695b7913b4895166138a5e9136061b3fc1113f53
[oota-llvm.git] / lib / CodeGen / SelectionDAG / SelectionDAGBuilder.cpp
1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #define DEBUG_TYPE "isel"
15 #include "SDNodeDbgValue.h"
16 #include "SelectionDAGBuilder.h"
17 #include "FunctionLoweringInfo.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/ConstantFolding.h"
22 #include "llvm/Constants.h"
23 #include "llvm/CallingConv.h"
24 #include "llvm/DerivedTypes.h"
25 #include "llvm/Function.h"
26 #include "llvm/GlobalVariable.h"
27 #include "llvm/InlineAsm.h"
28 #include "llvm/Instructions.h"
29 #include "llvm/Intrinsics.h"
30 #include "llvm/IntrinsicInst.h"
31 #include "llvm/LLVMContext.h"
32 #include "llvm/Module.h"
33 #include "llvm/CodeGen/Analysis.h"
34 #include "llvm/CodeGen/FastISel.h"
35 #include "llvm/CodeGen/GCStrategy.h"
36 #include "llvm/CodeGen/GCMetadata.h"
37 #include "llvm/CodeGen/MachineFunction.h"
38 #include "llvm/CodeGen/MachineFrameInfo.h"
39 #include "llvm/CodeGen/MachineInstrBuilder.h"
40 #include "llvm/CodeGen/MachineJumpTableInfo.h"
41 #include "llvm/CodeGen/MachineModuleInfo.h"
42 #include "llvm/CodeGen/MachineRegisterInfo.h"
43 #include "llvm/CodeGen/PseudoSourceValue.h"
44 #include "llvm/CodeGen/SelectionDAG.h"
45 #include "llvm/Analysis/DebugInfo.h"
46 #include "llvm/Target/TargetRegisterInfo.h"
47 #include "llvm/Target/TargetData.h"
48 #include "llvm/Target/TargetFrameInfo.h"
49 #include "llvm/Target/TargetInstrInfo.h"
50 #include "llvm/Target/TargetIntrinsicInfo.h"
51 #include "llvm/Target/TargetLowering.h"
52 #include "llvm/Target/TargetOptions.h"
53 #include "llvm/Support/Compiler.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/MathExtras.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include <algorithm>
60 using namespace llvm;
61
62 /// LimitFloatPrecision - Generate low-precision inline sequences for
63 /// some float libcalls (6, 8 or 12 bits).
64 static unsigned LimitFloatPrecision;
65
66 static cl::opt<unsigned, true>
67 LimitFPPrecision("limit-float-precision",
68                  cl::desc("Generate low-precision inline sequences "
69                           "for some float libcalls"),
70                  cl::location(LimitFloatPrecision),
71                  cl::init(0));
72
73 namespace {
74   /// RegsForValue - This struct represents the registers (physical or virtual)
75   /// that a particular set of values is assigned, and the type information
76   /// about the value. The most common situation is to represent one value at a
77   /// time, but struct or array values are handled element-wise as multiple
78   /// values.  The splitting of aggregates is performed recursively, so that we
79   /// never have aggregate-typed registers. The values at this point do not
80   /// necessarily have legal types, so each value may require one or more
81   /// registers of some legal type.
82   ///
83   struct RegsForValue {
84     /// TLI - The TargetLowering object.
85     ///
86     const TargetLowering *TLI;
87
88     /// ValueVTs - The value types of the values, which may not be legal, and
89     /// may need be promoted or synthesized from one or more registers.
90     ///
91     SmallVector<EVT, 4> ValueVTs;
92
93     /// RegVTs - The value types of the registers. This is the same size as
94     /// ValueVTs and it records, for each value, what the type of the assigned
95     /// register or registers are. (Individual values are never synthesized
96     /// from more than one type of register.)
97     ///
98     /// With virtual registers, the contents of RegVTs is redundant with TLI's
99     /// getRegisterType member function, however when with physical registers
100     /// it is necessary to have a separate record of the types.
101     ///
102     SmallVector<EVT, 4> RegVTs;
103
104     /// Regs - This list holds the registers assigned to the values.
105     /// Each legal or promoted value requires one register, and each
106     /// expanded value requires multiple registers.
107     ///
108     SmallVector<unsigned, 4> Regs;
109
110     RegsForValue() : TLI(0) {}
111
112     RegsForValue(const TargetLowering &tli,
113                  const SmallVector<unsigned, 4> &regs,
114                  EVT regvt, EVT valuevt)
115       : TLI(&tli),  ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
116     RegsForValue(const TargetLowering &tli,
117                  const SmallVector<unsigned, 4> &regs,
118                  const SmallVector<EVT, 4> &regvts,
119                  const SmallVector<EVT, 4> &valuevts)
120       : TLI(&tli), ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {}
121     RegsForValue(LLVMContext &Context, const TargetLowering &tli,
122                  unsigned Reg, const Type *Ty) : TLI(&tli) {
123       ComputeValueVTs(tli, Ty, ValueVTs);
124
125       for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
126         EVT ValueVT = ValueVTs[Value];
127         unsigned NumRegs = TLI->getNumRegisters(Context, ValueVT);
128         EVT RegisterVT = TLI->getRegisterType(Context, ValueVT);
129         for (unsigned i = 0; i != NumRegs; ++i)
130           Regs.push_back(Reg + i);
131         RegVTs.push_back(RegisterVT);
132         Reg += NumRegs;
133       }
134     }
135
136     /// areValueTypesLegal - Return true if types of all the values are legal.
137     bool areValueTypesLegal() {
138       for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
139         EVT RegisterVT = RegVTs[Value];
140         if (!TLI->isTypeLegal(RegisterVT))
141           return false;
142       }
143       return true;
144     }
145
146
147     /// append - Add the specified values to this one.
148     void append(const RegsForValue &RHS) {
149       TLI = RHS.TLI;
150       ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
151       RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
152       Regs.append(RHS.Regs.begin(), RHS.Regs.end());
153     }
154
155
156     /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
157     /// this value and returns the result as a ValueVTs value.  This uses
158     /// Chain/Flag as the input and updates them for the output Chain/Flag.
159     /// If the Flag pointer is NULL, no flag is used.
160     SDValue getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl,
161                             SDValue &Chain, SDValue *Flag) const;
162
163     /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
164     /// specified value into the registers specified by this object.  This uses
165     /// Chain/Flag as the input and updates them for the output Chain/Flag.
166     /// If the Flag pointer is NULL, no flag is used.
167     void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
168                        SDValue &Chain, SDValue *Flag) const;
169
170     /// AddInlineAsmOperands - Add this value to the specified inlineasm node
171     /// operand list.  This adds the code marker, matching input operand index
172     /// (if applicable), and includes the number of values added into it.
173     void AddInlineAsmOperands(unsigned Kind,
174                               bool HasMatching, unsigned MatchingIdx,
175                               SelectionDAG &DAG,
176                               std::vector<SDValue> &Ops) const;
177   };
178 }
179
180 /// getCopyFromParts - Create a value that contains the specified legal parts
181 /// combined into the value they represent.  If the parts combine to a type
182 /// larger then ValueVT then AssertOp can be used to specify whether the extra
183 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
184 /// (ISD::AssertSext).
185 static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc dl,
186                                 const SDValue *Parts,
187                                 unsigned NumParts, EVT PartVT, EVT ValueVT,
188                                 ISD::NodeType AssertOp = ISD::DELETED_NODE) {
189   assert(NumParts > 0 && "No parts to assemble!");
190   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
191   SDValue Val = Parts[0];
192
193   if (NumParts > 1) {
194     // Assemble the value from multiple parts.
195     if (!ValueVT.isVector() && ValueVT.isInteger()) {
196       unsigned PartBits = PartVT.getSizeInBits();
197       unsigned ValueBits = ValueVT.getSizeInBits();
198
199       // Assemble the power of 2 part.
200       unsigned RoundParts = NumParts & (NumParts - 1) ?
201         1 << Log2_32(NumParts) : NumParts;
202       unsigned RoundBits = PartBits * RoundParts;
203       EVT RoundVT = RoundBits == ValueBits ?
204         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
205       SDValue Lo, Hi;
206
207       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
208
209       if (RoundParts > 2) {
210         Lo = getCopyFromParts(DAG, dl, Parts, RoundParts / 2,
211                               PartVT, HalfVT);
212         Hi = getCopyFromParts(DAG, dl, Parts + RoundParts / 2,
213                               RoundParts / 2, PartVT, HalfVT);
214       } else {
215         Lo = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[0]);
216         Hi = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[1]);
217       }
218
219       if (TLI.isBigEndian())
220         std::swap(Lo, Hi);
221
222       Val = DAG.getNode(ISD::BUILD_PAIR, dl, RoundVT, Lo, Hi);
223
224       if (RoundParts < NumParts) {
225         // Assemble the trailing non-power-of-2 part.
226         unsigned OddParts = NumParts - RoundParts;
227         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
228         Hi = getCopyFromParts(DAG, dl,
229                               Parts + RoundParts, OddParts, PartVT, OddVT);
230
231         // Combine the round and odd parts.
232         Lo = Val;
233         if (TLI.isBigEndian())
234           std::swap(Lo, Hi);
235         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
236         Hi = DAG.getNode(ISD::ANY_EXTEND, dl, TotalVT, Hi);
237         Hi = DAG.getNode(ISD::SHL, dl, TotalVT, Hi,
238                          DAG.getConstant(Lo.getValueType().getSizeInBits(),
239                                          TLI.getPointerTy()));
240         Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, TotalVT, Lo);
241         Val = DAG.getNode(ISD::OR, dl, TotalVT, Lo, Hi);
242       }
243     } else if (ValueVT.isVector()) {
244       // Handle a multi-element vector.
245       EVT IntermediateVT, RegisterVT;
246       unsigned NumIntermediates;
247       unsigned NumRegs =
248         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
249                                    NumIntermediates, RegisterVT);
250       assert(NumRegs == NumParts
251              && "Part count doesn't match vector breakdown!");
252       NumParts = NumRegs; // Silence a compiler warning.
253       assert(RegisterVT == PartVT
254              && "Part type doesn't match vector breakdown!");
255       assert(RegisterVT == Parts[0].getValueType() &&
256              "Part type doesn't match part!");
257
258       // Assemble the parts into intermediate operands.
259       SmallVector<SDValue, 8> Ops(NumIntermediates);
260       if (NumIntermediates == NumParts) {
261         // If the register was not expanded, truncate or copy the value,
262         // as appropriate.
263         for (unsigned i = 0; i != NumParts; ++i)
264           Ops[i] = getCopyFromParts(DAG, dl, &Parts[i], 1,
265                                     PartVT, IntermediateVT);
266       } else if (NumParts > 0) {
267         // If the intermediate type was expanded, build the intermediate
268         // operands from the parts.
269         assert(NumParts % NumIntermediates == 0 &&
270                "Must expand into a divisible number of parts!");
271         unsigned Factor = NumParts / NumIntermediates;
272         for (unsigned i = 0; i != NumIntermediates; ++i)
273           Ops[i] = getCopyFromParts(DAG, dl, &Parts[i * Factor], Factor,
274                                     PartVT, IntermediateVT);
275       }
276
277       // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
278       // intermediate operands.
279       Val = DAG.getNode(IntermediateVT.isVector() ?
280                         ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, dl,
281                         ValueVT, &Ops[0], NumIntermediates);
282     } else if (PartVT.isFloatingPoint()) {
283       // FP split into multiple FP parts (for ppcf128)
284       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
285              "Unexpected split");
286       SDValue Lo, Hi;
287       Lo = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[0]);
288       Hi = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[1]);
289       if (TLI.isBigEndian())
290         std::swap(Lo, Hi);
291       Val = DAG.getNode(ISD::BUILD_PAIR, dl, ValueVT, Lo, Hi);
292     } else {
293       // FP split into integer parts (soft fp)
294       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
295              !PartVT.isVector() && "Unexpected split");
296       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
297       Val = getCopyFromParts(DAG, dl, Parts, NumParts, PartVT, IntVT);
298     }
299   }
300
301   // There is now one part, held in Val.  Correct it to match ValueVT.
302   PartVT = Val.getValueType();
303
304   if (PartVT == ValueVT)
305     return Val;
306
307   if (PartVT.isVector()) {
308     assert(ValueVT.isVector() && "Unknown vector conversion!");
309     return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val);
310   }
311
312   if (ValueVT.isVector()) {
313     assert(ValueVT.getVectorElementType() == PartVT &&
314            ValueVT.getVectorNumElements() == 1 &&
315            "Only trivial scalar-to-vector conversions should get here!");
316     return DAG.getNode(ISD::BUILD_VECTOR, dl, ValueVT, Val);
317   }
318
319   if (PartVT.isInteger() &&
320       ValueVT.isInteger()) {
321     if (ValueVT.bitsLT(PartVT)) {
322       // For a truncate, see if we have any information to
323       // indicate whether the truncated bits will always be
324       // zero or sign-extension.
325       if (AssertOp != ISD::DELETED_NODE)
326         Val = DAG.getNode(AssertOp, dl, PartVT, Val,
327                           DAG.getValueType(ValueVT));
328       return DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
329     } else {
330       return DAG.getNode(ISD::ANY_EXTEND, dl, ValueVT, Val);
331     }
332   }
333
334   if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
335     if (ValueVT.bitsLT(Val.getValueType())) {
336       // FP_ROUND's are always exact here.
337       return DAG.getNode(ISD::FP_ROUND, dl, ValueVT, Val,
338                          DAG.getIntPtrConstant(1));
339     }
340
341     return DAG.getNode(ISD::FP_EXTEND, dl, ValueVT, Val);
342   }
343
344   if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
345     return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val);
346
347   llvm_unreachable("Unknown mismatch!");
348   return SDValue();
349 }
350
351 /// getCopyToParts - Create a series of nodes that contain the specified value
352 /// split into legal parts.  If the parts contain more bits than Val, then, for
353 /// integers, ExtendKind can be used to specify how to generate the extra bits.
354 static void getCopyToParts(SelectionDAG &DAG, DebugLoc dl,
355                            SDValue Val, SDValue *Parts, unsigned NumParts,
356                            EVT PartVT,
357                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
358   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
359   EVT PtrVT = TLI.getPointerTy();
360   EVT ValueVT = Val.getValueType();
361   unsigned PartBits = PartVT.getSizeInBits();
362   unsigned OrigNumParts = NumParts;
363   assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
364
365   if (!NumParts)
366     return;
367
368   if (!ValueVT.isVector()) {
369     if (PartVT == ValueVT) {
370       assert(NumParts == 1 && "No-op copy with multiple parts!");
371       Parts[0] = Val;
372       return;
373     }
374
375     if (NumParts * PartBits > ValueVT.getSizeInBits()) {
376       // If the parts cover more bits than the value has, promote the value.
377       if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
378         assert(NumParts == 1 && "Do not know what to promote to!");
379         Val = DAG.getNode(ISD::FP_EXTEND, dl, PartVT, Val);
380       } else if (PartVT.isInteger() && ValueVT.isInteger()) {
381         ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
382         Val = DAG.getNode(ExtendKind, dl, ValueVT, Val);
383       } else {
384         llvm_unreachable("Unknown mismatch!");
385       }
386     } else if (PartBits == ValueVT.getSizeInBits()) {
387       // Different types of the same size.
388       assert(NumParts == 1 && PartVT != ValueVT);
389       Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val);
390     } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
391       // If the parts cover less bits than value has, truncate the value.
392       if (PartVT.isInteger() && ValueVT.isInteger()) {
393         ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
394         Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
395       } else {
396         llvm_unreachable("Unknown mismatch!");
397       }
398     }
399
400     // The value may have changed - recompute ValueVT.
401     ValueVT = Val.getValueType();
402     assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
403            "Failed to tile the value with PartVT!");
404
405     if (NumParts == 1) {
406       assert(PartVT == ValueVT && "Type conversion failed!");
407       Parts[0] = Val;
408       return;
409     }
410
411     // Expand the value into multiple parts.
412     if (NumParts & (NumParts - 1)) {
413       // The number of parts is not a power of 2.  Split off and copy the tail.
414       assert(PartVT.isInteger() && ValueVT.isInteger() &&
415              "Do not know what to expand to!");
416       unsigned RoundParts = 1 << Log2_32(NumParts);
417       unsigned RoundBits = RoundParts * PartBits;
418       unsigned OddParts = NumParts - RoundParts;
419       SDValue OddVal = DAG.getNode(ISD::SRL, dl, ValueVT, Val,
420                                    DAG.getConstant(RoundBits,
421                                                    TLI.getPointerTy()));
422       getCopyToParts(DAG, dl, OddVal, Parts + RoundParts,
423                      OddParts, PartVT);
424
425       if (TLI.isBigEndian())
426         // The odd parts were reversed by getCopyToParts - unreverse them.
427         std::reverse(Parts + RoundParts, Parts + NumParts);
428
429       NumParts = RoundParts;
430       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
431       Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
432     }
433
434     // The number of parts is a power of 2.  Repeatedly bisect the value using
435     // EXTRACT_ELEMENT.
436     Parts[0] = DAG.getNode(ISD::BIT_CONVERT, dl,
437                            EVT::getIntegerVT(*DAG.getContext(),
438                                              ValueVT.getSizeInBits()),
439                            Val);
440
441     for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
442       for (unsigned i = 0; i < NumParts; i += StepSize) {
443         unsigned ThisBits = StepSize * PartBits / 2;
444         EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
445         SDValue &Part0 = Parts[i];
446         SDValue &Part1 = Parts[i+StepSize/2];
447
448         Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
449                             ThisVT, Part0,
450                             DAG.getConstant(1, PtrVT));
451         Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
452                             ThisVT, Part0,
453                             DAG.getConstant(0, PtrVT));
454
455         if (ThisBits == PartBits && ThisVT != PartVT) {
456           Part0 = DAG.getNode(ISD::BIT_CONVERT, dl,
457                                                 PartVT, Part0);
458           Part1 = DAG.getNode(ISD::BIT_CONVERT, dl,
459                                                 PartVT, Part1);
460         }
461       }
462     }
463
464     if (TLI.isBigEndian())
465       std::reverse(Parts, Parts + OrigNumParts);
466
467     return;
468   }
469
470   // Vector ValueVT.
471   if (NumParts == 1) {
472     if (PartVT != ValueVT) {
473       if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
474         Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val);
475       } else {
476         assert(ValueVT.getVectorElementType() == PartVT &&
477                ValueVT.getVectorNumElements() == 1 &&
478                "Only trivial vector-to-scalar conversions should get here!");
479         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
480                           PartVT, Val,
481                           DAG.getConstant(0, PtrVT));
482       }
483     }
484
485     Parts[0] = Val;
486     return;
487   }
488
489   // Handle a multi-element vector.
490   EVT IntermediateVT, RegisterVT;
491   unsigned NumIntermediates;
492   unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
493                               IntermediateVT, NumIntermediates, RegisterVT);
494   unsigned NumElements = ValueVT.getVectorNumElements();
495
496   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
497   NumParts = NumRegs; // Silence a compiler warning.
498   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
499
500   // Split the vector into intermediate operands.
501   SmallVector<SDValue, 8> Ops(NumIntermediates);
502   for (unsigned i = 0; i != NumIntermediates; ++i) {
503     if (IntermediateVT.isVector())
504       Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl,
505                            IntermediateVT, Val,
506                            DAG.getConstant(i * (NumElements / NumIntermediates),
507                                            PtrVT));
508     else
509       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
510                            IntermediateVT, Val,
511                            DAG.getConstant(i, PtrVT));
512   }
513
514   // Split the intermediate operands into legal parts.
515   if (NumParts == NumIntermediates) {
516     // If the register was not expanded, promote or copy the value,
517     // as appropriate.
518     for (unsigned i = 0; i != NumParts; ++i)
519       getCopyToParts(DAG, dl, Ops[i], &Parts[i], 1, PartVT);
520   } else if (NumParts > 0) {
521     // If the intermediate type was expanded, split each the value into
522     // legal parts.
523     assert(NumParts % NumIntermediates == 0 &&
524            "Must expand into a divisible number of parts!");
525     unsigned Factor = NumParts / NumIntermediates;
526     for (unsigned i = 0; i != NumIntermediates; ++i)
527       getCopyToParts(DAG, dl, Ops[i], &Parts[i*Factor], Factor, PartVT);
528   }
529 }
530
531
532 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
533   AA = &aa;
534   GFI = gfi;
535   TD = DAG.getTarget().getTargetData();
536 }
537
538 /// clear - Clear out the current SelectionDAG and the associated
539 /// state and prepare this SelectionDAGBuilder object to be used
540 /// for a new block. This doesn't clear out information about
541 /// additional blocks that are needed to complete switch lowering
542 /// or PHI node updating; that information is cleared out as it is
543 /// consumed.
544 void SelectionDAGBuilder::clear() {
545   NodeMap.clear();
546   PendingLoads.clear();
547   PendingExports.clear();
548   CurDebugLoc = DebugLoc();
549   HasTailCall = false;
550 }
551
552 /// getRoot - Return the current virtual root of the Selection DAG,
553 /// flushing any PendingLoad items. This must be done before emitting
554 /// a store or any other node that may need to be ordered after any
555 /// prior load instructions.
556 ///
557 SDValue SelectionDAGBuilder::getRoot() {
558   if (PendingLoads.empty())
559     return DAG.getRoot();
560
561   if (PendingLoads.size() == 1) {
562     SDValue Root = PendingLoads[0];
563     DAG.setRoot(Root);
564     PendingLoads.clear();
565     return Root;
566   }
567
568   // Otherwise, we have to make a token factor node.
569   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
570                                &PendingLoads[0], PendingLoads.size());
571   PendingLoads.clear();
572   DAG.setRoot(Root);
573   return Root;
574 }
575
576 /// getControlRoot - Similar to getRoot, but instead of flushing all the
577 /// PendingLoad items, flush all the PendingExports items. It is necessary
578 /// to do this before emitting a terminator instruction.
579 ///
580 SDValue SelectionDAGBuilder::getControlRoot() {
581   SDValue Root = DAG.getRoot();
582
583   if (PendingExports.empty())
584     return Root;
585
586   // Turn all of the CopyToReg chains into one factored node.
587   if (Root.getOpcode() != ISD::EntryToken) {
588     unsigned i = 0, e = PendingExports.size();
589     for (; i != e; ++i) {
590       assert(PendingExports[i].getNode()->getNumOperands() > 1);
591       if (PendingExports[i].getNode()->getOperand(0) == Root)
592         break;  // Don't add the root if we already indirectly depend on it.
593     }
594
595     if (i == e)
596       PendingExports.push_back(Root);
597   }
598
599   Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
600                      &PendingExports[0],
601                      PendingExports.size());
602   PendingExports.clear();
603   DAG.setRoot(Root);
604   return Root;
605 }
606
607 void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
608   if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
609   DAG.AssignOrdering(Node, SDNodeOrder);
610
611   for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
612     AssignOrderingToNode(Node->getOperand(I).getNode());
613 }
614
615 void SelectionDAGBuilder::visit(const Instruction &I) {
616   // Set up outgoing PHI node register values before emitting the terminator.
617   if (isa<TerminatorInst>(&I))
618     HandlePHINodesInSuccessorBlocks(I.getParent());
619
620   CurDebugLoc = I.getDebugLoc();
621
622   visit(I.getOpcode(), I);
623
624   if (!isa<TerminatorInst>(&I) && !HasTailCall)
625     CopyToExportRegsIfNeeded(&I);
626
627   CurDebugLoc = DebugLoc();
628 }
629
630 void SelectionDAGBuilder::visitPHI(const PHINode &) {
631   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
632 }
633
634 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
635   // Note: this doesn't use InstVisitor, because it has to work with
636   // ConstantExpr's in addition to instructions.
637   switch (Opcode) {
638   default: llvm_unreachable("Unknown instruction type encountered!");
639     // Build the switch statement using the Instruction.def file.
640 #define HANDLE_INST(NUM, OPCODE, CLASS) \
641     case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
642 #include "llvm/Instruction.def"
643   }
644
645   // Assign the ordering to the freshly created DAG nodes.
646   if (NodeMap.count(&I)) {
647     ++SDNodeOrder;
648     AssignOrderingToNode(getValue(&I).getNode());
649   }
650 }
651
652 SDValue SelectionDAGBuilder::getValue(const Value *V) {
653   SDValue &N = NodeMap[V];
654   if (N.getNode()) return N;
655
656   if (const Constant *C = dyn_cast<Constant>(V)) {
657     EVT VT = TLI.getValueType(V->getType(), true);
658
659     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
660       return N = DAG.getConstant(*CI, VT);
661
662     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
663       return N = DAG.getGlobalAddress(GV, VT);
664
665     if (isa<ConstantPointerNull>(C))
666       return N = DAG.getConstant(0, TLI.getPointerTy());
667
668     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
669       return N = DAG.getConstantFP(*CFP, VT);
670
671     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
672       return N = DAG.getUNDEF(VT);
673
674     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
675       visit(CE->getOpcode(), *CE);
676       SDValue N1 = NodeMap[V];
677       assert(N1.getNode() && "visit didn't populate the NodeMap!");
678       return N1;
679     }
680
681     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
682       SmallVector<SDValue, 4> Constants;
683       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
684            OI != OE; ++OI) {
685         SDNode *Val = getValue(*OI).getNode();
686         // If the operand is an empty aggregate, there are no values.
687         if (!Val) continue;
688         // Add each leaf value from the operand to the Constants list
689         // to form a flattened list of all the values.
690         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
691           Constants.push_back(SDValue(Val, i));
692       }
693
694       return DAG.getMergeValues(&Constants[0], Constants.size(),
695                                 getCurDebugLoc());
696     }
697
698     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
699       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
700              "Unknown struct or array constant!");
701
702       SmallVector<EVT, 4> ValueVTs;
703       ComputeValueVTs(TLI, C->getType(), ValueVTs);
704       unsigned NumElts = ValueVTs.size();
705       if (NumElts == 0)
706         return SDValue(); // empty struct
707       SmallVector<SDValue, 4> Constants(NumElts);
708       for (unsigned i = 0; i != NumElts; ++i) {
709         EVT EltVT = ValueVTs[i];
710         if (isa<UndefValue>(C))
711           Constants[i] = DAG.getUNDEF(EltVT);
712         else if (EltVT.isFloatingPoint())
713           Constants[i] = DAG.getConstantFP(0, EltVT);
714         else
715           Constants[i] = DAG.getConstant(0, EltVT);
716       }
717
718       return DAG.getMergeValues(&Constants[0], NumElts,
719                                 getCurDebugLoc());
720     }
721
722     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
723       return DAG.getBlockAddress(BA, VT);
724
725     const VectorType *VecTy = cast<VectorType>(V->getType());
726     unsigned NumElements = VecTy->getNumElements();
727
728     // Now that we know the number and type of the elements, get that number of
729     // elements into the Ops array based on what kind of constant it is.
730     SmallVector<SDValue, 16> Ops;
731     if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
732       for (unsigned i = 0; i != NumElements; ++i)
733         Ops.push_back(getValue(CP->getOperand(i)));
734     } else {
735       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
736       EVT EltVT = TLI.getValueType(VecTy->getElementType());
737
738       SDValue Op;
739       if (EltVT.isFloatingPoint())
740         Op = DAG.getConstantFP(0, EltVT);
741       else
742         Op = DAG.getConstant(0, EltVT);
743       Ops.assign(NumElements, Op);
744     }
745
746     // Create a BUILD_VECTOR node.
747     return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
748                                     VT, &Ops[0], Ops.size());
749   }
750
751   // If this is a static alloca, generate it as the frameindex instead of
752   // computation.
753   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
754     DenseMap<const AllocaInst*, int>::iterator SI =
755       FuncInfo.StaticAllocaMap.find(AI);
756     if (SI != FuncInfo.StaticAllocaMap.end())
757       return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
758   }
759
760   unsigned InReg = FuncInfo.ValueMap[V];
761   assert(InReg && "Value not in map!");
762
763   RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
764   SDValue Chain = DAG.getEntryNode();
765   return RFV.getCopyFromRegs(DAG, getCurDebugLoc(), Chain, NULL);
766 }
767
768 /// Get the EVTs and ArgFlags collections that represent the legalized return 
769 /// type of the given function.  This does not require a DAG or a return value,
770 /// and is suitable for use before any DAGs for the function are constructed.
771 static void getReturnInfo(const Type* ReturnType,
772                    Attributes attr, SmallVectorImpl<EVT> &OutVTs,
773                    SmallVectorImpl<ISD::ArgFlagsTy> &OutFlags,
774                    const TargetLowering &TLI,
775                    SmallVectorImpl<uint64_t> *Offsets = 0) {
776   SmallVector<EVT, 4> ValueVTs;
777   ComputeValueVTs(TLI, ReturnType, ValueVTs);
778   unsigned NumValues = ValueVTs.size();
779   if (NumValues == 0) return;
780   unsigned Offset = 0;
781
782   for (unsigned j = 0, f = NumValues; j != f; ++j) {
783     EVT VT = ValueVTs[j];
784     ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
785
786     if (attr & Attribute::SExt)
787       ExtendKind = ISD::SIGN_EXTEND;
788     else if (attr & Attribute::ZExt)
789       ExtendKind = ISD::ZERO_EXTEND;
790
791     // FIXME: C calling convention requires the return type to be promoted to
792     // at least 32-bit. But this is not necessary for non-C calling
793     // conventions. The frontend should mark functions whose return values
794     // require promoting with signext or zeroext attributes.
795     if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
796       EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
797       if (VT.bitsLT(MinVT))
798         VT = MinVT;
799     }
800
801     unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
802     EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
803     unsigned PartSize = TLI.getTargetData()->getTypeAllocSize(
804                         PartVT.getTypeForEVT(ReturnType->getContext()));
805
806     // 'inreg' on function refers to return value
807     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
808     if (attr & Attribute::InReg)
809       Flags.setInReg();
810
811     // Propagate extension type if any
812     if (attr & Attribute::SExt)
813       Flags.setSExt();
814     else if (attr & Attribute::ZExt)
815       Flags.setZExt();
816
817     for (unsigned i = 0; i < NumParts; ++i) {
818       OutVTs.push_back(PartVT);
819       OutFlags.push_back(Flags);
820       if (Offsets)
821       {
822         Offsets->push_back(Offset);
823         Offset += PartSize;
824       }
825     }
826   }
827 }
828
829 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
830   SDValue Chain = getControlRoot();
831   SmallVector<ISD::OutputArg, 8> Outs;
832   FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
833
834   if (!FLI.CanLowerReturn) {
835     unsigned DemoteReg = FLI.DemoteRegister;
836     const Function *F = I.getParent()->getParent();
837
838     // Emit a store of the return value through the virtual register.
839     // Leave Outs empty so that LowerReturn won't try to load return
840     // registers the usual way.
841     SmallVector<EVT, 1> PtrValueVTs;
842     ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
843                     PtrValueVTs);
844
845     SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
846     SDValue RetOp = getValue(I.getOperand(0));
847
848     SmallVector<EVT, 4> ValueVTs;
849     SmallVector<uint64_t, 4> Offsets;
850     ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
851     unsigned NumValues = ValueVTs.size();
852
853     SmallVector<SDValue, 4> Chains(NumValues);
854     EVT PtrVT = PtrValueVTs[0];
855     for (unsigned i = 0; i != NumValues; ++i) {
856       SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, RetPtr,
857                                 DAG.getConstant(Offsets[i], PtrVT));
858       Chains[i] =
859         DAG.getStore(Chain, getCurDebugLoc(),
860                      SDValue(RetOp.getNode(), RetOp.getResNo() + i),
861                      Add, NULL, Offsets[i], false, false, 0);
862     }
863
864     Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
865                         MVT::Other, &Chains[0], NumValues);
866   } else if (I.getNumOperands() != 0) {
867     SmallVector<EVT, 4> ValueVTs;
868     ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
869     unsigned NumValues = ValueVTs.size();
870     if (NumValues) {
871       SDValue RetOp = getValue(I.getOperand(0));
872       for (unsigned j = 0, f = NumValues; j != f; ++j) {
873         EVT VT = ValueVTs[j];
874
875         ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
876
877         const Function *F = I.getParent()->getParent();
878         if (F->paramHasAttr(0, Attribute::SExt))
879           ExtendKind = ISD::SIGN_EXTEND;
880         else if (F->paramHasAttr(0, Attribute::ZExt))
881           ExtendKind = ISD::ZERO_EXTEND;
882
883         // FIXME: C calling convention requires the return type to be promoted
884         // to at least 32-bit. But this is not necessary for non-C calling
885         // conventions. The frontend should mark functions whose return values
886         // require promoting with signext or zeroext attributes.
887         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
888           EVT MinVT = TLI.getRegisterType(*DAG.getContext(), MVT::i32);
889           if (VT.bitsLT(MinVT))
890             VT = MinVT;
891         }
892
893         unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
894         EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
895         SmallVector<SDValue, 4> Parts(NumParts);
896         getCopyToParts(DAG, getCurDebugLoc(),
897                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
898                        &Parts[0], NumParts, PartVT, ExtendKind);
899
900         // 'inreg' on function refers to return value
901         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
902         if (F->paramHasAttr(0, Attribute::InReg))
903           Flags.setInReg();
904
905         // Propagate extension type if any
906         if (F->paramHasAttr(0, Attribute::SExt))
907           Flags.setSExt();
908         else if (F->paramHasAttr(0, Attribute::ZExt))
909           Flags.setZExt();
910
911         for (unsigned i = 0; i < NumParts; ++i)
912           Outs.push_back(ISD::OutputArg(Flags, Parts[i], /*isfixed=*/true));
913       }
914     }
915   }
916
917   bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
918   CallingConv::ID CallConv =
919     DAG.getMachineFunction().getFunction()->getCallingConv();
920   Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
921                           Outs, getCurDebugLoc(), DAG);
922
923   // Verify that the target's LowerReturn behaved as expected.
924   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
925          "LowerReturn didn't return a valid chain!");
926
927   // Update the DAG with the new chain value resulting from return lowering.
928   DAG.setRoot(Chain);
929 }
930
931 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
932 /// created for it, emit nodes to copy the value into the virtual
933 /// registers.
934 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
935   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
936   if (VMI != FuncInfo.ValueMap.end()) {
937     assert(!V->use_empty() && "Unused value assigned virtual registers!");
938     CopyValueToVirtualRegister(V, VMI->second);
939   }
940 }
941
942 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
943 /// the current basic block, add it to ValueMap now so that we'll get a
944 /// CopyTo/FromReg.
945 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
946   // No need to export constants.
947   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
948
949   // Already exported?
950   if (FuncInfo.isExportedInst(V)) return;
951
952   unsigned Reg = FuncInfo.InitializeRegForValue(V);
953   CopyValueToVirtualRegister(V, Reg);
954 }
955
956 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
957                                                      const BasicBlock *FromBB) {
958   // The operands of the setcc have to be in this block.  We don't know
959   // how to export them from some other block.
960   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
961     // Can export from current BB.
962     if (VI->getParent() == FromBB)
963       return true;
964
965     // Is already exported, noop.
966     return FuncInfo.isExportedInst(V);
967   }
968
969   // If this is an argument, we can export it if the BB is the entry block or
970   // if it is already exported.
971   if (isa<Argument>(V)) {
972     if (FromBB == &FromBB->getParent()->getEntryBlock())
973       return true;
974
975     // Otherwise, can only export this if it is already exported.
976     return FuncInfo.isExportedInst(V);
977   }
978
979   // Otherwise, constants can always be exported.
980   return true;
981 }
982
983 static bool InBlock(const Value *V, const BasicBlock *BB) {
984   if (const Instruction *I = dyn_cast<Instruction>(V))
985     return I->getParent() == BB;
986   return true;
987 }
988
989 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
990 /// This function emits a branch and is used at the leaves of an OR or an
991 /// AND operator tree.
992 ///
993 void
994 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
995                                                   MachineBasicBlock *TBB,
996                                                   MachineBasicBlock *FBB,
997                                                   MachineBasicBlock *CurBB,
998                                                   MachineBasicBlock *SwitchBB) {
999   const BasicBlock *BB = CurBB->getBasicBlock();
1000
1001   // If the leaf of the tree is a comparison, merge the condition into
1002   // the caseblock.
1003   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1004     // The operands of the cmp have to be in this block.  We don't know
1005     // how to export them from some other block.  If this is the first block
1006     // of the sequence, no exporting is needed.
1007     if (CurBB == SwitchBB ||
1008         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1009          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1010       ISD::CondCode Condition;
1011       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1012         Condition = getICmpCondCode(IC->getPredicate());
1013       } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1014         Condition = getFCmpCondCode(FC->getPredicate());
1015       } else {
1016         Condition = ISD::SETEQ; // silence warning.
1017         llvm_unreachable("Unknown compare instruction");
1018       }
1019
1020       CaseBlock CB(Condition, BOp->getOperand(0),
1021                    BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1022       SwitchCases.push_back(CB);
1023       return;
1024     }
1025   }
1026
1027   // Create a CaseBlock record representing this branch.
1028   CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1029                NULL, TBB, FBB, CurBB);
1030   SwitchCases.push_back(CB);
1031 }
1032
1033 /// FindMergedConditions - If Cond is an expression like
1034 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1035                                                MachineBasicBlock *TBB,
1036                                                MachineBasicBlock *FBB,
1037                                                MachineBasicBlock *CurBB,
1038                                                MachineBasicBlock *SwitchBB,
1039                                                unsigned Opc) {
1040   // If this node is not part of the or/and tree, emit it as a branch.
1041   const Instruction *BOp = dyn_cast<Instruction>(Cond);
1042   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1043       (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1044       BOp->getParent() != CurBB->getBasicBlock() ||
1045       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1046       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1047     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1048     return;
1049   }
1050
1051   //  Create TmpBB after CurBB.
1052   MachineFunction::iterator BBI = CurBB;
1053   MachineFunction &MF = DAG.getMachineFunction();
1054   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1055   CurBB->getParent()->insert(++BBI, TmpBB);
1056
1057   if (Opc == Instruction::Or) {
1058     // Codegen X | Y as:
1059     //   jmp_if_X TBB
1060     //   jmp TmpBB
1061     // TmpBB:
1062     //   jmp_if_Y TBB
1063     //   jmp FBB
1064     //
1065
1066     // Emit the LHS condition.
1067     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1068
1069     // Emit the RHS condition into TmpBB.
1070     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1071   } else {
1072     assert(Opc == Instruction::And && "Unknown merge op!");
1073     // Codegen X & Y as:
1074     //   jmp_if_X TmpBB
1075     //   jmp FBB
1076     // TmpBB:
1077     //   jmp_if_Y TBB
1078     //   jmp FBB
1079     //
1080     //  This requires creation of TmpBB after CurBB.
1081
1082     // Emit the LHS condition.
1083     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1084
1085     // Emit the RHS condition into TmpBB.
1086     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1087   }
1088 }
1089
1090 /// If the set of cases should be emitted as a series of branches, return true.
1091 /// If we should emit this as a bunch of and/or'd together conditions, return
1092 /// false.
1093 bool
1094 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1095   if (Cases.size() != 2) return true;
1096
1097   // If this is two comparisons of the same values or'd or and'd together, they
1098   // will get folded into a single comparison, so don't emit two blocks.
1099   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1100        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1101       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1102        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1103     return false;
1104   }
1105
1106   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1107   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1108   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1109       Cases[0].CC == Cases[1].CC &&
1110       isa<Constant>(Cases[0].CmpRHS) &&
1111       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1112     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1113       return false;
1114     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1115       return false;
1116   }
1117   
1118   return true;
1119 }
1120
1121 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1122   MachineBasicBlock *BrMBB = FuncInfo.MBBMap[I.getParent()];
1123
1124   // Update machine-CFG edges.
1125   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1126
1127   // Figure out which block is immediately after the current one.
1128   MachineBasicBlock *NextBlock = 0;
1129   MachineFunction::iterator BBI = BrMBB;
1130   if (++BBI != FuncInfo.MF->end())
1131     NextBlock = BBI;
1132
1133   if (I.isUnconditional()) {
1134     // Update machine-CFG edges.
1135     BrMBB->addSuccessor(Succ0MBB);
1136
1137     // If this is not a fall-through branch, emit the branch.
1138     if (Succ0MBB != NextBlock)
1139       DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1140                               MVT::Other, getControlRoot(),
1141                               DAG.getBasicBlock(Succ0MBB)));
1142
1143     return;
1144   }
1145
1146   // If this condition is one of the special cases we handle, do special stuff
1147   // now.
1148   const Value *CondVal = I.getCondition();
1149   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1150
1151   // If this is a series of conditions that are or'd or and'd together, emit
1152   // this as a sequence of branches instead of setcc's with and/or operations.
1153   // For example, instead of something like:
1154   //     cmp A, B
1155   //     C = seteq
1156   //     cmp D, E
1157   //     F = setle
1158   //     or C, F
1159   //     jnz foo
1160   // Emit:
1161   //     cmp A, B
1162   //     je foo
1163   //     cmp D, E
1164   //     jle foo
1165   //
1166   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1167     if (BOp->hasOneUse() &&
1168         (BOp->getOpcode() == Instruction::And ||
1169          BOp->getOpcode() == Instruction::Or)) {
1170       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1171                            BOp->getOpcode());
1172       // If the compares in later blocks need to use values not currently
1173       // exported from this block, export them now.  This block should always
1174       // be the first entry.
1175       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1176
1177       // Allow some cases to be rejected.
1178       if (ShouldEmitAsBranches(SwitchCases)) {
1179         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1180           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1181           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1182         }
1183
1184         // Emit the branch for this block.
1185         visitSwitchCase(SwitchCases[0], BrMBB);
1186         SwitchCases.erase(SwitchCases.begin());
1187         return;
1188       }
1189
1190       // Okay, we decided not to do this, remove any inserted MBB's and clear
1191       // SwitchCases.
1192       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1193         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1194
1195       SwitchCases.clear();
1196     }
1197   }
1198
1199   // Create a CaseBlock record representing this branch.
1200   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1201                NULL, Succ0MBB, Succ1MBB, BrMBB);
1202
1203   // Use visitSwitchCase to actually insert the fast branch sequence for this
1204   // cond branch.
1205   visitSwitchCase(CB, BrMBB);
1206 }
1207
1208 /// visitSwitchCase - Emits the necessary code to represent a single node in
1209 /// the binary search tree resulting from lowering a switch instruction.
1210 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1211                                           MachineBasicBlock *SwitchBB) {
1212   SDValue Cond;
1213   SDValue CondLHS = getValue(CB.CmpLHS);
1214   DebugLoc dl = getCurDebugLoc();
1215
1216   // Build the setcc now.
1217   if (CB.CmpMHS == NULL) {
1218     // Fold "(X == true)" to X and "(X == false)" to !X to
1219     // handle common cases produced by branch lowering.
1220     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1221         CB.CC == ISD::SETEQ)
1222       Cond = CondLHS;
1223     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1224              CB.CC == ISD::SETEQ) {
1225       SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1226       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1227     } else
1228       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1229   } else {
1230     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1231
1232     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1233     const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1234
1235     SDValue CmpOp = getValue(CB.CmpMHS);
1236     EVT VT = CmpOp.getValueType();
1237
1238     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1239       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1240                           ISD::SETLE);
1241     } else {
1242       SDValue SUB = DAG.getNode(ISD::SUB, dl,
1243                                 VT, CmpOp, DAG.getConstant(Low, VT));
1244       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1245                           DAG.getConstant(High-Low, VT), ISD::SETULE);
1246     }
1247   }
1248
1249   // Update successor info
1250   SwitchBB->addSuccessor(CB.TrueBB);
1251   SwitchBB->addSuccessor(CB.FalseBB);
1252
1253   // Set NextBlock to be the MBB immediately after the current one, if any.
1254   // This is used to avoid emitting unnecessary branches to the next block.
1255   MachineBasicBlock *NextBlock = 0;
1256   MachineFunction::iterator BBI = SwitchBB;
1257   if (++BBI != FuncInfo.MF->end())
1258     NextBlock = BBI;
1259
1260   // If the lhs block is the next block, invert the condition so that we can
1261   // fall through to the lhs instead of the rhs block.
1262   if (CB.TrueBB == NextBlock) {
1263     std::swap(CB.TrueBB, CB.FalseBB);
1264     SDValue True = DAG.getConstant(1, Cond.getValueType());
1265     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1266   }
1267
1268   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1269                                MVT::Other, getControlRoot(), Cond,
1270                                DAG.getBasicBlock(CB.TrueBB));
1271
1272   // If the branch was constant folded, fix up the CFG.
1273   if (BrCond.getOpcode() == ISD::BR) {
1274     SwitchBB->removeSuccessor(CB.FalseBB);
1275   } else {
1276     // Otherwise, go ahead and insert the false branch.
1277     if (BrCond == getControlRoot())
1278       SwitchBB->removeSuccessor(CB.TrueBB);
1279
1280     if (CB.FalseBB != NextBlock)
1281       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1282                            DAG.getBasicBlock(CB.FalseBB));
1283   }
1284
1285   DAG.setRoot(BrCond);
1286 }
1287
1288 /// visitJumpTable - Emit JumpTable node in the current MBB
1289 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1290   // Emit the code for the jump table
1291   assert(JT.Reg != -1U && "Should lower JT Header first!");
1292   EVT PTy = TLI.getPointerTy();
1293   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1294                                      JT.Reg, PTy);
1295   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1296   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1297                                     MVT::Other, Index.getValue(1),
1298                                     Table, Index);
1299   DAG.setRoot(BrJumpTable);
1300 }
1301
1302 /// visitJumpTableHeader - This function emits necessary code to produce index
1303 /// in the JumpTable from switch case.
1304 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1305                                                JumpTableHeader &JTH,
1306                                                MachineBasicBlock *SwitchBB) {
1307   // Subtract the lowest switch case value from the value being switched on and
1308   // conditional branch to default mbb if the result is greater than the
1309   // difference between smallest and largest cases.
1310   SDValue SwitchOp = getValue(JTH.SValue);
1311   EVT VT = SwitchOp.getValueType();
1312   SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1313                             DAG.getConstant(JTH.First, VT));
1314
1315   // The SDNode we just created, which holds the value being switched on minus
1316   // the smallest case value, needs to be copied to a virtual register so it
1317   // can be used as an index into the jump table in a subsequent basic block.
1318   // This value may be smaller or larger than the target's pointer type, and
1319   // therefore require extension or truncating.
1320   SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1321
1322   unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1323   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1324                                     JumpTableReg, SwitchOp);
1325   JT.Reg = JumpTableReg;
1326
1327   // Emit the range check for the jump table, and branch to the default block
1328   // for the switch statement if the value being switched on exceeds the largest
1329   // case in the switch.
1330   SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1331                              TLI.getSetCCResultType(Sub.getValueType()), Sub,
1332                              DAG.getConstant(JTH.Last-JTH.First,VT),
1333                              ISD::SETUGT);
1334
1335   // Set NextBlock to be the MBB immediately after the current one, if any.
1336   // This is used to avoid emitting unnecessary branches to the next block.
1337   MachineBasicBlock *NextBlock = 0;
1338   MachineFunction::iterator BBI = SwitchBB;
1339
1340   if (++BBI != FuncInfo.MF->end())
1341     NextBlock = BBI;
1342
1343   SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1344                                MVT::Other, CopyTo, CMP,
1345                                DAG.getBasicBlock(JT.Default));
1346
1347   if (JT.MBB != NextBlock)
1348     BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1349                          DAG.getBasicBlock(JT.MBB));
1350
1351   DAG.setRoot(BrCond);
1352 }
1353
1354 /// visitBitTestHeader - This function emits necessary code to produce value
1355 /// suitable for "bit tests"
1356 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1357                                              MachineBasicBlock *SwitchBB) {
1358   // Subtract the minimum value
1359   SDValue SwitchOp = getValue(B.SValue);
1360   EVT VT = SwitchOp.getValueType();
1361   SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1362                             DAG.getConstant(B.First, VT));
1363
1364   // Check range
1365   SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1366                                   TLI.getSetCCResultType(Sub.getValueType()),
1367                                   Sub, DAG.getConstant(B.Range, VT),
1368                                   ISD::SETUGT);
1369
1370   SDValue ShiftOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(),
1371                                        TLI.getPointerTy());
1372
1373   B.Reg = FuncInfo.MakeReg(TLI.getPointerTy());
1374   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1375                                     B.Reg, ShiftOp);
1376
1377   // Set NextBlock to be the MBB immediately after the current one, if any.
1378   // This is used to avoid emitting unnecessary branches to the next block.
1379   MachineBasicBlock *NextBlock = 0;
1380   MachineFunction::iterator BBI = SwitchBB;
1381   if (++BBI != FuncInfo.MF->end())
1382     NextBlock = BBI;
1383
1384   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1385
1386   SwitchBB->addSuccessor(B.Default);
1387   SwitchBB->addSuccessor(MBB);
1388
1389   SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1390                                 MVT::Other, CopyTo, RangeCmp,
1391                                 DAG.getBasicBlock(B.Default));
1392
1393   if (MBB != NextBlock)
1394     BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1395                           DAG.getBasicBlock(MBB));
1396
1397   DAG.setRoot(BrRange);
1398 }
1399
1400 /// visitBitTestCase - this function produces one "bit test"
1401 void SelectionDAGBuilder::visitBitTestCase(MachineBasicBlock* NextMBB,
1402                                            unsigned Reg,
1403                                            BitTestCase &B,
1404                                            MachineBasicBlock *SwitchBB) {
1405   // Make desired shift
1406   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), Reg,
1407                                        TLI.getPointerTy());
1408   SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(),
1409                                   TLI.getPointerTy(),
1410                                   DAG.getConstant(1, TLI.getPointerTy()),
1411                                   ShiftOp);
1412
1413   // Emit bit tests and jumps
1414   SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1415                               TLI.getPointerTy(), SwitchVal,
1416                               DAG.getConstant(B.Mask, TLI.getPointerTy()));
1417   SDValue AndCmp = DAG.getSetCC(getCurDebugLoc(),
1418                                 TLI.getSetCCResultType(AndOp.getValueType()),
1419                                 AndOp, DAG.getConstant(0, TLI.getPointerTy()),
1420                                 ISD::SETNE);
1421
1422   SwitchBB->addSuccessor(B.TargetBB);
1423   SwitchBB->addSuccessor(NextMBB);
1424
1425   SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1426                               MVT::Other, getControlRoot(),
1427                               AndCmp, DAG.getBasicBlock(B.TargetBB));
1428
1429   // Set NextBlock to be the MBB immediately after the current one, if any.
1430   // This is used to avoid emitting unnecessary branches to the next block.
1431   MachineBasicBlock *NextBlock = 0;
1432   MachineFunction::iterator BBI = SwitchBB;
1433   if (++BBI != FuncInfo.MF->end())
1434     NextBlock = BBI;
1435
1436   if (NextMBB != NextBlock)
1437     BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1438                         DAG.getBasicBlock(NextMBB));
1439
1440   DAG.setRoot(BrAnd);
1441 }
1442
1443 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1444   MachineBasicBlock *InvokeMBB = FuncInfo.MBBMap[I.getParent()];
1445
1446   // Retrieve successors.
1447   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1448   MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1449
1450   const Value *Callee(I.getCalledValue());
1451   if (isa<InlineAsm>(Callee))
1452     visitInlineAsm(&I);
1453   else
1454     LowerCallTo(&I, getValue(Callee), false, LandingPad);
1455
1456   // If the value of the invoke is used outside of its defining block, make it
1457   // available as a virtual register.
1458   CopyToExportRegsIfNeeded(&I);
1459
1460   // Update successor info
1461   InvokeMBB->addSuccessor(Return);
1462   InvokeMBB->addSuccessor(LandingPad);
1463
1464   // Drop into normal successor.
1465   DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1466                           MVT::Other, getControlRoot(),
1467                           DAG.getBasicBlock(Return)));
1468 }
1469
1470 void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) {
1471 }
1472
1473 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1474 /// small case ranges).
1475 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1476                                                  CaseRecVector& WorkList,
1477                                                  const Value* SV,
1478                                                  MachineBasicBlock *Default,
1479                                                  MachineBasicBlock *SwitchBB) {
1480   Case& BackCase  = *(CR.Range.second-1);
1481
1482   // Size is the number of Cases represented by this range.
1483   size_t Size = CR.Range.second - CR.Range.first;
1484   if (Size > 3)
1485     return false;
1486
1487   // Get the MachineFunction which holds the current MBB.  This is used when
1488   // inserting any additional MBBs necessary to represent the switch.
1489   MachineFunction *CurMF = FuncInfo.MF;
1490
1491   // Figure out which block is immediately after the current one.
1492   MachineBasicBlock *NextBlock = 0;
1493   MachineFunction::iterator BBI = CR.CaseBB;
1494
1495   if (++BBI != FuncInfo.MF->end())
1496     NextBlock = BBI;
1497
1498   // TODO: If any two of the cases has the same destination, and if one value
1499   // is the same as the other, but has one bit unset that the other has set,
1500   // use bit manipulation to do two compares at once.  For example:
1501   // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1502
1503   // Rearrange the case blocks so that the last one falls through if possible.
1504   if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1505     // The last case block won't fall through into 'NextBlock' if we emit the
1506     // branches in this order.  See if rearranging a case value would help.
1507     for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1508       if (I->BB == NextBlock) {
1509         std::swap(*I, BackCase);
1510         break;
1511       }
1512     }
1513   }
1514
1515   // Create a CaseBlock record representing a conditional branch to
1516   // the Case's target mbb if the value being switched on SV is equal
1517   // to C.
1518   MachineBasicBlock *CurBlock = CR.CaseBB;
1519   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1520     MachineBasicBlock *FallThrough;
1521     if (I != E-1) {
1522       FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1523       CurMF->insert(BBI, FallThrough);
1524
1525       // Put SV in a virtual register to make it available from the new blocks.
1526       ExportFromCurrentBlock(SV);
1527     } else {
1528       // If the last case doesn't match, go to the default block.
1529       FallThrough = Default;
1530     }
1531
1532     const Value *RHS, *LHS, *MHS;
1533     ISD::CondCode CC;
1534     if (I->High == I->Low) {
1535       // This is just small small case range :) containing exactly 1 case
1536       CC = ISD::SETEQ;
1537       LHS = SV; RHS = I->High; MHS = NULL;
1538     } else {
1539       CC = ISD::SETLE;
1540       LHS = I->Low; MHS = SV; RHS = I->High;
1541     }
1542     CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock);
1543
1544     // If emitting the first comparison, just call visitSwitchCase to emit the
1545     // code into the current block.  Otherwise, push the CaseBlock onto the
1546     // vector to be later processed by SDISel, and insert the node's MBB
1547     // before the next MBB.
1548     if (CurBlock == SwitchBB)
1549       visitSwitchCase(CB, SwitchBB);
1550     else
1551       SwitchCases.push_back(CB);
1552
1553     CurBlock = FallThrough;
1554   }
1555
1556   return true;
1557 }
1558
1559 static inline bool areJTsAllowed(const TargetLowering &TLI) {
1560   return !DisableJumpTables &&
1561           (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
1562            TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
1563 }
1564
1565 static APInt ComputeRange(const APInt &First, const APInt &Last) {
1566   APInt LastExt(Last), FirstExt(First);
1567   uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
1568   LastExt.sext(BitWidth); FirstExt.sext(BitWidth);
1569   return (LastExt - FirstExt + 1ULL);
1570 }
1571
1572 /// handleJTSwitchCase - Emit jumptable for current switch case range
1573 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR,
1574                                              CaseRecVector& WorkList,
1575                                              const Value* SV,
1576                                              MachineBasicBlock* Default,
1577                                              MachineBasicBlock *SwitchBB) {
1578   Case& FrontCase = *CR.Range.first;
1579   Case& BackCase  = *(CR.Range.second-1);
1580
1581   const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1582   const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1583
1584   APInt TSize(First.getBitWidth(), 0);
1585   for (CaseItr I = CR.Range.first, E = CR.Range.second;
1586        I!=E; ++I)
1587     TSize += I->size();
1588
1589   if (!areJTsAllowed(TLI) || TSize.ult(4))
1590     return false;
1591
1592   APInt Range = ComputeRange(First, Last);
1593   double Density = TSize.roundToDouble() / Range.roundToDouble();
1594   if (Density < 0.4)
1595     return false;
1596
1597   DEBUG(dbgs() << "Lowering jump table\n"
1598                << "First entry: " << First << ". Last entry: " << Last << '\n'
1599                << "Range: " << Range
1600                << "Size: " << TSize << ". Density: " << Density << "\n\n");
1601
1602   // Get the MachineFunction which holds the current MBB.  This is used when
1603   // inserting any additional MBBs necessary to represent the switch.
1604   MachineFunction *CurMF = FuncInfo.MF;
1605
1606   // Figure out which block is immediately after the current one.
1607   MachineFunction::iterator BBI = CR.CaseBB;
1608   ++BBI;
1609
1610   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1611
1612   // Create a new basic block to hold the code for loading the address
1613   // of the jump table, and jumping to it.  Update successor information;
1614   // we will either branch to the default case for the switch, or the jump
1615   // table.
1616   MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1617   CurMF->insert(BBI, JumpTableBB);
1618   CR.CaseBB->addSuccessor(Default);
1619   CR.CaseBB->addSuccessor(JumpTableBB);
1620
1621   // Build a vector of destination BBs, corresponding to each target
1622   // of the jump table. If the value of the jump table slot corresponds to
1623   // a case statement, push the case's BB onto the vector, otherwise, push
1624   // the default BB.
1625   std::vector<MachineBasicBlock*> DestBBs;
1626   APInt TEI = First;
1627   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1628     const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
1629     const APInt &High = cast<ConstantInt>(I->High)->getValue();
1630
1631     if (Low.sle(TEI) && TEI.sle(High)) {
1632       DestBBs.push_back(I->BB);
1633       if (TEI==High)
1634         ++I;
1635     } else {
1636       DestBBs.push_back(Default);
1637     }
1638   }
1639
1640   // Update successor info. Add one edge to each unique successor.
1641   BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1642   for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1643          E = DestBBs.end(); I != E; ++I) {
1644     if (!SuccsHandled[(*I)->getNumber()]) {
1645       SuccsHandled[(*I)->getNumber()] = true;
1646       JumpTableBB->addSuccessor(*I);
1647     }
1648   }
1649
1650   // Create a jump table index for this jump table.
1651   unsigned JTEncoding = TLI.getJumpTableEncoding();
1652   unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
1653                        ->createJumpTableIndex(DestBBs);
1654
1655   // Set the jump table information so that we can codegen it as a second
1656   // MachineBasicBlock
1657   JumpTable JT(-1U, JTI, JumpTableBB, Default);
1658   JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
1659   if (CR.CaseBB == SwitchBB)
1660     visitJumpTableHeader(JT, JTH, SwitchBB);
1661
1662   JTCases.push_back(JumpTableBlock(JTH, JT));
1663
1664   return true;
1665 }
1666
1667 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1668 /// 2 subtrees.
1669 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
1670                                                   CaseRecVector& WorkList,
1671                                                   const Value* SV,
1672                                                   MachineBasicBlock *Default,
1673                                                   MachineBasicBlock *SwitchBB) {
1674   // Get the MachineFunction which holds the current MBB.  This is used when
1675   // inserting any additional MBBs necessary to represent the switch.
1676   MachineFunction *CurMF = FuncInfo.MF;
1677
1678   // Figure out which block is immediately after the current one.
1679   MachineFunction::iterator BBI = CR.CaseBB;
1680   ++BBI;
1681
1682   Case& FrontCase = *CR.Range.first;
1683   Case& BackCase  = *(CR.Range.second-1);
1684   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1685
1686   // Size is the number of Cases represented by this range.
1687   unsigned Size = CR.Range.second - CR.Range.first;
1688
1689   const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1690   const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1691   double FMetric = 0;
1692   CaseItr Pivot = CR.Range.first + Size/2;
1693
1694   // Select optimal pivot, maximizing sum density of LHS and RHS. This will
1695   // (heuristically) allow us to emit JumpTable's later.
1696   APInt TSize(First.getBitWidth(), 0);
1697   for (CaseItr I = CR.Range.first, E = CR.Range.second;
1698        I!=E; ++I)
1699     TSize += I->size();
1700
1701   APInt LSize = FrontCase.size();
1702   APInt RSize = TSize-LSize;
1703   DEBUG(dbgs() << "Selecting best pivot: \n"
1704                << "First: " << First << ", Last: " << Last <<'\n'
1705                << "LSize: " << LSize << ", RSize: " << RSize << '\n');
1706   for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
1707        J!=E; ++I, ++J) {
1708     const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
1709     const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
1710     APInt Range = ComputeRange(LEnd, RBegin);
1711     assert((Range - 2ULL).isNonNegative() &&
1712            "Invalid case distance");
1713     double LDensity = (double)LSize.roundToDouble() /
1714                            (LEnd - First + 1ULL).roundToDouble();
1715     double RDensity = (double)RSize.roundToDouble() /
1716                            (Last - RBegin + 1ULL).roundToDouble();
1717     double Metric = Range.logBase2()*(LDensity+RDensity);
1718     // Should always split in some non-trivial place
1719     DEBUG(dbgs() <<"=>Step\n"
1720                  << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
1721                  << "LDensity: " << LDensity
1722                  << ", RDensity: " << RDensity << '\n'
1723                  << "Metric: " << Metric << '\n');
1724     if (FMetric < Metric) {
1725       Pivot = J;
1726       FMetric = Metric;
1727       DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
1728     }
1729
1730     LSize += J->size();
1731     RSize -= J->size();
1732   }
1733   if (areJTsAllowed(TLI)) {
1734     // If our case is dense we *really* should handle it earlier!
1735     assert((FMetric > 0) && "Should handle dense range earlier!");
1736   } else {
1737     Pivot = CR.Range.first + Size/2;
1738   }
1739
1740   CaseRange LHSR(CR.Range.first, Pivot);
1741   CaseRange RHSR(Pivot, CR.Range.second);
1742   Constant *C = Pivot->Low;
1743   MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1744
1745   // We know that we branch to the LHS if the Value being switched on is
1746   // less than the Pivot value, C.  We use this to optimize our binary
1747   // tree a bit, by recognizing that if SV is greater than or equal to the
1748   // LHS's Case Value, and that Case Value is exactly one less than the
1749   // Pivot's Value, then we can branch directly to the LHS's Target,
1750   // rather than creating a leaf node for it.
1751   if ((LHSR.second - LHSR.first) == 1 &&
1752       LHSR.first->High == CR.GE &&
1753       cast<ConstantInt>(C)->getValue() ==
1754       (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
1755     TrueBB = LHSR.first->BB;
1756   } else {
1757     TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1758     CurMF->insert(BBI, TrueBB);
1759     WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1760
1761     // Put SV in a virtual register to make it available from the new blocks.
1762     ExportFromCurrentBlock(SV);
1763   }
1764
1765   // Similar to the optimization above, if the Value being switched on is
1766   // known to be less than the Constant CR.LT, and the current Case Value
1767   // is CR.LT - 1, then we can branch directly to the target block for
1768   // the current Case Value, rather than emitting a RHS leaf node for it.
1769   if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1770       cast<ConstantInt>(RHSR.first->Low)->getValue() ==
1771       (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
1772     FalseBB = RHSR.first->BB;
1773   } else {
1774     FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1775     CurMF->insert(BBI, FalseBB);
1776     WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
1777
1778     // Put SV in a virtual register to make it available from the new blocks.
1779     ExportFromCurrentBlock(SV);
1780   }
1781
1782   // Create a CaseBlock record representing a conditional branch to
1783   // the LHS node if the value being switched on SV is less than C.
1784   // Otherwise, branch to LHS.
1785   CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
1786
1787   if (CR.CaseBB == SwitchBB)
1788     visitSwitchCase(CB, SwitchBB);
1789   else
1790     SwitchCases.push_back(CB);
1791
1792   return true;
1793 }
1794
1795 /// handleBitTestsSwitchCase - if current case range has few destination and
1796 /// range span less, than machine word bitwidth, encode case range into series
1797 /// of masks and emit bit tests with these masks.
1798 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
1799                                                    CaseRecVector& WorkList,
1800                                                    const Value* SV,
1801                                                    MachineBasicBlock* Default,
1802                                                    MachineBasicBlock *SwitchBB){
1803   EVT PTy = TLI.getPointerTy();
1804   unsigned IntPtrBits = PTy.getSizeInBits();
1805
1806   Case& FrontCase = *CR.Range.first;
1807   Case& BackCase  = *(CR.Range.second-1);
1808
1809   // Get the MachineFunction which holds the current MBB.  This is used when
1810   // inserting any additional MBBs necessary to represent the switch.
1811   MachineFunction *CurMF = FuncInfo.MF;
1812
1813   // If target does not have legal shift left, do not emit bit tests at all.
1814   if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
1815     return false;
1816
1817   size_t numCmps = 0;
1818   for (CaseItr I = CR.Range.first, E = CR.Range.second;
1819        I!=E; ++I) {
1820     // Single case counts one, case range - two.
1821     numCmps += (I->Low == I->High ? 1 : 2);
1822   }
1823
1824   // Count unique destinations
1825   SmallSet<MachineBasicBlock*, 4> Dests;
1826   for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1827     Dests.insert(I->BB);
1828     if (Dests.size() > 3)
1829       // Don't bother the code below, if there are too much unique destinations
1830       return false;
1831   }
1832   DEBUG(dbgs() << "Total number of unique destinations: "
1833         << Dests.size() << '\n'
1834         << "Total number of comparisons: " << numCmps << '\n');
1835
1836   // Compute span of values.
1837   const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
1838   const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
1839   APInt cmpRange = maxValue - minValue;
1840
1841   DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
1842                << "Low bound: " << minValue << '\n'
1843                << "High bound: " << maxValue << '\n');
1844
1845   if (cmpRange.uge(IntPtrBits) ||
1846       (!(Dests.size() == 1 && numCmps >= 3) &&
1847        !(Dests.size() == 2 && numCmps >= 5) &&
1848        !(Dests.size() >= 3 && numCmps >= 6)))
1849     return false;
1850
1851   DEBUG(dbgs() << "Emitting bit tests\n");
1852   APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
1853
1854   // Optimize the case where all the case values fit in a
1855   // word without having to subtract minValue. In this case,
1856   // we can optimize away the subtraction.
1857   if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
1858     cmpRange = maxValue;
1859   } else {
1860     lowBound = minValue;
1861   }
1862
1863   CaseBitsVector CasesBits;
1864   unsigned i, count = 0;
1865
1866   for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1867     MachineBasicBlock* Dest = I->BB;
1868     for (i = 0; i < count; ++i)
1869       if (Dest == CasesBits[i].BB)
1870         break;
1871
1872     if (i == count) {
1873       assert((count < 3) && "Too much destinations to test!");
1874       CasesBits.push_back(CaseBits(0, Dest, 0));
1875       count++;
1876     }
1877
1878     const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
1879     const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
1880
1881     uint64_t lo = (lowValue - lowBound).getZExtValue();
1882     uint64_t hi = (highValue - lowBound).getZExtValue();
1883
1884     for (uint64_t j = lo; j <= hi; j++) {
1885       CasesBits[i].Mask |=  1ULL << j;
1886       CasesBits[i].Bits++;
1887     }
1888
1889   }
1890   std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
1891
1892   BitTestInfo BTC;
1893
1894   // Figure out which block is immediately after the current one.
1895   MachineFunction::iterator BBI = CR.CaseBB;
1896   ++BBI;
1897
1898   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1899
1900   DEBUG(dbgs() << "Cases:\n");
1901   for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
1902     DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
1903                  << ", Bits: " << CasesBits[i].Bits
1904                  << ", BB: " << CasesBits[i].BB << '\n');
1905
1906     MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1907     CurMF->insert(BBI, CaseBB);
1908     BTC.push_back(BitTestCase(CasesBits[i].Mask,
1909                               CaseBB,
1910                               CasesBits[i].BB));
1911
1912     // Put SV in a virtual register to make it available from the new blocks.
1913     ExportFromCurrentBlock(SV);
1914   }
1915
1916   BitTestBlock BTB(lowBound, cmpRange, SV,
1917                    -1U, (CR.CaseBB == SwitchBB),
1918                    CR.CaseBB, Default, BTC);
1919
1920   if (CR.CaseBB == SwitchBB)
1921     visitBitTestHeader(BTB, SwitchBB);
1922
1923   BitTestCases.push_back(BTB);
1924
1925   return true;
1926 }
1927
1928 /// Clusterify - Transform simple list of Cases into list of CaseRange's
1929 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
1930                                        const SwitchInst& SI) {
1931   size_t numCmps = 0;
1932
1933   // Start with "simple" cases
1934   for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
1935     MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
1936     Cases.push_back(Case(SI.getSuccessorValue(i),
1937                          SI.getSuccessorValue(i),
1938                          SMBB));
1939   }
1940   std::sort(Cases.begin(), Cases.end(), CaseCmp());
1941
1942   // Merge case into clusters
1943   if (Cases.size() >= 2)
1944     // Must recompute end() each iteration because it may be
1945     // invalidated by erase if we hold on to it
1946     for (CaseItr I = Cases.begin(), J = ++(Cases.begin()); J != Cases.end(); ) {
1947       const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
1948       const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
1949       MachineBasicBlock* nextBB = J->BB;
1950       MachineBasicBlock* currentBB = I->BB;
1951
1952       // If the two neighboring cases go to the same destination, merge them
1953       // into a single case.
1954       if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
1955         I->High = J->High;
1956         J = Cases.erase(J);
1957       } else {
1958         I = J++;
1959       }
1960     }
1961
1962   for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
1963     if (I->Low != I->High)
1964       // A range counts double, since it requires two compares.
1965       ++numCmps;
1966   }
1967
1968   return numCmps;
1969 }
1970
1971 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
1972   MachineBasicBlock *SwitchMBB = FuncInfo.MBBMap[SI.getParent()];
1973
1974   // Figure out which block is immediately after the current one.
1975   MachineBasicBlock *NextBlock = 0;
1976   MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
1977
1978   // If there is only the default destination, branch to it if it is not the
1979   // next basic block.  Otherwise, just fall through.
1980   if (SI.getNumOperands() == 2) {
1981     // Update machine-CFG edges.
1982
1983     // If this is not a fall-through branch, emit the branch.
1984     SwitchMBB->addSuccessor(Default);
1985     if (Default != NextBlock)
1986       DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1987                               MVT::Other, getControlRoot(),
1988                               DAG.getBasicBlock(Default)));
1989
1990     return;
1991   }
1992
1993   // If there are any non-default case statements, create a vector of Cases
1994   // representing each one, and sort the vector so that we can efficiently
1995   // create a binary search tree from them.
1996   CaseVector Cases;
1997   size_t numCmps = Clusterify(Cases, SI);
1998   DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
1999                << ". Total compares: " << numCmps << '\n');
2000   numCmps = 0;
2001
2002   // Get the Value to be switched on and default basic blocks, which will be
2003   // inserted into CaseBlock records, representing basic blocks in the binary
2004   // search tree.
2005   const Value *SV = SI.getOperand(0);
2006
2007   // Push the initial CaseRec onto the worklist
2008   CaseRecVector WorkList;
2009   WorkList.push_back(CaseRec(SwitchMBB,0,0,
2010                              CaseRange(Cases.begin(),Cases.end())));
2011
2012   while (!WorkList.empty()) {
2013     // Grab a record representing a case range to process off the worklist
2014     CaseRec CR = WorkList.back();
2015     WorkList.pop_back();
2016
2017     if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2018       continue;
2019
2020     // If the range has few cases (two or less) emit a series of specific
2021     // tests.
2022     if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2023       continue;
2024
2025     // If the switch has more than 5 blocks, and at least 40% dense, and the
2026     // target supports indirect branches, then emit a jump table rather than
2027     // lowering the switch to a binary tree of conditional branches.
2028     if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2029       continue;
2030
2031     // Emit binary tree. We need to pick a pivot, and push left and right ranges
2032     // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2033     handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2034   }
2035 }
2036
2037 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2038   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBBMap[I.getParent()];
2039
2040   // Update machine-CFG edges with unique successors.
2041   SmallVector<BasicBlock*, 32> succs;
2042   succs.reserve(I.getNumSuccessors());
2043   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2044     succs.push_back(I.getSuccessor(i));
2045   array_pod_sort(succs.begin(), succs.end());
2046   succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
2047   for (unsigned i = 0, e = succs.size(); i != e; ++i)
2048     IndirectBrMBB->addSuccessor(FuncInfo.MBBMap[succs[i]]);
2049
2050   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2051                           MVT::Other, getControlRoot(),
2052                           getValue(I.getAddress())));
2053 }
2054
2055 void SelectionDAGBuilder::visitFSub(const User &I) {
2056   // -0.0 - X --> fneg
2057   const Type *Ty = I.getType();
2058   if (Ty->isVectorTy()) {
2059     if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
2060       const VectorType *DestTy = cast<VectorType>(I.getType());
2061       const Type *ElTy = DestTy->getElementType();
2062       unsigned VL = DestTy->getNumElements();
2063       std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
2064       Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2065       if (CV == CNZ) {
2066         SDValue Op2 = getValue(I.getOperand(1));
2067         setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2068                                  Op2.getValueType(), Op2));
2069         return;
2070       }
2071     }
2072   }
2073
2074   if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
2075     if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
2076       SDValue Op2 = getValue(I.getOperand(1));
2077       setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2078                                Op2.getValueType(), Op2));
2079       return;
2080     }
2081
2082   visitBinary(I, ISD::FSUB);
2083 }
2084
2085 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2086   SDValue Op1 = getValue(I.getOperand(0));
2087   SDValue Op2 = getValue(I.getOperand(1));
2088   setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2089                            Op1.getValueType(), Op1, Op2));
2090 }
2091
2092 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2093   SDValue Op1 = getValue(I.getOperand(0));
2094   SDValue Op2 = getValue(I.getOperand(1));
2095   if (!I.getType()->isVectorTy() &&
2096       Op2.getValueType() != TLI.getShiftAmountTy()) {
2097     // If the operand is smaller than the shift count type, promote it.
2098     EVT PTy = TLI.getPointerTy();
2099     EVT STy = TLI.getShiftAmountTy();
2100     if (STy.bitsGT(Op2.getValueType()))
2101       Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2102                         TLI.getShiftAmountTy(), Op2);
2103     // If the operand is larger than the shift count type but the shift
2104     // count type has enough bits to represent any shift value, truncate
2105     // it now. This is a common case and it exposes the truncate to
2106     // optimization early.
2107     else if (STy.getSizeInBits() >=
2108              Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2109       Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2110                         TLI.getShiftAmountTy(), Op2);
2111     // Otherwise we'll need to temporarily settle for some other
2112     // convenient type; type legalization will make adjustments as
2113     // needed.
2114     else if (PTy.bitsLT(Op2.getValueType()))
2115       Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2116                         TLI.getPointerTy(), Op2);
2117     else if (PTy.bitsGT(Op2.getValueType()))
2118       Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2119                         TLI.getPointerTy(), Op2);
2120   }
2121
2122   setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2123                            Op1.getValueType(), Op1, Op2));
2124 }
2125
2126 void SelectionDAGBuilder::visitICmp(const User &I) {
2127   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2128   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2129     predicate = IC->getPredicate();
2130   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2131     predicate = ICmpInst::Predicate(IC->getPredicate());
2132   SDValue Op1 = getValue(I.getOperand(0));
2133   SDValue Op2 = getValue(I.getOperand(1));
2134   ISD::CondCode Opcode = getICmpCondCode(predicate);
2135
2136   EVT DestVT = TLI.getValueType(I.getType());
2137   setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2138 }
2139
2140 void SelectionDAGBuilder::visitFCmp(const User &I) {
2141   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2142   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2143     predicate = FC->getPredicate();
2144   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2145     predicate = FCmpInst::Predicate(FC->getPredicate());
2146   SDValue Op1 = getValue(I.getOperand(0));
2147   SDValue Op2 = getValue(I.getOperand(1));
2148   ISD::CondCode Condition = getFCmpCondCode(predicate);
2149   EVT DestVT = TLI.getValueType(I.getType());
2150   setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2151 }
2152
2153 void SelectionDAGBuilder::visitSelect(const User &I) {
2154   SmallVector<EVT, 4> ValueVTs;
2155   ComputeValueVTs(TLI, I.getType(), ValueVTs);
2156   unsigned NumValues = ValueVTs.size();
2157   if (NumValues == 0) return;
2158
2159   SmallVector<SDValue, 4> Values(NumValues);
2160   SDValue Cond     = getValue(I.getOperand(0));
2161   SDValue TrueVal  = getValue(I.getOperand(1));
2162   SDValue FalseVal = getValue(I.getOperand(2));
2163
2164   for (unsigned i = 0; i != NumValues; ++i)
2165     Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(),
2166                           TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2167                             Cond,
2168                             SDValue(TrueVal.getNode(),
2169                                     TrueVal.getResNo() + i),
2170                             SDValue(FalseVal.getNode(),
2171                                     FalseVal.getResNo() + i));
2172
2173   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2174                            DAG.getVTList(&ValueVTs[0], NumValues),
2175                            &Values[0], NumValues));
2176 }
2177
2178 void SelectionDAGBuilder::visitTrunc(const User &I) {
2179   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2180   SDValue N = getValue(I.getOperand(0));
2181   EVT DestVT = TLI.getValueType(I.getType());
2182   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2183 }
2184
2185 void SelectionDAGBuilder::visitZExt(const User &I) {
2186   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2187   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2188   SDValue N = getValue(I.getOperand(0));
2189   EVT DestVT = TLI.getValueType(I.getType());
2190   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2191 }
2192
2193 void SelectionDAGBuilder::visitSExt(const User &I) {
2194   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2195   // SExt also can't be a cast to bool for same reason. So, nothing much to do
2196   SDValue N = getValue(I.getOperand(0));
2197   EVT DestVT = TLI.getValueType(I.getType());
2198   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2199 }
2200
2201 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2202   // FPTrunc is never a no-op cast, no need to check
2203   SDValue N = getValue(I.getOperand(0));
2204   EVT DestVT = TLI.getValueType(I.getType());
2205   setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2206                            DestVT, N, DAG.getIntPtrConstant(0)));
2207 }
2208
2209 void SelectionDAGBuilder::visitFPExt(const User &I){
2210   // FPTrunc is never a no-op cast, no need to check
2211   SDValue N = getValue(I.getOperand(0));
2212   EVT DestVT = TLI.getValueType(I.getType());
2213   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2214 }
2215
2216 void SelectionDAGBuilder::visitFPToUI(const User &I) {
2217   // FPToUI is never a no-op cast, no need to check
2218   SDValue N = getValue(I.getOperand(0));
2219   EVT DestVT = TLI.getValueType(I.getType());
2220   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2221 }
2222
2223 void SelectionDAGBuilder::visitFPToSI(const User &I) {
2224   // FPToSI is never a no-op cast, no need to check
2225   SDValue N = getValue(I.getOperand(0));
2226   EVT DestVT = TLI.getValueType(I.getType());
2227   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2228 }
2229
2230 void SelectionDAGBuilder::visitUIToFP(const User &I) {
2231   // UIToFP is never a no-op cast, no need to check
2232   SDValue N = getValue(I.getOperand(0));
2233   EVT DestVT = TLI.getValueType(I.getType());
2234   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2235 }
2236
2237 void SelectionDAGBuilder::visitSIToFP(const User &I){
2238   // SIToFP is never a no-op cast, no need to check
2239   SDValue N = getValue(I.getOperand(0));
2240   EVT DestVT = TLI.getValueType(I.getType());
2241   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2242 }
2243
2244 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2245   // What to do depends on the size of the integer and the size of the pointer.
2246   // We can either truncate, zero extend, or no-op, accordingly.
2247   SDValue N = getValue(I.getOperand(0));
2248   EVT SrcVT = N.getValueType();
2249   EVT DestVT = TLI.getValueType(I.getType());
2250   setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2251 }
2252
2253 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2254   // What to do depends on the size of the integer and the size of the pointer.
2255   // We can either truncate, zero extend, or no-op, accordingly.
2256   SDValue N = getValue(I.getOperand(0));
2257   EVT SrcVT = N.getValueType();
2258   EVT DestVT = TLI.getValueType(I.getType());
2259   setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2260 }
2261
2262 void SelectionDAGBuilder::visitBitCast(const User &I) {
2263   SDValue N = getValue(I.getOperand(0));
2264   EVT DestVT = TLI.getValueType(I.getType());
2265
2266   // BitCast assures us that source and destination are the same size so this is
2267   // either a BIT_CONVERT or a no-op.
2268   if (DestVT != N.getValueType())
2269     setValue(&I, DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
2270                              DestVT, N)); // convert types.
2271   else
2272     setValue(&I, N);            // noop cast.
2273 }
2274
2275 void SelectionDAGBuilder::visitInsertElement(const User &I) {
2276   SDValue InVec = getValue(I.getOperand(0));
2277   SDValue InVal = getValue(I.getOperand(1));
2278   SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2279                               TLI.getPointerTy(),
2280                               getValue(I.getOperand(2)));
2281   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2282                            TLI.getValueType(I.getType()),
2283                            InVec, InVal, InIdx));
2284 }
2285
2286 void SelectionDAGBuilder::visitExtractElement(const User &I) {
2287   SDValue InVec = getValue(I.getOperand(0));
2288   SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2289                               TLI.getPointerTy(),
2290                               getValue(I.getOperand(1)));
2291   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2292                            TLI.getValueType(I.getType()), InVec, InIdx));
2293 }
2294
2295 // Utility for visitShuffleVector - Returns true if the mask is mask starting
2296 // from SIndx and increasing to the element length (undefs are allowed).
2297 static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) {
2298   unsigned MaskNumElts = Mask.size();
2299   for (unsigned i = 0; i != MaskNumElts; ++i)
2300     if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx)))
2301       return false;
2302   return true;
2303 }
2304
2305 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2306   SmallVector<int, 8> Mask;
2307   SDValue Src1 = getValue(I.getOperand(0));
2308   SDValue Src2 = getValue(I.getOperand(1));
2309
2310   // Convert the ConstantVector mask operand into an array of ints, with -1
2311   // representing undef values.
2312   SmallVector<Constant*, 8> MaskElts;
2313   cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts);
2314   unsigned MaskNumElts = MaskElts.size();
2315   for (unsigned i = 0; i != MaskNumElts; ++i) {
2316     if (isa<UndefValue>(MaskElts[i]))
2317       Mask.push_back(-1);
2318     else
2319       Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
2320   }
2321
2322   EVT VT = TLI.getValueType(I.getType());
2323   EVT SrcVT = Src1.getValueType();
2324   unsigned SrcNumElts = SrcVT.getVectorNumElements();
2325
2326   if (SrcNumElts == MaskNumElts) {
2327     setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2328                                       &Mask[0]));
2329     return;
2330   }
2331
2332   // Normalize the shuffle vector since mask and vector length don't match.
2333   if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2334     // Mask is longer than the source vectors and is a multiple of the source
2335     // vectors.  We can use concatenate vector to make the mask and vectors
2336     // lengths match.
2337     if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
2338       // The shuffle is concatenating two vectors together.
2339       setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2340                                VT, Src1, Src2));
2341       return;
2342     }
2343
2344     // Pad both vectors with undefs to make them the same length as the mask.
2345     unsigned NumConcat = MaskNumElts / SrcNumElts;
2346     bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2347     bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2348     SDValue UndefVal = DAG.getUNDEF(SrcVT);
2349
2350     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2351     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2352     MOps1[0] = Src1;
2353     MOps2[0] = Src2;
2354
2355     Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2356                                                   getCurDebugLoc(), VT,
2357                                                   &MOps1[0], NumConcat);
2358     Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2359                                                   getCurDebugLoc(), VT,
2360                                                   &MOps2[0], NumConcat);
2361
2362     // Readjust mask for new input vector length.
2363     SmallVector<int, 8> MappedOps;
2364     for (unsigned i = 0; i != MaskNumElts; ++i) {
2365       int Idx = Mask[i];
2366       if (Idx < (int)SrcNumElts)
2367         MappedOps.push_back(Idx);
2368       else
2369         MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
2370     }
2371
2372     setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2373                                       &MappedOps[0]));
2374     return;
2375   }
2376
2377   if (SrcNumElts > MaskNumElts) {
2378     // Analyze the access pattern of the vector to see if we can extract
2379     // two subvectors and do the shuffle. The analysis is done by calculating
2380     // the range of elements the mask access on both vectors.
2381     int MinRange[2] = { SrcNumElts+1, SrcNumElts+1};
2382     int MaxRange[2] = {-1, -1};
2383
2384     for (unsigned i = 0; i != MaskNumElts; ++i) {
2385       int Idx = Mask[i];
2386       int Input = 0;
2387       if (Idx < 0)
2388         continue;
2389
2390       if (Idx >= (int)SrcNumElts) {
2391         Input = 1;
2392         Idx -= SrcNumElts;
2393       }
2394       if (Idx > MaxRange[Input])
2395         MaxRange[Input] = Idx;
2396       if (Idx < MinRange[Input])
2397         MinRange[Input] = Idx;
2398     }
2399
2400     // Check if the access is smaller than the vector size and can we find
2401     // a reasonable extract index.
2402     int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not
2403                                  // Extract.
2404     int StartIdx[2];  // StartIdx to extract from
2405     for (int Input=0; Input < 2; ++Input) {
2406       if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
2407         RangeUse[Input] = 0; // Unused
2408         StartIdx[Input] = 0;
2409       } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
2410         // Fits within range but we should see if we can find a good
2411         // start index that is a multiple of the mask length.
2412         if (MaxRange[Input] < (int)MaskNumElts) {
2413           RangeUse[Input] = 1; // Extract from beginning of the vector
2414           StartIdx[Input] = 0;
2415         } else {
2416           StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2417           if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2418               StartIdx[Input] + MaskNumElts < SrcNumElts)
2419             RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2420         }
2421       }
2422     }
2423
2424     if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2425       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2426       return;
2427     }
2428     else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2429       // Extract appropriate subvector and generate a vector shuffle
2430       for (int Input=0; Input < 2; ++Input) {
2431         SDValue &Src = Input == 0 ? Src1 : Src2;
2432         if (RangeUse[Input] == 0)
2433           Src = DAG.getUNDEF(VT);
2434         else
2435           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2436                             Src, DAG.getIntPtrConstant(StartIdx[Input]));
2437       }
2438
2439       // Calculate new mask.
2440       SmallVector<int, 8> MappedOps;
2441       for (unsigned i = 0; i != MaskNumElts; ++i) {
2442         int Idx = Mask[i];
2443         if (Idx < 0)
2444           MappedOps.push_back(Idx);
2445         else if (Idx < (int)SrcNumElts)
2446           MappedOps.push_back(Idx - StartIdx[0]);
2447         else
2448           MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
2449       }
2450
2451       setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2452                                         &MappedOps[0]));
2453       return;
2454     }
2455   }
2456
2457   // We can't use either concat vectors or extract subvectors so fall back to
2458   // replacing the shuffle with extract and build vector.
2459   // to insert and build vector.
2460   EVT EltVT = VT.getVectorElementType();
2461   EVT PtrVT = TLI.getPointerTy();
2462   SmallVector<SDValue,8> Ops;
2463   for (unsigned i = 0; i != MaskNumElts; ++i) {
2464     if (Mask[i] < 0) {
2465       Ops.push_back(DAG.getUNDEF(EltVT));
2466     } else {
2467       int Idx = Mask[i];
2468       SDValue Res;
2469
2470       if (Idx < (int)SrcNumElts)
2471         Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2472                           EltVT, Src1, DAG.getConstant(Idx, PtrVT));
2473       else
2474         Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2475                           EltVT, Src2,
2476                           DAG.getConstant(Idx - SrcNumElts, PtrVT));
2477
2478       Ops.push_back(Res);
2479     }
2480   }
2481
2482   setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2483                            VT, &Ops[0], Ops.size()));
2484 }
2485
2486 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
2487   const Value *Op0 = I.getOperand(0);
2488   const Value *Op1 = I.getOperand(1);
2489   const Type *AggTy = I.getType();
2490   const Type *ValTy = Op1->getType();
2491   bool IntoUndef = isa<UndefValue>(Op0);
2492   bool FromUndef = isa<UndefValue>(Op1);
2493
2494   unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2495                                             I.idx_begin(), I.idx_end());
2496
2497   SmallVector<EVT, 4> AggValueVTs;
2498   ComputeValueVTs(TLI, AggTy, AggValueVTs);
2499   SmallVector<EVT, 4> ValValueVTs;
2500   ComputeValueVTs(TLI, ValTy, ValValueVTs);
2501
2502   unsigned NumAggValues = AggValueVTs.size();
2503   unsigned NumValValues = ValValueVTs.size();
2504   SmallVector<SDValue, 4> Values(NumAggValues);
2505
2506   SDValue Agg = getValue(Op0);
2507   SDValue Val = getValue(Op1);
2508   unsigned i = 0;
2509   // Copy the beginning value(s) from the original aggregate.
2510   for (; i != LinearIndex; ++i)
2511     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2512                 SDValue(Agg.getNode(), Agg.getResNo() + i);
2513   // Copy values from the inserted value(s).
2514   for (; i != LinearIndex + NumValValues; ++i)
2515     Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2516                 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2517   // Copy remaining value(s) from the original aggregate.
2518   for (; i != NumAggValues; ++i)
2519     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2520                 SDValue(Agg.getNode(), Agg.getResNo() + i);
2521
2522   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2523                            DAG.getVTList(&AggValueVTs[0], NumAggValues),
2524                            &Values[0], NumAggValues));
2525 }
2526
2527 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
2528   const Value *Op0 = I.getOperand(0);
2529   const Type *AggTy = Op0->getType();
2530   const Type *ValTy = I.getType();
2531   bool OutOfUndef = isa<UndefValue>(Op0);
2532
2533   unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2534                                             I.idx_begin(), I.idx_end());
2535
2536   SmallVector<EVT, 4> ValValueVTs;
2537   ComputeValueVTs(TLI, ValTy, ValValueVTs);
2538
2539   unsigned NumValValues = ValValueVTs.size();
2540   SmallVector<SDValue, 4> Values(NumValValues);
2541
2542   SDValue Agg = getValue(Op0);
2543   // Copy out the selected value(s).
2544   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2545     Values[i - LinearIndex] =
2546       OutOfUndef ?
2547         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
2548         SDValue(Agg.getNode(), Agg.getResNo() + i);
2549
2550   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2551                            DAG.getVTList(&ValValueVTs[0], NumValValues),
2552                            &Values[0], NumValValues));
2553 }
2554
2555 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
2556   SDValue N = getValue(I.getOperand(0));
2557   const Type *Ty = I.getOperand(0)->getType();
2558
2559   for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
2560        OI != E; ++OI) {
2561     const Value *Idx = *OI;
2562     if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2563       unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2564       if (Field) {
2565         // N = N + Offset
2566         uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2567         N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2568                         DAG.getIntPtrConstant(Offset));
2569       }
2570
2571       Ty = StTy->getElementType(Field);
2572     } else if (const UnionType *UnTy = dyn_cast<UnionType>(Ty)) {
2573       unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2574       
2575       // Offset canonically 0 for unions, but type changes
2576       Ty = UnTy->getElementType(Field);
2577     } else {
2578       Ty = cast<SequentialType>(Ty)->getElementType();
2579
2580       // If this is a constant subscript, handle it quickly.
2581       if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2582         if (CI->getZExtValue() == 0) continue;
2583         uint64_t Offs =
2584             TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2585         SDValue OffsVal;
2586         EVT PTy = TLI.getPointerTy();
2587         unsigned PtrBits = PTy.getSizeInBits();
2588         if (PtrBits < 64)
2589           OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2590                                 TLI.getPointerTy(),
2591                                 DAG.getConstant(Offs, MVT::i64));
2592         else
2593           OffsVal = DAG.getIntPtrConstant(Offs);
2594
2595         N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2596                         OffsVal);
2597         continue;
2598       }
2599
2600       // N = N + Idx * ElementSize;
2601       APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
2602                                 TD->getTypeAllocSize(Ty));
2603       SDValue IdxN = getValue(Idx);
2604
2605       // If the index is smaller or larger than intptr_t, truncate or extend
2606       // it.
2607       IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
2608
2609       // If this is a multiply by a power of two, turn it into a shl
2610       // immediately.  This is a very common case.
2611       if (ElementSize != 1) {
2612         if (ElementSize.isPowerOf2()) {
2613           unsigned Amt = ElementSize.logBase2();
2614           IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
2615                              N.getValueType(), IdxN,
2616                              DAG.getConstant(Amt, TLI.getPointerTy()));
2617         } else {
2618           SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
2619           IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
2620                              N.getValueType(), IdxN, Scale);
2621         }
2622       }
2623
2624       N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2625                       N.getValueType(), N, IdxN);
2626     }
2627   }
2628
2629   setValue(&I, N);
2630 }
2631
2632 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
2633   // If this is a fixed sized alloca in the entry block of the function,
2634   // allocate it statically on the stack.
2635   if (FuncInfo.StaticAllocaMap.count(&I))
2636     return;   // getValue will auto-populate this.
2637
2638   const Type *Ty = I.getAllocatedType();
2639   uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
2640   unsigned Align =
2641     std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2642              I.getAlignment());
2643
2644   SDValue AllocSize = getValue(I.getArraySize());
2645
2646   AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), AllocSize.getValueType(),
2647                           AllocSize,
2648                           DAG.getConstant(TySize, AllocSize.getValueType()));
2649
2650   EVT IntPtr = TLI.getPointerTy();
2651   AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
2652
2653   // Handle alignment.  If the requested alignment is less than or equal to
2654   // the stack alignment, ignore it.  If the size is greater than or equal to
2655   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2656   unsigned StackAlign = TM.getFrameInfo()->getStackAlignment();
2657   if (Align <= StackAlign)
2658     Align = 0;
2659
2660   // Round the size of the allocation up to the stack alignment size
2661   // by add SA-1 to the size.
2662   AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2663                           AllocSize.getValueType(), AllocSize,
2664                           DAG.getIntPtrConstant(StackAlign-1));
2665
2666   // Mask out the low bits for alignment purposes.
2667   AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
2668                           AllocSize.getValueType(), AllocSize,
2669                           DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2670
2671   SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
2672   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
2673   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
2674                             VTs, Ops, 3);
2675   setValue(&I, DSA);
2676   DAG.setRoot(DSA.getValue(1));
2677
2678   // Inform the Frame Information that we have just allocated a variable-sized
2679   // object.
2680   FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject();
2681 }
2682
2683 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
2684   const Value *SV = I.getOperand(0);
2685   SDValue Ptr = getValue(SV);
2686
2687   const Type *Ty = I.getType();
2688
2689   bool isVolatile = I.isVolatile();
2690   bool isNonTemporal = I.getMetadata("nontemporal") != 0;
2691   unsigned Alignment = I.getAlignment();
2692
2693   SmallVector<EVT, 4> ValueVTs;
2694   SmallVector<uint64_t, 4> Offsets;
2695   ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
2696   unsigned NumValues = ValueVTs.size();
2697   if (NumValues == 0)
2698     return;
2699
2700   SDValue Root;
2701   bool ConstantMemory = false;
2702   if (I.isVolatile())
2703     // Serialize volatile loads with other side effects.
2704     Root = getRoot();
2705   else if (AA->pointsToConstantMemory(SV)) {
2706     // Do not serialize (non-volatile) loads of constant memory with anything.
2707     Root = DAG.getEntryNode();
2708     ConstantMemory = true;
2709   } else {
2710     // Do not serialize non-volatile loads against each other.
2711     Root = DAG.getRoot();
2712   }
2713
2714   SmallVector<SDValue, 4> Values(NumValues);
2715   SmallVector<SDValue, 4> Chains(NumValues);
2716   EVT PtrVT = Ptr.getValueType();
2717   for (unsigned i = 0; i != NumValues; ++i) {
2718     SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2719                             PtrVT, Ptr,
2720                             DAG.getConstant(Offsets[i], PtrVT));
2721     SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
2722                             A, SV, Offsets[i], isVolatile, 
2723                             isNonTemporal, Alignment);
2724
2725     Values[i] = L;
2726     Chains[i] = L.getValue(1);
2727   }
2728
2729   if (!ConstantMemory) {
2730     SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
2731                                 MVT::Other, &Chains[0], NumValues);
2732     if (isVolatile)
2733       DAG.setRoot(Chain);
2734     else
2735       PendingLoads.push_back(Chain);
2736   }
2737
2738   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2739                            DAG.getVTList(&ValueVTs[0], NumValues),
2740                            &Values[0], NumValues));
2741 }
2742
2743 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
2744   const Value *SrcV = I.getOperand(0);
2745   const Value *PtrV = I.getOperand(1);
2746
2747   SmallVector<EVT, 4> ValueVTs;
2748   SmallVector<uint64_t, 4> Offsets;
2749   ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
2750   unsigned NumValues = ValueVTs.size();
2751   if (NumValues == 0)
2752     return;
2753
2754   // Get the lowered operands. Note that we do this after
2755   // checking if NumResults is zero, because with zero results
2756   // the operands won't have values in the map.
2757   SDValue Src = getValue(SrcV);
2758   SDValue Ptr = getValue(PtrV);
2759
2760   SDValue Root = getRoot();
2761   SmallVector<SDValue, 4> Chains(NumValues);
2762   EVT PtrVT = Ptr.getValueType();
2763   bool isVolatile = I.isVolatile();
2764   bool isNonTemporal = I.getMetadata("nontemporal") != 0;
2765   unsigned Alignment = I.getAlignment();
2766
2767   for (unsigned i = 0; i != NumValues; ++i) {
2768     SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
2769                               DAG.getConstant(Offsets[i], PtrVT));
2770     Chains[i] = DAG.getStore(Root, getCurDebugLoc(),
2771                              SDValue(Src.getNode(), Src.getResNo() + i),
2772                              Add, PtrV, Offsets[i], isVolatile, 
2773                              isNonTemporal, Alignment);
2774   }
2775
2776   DAG.setRoot(DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
2777                           MVT::Other, &Chains[0], NumValues));
2778 }
2779
2780 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
2781 /// node.
2782 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
2783                                                unsigned Intrinsic) {
2784   bool HasChain = !I.doesNotAccessMemory();
2785   bool OnlyLoad = HasChain && I.onlyReadsMemory();
2786
2787   // Build the operand list.
2788   SmallVector<SDValue, 8> Ops;
2789   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
2790     if (OnlyLoad) {
2791       // We don't need to serialize loads against other loads.
2792       Ops.push_back(DAG.getRoot());
2793     } else {
2794       Ops.push_back(getRoot());
2795     }
2796   }
2797
2798   // Info is set by getTgtMemInstrinsic
2799   TargetLowering::IntrinsicInfo Info;
2800   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
2801
2802   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
2803   if (!IsTgtIntrinsic)
2804     Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
2805
2806   // Add all operands of the call to the operand list.
2807   for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2808     SDValue Op = getValue(I.getOperand(i));
2809     assert(TLI.isTypeLegal(Op.getValueType()) &&
2810            "Intrinsic uses a non-legal type?");
2811     Ops.push_back(Op);
2812   }
2813
2814   SmallVector<EVT, 4> ValueVTs;
2815   ComputeValueVTs(TLI, I.getType(), ValueVTs);
2816 #ifndef NDEBUG
2817   for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) {
2818     assert(TLI.isTypeLegal(ValueVTs[Val]) &&
2819            "Intrinsic uses a non-legal type?");
2820   }
2821 #endif // NDEBUG
2822
2823   if (HasChain)
2824     ValueVTs.push_back(MVT::Other);
2825
2826   SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
2827
2828   // Create the node.
2829   SDValue Result;
2830   if (IsTgtIntrinsic) {
2831     // This is target intrinsic that touches memory
2832     Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
2833                                      VTs, &Ops[0], Ops.size(),
2834                                      Info.memVT, Info.ptrVal, Info.offset,
2835                                      Info.align, Info.vol,
2836                                      Info.readMem, Info.writeMem);
2837   } else if (!HasChain) {
2838     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
2839                          VTs, &Ops[0], Ops.size());
2840   } else if (!I.getType()->isVoidTy()) {
2841     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
2842                          VTs, &Ops[0], Ops.size());
2843   } else {
2844     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
2845                          VTs, &Ops[0], Ops.size());
2846   }
2847
2848   if (HasChain) {
2849     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
2850     if (OnlyLoad)
2851       PendingLoads.push_back(Chain);
2852     else
2853       DAG.setRoot(Chain);
2854   }
2855
2856   if (!I.getType()->isVoidTy()) {
2857     if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
2858       EVT VT = TLI.getValueType(PTy);
2859       Result = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), VT, Result);
2860     }
2861
2862     setValue(&I, Result);
2863   }
2864 }
2865
2866 /// GetSignificand - Get the significand and build it into a floating-point
2867 /// number with exponent of 1:
2868 ///
2869 ///   Op = (Op & 0x007fffff) | 0x3f800000;
2870 ///
2871 /// where Op is the hexidecimal representation of floating point value.
2872 static SDValue
2873 GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
2874   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
2875                            DAG.getConstant(0x007fffff, MVT::i32));
2876   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
2877                            DAG.getConstant(0x3f800000, MVT::i32));
2878   return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t2);
2879 }
2880
2881 /// GetExponent - Get the exponent:
2882 ///
2883 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
2884 ///
2885 /// where Op is the hexidecimal representation of floating point value.
2886 static SDValue
2887 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
2888             DebugLoc dl) {
2889   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
2890                            DAG.getConstant(0x7f800000, MVT::i32));
2891   SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
2892                            DAG.getConstant(23, TLI.getPointerTy()));
2893   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
2894                            DAG.getConstant(127, MVT::i32));
2895   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
2896 }
2897
2898 /// getF32Constant - Get 32-bit floating point constant.
2899 static SDValue
2900 getF32Constant(SelectionDAG &DAG, unsigned Flt) {
2901   return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
2902 }
2903
2904 /// Inlined utility function to implement binary input atomic intrinsics for
2905 /// visitIntrinsicCall: I is a call instruction
2906 ///                     Op is the associated NodeType for I
2907 const char *
2908 SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I,
2909                                            ISD::NodeType Op) {
2910   SDValue Root = getRoot();
2911   SDValue L =
2912     DAG.getAtomic(Op, getCurDebugLoc(),
2913                   getValue(I.getOperand(2)).getValueType().getSimpleVT(),
2914                   Root,
2915                   getValue(I.getOperand(1)),
2916                   getValue(I.getOperand(2)),
2917                   I.getOperand(1));
2918   setValue(&I, L);
2919   DAG.setRoot(L.getValue(1));
2920   return 0;
2921 }
2922
2923 // implVisitAluOverflow - Lower arithmetic overflow instrinsics.
2924 const char *
2925 SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) {
2926   SDValue Op1 = getValue(I.getOperand(1));
2927   SDValue Op2 = getValue(I.getOperand(2));
2928
2929   SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
2930   setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
2931   return 0;
2932 }
2933
2934 /// visitExp - Lower an exp intrinsic. Handles the special sequences for
2935 /// limited-precision mode.
2936 void
2937 SelectionDAGBuilder::visitExp(const CallInst &I) {
2938   SDValue result;
2939   DebugLoc dl = getCurDebugLoc();
2940
2941   if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
2942       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
2943     SDValue Op = getValue(I.getOperand(1));
2944
2945     // Put the exponent in the right bit position for later addition to the
2946     // final result:
2947     //
2948     //   #define LOG2OFe 1.4426950f
2949     //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
2950     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
2951                              getF32Constant(DAG, 0x3fb8aa3b));
2952     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
2953
2954     //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
2955     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
2956     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
2957
2958     //   IntegerPartOfX <<= 23;
2959     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
2960                                  DAG.getConstant(23, TLI.getPointerTy()));
2961
2962     if (LimitFloatPrecision <= 6) {
2963       // For floating-point precision of 6:
2964       //
2965       //   TwoToFractionalPartOfX =
2966       //     0.997535578f +
2967       //       (0.735607626f + 0.252464424f * x) * x;
2968       //
2969       // error 0.0144103317, which is 6 bits
2970       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
2971                                getF32Constant(DAG, 0x3e814304));
2972       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
2973                                getF32Constant(DAG, 0x3f3c50c8));
2974       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
2975       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
2976                                getF32Constant(DAG, 0x3f7f5e7e));
2977       SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t5);
2978
2979       // Add the exponent into the result in integer domain.
2980       SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
2981                                TwoToFracPartOfX, IntegerPartOfX);
2982
2983       result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t6);
2984     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
2985       // For floating-point precision of 12:
2986       //
2987       //   TwoToFractionalPartOfX =
2988       //     0.999892986f +
2989       //       (0.696457318f +
2990       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
2991       //
2992       // 0.000107046256 error, which is 13 to 14 bits
2993       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
2994                                getF32Constant(DAG, 0x3da235e3));
2995       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
2996                                getF32Constant(DAG, 0x3e65b8f3));
2997       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
2998       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
2999                                getF32Constant(DAG, 0x3f324b07));
3000       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3001       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3002                                getF32Constant(DAG, 0x3f7ff8fd));
3003       SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t7);
3004
3005       // Add the exponent into the result in integer domain.
3006       SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3007                                TwoToFracPartOfX, IntegerPartOfX);
3008
3009       result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t8);
3010     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3011       // For floating-point precision of 18:
3012       //
3013       //   TwoToFractionalPartOfX =
3014       //     0.999999982f +
3015       //       (0.693148872f +
3016       //         (0.240227044f +
3017       //           (0.554906021e-1f +
3018       //             (0.961591928e-2f +
3019       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3020       //
3021       // error 2.47208000*10^(-7), which is better than 18 bits
3022       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3023                                getF32Constant(DAG, 0x3924b03e));
3024       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3025                                getF32Constant(DAG, 0x3ab24b87));
3026       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3027       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3028                                getF32Constant(DAG, 0x3c1d8c17));
3029       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3030       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3031                                getF32Constant(DAG, 0x3d634a1d));
3032       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3033       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3034                                getF32Constant(DAG, 0x3e75fe14));
3035       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3036       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3037                                 getF32Constant(DAG, 0x3f317234));
3038       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3039       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3040                                 getF32Constant(DAG, 0x3f800000));
3041       SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,
3042                                              MVT::i32, t13);
3043
3044       // Add the exponent into the result in integer domain.
3045       SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3046                                 TwoToFracPartOfX, IntegerPartOfX);
3047
3048       result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t14);
3049     }
3050   } else {
3051     // No special expansion.
3052     result = DAG.getNode(ISD::FEXP, dl,
3053                          getValue(I.getOperand(1)).getValueType(),
3054                          getValue(I.getOperand(1)));
3055   }
3056
3057   setValue(&I, result);
3058 }
3059
3060 /// visitLog - Lower a log intrinsic. Handles the special sequences for
3061 /// limited-precision mode.
3062 void
3063 SelectionDAGBuilder::visitLog(const CallInst &I) {
3064   SDValue result;
3065   DebugLoc dl = getCurDebugLoc();
3066
3067   if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3068       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3069     SDValue Op = getValue(I.getOperand(1));
3070     SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3071
3072     // Scale the exponent by log(2) [0.69314718f].
3073     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3074     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3075                                         getF32Constant(DAG, 0x3f317218));
3076
3077     // Get the significand and build it into a floating-point number with
3078     // exponent of 1.
3079     SDValue X = GetSignificand(DAG, Op1, dl);
3080
3081     if (LimitFloatPrecision <= 6) {
3082       // For floating-point precision of 6:
3083       //
3084       //   LogofMantissa =
3085       //     -1.1609546f +
3086       //       (1.4034025f - 0.23903021f * x) * x;
3087       //
3088       // error 0.0034276066, which is better than 8 bits
3089       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3090                                getF32Constant(DAG, 0xbe74c456));
3091       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3092                                getF32Constant(DAG, 0x3fb3a2b1));
3093       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3094       SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3095                                           getF32Constant(DAG, 0x3f949a29));
3096
3097       result = DAG.getNode(ISD::FADD, dