different basic block. This allows the
831 /// SelectionDAG to resolve dangling debug information attached
833 void SelectionDAGBuilder::clearDanglingDebugInfo() {
834 DanglingDebugInfoMap.clear();
837 /// getRoot - Return the current virtual root of the Selection DAG,
838 /// flushing any PendingLoad items. This must be done before emitting
839 /// a store or any other node that may need to be ordered after any
840 /// prior load instructions.
842 SDValue SelectionDAGBuilder::getRoot() {
843 if (PendingLoads.empty())
844 return DAG.getRoot();
846 if (PendingLoads.size() == 1) {
847 SDValue Root = PendingLoads[0];
849 PendingLoads.clear();
853 // Otherwise, we have to make a token factor node.
854 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
856 PendingLoads.clear();
861 /// getControlRoot - Similar to getRoot, but instead of flushing all the
862 /// PendingLoad items, flush all the PendingExports items. It is necessary
863 /// to do this before emitting a terminator instruction.
865 SDValue SelectionDAGBuilder::getControlRoot() {
866 SDValue Root = DAG.getRoot();
868 if (PendingExports.empty())
871 // Turn all of the CopyToReg chains into one factored node.
872 if (Root.getOpcode() != ISD::EntryToken) {
873 unsigned i = 0, e = PendingExports.size();
874 for (; i != e; ++i) {
875 assert(PendingExports[i].getNode()->getNumOperands() > 1);
876 if (PendingExports[i].getNode()->getOperand(0) == Root)
877 break; // Don't add the root if we already indirectly depend on it.
881 PendingExports.push_back(Root);
884 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
886 PendingExports.clear();
891 void SelectionDAGBuilder::visit(const Instruction &I) {
892 // Set up outgoing PHI node register values before emitting the terminator.
893 if (isa<TerminatorInst>(&I))
894 HandlePHINodesInSuccessorBlocks(I.getParent());
900 visit(I.getOpcode(), I);
902 if (!isa<TerminatorInst>(&I) && !HasTailCall)
903 CopyToExportRegsIfNeeded(&I);
908 void SelectionDAGBuilder::visitPHI(const PHINode &) {
909 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
912 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
913 // Note: this doesn't use InstVisitor, because it has to work with
914 // ConstantExpr's in addition to instructions.
916 default: llvm_unreachable("Unknown instruction type encountered!");
917 // Build the switch statement using the Instruction.def file.
918 #define HANDLE_INST(NUM, OPCODE, CLASS) \
919 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
920 #include "llvm/IR/Instruction.def"
924 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
925 // generate the debug data structures now that we've seen its definition.
926 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
928 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
930 const DbgValueInst *DI = DDI.getDI();
931 DebugLoc dl = DDI.getdl();
932 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
933 DILocalVariable *Variable = DI->getVariable();
934 DIExpression *Expr = DI->getExpression();
935 assert(Variable->isValidLocationForIntrinsic(dl) &&
936 "Expected inlined-at fields to agree");
937 uint64_t Offset = DI->getOffset();
938 // A dbg.value for an alloca is always indirect.
939 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0;
942 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, IsIndirect,
944 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(),
945 IsIndirect, Offset, dl, DbgSDNodeOrder);
946 DAG.AddDbgValue(SDV, Val.getNode(), false);
949 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
950 DanglingDebugInfoMap[V] = DanglingDebugInfo();
954 /// getCopyFromRegs - If there was virtual register allocated for the value V
955 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
956 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
957 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
960 if (It != FuncInfo.ValueMap.end()) {
961 unsigned InReg = It->second;
962 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), InReg,
964 SDValue Chain = DAG.getEntryNode();
965 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
966 resolveDanglingDebugInfo(V, Result);
972 /// getValue - Return an SDValue for the given Value.
973 SDValue SelectionDAGBuilder::getValue(const Value *V) {
974 // If we already have an SDValue for this value, use it. It's important
975 // to do this first, so that we don't create a CopyFromReg if we already
976 // have a regular SDValue.
977 SDValue &N = NodeMap[V];
978 if (N.getNode()) return N;
980 // If there's a virtual register allocated and initialized for this
982 SDValue copyFromReg = getCopyFromRegs(V, V->getType());
983 if (copyFromReg.getNode()) {
987 // Otherwise create a new SDValue and remember it.
988 SDValue Val = getValueImpl(V);
990 resolveDanglingDebugInfo(V, Val);
994 // Return true if SDValue exists for the given Value
995 bool SelectionDAGBuilder::findValue(const Value *V) const {
996 return (NodeMap.find(V) != NodeMap.end()) ||
997 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1000 /// getNonRegisterValue - Return an SDValue for the given Value, but
1001 /// don't look in FuncInfo.ValueMap for a virtual register.
1002 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1003 // If we already have an SDValue for this value, use it.
1004 SDValue &N = NodeMap[V];
1005 if (N.getNode()) return N;
1007 // Otherwise create a new SDValue and remember it.
1008 SDValue Val = getValueImpl(V);
1010 resolveDanglingDebugInfo(V, Val);
1014 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1015 /// Create an SDValue for the given value.
1016 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1017 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1019 if (const Constant *C = dyn_cast<Constant>(V)) {
1020 EVT VT = TLI.getValueType(V->getType(), true);
1022 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1023 return DAG.getConstant(*CI, getCurSDLoc(), VT);
1025 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1026 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1028 if (isa<ConstantPointerNull>(C)) {
1029 unsigned AS = V->getType()->getPointerAddressSpace();
1030 return DAG.getConstant(0, getCurSDLoc(), TLI.getPointerTy(AS));
1033 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1034 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1036 if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1037 return DAG.getUNDEF(VT);
1039 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1040 visit(CE->getOpcode(), *CE);
1041 SDValue N1 = NodeMap[V];
1042 assert(N1.getNode() && "visit didn't populate the NodeMap!");
1046 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1047 SmallVector<SDValue, 4> Constants;
1048 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1050 SDNode *Val = getValue(*OI).getNode();
1051 // If the operand is an empty aggregate, there are no values.
1053 // Add each leaf value from the operand to the Constants list
1054 // to form a flattened list of all the values.
1055 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1056 Constants.push_back(SDValue(Val, i));
1059 return DAG.getMergeValues(Constants, getCurSDLoc());
1062 if (const ConstantDataSequential *CDS =
1063 dyn_cast<ConstantDataSequential>(C)) {
1064 SmallVector<SDValue, 4> Ops;
1065 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1066 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1067 // Add each leaf value from the operand to the Constants list
1068 // to form a flattened list of all the values.
1069 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1070 Ops.push_back(SDValue(Val, i));
1073 if (isa<ArrayType>(CDS->getType()))
1074 return DAG.getMergeValues(Ops, getCurSDLoc());
1075 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
1079 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1080 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1081 "Unknown struct or array constant!");
1083 SmallVector<EVT, 4> ValueVTs;
1084 ComputeValueVTs(TLI, C->getType(), ValueVTs);
1085 unsigned NumElts = ValueVTs.size();
1087 return SDValue(); // empty struct
1088 SmallVector<SDValue, 4> Constants(NumElts);
1089 for (unsigned i = 0; i != NumElts; ++i) {
1090 EVT EltVT = ValueVTs[i];
1091 if (isa<UndefValue>(C))
1092 Constants[i] = DAG.getUNDEF(EltVT);
1093 else if (EltVT.isFloatingPoint())
1094 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1096 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1099 return DAG.getMergeValues(Constants, getCurSDLoc());
1102 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1103 return DAG.getBlockAddress(BA, VT);
1105 VectorType *VecTy = cast<VectorType>(V->getType());
1106 unsigned NumElements = VecTy->getNumElements();
1108 // Now that we know the number and type of the elements, get that number of
1109 // elements into the Ops array based on what kind of constant it is.
1110 SmallVector<SDValue, 16> Ops;
1111 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1112 for (unsigned i = 0; i != NumElements; ++i)
1113 Ops.push_back(getValue(CV->getOperand(i)));
1115 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1116 EVT EltVT = TLI.getValueType(VecTy->getElementType());
1119 if (EltVT.isFloatingPoint())
1120 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1122 Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1123 Ops.assign(NumElements, Op);
1126 // Create a BUILD_VECTOR node.
1127 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops);
1130 // If this is a static alloca, generate it as the frameindex instead of
1132 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1133 DenseMap<const AllocaInst*, int>::iterator SI =
1134 FuncInfo.StaticAllocaMap.find(AI);
1135 if (SI != FuncInfo.StaticAllocaMap.end())
1136 return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1139 // If this is an instruction which fast-isel has deferred, select it now.
1140 if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1141 unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1142 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1143 SDValue Chain = DAG.getEntryNode();
1144 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1147 llvm_unreachable("Can't get register for value!");
1150 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1151 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1152 SDValue Chain = getControlRoot();
1153 SmallVector<ISD::OutputArg, 8> Outs;
1154 SmallVector<SDValue, 8> OutVals;
1156 if (!FuncInfo.CanLowerReturn) {
1157 unsigned DemoteReg = FuncInfo.DemoteRegister;
1158 const Function *F = I.getParent()->getParent();
1160 // Emit a store of the return value through the virtual register.
1161 // Leave Outs empty so that LowerReturn won't try to load return
1162 // registers the usual way.
1163 SmallVector<EVT, 1> PtrValueVTs;
1164 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1167 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1168 SDValue RetOp = getValue(I.getOperand(0));
1170 SmallVector<EVT, 4> ValueVTs;
1171 SmallVector<uint64_t, 4> Offsets;
1172 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1173 unsigned NumValues = ValueVTs.size();
1175 SmallVector<SDValue, 4> Chains(NumValues);
1176 for (unsigned i = 0; i != NumValues; ++i) {
1177 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(),
1178 RetPtr.getValueType(), RetPtr,
1179 DAG.getIntPtrConstant(Offsets[i],
1182 DAG.getStore(Chain, getCurSDLoc(),
1183 SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1184 // FIXME: better loc info would be nice.
1185 Add, MachinePointerInfo(), false, false, 0);
1188 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1189 MVT::Other, Chains);
1190 } else if (I.getNumOperands() != 0) {
1191 SmallVector<EVT, 4> ValueVTs;
1192 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1193 unsigned NumValues = ValueVTs.size();
1195 SDValue RetOp = getValue(I.getOperand(0));
1197 const Function *F = I.getParent()->getParent();
1199 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1200 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1202 ExtendKind = ISD::SIGN_EXTEND;
1203 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1205 ExtendKind = ISD::ZERO_EXTEND;
1207 LLVMContext &Context = F->getContext();
1208 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1211 for (unsigned j = 0; j != NumValues; ++j) {
1212 EVT VT = ValueVTs[j];
1214 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1215 VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind);
1217 unsigned NumParts = TLI.getNumRegisters(Context, VT);
1218 MVT PartVT = TLI.getRegisterType(Context, VT);
1219 SmallVector<SDValue, 4> Parts(NumParts);
1220 getCopyToParts(DAG, getCurSDLoc(),
1221 SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1222 &Parts[0], NumParts, PartVT, &I, ExtendKind);
1224 // 'inreg' on function refers to return value
1225 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1229 // Propagate extension type if any
1230 if (ExtendKind == ISD::SIGN_EXTEND)
1232 else if (ExtendKind == ISD::ZERO_EXTEND)
1235 for (unsigned i = 0; i < NumParts; ++i) {
1236 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1237 VT, /*isfixed=*/true, 0, 0));
1238 OutVals.push_back(Parts[i]);
1244 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1245 CallingConv::ID CallConv =
1246 DAG.getMachineFunction().getFunction()->getCallingConv();
1247 Chain = DAG.getTargetLoweringInfo().LowerReturn(
1248 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1250 // Verify that the target's LowerReturn behaved as expected.
1251 assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1252 "LowerReturn didn't return a valid chain!");
1254 // Update the DAG with the new chain value resulting from return lowering.
1258 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1259 /// created for it, emit nodes to copy the value into the virtual
1261 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1263 if (V->getType()->isEmptyTy())
1266 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1267 if (VMI != FuncInfo.ValueMap.end()) {
1268 assert(!V->use_empty() && "Unused value assigned virtual registers!");
1269 CopyValueToVirtualRegister(V, VMI->second);
1273 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1274 /// the current basic block, add it to ValueMap now so that we'll get a
1276 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1277 // No need to export constants.
1278 if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1280 // Already exported?
1281 if (FuncInfo.isExportedInst(V)) return;
1283 unsigned Reg = FuncInfo.InitializeRegForValue(V);
1284 CopyValueToVirtualRegister(V, Reg);
1287 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1288 const BasicBlock *FromBB) {
1289 // The operands of the setcc have to be in this block. We don't know
1290 // how to export them from some other block.
1291 if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1292 // Can export from current BB.
1293 if (VI->getParent() == FromBB)
1296 // Is already exported, noop.
1297 return FuncInfo.isExportedInst(V);
1300 // If this is an argument, we can export it if the BB is the entry block or
1301 // if it is already exported.
1302 if (isa<Argument>(V)) {
1303 if (FromBB == &FromBB->getParent()->getEntryBlock())
1306 // Otherwise, can only export this if it is already exported.
1307 return FuncInfo.isExportedInst(V);
1310 // Otherwise, constants can always be exported.
1314 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1315 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src,
1316 const MachineBasicBlock *Dst) const {
1317 BranchProbabilityInfo *BPI = FuncInfo.BPI;
1320 const BasicBlock *SrcBB = Src->getBasicBlock();
1321 const BasicBlock *DstBB = Dst->getBasicBlock();
1322 return BPI->getEdgeWeight(SrcBB, DstBB);
1325 void SelectionDAGBuilder::
1326 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
1327 uint32_t Weight /* = 0 */) {
1329 Weight = getEdgeWeight(Src, Dst);
1330 Src->addSuccessor(Dst, Weight);
1334 static bool InBlock(const Value *V, const BasicBlock *BB) {
1335 if (const Instruction *I = dyn_cast<Instruction>(V))
1336 return I->getParent() == BB;
1340 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1341 /// This function emits a branch and is used at the leaves of an OR or an
1342 /// AND operator tree.
1345 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1346 MachineBasicBlock *TBB,
1347 MachineBasicBlock *FBB,
1348 MachineBasicBlock *CurBB,
1349 MachineBasicBlock *SwitchBB,
1352 const BasicBlock *BB = CurBB->getBasicBlock();
1354 // If the leaf of the tree is a comparison, merge the condition into
1356 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1357 // The operands of the cmp have to be in this block. We don't know
1358 // how to export them from some other block. If this is the first block
1359 // of the sequence, no exporting is needed.
1360 if (CurBB == SwitchBB ||
1361 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1362 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1363 ISD::CondCode Condition;
1364 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1365 Condition = getICmpCondCode(IC->getPredicate());
1366 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1367 Condition = getFCmpCondCode(FC->getPredicate());
1368 if (TM.Options.NoNaNsFPMath)
1369 Condition = getFCmpCodeWithoutNaN(Condition);
1371 (void)Condition; // silence warning.
1372 llvm_unreachable("Unknown compare instruction");
1375 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
1376 TBB, FBB, CurBB, TWeight, FWeight);
1377 SwitchCases.push_back(CB);
1382 // Create a CaseBlock record representing this branch.
1383 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1384 nullptr, TBB, FBB, CurBB, TWeight, FWeight);
1385 SwitchCases.push_back(CB);
1388 /// Scale down both weights to fit into uint32_t.
1389 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
1390 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
1391 uint32_t Scale = (NewMax / UINT32_MAX) + 1;
1392 NewTrue = NewTrue / Scale;
1393 NewFalse = NewFalse / Scale;
1396 /// FindMergedConditions - If Cond is an expression like
1397 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1398 MachineBasicBlock *TBB,
1399 MachineBasicBlock *FBB,
1400 MachineBasicBlock *CurBB,
1401 MachineBasicBlock *SwitchBB,
1402 unsigned Opc, uint32_t TWeight,
1404 // If this node is not part of the or/and tree, emit it as a branch.
1405 const Instruction *BOp = dyn_cast<Instruction>(Cond);
1406 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1407 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1408 BOp->getParent() != CurBB->getBasicBlock() ||
1409 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1410 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1411 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
1416 // Create TmpBB after CurBB.
1417 MachineFunction::iterator BBI = CurBB;
1418 MachineFunction &MF = DAG.getMachineFunction();
1419 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1420 CurBB->getParent()->insert(++BBI, TmpBB);
1422 if (Opc == Instruction::Or) {
1423 // Codegen X | Y as:
1432 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1433 // The requirement is that
1434 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
1435 // = TrueProb for orignal BB.
1436 // Assuming the orignal weights are A and B, one choice is to set BB1's
1437 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
1439 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
1440 // Another choice is to assume TrueProb for BB1 equals to TrueProb for
1441 // TmpBB, but the math is more complicated.
1443 uint64_t NewTrueWeight = TWeight;
1444 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight;
1445 ScaleWeights(NewTrueWeight, NewFalseWeight);
1446 // Emit the LHS condition.
1447 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
1448 NewTrueWeight, NewFalseWeight);
1450 NewTrueWeight = TWeight;
1451 NewFalseWeight = 2 * (uint64_t)FWeight;
1452 ScaleWeights(NewTrueWeight, NewFalseWeight);
1453 // Emit the RHS condition into TmpBB.
1454 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1455 NewTrueWeight, NewFalseWeight);
1457 assert(Opc == Instruction::And && "Unknown merge op!");
1458 // Codegen X & Y as:
1466 // This requires creation of TmpBB after CurBB.
1468 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1469 // The requirement is that
1470 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
1471 // = FalseProb for orignal BB.
1472 // Assuming the orignal weights are A and B, one choice is to set BB1's
1473 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
1475 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
1477 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight;
1478 uint64_t NewFalseWeight = FWeight;
1479 ScaleWeights(NewTrueWeight, NewFalseWeight);
1480 // Emit the LHS condition.
1481 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
1482 NewTrueWeight, NewFalseWeight);
1484 NewTrueWeight = 2 * (uint64_t)TWeight;
1485 NewFalseWeight = FWeight;
1486 ScaleWeights(NewTrueWeight, NewFalseWeight);
1487 // Emit the RHS condition into TmpBB.
1488 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1489 NewTrueWeight, NewFalseWeight);
1493 /// If the set of cases should be emitted as a series of branches, return true.
1494 /// If we should emit this as a bunch of and/or'd together conditions, return
1497 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
1498 if (Cases.size() != 2) return true;
1500 // If this is two comparisons of the same values or'd or and'd together, they
1501 // will get folded into a single comparison, so don't emit two blocks.
1502 if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1503 Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1504 (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1505 Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1509 // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1510 // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1511 if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1512 Cases[0].CC == Cases[1].CC &&
1513 isa<Constant>(Cases[0].CmpRHS) &&
1514 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1515 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1517 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1524 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1525 MachineBasicBlock *BrMBB = FuncInfo.MBB;
1527 // Update machine-CFG edges.
1528 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1530 if (I.isUnconditional()) {
1531 // Update machine-CFG edges.
1532 BrMBB->addSuccessor(Succ0MBB);
1534 // If this is not a fall-through branch or optimizations are switched off,
1536 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
1537 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1538 MVT::Other, getControlRoot(),
1539 DAG.getBasicBlock(Succ0MBB)));
1544 // If this condition is one of the special cases we handle, do special stuff
1546 const Value *CondVal = I.getCondition();
1547 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1549 // If this is a series of conditions that are or'd or and'd together, emit
1550 // this as a sequence of branches instead of setcc's with and/or operations.
1551 // As long as jumps are not expensive, this should improve performance.
1552 // For example, instead of something like:
1565 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1566 if (!DAG.getTargetLoweringInfo().isJumpExpensive() &&
1567 BOp->hasOneUse() && (BOp->getOpcode() == Instruction::And ||
1568 BOp->getOpcode() == Instruction::Or)) {
1569 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1570 BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB),
1571 getEdgeWeight(BrMBB, Succ1MBB));
1572 // If the compares in later blocks need to use values not currently
1573 // exported from this block, export them now. This block should always
1574 // be the first entry.
1575 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1577 // Allow some cases to be rejected.
1578 if (ShouldEmitAsBranches(SwitchCases)) {
1579 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1580 ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1581 ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1584 // Emit the branch for this block.
1585 visitSwitchCase(SwitchCases[0], BrMBB);
1586 SwitchCases.erase(SwitchCases.begin());
1590 // Okay, we decided not to do this, remove any inserted MBB's and clear
1592 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1593 FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1595 SwitchCases.clear();
1599 // Create a CaseBlock record representing this branch.
1600 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1601 nullptr, Succ0MBB, Succ1MBB, BrMBB);
1603 // Use visitSwitchCase to actually insert the fast branch sequence for this
1605 visitSwitchCase(CB, BrMBB);
1608 /// visitSwitchCase - Emits the necessary code to represent a single node in
1609 /// the binary search tree resulting from lowering a switch instruction.
1610 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1611 MachineBasicBlock *SwitchBB) {
1613 SDValue CondLHS = getValue(CB.CmpLHS);
1614 SDLoc dl = getCurSDLoc();
1616 // Build the setcc now.
1618 // Fold "(X == true)" to X and "(X == false)" to !X to
1619 // handle common cases produced by branch lowering.
1620 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1621 CB.CC == ISD::SETEQ)
1623 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1624 CB.CC == ISD::SETEQ) {
1625 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
1626 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1628 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1630 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1632 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1633 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
1635 SDValue CmpOp = getValue(CB.CmpMHS);
1636 EVT VT = CmpOp.getValueType();
1638 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1639 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
1642 SDValue SUB = DAG.getNode(ISD::SUB, dl,
1643 VT, CmpOp, DAG.getConstant(Low, dl, VT));
1644 Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1645 DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
1649 // Update successor info
1650 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight);
1651 // TrueBB and FalseBB are always different unless the incoming IR is
1652 // degenerate. This only happens when running llc on weird IR.
1653 if (CB.TrueBB != CB.FalseBB)
1654 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight);
1656 // If the lhs block is the next block, invert the condition so that we can
1657 // fall through to the lhs instead of the rhs block.
1658 if (CB.TrueBB == NextBlock(SwitchBB)) {
1659 std::swap(CB.TrueBB, CB.FalseBB);
1660 SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
1661 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1664 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1665 MVT::Other, getControlRoot(), Cond,
1666 DAG.getBasicBlock(CB.TrueBB));
1668 // Insert the false branch. Do this even if it's a fall through branch,
1669 // this makes it easier to do DAG optimizations which require inverting
1670 // the branch condition.
1671 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1672 DAG.getBasicBlock(CB.FalseBB));
1674 DAG.setRoot(BrCond);
1677 /// visitJumpTable - Emit JumpTable node in the current MBB
1678 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1679 // Emit the code for the jump table
1680 assert(JT.Reg != -1U && "Should lower JT Header first!");
1681 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy();
1682 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1684 SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1685 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
1686 MVT::Other, Index.getValue(1),
1688 DAG.setRoot(BrJumpTable);
1691 /// visitJumpTableHeader - This function emits necessary code to produce index
1692 /// in the JumpTable from switch case.
1693 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1694 JumpTableHeader &JTH,
1695 MachineBasicBlock *SwitchBB) {
1696 SDLoc dl = getCurSDLoc();
1698 // Subtract the lowest switch case value from the value being switched on and
1699 // conditional branch to default mbb if the result is greater than the
1700 // difference between smallest and largest cases.
1701 SDValue SwitchOp = getValue(JTH.SValue);
1702 EVT VT = SwitchOp.getValueType();
1703 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
1704 DAG.getConstant(JTH.First, dl, VT));
1706 // The SDNode we just created, which holds the value being switched on minus
1707 // the smallest case value, needs to be copied to a virtual register so it
1708 // can be used as an index into the jump table in a subsequent basic block.
1709 // This value may be smaller or larger than the target's pointer type, and
1710 // therefore require extension or truncating.
1711 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1712 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy());
1714 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1715 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
1716 JumpTableReg, SwitchOp);
1717 JT.Reg = JumpTableReg;
1719 // Emit the range check for the jump table, and branch to the default block
1720 // for the switch statement if the value being switched on exceeds the largest
1721 // case in the switch.
1723 DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(),
1724 Sub.getValueType()),
1725 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT),
1728 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1729 MVT::Other, CopyTo, CMP,
1730 DAG.getBasicBlock(JT.Default));
1732 // Avoid emitting unnecessary branches to the next block.
1733 if (JT.MBB != NextBlock(SwitchBB))
1734 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1735 DAG.getBasicBlock(JT.MBB));
1737 DAG.setRoot(BrCond);
1740 /// Codegen a new tail for a stack protector check ParentMBB which has had its
1741 /// tail spliced into a stack protector check success bb.
1743 /// For a high level explanation of how this fits into the stack protector
1744 /// generation see the comment on the declaration of class
1745 /// StackProtectorDescriptor.
1746 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
1747 MachineBasicBlock *ParentBB) {
1749 // First create the loads to the guard/stack slot for the comparison.
1750 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1751 EVT PtrTy = TLI.getPointerTy();
1753 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo();
1754 int FI = MFI->getStackProtectorIndex();
1756 const Value *IRGuard = SPD.getGuard();
1757 SDValue GuardPtr = getValue(IRGuard);
1758 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
1761 TLI.getDataLayout()->getPrefTypeAlignment(IRGuard->getType());
1764 SDLoc dl = getCurSDLoc();
1766 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the
1767 // guard value from the virtual register holding the value. Otherwise, emit a
1768 // volatile load to retrieve the stack guard value.
1769 unsigned GuardReg = SPD.getGuardReg();
1771 if (GuardReg && TLI.useLoadStackGuardNode())
1772 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg,
1775 Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(),
1776 GuardPtr, MachinePointerInfo(IRGuard, 0),
1777 true, false, false, Align);
1779 SDValue StackSlot = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(),
1781 MachinePointerInfo::getFixedStack(FI),
1782 true, false, false, Align);
1784 // Perform the comparison via a subtract/getsetcc.
1785 EVT VT = Guard.getValueType();
1786 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot);
1789 DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(),
1790 Sub.getValueType()),
1791 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
1793 // If the sub is not 0, then we know the guard/stackslot do not equal, so
1794 // branch to failure MBB.
1795 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1796 MVT::Other, StackSlot.getOperand(0),
1797 Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
1798 // Otherwise branch to success MBB.
1799 SDValue Br = DAG.getNode(ISD::BR, dl,
1801 DAG.getBasicBlock(SPD.getSuccessMBB()));
1806 /// Codegen the failure basic block for a stack protector check.
1808 /// A failure stack protector machine basic block consists simply of a call to
1809 /// __stack_chk_fail().
1811 /// For a high level explanation of how this fits into the stack protector
1812 /// generation see the comment on the declaration of class
1813 /// StackProtectorDescriptor.
1815 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
1816 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1818 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
1819 nullptr, 0, false, getCurSDLoc(), false, false).second;
1823 /// visitBitTestHeader - This function emits necessary code to produce value
1824 /// suitable for "bit tests"
1825 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1826 MachineBasicBlock *SwitchBB) {
1827 SDLoc dl = getCurSDLoc();
1829 // Subtract the minimum value
1830 SDValue SwitchOp = getValue(B.SValue);
1831 EVT VT = SwitchOp.getValueType();
1832 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
1833 DAG.getConstant(B.First, dl, VT));
1836 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1838 DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(),
1839 Sub.getValueType()),
1840 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
1842 // Determine the type of the test operands.
1843 bool UsePtrType = false;
1844 if (!TLI.isTypeLegal(VT))
1847 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1848 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
1849 // Switch table case range are encoded into series of masks.
1850 // Just use pointer type, it's guaranteed to fit.
1856 VT = TLI.getPointerTy();
1857 Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
1860 B.RegVT = VT.getSimpleVT();
1861 B.Reg = FuncInfo.CreateReg(B.RegVT);
1862 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
1864 MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1866 addSuccessorWithWeight(SwitchBB, B.Default);
1867 addSuccessorWithWeight(SwitchBB, MBB);
1869 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
1870 MVT::Other, CopyTo, RangeCmp,
1871 DAG.getBasicBlock(B.Default));
1873 // Avoid emitting unnecessary branches to the next block.
1874 if (MBB != NextBlock(SwitchBB))
1875 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
1876 DAG.getBasicBlock(MBB));
1878 DAG.setRoot(BrRange);
1881 /// visitBitTestCase - this function produces one "bit test"
1882 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1883 MachineBasicBlock* NextMBB,
1884 uint32_t BranchWeightToNext,
1887 MachineBasicBlock *SwitchBB) {
1888 SDLoc dl = getCurSDLoc();
1890 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
1892 unsigned PopCount = countPopulation(B.Mask);
1893 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1894 if (PopCount == 1) {
1895 // Testing for a single bit; just compare the shift count with what it
1896 // would need to be to shift a 1 bit in that position.
1898 dl, TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp,
1899 DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), ISD::SETEQ);
1900 } else if (PopCount == BB.Range) {
1901 // There is only one zero bit in the range, test for it directly.
1903 dl, TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp,
1904 DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), ISD::SETNE);
1906 // Make desired shift
1907 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
1908 DAG.getConstant(1, dl, VT), ShiftOp);
1910 // Emit bit tests and jumps
1911 SDValue AndOp = DAG.getNode(ISD::AND, dl,
1912 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
1913 Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(), VT), AndOp,
1914 DAG.getConstant(0, dl, VT), ISD::SETNE);
1917 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight.
1918 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight);
1919 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext.
1920 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext);
1922 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
1923 MVT::Other, getControlRoot(),
1924 Cmp, DAG.getBasicBlock(B.TargetBB));
1926 // Avoid emitting unnecessary branches to the next block.
1927 if (NextMBB != NextBlock(SwitchBB))
1928 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
1929 DAG.getBasicBlock(NextMBB));
1934 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1935 MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1937 // Retrieve successors.
1938 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1939 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1941 const Value *Callee(I.getCalledValue());
1942 const Function *Fn = dyn_cast<Function>(Callee);
1943 if (isa<InlineAsm>(Callee))
1945 else if (Fn && Fn->isIntrinsic()) {
1946 switch (Fn->getIntrinsicID()) {
1948 llvm_unreachable("Cannot invoke this intrinsic");
1949 case Intrinsic::donothing:
1950 // Ignore invokes to @llvm.donothing: jump directly to the next BB.
1952 case Intrinsic::experimental_patchpoint_void:
1953 case Intrinsic::experimental_patchpoint_i64:
1954 visitPatchpoint(&I, LandingPad);
1956 case Intrinsic::experimental_gc_statepoint:
1957 LowerStatepoint(ImmutableStatepoint(&I), LandingPad);
1961 LowerCallTo(&I, getValue(Callee), false, LandingPad);
1963 // If the value of the invoke is used outside of its defining block, make it
1964 // available as a virtual register.
1965 // We already took care of the exported value for the statepoint instruction
1966 // during call to the LowerStatepoint.
1967 if (!isStatepoint(I)) {
1968 CopyToExportRegsIfNeeded(&I);
1971 // Update successor info
1972 addSuccessorWithWeight(InvokeMBB, Return);
1973 addSuccessorWithWeight(InvokeMBB, LandingPad);
1975 // Drop into normal successor.
1976 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1977 MVT::Other, getControlRoot(),
1978 DAG.getBasicBlock(Return)));
1981 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
1982 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
1985 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
1986 assert(FuncInfo.MBB->isLandingPad() &&
1987 "Call to landingpad not in landing pad!");
1989 MachineBasicBlock *MBB = FuncInfo.MBB;
1990 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
1991 AddLandingPadInfo(LP, MMI, MBB);
1993 // If there aren't registers to copy the values into (e.g., during SjLj
1994 // exceptions), then don't bother to create these DAG nodes.
1995 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1996 if (TLI.getExceptionPointerRegister() == 0 &&
1997 TLI.getExceptionSelectorRegister() == 0)
2000 SmallVector<EVT, 2> ValueVTs;
2001 SDLoc dl = getCurSDLoc();
2002 ComputeValueVTs(TLI, LP.getType(), ValueVTs);
2003 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2005 // Get the two live-in registers as SDValues. The physregs have already been
2006 // copied into virtual registers.
2008 if (FuncInfo.ExceptionPointerVirtReg) {
2009 Ops[0] = DAG.getZExtOrTrunc(
2010 DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2011 FuncInfo.ExceptionPointerVirtReg, TLI.getPointerTy()),
2014 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy());
2016 Ops[1] = DAG.getZExtOrTrunc(
2017 DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2018 FuncInfo.ExceptionSelectorVirtReg, TLI.getPointerTy()),
2022 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2023 DAG.getVTList(ValueVTs), Ops);
2028 SelectionDAGBuilder::visitLandingPadClauseBB(GlobalValue *ClauseGV,
2029 MachineBasicBlock *LPadBB) {
2030 SDValue Chain = getControlRoot();
2031 SDLoc dl = getCurSDLoc();
2033 // Get the typeid that we will dispatch on later.
2034 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2035 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy());
2036 unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC);
2037 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(ClauseGV);
2038 SDValue Sel = DAG.getConstant(TypeID, dl, TLI.getPointerTy());
2039 Chain = DAG.getCopyToReg(Chain, dl, VReg, Sel);
2041 // Branch to the main landing pad block.
2042 MachineBasicBlock *ClauseMBB = FuncInfo.MBB;
2043 ClauseMBB->addSuccessor(LPadBB);
2044 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, Chain,
2045 DAG.getBasicBlock(LPadBB)));
2049 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) {
2051 for (const CaseCluster &CC : Clusters)
2052 assert(CC.Low == CC.High && "Input clusters must be single-case");
2055 std::sort(Clusters.begin(), Clusters.end(),
2056 [](const CaseCluster &a, const CaseCluster &b) {
2057 return a.Low->getValue().slt(b.Low->getValue());
2060 // Merge adjacent clusters with the same destination.
2061 const unsigned N = Clusters.size();
2062 unsigned DstIndex = 0;
2063 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
2064 CaseCluster &CC = Clusters[SrcIndex];
2065 const ConstantInt *CaseVal = CC.Low;
2066 MachineBasicBlock *Succ = CC.MBB;
2068 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
2069 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
2070 // If this case has the same successor and is a neighbour, merge it into
2071 // the previous cluster.
2072 Clusters[DstIndex - 1].High = CaseVal;
2073 Clusters[DstIndex - 1].Weight += CC.Weight;
2074 assert(Clusters[DstIndex - 1].Weight >= CC.Weight && "Weight overflow!");
2076 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
2077 sizeof(Clusters[SrcIndex]));
2080 Clusters.resize(DstIndex);
2083 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2084 MachineBasicBlock *Last) {
2086 for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2087 if (JTCases[i].first.HeaderBB == First)
2088 JTCases[i].first.HeaderBB = Last;
2090 // Update BitTestCases.
2091 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2092 if (BitTestCases[i].Parent == First)
2093 BitTestCases[i].Parent = Last;
2096 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2097 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2099 // Update machine-CFG edges with unique successors.
2100 SmallSet<BasicBlock*, 32> Done;
2101 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2102 BasicBlock *BB = I.getSuccessor(i);
2103 bool Inserted = Done.insert(BB).second;
2107 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2108 addSuccessorWithWeight(IndirectBrMBB, Succ);
2111 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2112 MVT::Other, getControlRoot(),
2113 getValue(I.getAddress())));
2116 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2117 if (DAG.getTarget().Options.TrapUnreachable)
2118 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2121 void SelectionDAGBuilder::visitFSub(const User &I) {
2122 // -0.0 - X --> fneg
2123 Type *Ty = I.getType();
2124 if (isa<Constant>(I.getOperand(0)) &&
2125 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2126 SDValue Op2 = getValue(I.getOperand(1));
2127 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2128 Op2.getValueType(), Op2));
2132 visitBinary(I, ISD::FSUB);
2135 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2136 SDValue Op1 = getValue(I.getOperand(0));
2137 SDValue Op2 = getValue(I.getOperand(1));
2142 if (const OverflowingBinaryOperator *OFBinOp =
2143 dyn_cast<const OverflowingBinaryOperator>(&I)) {
2144 nuw = OFBinOp->hasNoUnsignedWrap();
2145 nsw = OFBinOp->hasNoSignedWrap();
2147 if (const PossiblyExactOperator *ExactOp =
2148 dyn_cast<const PossiblyExactOperator>(&I))
2149 exact = ExactOp->isExact();
2151 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(),
2152 Op1, Op2, nuw, nsw, exact);
2153 setValue(&I, BinNodeValue);
2156 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2157 SDValue Op1 = getValue(I.getOperand(0));
2158 SDValue Op2 = getValue(I.getOperand(1));
2161 DAG.getTargetLoweringInfo().getShiftAmountTy(Op2.getValueType());
2163 // Coerce the shift amount to the right type if we can.
2164 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2165 unsigned ShiftSize = ShiftTy.getSizeInBits();
2166 unsigned Op2Size = Op2.getValueType().getSizeInBits();
2167 SDLoc DL = getCurSDLoc();
2169 // If the operand is smaller than the shift count type, promote it.
2170 if (ShiftSize > Op2Size)
2171 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2173 // If the operand is larger than the shift count type but the shift
2174 // count type has enough bits to represent any shift value, truncate
2175 // it now. This is a common case and it exposes the truncate to
2176 // optimization early.
2177 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2178 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2179 // Otherwise we'll need to temporarily settle for some other convenient
2180 // type. Type legalization will make adjustments once the shiftee is split.
2182 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2189 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
2191 if (const OverflowingBinaryOperator *OFBinOp =
2192 dyn_cast<const OverflowingBinaryOperator>(&I)) {
2193 nuw = OFBinOp->hasNoUnsignedWrap();
2194 nsw = OFBinOp->hasNoSignedWrap();
2196 if (const PossiblyExactOperator *ExactOp =
2197 dyn_cast<const PossiblyExactOperator>(&I))
2198 exact = ExactOp->isExact();
2201 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
2206 void SelectionDAGBuilder::visitSDiv(const User &I) {
2207 SDValue Op1 = getValue(I.getOperand(0));
2208 SDValue Op2 = getValue(I.getOperand(1));
2210 // Turn exact SDivs into multiplications.
2211 // FIXME: This should be in DAGCombiner, but it doesn't have access to the
2213 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
2214 !isa<ConstantSDNode>(Op1) &&
2215 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
2216 setValue(&I, DAG.getTargetLoweringInfo()
2217 .BuildExactSDIV(Op1, Op2, getCurSDLoc(), DAG));
2219 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(),
2223 void SelectionDAGBuilder::visitICmp(const User &I) {
2224 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2225 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2226 predicate = IC->getPredicate();
2227 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2228 predicate = ICmpInst::Predicate(IC->getPredicate());
2229 SDValue Op1 = getValue(I.getOperand(0));
2230 SDValue Op2 = getValue(I.getOperand(1));
2231 ISD::CondCode Opcode = getICmpCondCode(predicate);
2233 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
2234 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2237 void SelectionDAGBuilder::visitFCmp(const User &I) {
2238 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2239 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2240 predicate = FC->getPredicate();
2241 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2242 predicate = FCmpInst::Predicate(FC->getPredicate());
2243 SDValue Op1 = getValue(I.getOperand(0));
2244 SDValue Op2 = getValue(I.getOperand(1));
2245 ISD::CondCode Condition = getFCmpCondCode(predicate);
2246 if (TM.Options.NoNaNsFPMath)
2247 Condition = getFCmpCodeWithoutNaN(Condition);
2248 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
2249 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2252 void SelectionDAGBuilder::visitSelect(const User &I) {
2253 SmallVector<EVT, 4> ValueVTs;
2254 ComputeValueVTs(DAG.getTargetLoweringInfo(), I.getType(), ValueVTs);
2255 unsigned NumValues = ValueVTs.size();
2256 if (NumValues == 0) return;
2258 SmallVector<SDValue, 4> Values(NumValues);
2259 SDValue Cond = getValue(I.getOperand(0));
2260 SDValue LHSVal = getValue(I.getOperand(1));
2261 SDValue RHSVal = getValue(I.getOperand(2));
2262 auto BaseOps = {Cond};
2263 ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2264 ISD::VSELECT : ISD::SELECT;
2266 // Min/max matching is only viable if all output VTs are the same.
2267 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) {
2269 SelectPatternFlavor SPF = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
2270 ISD::NodeType Opc = ISD::DELETED_NODE;
2272 case SPF_UMAX: Opc = ISD::UMAX; break;
2273 case SPF_UMIN: Opc = ISD::UMIN; break;
2274 case SPF_SMAX: Opc = ISD::SMAX; break;
2275 case SPF_SMIN: Opc = ISD::SMIN; break;
2279 EVT VT = ValueVTs[0];
2280 LLVMContext &Ctx = *DAG.getContext();
2281 auto &TLI = DAG.getTargetLoweringInfo();
2282 while (TLI.getTypeAction(Ctx, VT) == TargetLoweringBase::TypeSplitVector)
2283 VT = TLI.getTypeToTransformTo(Ctx, VT);
2285 if (Opc != ISD::DELETED_NODE && TLI.isOperationLegalOrCustom(Opc, VT) &&
2286 // If the underlying comparison instruction is used by any other instruction,
2287 // the consumed instructions won't be destroyed, so it is not profitable
2288 // to convert to a min/max.
2289 cast<SelectInst>(&I)->getCondition()->hasOneUse()) {
2291 LHSVal = getValue(LHS);
2292 RHSVal = getValue(RHS);
2297 for (unsigned i = 0; i != NumValues; ++i) {
2298 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
2299 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
2300 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
2301 Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
2302 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i),
2306 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2307 DAG.getVTList(ValueVTs), Values));
2310 void SelectionDAGBuilder::visitTrunc(const User &I) {
2311 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2312 SDValue N = getValue(I.getOperand(0));
2313 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
2314 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
2317 void SelectionDAGBuilder::visitZExt(const User &I) {
2318 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2319 // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2320 SDValue N = getValue(I.getOperand(0));
2321 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
2322 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
2325 void SelectionDAGBuilder::visitSExt(const User &I) {
2326 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2327 // SExt also can't be a cast to bool for same reason. So, nothing much to do
2328 SDValue N = getValue(I.getOperand(0));
2329 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
2330 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
2333 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2334 // FPTrunc is never a no-op cast, no need to check
2335 SDValue N = getValue(I.getOperand(0));
2336 SDLoc dl = getCurSDLoc();
2337 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2338 EVT DestVT = TLI.getValueType(I.getType());
2339 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
2340 DAG.getTargetConstant(0, dl, TLI.getPointerTy())));
2343 void SelectionDAGBuilder::visitFPExt(const User &I) {
2344 // FPExt is never a no-op cast, no need to check
2345 SDValue N = getValue(I.getOperand(0));
2346 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
2347 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
2350 void SelectionDAGBuilder::visitFPToUI(const User &I) {
2351 // FPToUI is never a no-op cast, no need to check
2352 SDValue N = getValue(I.getOperand(0));
2353 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
2354 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
2357 void SelectionDAGBuilder::visitFPToSI(const User &I) {
2358 // FPToSI is never a no-op cast, no need to check
2359 SDValue N = getValue(I.getOperand(0));
2360 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
2361 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
2364 void SelectionDAGBuilder::visitUIToFP(const User &I) {
2365 // UIToFP is never a no-op cast, no need to check
2366 SDValue N = getValue(I.getOperand(0));
2367 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
2368 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
2371 void SelectionDAGBuilder::visitSIToFP(const User &I) {
2372 // SIToFP is never a no-op cast, no need to check
2373 SDValue N = getValue(I.getOperand(0));
2374 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
2375 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
2378 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2379 // What to do depends on the size of the integer and the size of the pointer.
2380 // We can either truncate, zero extend, or no-op, accordingly.
2381 SDValue N = getValue(I.getOperand(0));
2382 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
2383 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2386 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2387 // What to do depends on the size of the integer and the size of the pointer.
2388 // We can either truncate, zero extend, or no-op, accordingly.
2389 SDValue N = getValue(I.getOperand(0));
2390 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
2391 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2394 void SelectionDAGBuilder::visitBitCast(const User &I) {
2395 SDValue N = getValue(I.getOperand(0));
2396 SDLoc dl = getCurSDLoc();
2397 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
2399 // BitCast assures us that source and destination are the same size so this is
2400 // either a BITCAST or a no-op.
2401 if (DestVT != N.getValueType())
2402 setValue(&I, DAG.getNode(ISD::BITCAST, dl,
2403 DestVT, N)); // convert types.
2404 // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
2405 // might fold any kind of constant expression to an integer constant and that
2406 // is not what we are looking for. Only regcognize a bitcast of a genuine
2407 // constant integer as an opaque constant.
2408 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
2409 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
2412 setValue(&I, N); // noop cast.
2415 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
2416 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2417 const Value *SV = I.getOperand(0);
2418 SDValue N = getValue(SV);
2419 EVT DestVT = TLI.getValueType(I.getType());
2421 unsigned SrcAS = SV->getType()->getPointerAddressSpace();
2422 unsigned DestAS = I.getType()->getPointerAddressSpace();
2424 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
2425 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
2430 void SelectionDAGBuilder::visitInsertElement(const User &I) {
2431 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2432 SDValue InVec = getValue(I.getOperand(0));
2433 SDValue InVal = getValue(I.getOperand(1));
2434 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)),
2435 getCurSDLoc(), TLI.getVectorIdxTy());
2436 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
2437 TLI.getValueType(I.getType()), InVec, InVal, InIdx));
2440 void SelectionDAGBuilder::visitExtractElement(const User &I) {
2441 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2442 SDValue InVec = getValue(I.getOperand(0));
2443 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)),
2444 getCurSDLoc(), TLI.getVectorIdxTy());
2445 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
2446 TLI.getValueType(I.getType()), InVec, InIdx));
2449 // Utility for visitShuffleVector - Return true if every element in Mask,
2450 // beginning from position Pos and ending in Pos+Size, falls within the
2451 // specified sequential range [L, L+Pos). or is undef.
2452 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask,
2453 unsigned Pos, unsigned Size, int Low) {
2454 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
2455 if (Mask[i] >= 0 && Mask[i] != Low)
2460 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2461 SDValue Src1 = getValue(I.getOperand(0));
2462 SDValue Src2 = getValue(I.getOperand(1));
2464 SmallVector<int, 8> Mask;
2465 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
2466 unsigned MaskNumElts = Mask.size();
2468 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2469 EVT VT = TLI.getValueType(I.getType());
2470 EVT SrcVT = Src1.getValueType();
2471 unsigned SrcNumElts = SrcVT.getVectorNumElements();
2473 if (SrcNumElts == MaskNumElts) {
2474 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
2479 // Normalize the shuffle vector since mask and vector length don't match.
2480 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2481 // Mask is longer than the source vectors and is a multiple of the source
2482 // vectors. We can use concatenate vector to make the mask and vectors
2484 if (SrcNumElts*2 == MaskNumElts) {
2485 // First check for Src1 in low and Src2 in high
2486 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) &&
2487 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) {
2488 // The shuffle is concatenating two vectors together.
2489 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
2493 // Then check for Src2 in low and Src1 in high
2494 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) &&
2495 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) {
2496 // The shuffle is concatenating two vectors together.
2497 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
2503 // Pad both vectors with undefs to make them the same length as the mask.
2504 unsigned NumConcat = MaskNumElts / SrcNumElts;
2505 bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2506 bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2507 SDValue UndefVal = DAG.getUNDEF(SrcVT);
2509 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2510 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2514 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2515 getCurSDLoc(), VT, MOps1);
2516 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2517 getCurSDLoc(), VT, MOps2);
2519 // Readjust mask for new input vector length.
2520 SmallVector<int, 8> MappedOps;
2521 for (unsigned i = 0; i != MaskNumElts; ++i) {
2523 if (Idx >= (int)SrcNumElts)
2524 Idx -= SrcNumElts - MaskNumElts;
2525 MappedOps.push_back(Idx);
2528 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
2533 if (SrcNumElts > MaskNumElts) {
2534 // Analyze the access pattern of the vector to see if we can extract
2535 // two subvectors and do the shuffle. The analysis is done by calculating
2536 // the range of elements the mask access on both vectors.
2537 int MinRange[2] = { static_cast<int>(SrcNumElts),
2538 static_cast<int>(SrcNumElts)};
2539 int MaxRange[2] = {-1, -1};
2541 for (unsigned i = 0; i != MaskNumElts; ++i) {
2547 if (Idx >= (int)SrcNumElts) {
2551 if (Idx > MaxRange[Input])
2552 MaxRange[Input] = Idx;
2553 if (Idx < MinRange[Input])
2554 MinRange[Input] = Idx;
2557 // Check if the access is smaller than the vector size and can we find
2558 // a reasonable extract index.
2559 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not
2561 int StartIdx[2]; // StartIdx to extract from
2562 for (unsigned Input = 0; Input < 2; ++Input) {
2563 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
2564 RangeUse[Input] = 0; // Unused
2565 StartIdx[Input] = 0;
2569 // Find a good start index that is a multiple of the mask length. Then
2570 // see if the rest of the elements are in range.
2571 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2572 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2573 StartIdx[Input] + MaskNumElts <= SrcNumElts)
2574 RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2577 if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2578 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2581 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
2582 // Extract appropriate subvector and generate a vector shuffle
2583 for (unsigned Input = 0; Input < 2; ++Input) {
2584 SDValue &Src = Input == 0 ? Src1 : Src2;
2585 if (RangeUse[Input] == 0)
2586 Src = DAG.getUNDEF(VT);
2588 SDLoc dl = getCurSDLoc();
2590 ISD::EXTRACT_SUBVECTOR, dl, VT, Src,
2591 DAG.getConstant(StartIdx[Input], dl, TLI.getVectorIdxTy()));
2595 // Calculate new mask.
2596 SmallVector<int, 8> MappedOps;
2597 for (unsigned i = 0; i != MaskNumElts; ++i) {
2600 if (Idx < (int)SrcNumElts)
2603 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
2605 MappedOps.push_back(Idx);
2608 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
2614 // We can't use either concat vectors or extract subvectors so fall back to
2615 // replacing the shuffle with extract and build vector.
2616 // to insert and build vector.
2617 EVT EltVT = VT.getVectorElementType();
2618 EVT IdxVT = TLI.getVectorIdxTy();
2619 SDLoc dl = getCurSDLoc();
2620 SmallVector<SDValue,8> Ops;
2621 for (unsigned i = 0; i != MaskNumElts; ++i) {
2626 Res = DAG.getUNDEF(EltVT);
2628 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
2629 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
2631 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
2632 EltVT, Src, DAG.getConstant(Idx, dl, IdxVT));
2638 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops));
2641 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
2642 const Value *Op0 = I.getOperand(0);
2643 const Value *Op1 = I.getOperand(1);
2644 Type *AggTy = I.getType();
2645 Type *ValTy = Op1->getType();
2646 bool IntoUndef = isa<UndefValue>(Op0);
2647 bool FromUndef = isa<UndefValue>(Op1);
2649 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
2651 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2652 SmallVector<EVT, 4> AggValueVTs;
2653 ComputeValueVTs(TLI, AggTy, AggValueVTs);
2654 SmallVector<EVT, 4> ValValueVTs;
2655 ComputeValueVTs(TLI, ValTy, ValValueVTs);
2657 unsigned NumAggValues = AggValueVTs.size();
2658 unsigned NumValValues = ValValueVTs.size();
2659 SmallVector<SDValue, 4> Values(NumAggValues);
2661 // Ignore an insertvalue that produces an empty object
2662 if (!NumAggValues) {
2663 setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
2667 SDValue Agg = getValue(Op0);
2669 // Copy the beginning value(s) from the original aggregate.
2670 for (; i != LinearIndex; ++i)
2671 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2672 SDValue(Agg.getNode(), Agg.getResNo() + i);
2673 // Copy values from the inserted value(s).
2675 SDValue Val = getValue(Op1);
2676 for (; i != LinearIndex + NumValValues; ++i)
2677 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2678 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2680 // Copy remaining value(s) from the original aggregate.
2681 for (; i != NumAggValues; ++i)
2682 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2683 SDValue(Agg.getNode(), Agg.getResNo() + i);
2685 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2686 DAG.getVTList(AggValueVTs), Values));
2689 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
2690 const Value *Op0 = I.getOperand(0);
2691 Type *AggTy = Op0->getType();
2692 Type *ValTy = I.getType();
2693 bool OutOfUndef = isa<UndefValue>(Op0);
2695 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
2697 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2698 SmallVector<EVT, 4> ValValueVTs;
2699 ComputeValueVTs(TLI, ValTy, ValValueVTs);
2701 unsigned NumValValues = ValValueVTs.size();
2703 // Ignore a extractvalue that produces an empty object
2704 if (!NumValValues) {
2705 setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
2709 SmallVector<SDValue, 4> Values(NumValValues);
2711 SDValue Agg = getValue(Op0);
2712 // Copy out the selected value(s).
2713 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2714 Values[i - LinearIndex] =
2716 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
2717 SDValue(Agg.getNode(), Agg.getResNo() + i);
2719 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2720 DAG.getVTList(ValValueVTs), Values));
2723 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
2724 Value *Op0 = I.getOperand(0);
2725 // Note that the pointer operand may be a vector of pointers. Take the scalar
2726 // element which holds a pointer.
2727 Type *Ty = Op0->getType()->getScalarType();
2728 unsigned AS = Ty->getPointerAddressSpace();
2729 SDValue N = getValue(Op0);
2730 SDLoc dl = getCurSDLoc();
2732 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
2734 const Value *Idx = *OI;
2735 if (StructType *StTy = dyn_cast<StructType>(Ty)) {
2736 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
2739 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
2740 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
2741 DAG.getConstant(Offset, dl, N.getValueType()));
2744 Ty = StTy->getElementType(Field);
2746 Ty = cast<SequentialType>(Ty)->getElementType();
2747 MVT PtrTy = DAG.getTargetLoweringInfo().getPointerTy(AS);
2748 unsigned PtrSize = PtrTy.getSizeInBits();
2749 APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty));
2751 // If this is a constant subscript, handle it quickly.
2752 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
2755 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize);
2756 SDValue OffsVal = DAG.getConstant(Offs, dl, PtrTy);
2757 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal);
2761 // N = N + Idx * ElementSize;
2762 SDValue IdxN = getValue(Idx);
2764 // If the index is smaller or larger than intptr_t, truncate or extend
2766 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
2768 // If this is a multiply by a power of two, turn it into a shl
2769 // immediately. This is a very common case.
2770 if (ElementSize != 1) {
2771 if (ElementSize.isPowerOf2()) {
2772 unsigned Amt = ElementSize.logBase2();
2773 IdxN = DAG.getNode(ISD::SHL, dl,
2774 N.getValueType(), IdxN,
2775 DAG.getConstant(Amt, dl, IdxN.getValueType()));
2777 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType());
2778 IdxN = DAG.getNode(ISD::MUL, dl,
2779 N.getValueType(), IdxN, Scale);
2783 N = DAG.getNode(ISD::ADD, dl,
2784 N.getValueType(), N, IdxN);
2791 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
2792 // If this is a fixed sized alloca in the entry block of the function,
2793 // allocate it statically on the stack.
2794 if (FuncInfo.StaticAllocaMap.count(&I))
2795 return; // getValue will auto-populate this.
2797 SDLoc dl = getCurSDLoc();
2798 Type *Ty = I.getAllocatedType();
2799 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2800 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty);
2802 std::max((unsigned)TLI.getDataLayout()->getPrefTypeAlignment(Ty),
2805 SDValue AllocSize = getValue(I.getArraySize());
2807 EVT IntPtr = TLI.getPointerTy();
2808 if (AllocSize.getValueType() != IntPtr)
2809 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
2811 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
2813 DAG.getConstant(TySize, dl, IntPtr));
2815 // Handle alignment. If the requested alignment is less than or equal to
2816 // the stack alignment, ignore it. If the size is greater than or equal to
2817 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2818 unsigned StackAlign =
2819 DAG.getSubtarget().getFrameLowering()->getStackAlignment();
2820 if (Align <= StackAlign)
2823 // Round the size of the allocation up to the stack alignment size
2824 // by add SA-1 to the size.
2825 AllocSize = DAG.getNode(ISD::ADD, dl,
2826 AllocSize.getValueType(), AllocSize,
2827 DAG.getIntPtrConstant(StackAlign - 1, dl));
2829 // Mask out the low bits for alignment purposes.
2830 AllocSize = DAG.getNode(ISD::AND, dl,
2831 AllocSize.getValueType(), AllocSize,
2832 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1),
2835 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) };
2836 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
2837 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
2839 DAG.setRoot(DSA.getValue(1));
2841 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects());
2844 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
2846 return visitAtomicLoad(I);
2848 const Value *SV = I.getOperand(0);
2849 SDValue Ptr = getValue(SV);
2851 Type *Ty = I.getType();
2853 bool isVolatile = I.isVolatile();
2854 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
2856 // The IR notion of invariant_load only guarantees that all *non-faulting*
2857 // invariant loads result in the same value. The MI notion of invariant load
2858 // guarantees that the load can be legally moved to any location within its
2859 // containing function. The MI notion of invariant_load is stronger than the
2860 // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load
2861 // with a guarantee that the location being loaded from is dereferenceable
2862 // throughout the function's lifetime.
2864 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr &&
2865 isDereferenceablePointer(SV, *DAG.getTarget().getDataLayout());
2866 unsigned Alignment = I.getAlignment();
2869 I.getAAMetadata(AAInfo);
2870 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
2872 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2873 SmallVector<EVT, 4> ValueVTs;
2874 SmallVector<uint64_t, 4> Offsets;
2875 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
2876 unsigned NumValues = ValueVTs.size();
2881 bool ConstantMemory = false;
2882 if (isVolatile || NumValues > MaxParallelChains)
2883 // Serialize volatile loads with other side effects.
2885 else if (AA->pointsToConstantMemory(
2886 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), AAInfo))) {
2887 // Do not serialize (non-volatile) loads of constant memory with anything.
2888 Root = DAG.getEntryNode();
2889 ConstantMemory = true;
2891 // Do not serialize non-volatile loads against each other.
2892 Root = DAG.getRoot();
2895 SDLoc dl = getCurSDLoc();
2898 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
2900 SmallVector<SDValue, 4> Values(NumValues);
2901 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
2903 EVT PtrVT = Ptr.getValueType();
2904 unsigned ChainI = 0;
2905 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
2906 // Serializing loads here may result in excessive register pressure, and
2907 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
2908 // could recover a bit by hoisting nodes upward in the chain by recognizing
2909 // they are side-effect free or do not alias. The optimizer should really
2910 // avoid this case by converting large object/array copies to llvm.memcpy
2911 // (MaxParallelChains should always remain as failsafe).
2912 if (ChainI == MaxParallelChains) {
2913 assert(PendingLoads.empty() && "PendingLoads must be serialized first");
2914 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2915 makeArrayRef(Chains.data(), ChainI));
2919 SDValue A = DAG.getNode(ISD::ADD, dl,
2921 DAG.getConstant(Offsets[i], dl, PtrVT));
2922 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root,
2923 A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
2924 isNonTemporal, isInvariant, Alignment, AAInfo,
2928 Chains[ChainI] = L.getValue(1);
2931 if (!ConstantMemory) {
2932 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2933 makeArrayRef(Chains.data(), ChainI));
2937 PendingLoads.push_back(Chain);
2940 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
2941 DAG.getVTList(ValueVTs), Values));
2944 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
2946 return visitAtomicStore(I);
2948 const Value *SrcV = I.getOperand(0);
2949 const Value *PtrV = I.getOperand(1);
2951 SmallVector<EVT, 4> ValueVTs;
2952 SmallVector<uint64_t, 4> Offsets;
2953 ComputeValueVTs(DAG.getTargetLoweringInfo(), SrcV->getType(),
2954 ValueVTs, &Offsets);
2955 unsigned NumValues = ValueVTs.size();
2959 // Get the lowered operands. Note that we do this after
2960 // checking if NumResults is zero, because with zero results
2961 // the operands won't have values in the map.
2962 SDValue Src = getValue(SrcV);
2963 SDValue Ptr = getValue(PtrV);
2965 SDValue Root = getRoot();
2966 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
2968 EVT PtrVT = Ptr.getValueType();
2969 bool isVolatile = I.isVolatile();
2970 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
2971 unsigned Alignment = I.getAlignment();
2972 SDLoc dl = getCurSDLoc();
2975 I.getAAMetadata(AAInfo);
2977 unsigned ChainI = 0;
2978 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
2979 // See visitLoad comments.
2980 if (ChainI == MaxParallelChains) {
2981 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2982 makeArrayRef(Chains.data(), ChainI));
2986 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
2987 DAG.getConstant(Offsets[i], dl, PtrVT));
2988 SDValue St = DAG.getStore(Root, dl,
2989 SDValue(Src.getNode(), Src.getResNo() + i),
2990 Add, MachinePointerInfo(PtrV, Offsets[i]),
2991 isVolatile, isNonTemporal, Alignment, AAInfo);
2992 Chains[ChainI] = St;
2995 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2996 makeArrayRef(Chains.data(), ChainI));
2997 DAG.setRoot(StoreNode);
3000 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) {
3001 SDLoc sdl = getCurSDLoc();
3003 // llvm.masked.store.*(Src0, Ptr, alignemt, Mask)
3004 Value *PtrOperand = I.getArgOperand(1);
3005 SDValue Ptr = getValue(PtrOperand);
3006 SDValue Src0 = getValue(I.getArgOperand(0));
3007 SDValue Mask = getValue(I.getArgOperand(3));
3008 EVT VT = Src0.getValueType();
3009 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
3011 Alignment = DAG.getEVTAlignment(VT);
3014 I.getAAMetadata(AAInfo);
3016 MachineMemOperand *MMO =
3017 DAG.getMachineFunction().
3018 getMachineMemOperand(MachinePointerInfo(PtrOperand),
3019 MachineMemOperand::MOStore, VT.getStoreSize(),
3021 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
3023 DAG.setRoot(StoreNode);
3024 setValue(&I, StoreNode);
3027 // Gather/scatter receive a vector of pointers.
3028 // This vector of pointers may be represented as a base pointer + vector of
3029 // indices, it depends on GEP and instruction preceeding GEP
3030 // that calculates indices
3031 static bool getUniformBase(Value *& Ptr, SDValue& Base, SDValue& Index,
3032 SelectionDAGBuilder* SDB) {
3034 assert (Ptr->getType()->isVectorTy() && "Uexpected pointer type");
3035 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
3036 if (!Gep || Gep->getNumOperands() > 2)
3038 ShuffleVectorInst *ShuffleInst =
3039 dyn_cast<ShuffleVectorInst>(Gep->getPointerOperand());
3040 if (!ShuffleInst || !ShuffleInst->getMask()->isNullValue() ||
3041 cast<Instruction>(ShuffleInst->getOperand(0))->getOpcode() !=
3042 Instruction::InsertElement)
3045 Ptr = cast<InsertElementInst>(ShuffleInst->getOperand(0))->getOperand(1);
3047 SelectionDAG& DAG = SDB->DAG;
3048 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3049 // Check is the Ptr is inside current basic block
3050 // If not, look for the shuffle instruction
3051 if (SDB->findValue(Ptr))
3052 Base = SDB->getValue(Ptr);
3053 else if (SDB->findValue(ShuffleInst)) {
3054 SDValue ShuffleNode = SDB->getValue(ShuffleInst);
3055 SDLoc sdl = ShuffleNode;
3056 Base = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, sdl,
3057 ShuffleNode.getValueType().getScalarType(), ShuffleNode,
3058 DAG.getConstant(0, sdl, TLI.getVectorIdxTy()));
3059 SDB->setValue(Ptr, Base);
3064 Value *IndexVal = Gep->getOperand(1);
3065 if (SDB->findValue(IndexVal)) {
3066 Index = SDB->getValue(IndexVal);
3068 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) {
3069 IndexVal = Sext->getOperand(0);
3070 if (SDB->findValue(IndexVal))
3071 Index = SDB->getValue(IndexVal);
3078 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
3079 SDLoc sdl = getCurSDLoc();
3081 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
3082 Value *Ptr = I.getArgOperand(1);
3083 SDValue Src0 = getValue(I.getArgOperand(0));
3084 SDValue Mask = getValue(I.getArgOperand(3));
3085 EVT VT = Src0.getValueType();
3086 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
3088 Alignment = DAG.getEVTAlignment(VT);
3089 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3092 I.getAAMetadata(AAInfo);
3096 Value *BasePtr = Ptr;
3097 bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
3099 Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
3100 MachineMemOperand *MMO = DAG.getMachineFunction().
3101 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
3102 MachineMemOperand::MOStore, VT.getStoreSize(),
3105 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy());
3106 Index = getValue(Ptr);
3108 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index };
3109 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
3111 DAG.setRoot(Scatter);
3112 setValue(&I, Scatter);
3115 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) {
3116 SDLoc sdl = getCurSDLoc();
3118 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
3119 Value *PtrOperand = I.getArgOperand(0);
3120 SDValue Ptr = getValue(PtrOperand);
3121 SDValue Src0 = getValue(I.getArgOperand(3));
3122 SDValue Mask = getValue(I.getArgOperand(2));
3124 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3125 EVT VT = TLI.getValueType(I.getType());
3126 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
3128 Alignment = DAG.getEVTAlignment(VT);
3131 I.getAAMetadata(AAInfo);
3132 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3134 SDValue InChain = DAG.getRoot();
3135 if (AA->pointsToConstantMemory(
3136 AliasAnalysis::Location(PtrOperand,
3137 AA->getTypeStoreSize(I.getType()),
3139 // Do not serialize (non-volatile) loads of constant memory with anything.
3140 InChain = DAG.getEntryNode();
3143 MachineMemOperand *MMO =
3144 DAG.getMachineFunction().
3145 getMachineMemOperand(MachinePointerInfo(PtrOperand),
3146 MachineMemOperand::MOLoad, VT.getStoreSize(),
3147 Alignment, AAInfo, Ranges);
3149 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
3151 SDValue OutChain = Load.getValue(1);
3152 DAG.setRoot(OutChain);
3156 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
3157 SDLoc sdl = getCurSDLoc();
3159 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
3160 Value *Ptr = I.getArgOperand(0);
3161 SDValue Src0 = getValue(I.getArgOperand(3));
3162 SDValue Mask = getValue(I.getArgOperand(2));
3164 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3165 EVT VT = TLI.getValueType(I.getType());
3166 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
3168 Alignment = DAG.getEVTAlignment(VT);
3171 I.getAAMetadata(AAInfo);
3172 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3174 SDValue Root = DAG.getRoot();
3177 Value *BasePtr = Ptr;
3178 bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
3179 bool ConstantMemory = false;
3180 if (UniformBase && AA->pointsToConstantMemory(
3181 AliasAnalysis::Location(BasePtr,
3182 AA->getTypeStoreSize(I.getType()),
3184 // Do not serialize (non-volatile) loads of constant memory with anything.
3185 Root = DAG.getEntryNode();
3186 ConstantMemory = true;
3189 MachineMemOperand *MMO =
3190 DAG.getMachineFunction().
3191 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
3192 MachineMemOperand::MOLoad, VT.getStoreSize(),
3193 Alignment, AAInfo, Ranges);
3196 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy());
3197 Index = getValue(Ptr);
3199 SDValue Ops[] = { Root, Src0, Mask, Base, Index };
3200 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
3203 SDValue OutChain = Gather.getValue(1);
3204 if (!ConstantMemory)
3205 PendingLoads.push_back(OutChain);
3206 setValue(&I, Gather);
3209 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3210 SDLoc dl = getCurSDLoc();
3211 AtomicOrdering SuccessOrder = I.getSuccessOrdering();
3212 AtomicOrdering FailureOrder = I.getFailureOrdering();
3213 SynchronizationScope Scope = I.getSynchScope();
3215 SDValue InChain = getRoot();
3217 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
3218 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
3219 SDValue L = DAG.getAtomicCmpSwap(
3220 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain,
3221 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()),
3222 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()),
3223 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope);
3225 SDValue OutChain = L.getValue(2);
3228 DAG.setRoot(OutChain);
3231 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3232 SDLoc dl = getCurSDLoc();
3234 switch (I.getOperation()) {
3235 default: llvm_unreachable("Unknown atomicrmw operation");
3236 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3237 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break;
3238 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break;
3239 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break;
3240 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3241 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break;
3242 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break;
3243 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break;
3244 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break;
3245 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3246 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3248 AtomicOrdering Order = I.getOrdering();
3249 SynchronizationScope Scope = I.getSynchScope();
3251 SDValue InChain = getRoot();
3254 DAG.getAtomic(NT, dl,
3255 getValue(I.getValOperand()).getSimpleValueType(),
3257 getValue(I.getPointerOperand()),
3258 getValue(I.getValOperand()),
3259 I.getPointerOperand(),
3260 /* Alignment=*/ 0, Order, Scope);
3262 SDValue OutChain = L.getValue(1);
3265 DAG.setRoot(OutChain);
3268 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3269 SDLoc dl = getCurSDLoc();
3270 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3273 Ops[1] = DAG.getConstant(I.getOrdering(), dl, TLI.getPointerTy());
3274 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, TLI.getPointerTy());
3275 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
3278 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3279 SDLoc dl = getCurSDLoc();
3280 AtomicOrdering Order = I.getOrdering();
3281 SynchronizationScope Scope = I.getSynchScope();
3283 SDValue InChain = getRoot();
3285 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3286 EVT VT = TLI.getValueType(I.getType());
3288 if (I.getAlignment() < VT.getSizeInBits() / 8)
3289 report_fatal_error("Cannot generate unaligned atomic load");
3291 MachineMemOperand *MMO =
3292 DAG.getMachineFunction().
3293 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
3294 MachineMemOperand::MOVolatile |
3295 MachineMemOperand::MOLoad,
3297 I.getAlignment() ? I.getAlignment() :
3298 DAG.getEVTAlignment(VT));
3300 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
3302 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
3303 getValue(I.getPointerOperand()), MMO,
3306 SDValue OutChain = L.getValue(1);
3309 DAG.setRoot(OutChain);
3312 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
3313 SDLoc dl = getCurSDLoc();
3315 AtomicOrdering Order = I.getOrdering();
3316 SynchronizationScope Scope = I.getSynchScope();
3318 SDValue InChain = getRoot();
3320 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3321 EVT VT = TLI.getValueType(I.getValueOperand()->getType());
3323 if (I.getAlignment() < VT.getSizeInBits() / 8)
3324 report_fatal_error("Cannot generate unaligned atomic store");
3327 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
3329 getValue(I.getPointerOperand()),
3330 getValue(I.getValueOperand()),
3331 I.getPointerOperand(), I.getAlignment(),
3334 DAG.setRoot(OutChain);
3337 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3339 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3340 unsigned Intrinsic) {
3341 bool HasChain = !I.doesNotAccessMemory();
3342 bool OnlyLoad = HasChain && I.onlyReadsMemory();
3344 // Build the operand list.
3345 SmallVector<SDValue, 8> Ops;
3346 if (HasChain) { // If this intrinsic has side-effects, chainify it.
3348 // We don't need to serialize loads against other loads.
3349 Ops.push_back(DAG.getRoot());
3351 Ops.push_back(getRoot());
3355 // Info is set by getTgtMemInstrinsic
3356 TargetLowering::IntrinsicInfo Info;
3357 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3358 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3360 // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3361 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3362 Info.opc == ISD::INTRINSIC_W_CHAIN)
3363 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
3364 TLI.getPointerTy()));
3366 // Add all operands of the call to the operand list.
3367 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3368 SDValue Op = getValue(I.getArgOperand(i));
3372 SmallVector<EVT, 4> ValueVTs;
3373 ComputeValueVTs(TLI, I.getType(), ValueVTs);
3376 ValueVTs.push_back(MVT::Other);
3378 SDVTList VTs = DAG.getVTList(ValueVTs);
3382 if (IsTgtIntrinsic) {
3383 // This is target intrinsic that touches memory
3384 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(),
3385 VTs, Ops, Info.memVT,
3386 MachinePointerInfo(Info.ptrVal, Info.offset),
3387 Info.align, Info.vol,
3388 Info.readMem, Info.writeMem, Info.size);
3389 } else if (!HasChain) {
3390 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
3391 } else if (!I.getType()->isVoidTy()) {
3392 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
3394 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
3398 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3400 PendingLoads.push_back(Chain);
3405 if (!I.getType()->isVoidTy()) {
3406 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3407 EVT VT = TLI.getValueType(PTy);
3408 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
3411 setValue(&I, Result);
3415 /// GetSignificand - Get the significand and build it into a floating-point
3416 /// number with exponent of 1:
3418 /// Op = (Op & 0x007fffff) | 0x3f800000;
3420 /// where Op is the hexadecimal representation of floating point value.
3422 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) {
3423 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3424 DAG.getConstant(0x007fffff, dl, MVT::i32));
3425 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3426 DAG.getConstant(0x3f800000, dl, MVT::i32));
3427 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3430 /// GetExponent - Get the exponent:
3432 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3434 /// where Op is the hexadecimal representation of floating point value.
3436 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3438 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3439 DAG.getConstant(0x7f800000, dl, MVT::i32));
3440 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3441 DAG.getConstant(23, dl, TLI.getPointerTy()));
3442 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3443 DAG.getConstant(127, dl, MVT::i32));
3444 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3447 /// getF32Constant - Get 32-bit floating point constant.
3449 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) {
3450 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl,
3454 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl,
3455 SelectionDAG &DAG) {
3456 // IntegerPartOfX = ((int32_t)(t0);
3457 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3459 // FractionalPartOfX = t0 - (float)IntegerPartOfX;
3460 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3461 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3463 // IntegerPartOfX <<= 23;
3464 IntegerPartOfX = DAG.getNode(
3465 ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3466 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy()));
3468 SDValue TwoToFractionalPartOfX;
3469 if (LimitFloatPrecision <= 6) {
3470 // For floating-point precision of 6:
3472 // TwoToFractionalPartOfX =
3474 // (0.735607626f + 0.252464424f * x) * x;
3476 // error 0.0144103317, which is 6 bits
3477 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3478 getF32Constant(DAG, 0x3e814304, dl));
3479 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3480 getF32Constant(DAG, 0x3f3c50c8, dl));
3481 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3482 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3483 getF32Constant(DAG, 0x3f7f5e7e, dl));
3484 } else if (LimitFloatPrecision <= 12) {
3485 // For floating-point precision of 12:
3487 // TwoToFractionalPartOfX =
3490 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
3492 // error 0.000107046256, which is 13 to 14 bits
3493 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3494 getF32Constant(DAG, 0x3da235e3, dl));
3495 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3496 getF32Constant(DAG, 0x3e65b8f3, dl));
3497 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3498 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3499 getF32Constant(DAG, 0x3f324b07, dl));
3500 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3501 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3502 getF32Constant(DAG, 0x3f7ff8fd, dl));
3503 } else { // LimitFloatPrecision <= 18
3504 // For floating-point precision of 18:
3506 // TwoToFractionalPartOfX =
3510 // (0.554906021e-1f +
3511 // (0.961591928e-2f +
3512 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3513 // error 2.47208000*10^(-7), which is better than 18 bits
3514 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3515 getF32Constant(DAG, 0x3924b03e, dl));
3516 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3517 getF32Constant(DAG, 0x3ab24b87, dl));
3518 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3519 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3520 getF32Constant(DAG, 0x3c1d8c17, dl));
3521 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3522 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3523 getF32Constant(DAG, 0x3d634a1d, dl));
3524 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3525 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3526 getF32Constant(DAG, 0x3e75fe14, dl));
3527 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3528 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3529 getF32Constant(DAG, 0x3f317234, dl));
3530 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3531 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3532 getF32Constant(DAG, 0x3f800000, dl));
3535 // Add the exponent into the result in integer domain.
3536 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
3537 return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
3538 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
3541 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
3542 /// limited-precision mode.
3543 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3544 const TargetLowering &TLI) {
3545 if (Op.getValueType() == MVT::f32 &&
3546 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3548 // Put the exponent in the right bit position for later addition to the
3551 // #define LOG2OFe 1.4426950f
3552 // t0 = Op * LOG2OFe
3553 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3554 getF32Constant(DAG, 0x3fb8aa3b, dl));
3555 return getLimitedPrecisionExp2(t0, dl, DAG);
3558 // No special expansion.
3559 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
3562 /// expandLog - Lower a log intrinsic. Handles the special sequences for
3563 /// limited-precision mode.
3564 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3565 const TargetLowering &TLI) {
3566 if (Op.getValueType() == MVT::f32 &&
3567 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3568 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3570 // Scale the exponent by log(2) [0.69314718f].
3571 SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3572 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3573 getF32Constant(DAG, 0x3f317218, dl));
3575 // Get the significand and build it into a floating-point number with
3577 SDValue X = GetSignificand(DAG, Op1, dl);
3579 SDValue LogOfMantissa;
3580 if (LimitFloatPrecision <= 6) {
3581 // For floating-point precision of 6:
3585 // (1.4034025f - 0.23903021f * x) * x;
3587 // error 0.0034276066, which is better than 8 bits
3588 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3589 getF32Constant(DAG, 0xbe74c456, dl));
3590 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3591 getF32Constant(DAG, 0x3fb3a2b1, dl));
3592 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3593 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3594 getF32Constant(DAG, 0x3f949a29, dl));
3595 } else if (LimitFloatPrecision <= 12) {
3596 // For floating-point precision of 12:
3602 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3604 // error 0.000061011436, which is 14 bits
3605 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3606 getF32Constant(DAG, 0xbd67b6d6, dl));
3607 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3608 getF32Constant(DAG, 0x3ee4f4b8, dl));
3609 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3610 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3611 getF32Constant(DAG, 0x3fbc278b, dl));
3612 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3613 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3614 getF32Constant(DAG, 0x40348e95, dl));
3615 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3616 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3617 getF32Constant(DAG, 0x3fdef31a, dl));
3618 } else { // LimitFloatPrecision <= 18
3619 // For floating-point precision of 18:
3627 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3629 // error 0.0000023660568, which is better than 18 bits
3630 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3631 getF32Constant(DAG, 0xbc91e5ac, dl));
3632 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3633 getF32Constant(DAG, 0x3e4350aa, dl));
3634 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3635 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3636 getF32Constant(DAG, 0x3f60d3e3, dl));
3637 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3638 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3639 getF32Constant(DAG, 0x4011cdf0, dl));
3640 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3641 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3642 getF32Constant(DAG, 0x406cfd1c, dl));
3643 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3644 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3645 getF32Constant(DAG, 0x408797cb, dl));
3646 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3647 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3648 getF32Constant(DAG, 0x4006dcab, dl));
3651 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
3654 // No special expansion.
3655 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
3658 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
3659 /// limited-precision mode.
3660 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3661 const TargetLowering &TLI) {
3662 if (Op.getValueType() == MVT::f32 &&
3663 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3664 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3666 // Get the exponent.
3667 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3669 // Get the significand and build it into a floating-point number with
3671 SDValue X = GetSignificand(DAG, Op1, dl);
3673 // Different possible minimax approximations of significand in
3674 // floating-point for various degrees of accuracy over [1,2].
3675 SDValue Log2ofMantissa;
3676 if (LimitFloatPrecision <= 6) {
3677 // For floating-point precision of 6:
3679 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3681 // error 0.0049451742, which is more than 7 bits
3682 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3683 getF32Constant(DAG, 0xbeb08fe0, dl));
3684 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3685 getF32Constant(DAG, 0x40019463, dl));
3686 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3687 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3688 getF32Constant(DAG, 0x3fd6633d, dl));
3689 } else if (LimitFloatPrecision <= 12) {
3690 // For floating-point precision of 12:
3696 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3698 // error 0.0000876136000, which is better than 13 bits
3699 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3700 getF32Constant(DAG, 0xbda7262e, dl));
3701 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3702 getF32Constant(DAG, 0x3f25280b, dl));
3703 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3704 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3705 getF32Constant(DAG, 0x4007b923, dl));
3706 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3707 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3708 getF32Constant(DAG, 0x40823e2f, dl));
3709 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3710 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3711 getF32Constant(DAG, 0x4020d29c, dl));
3712 } else { // LimitFloatPrecision <= 18
3713 // For floating-point precision of 18: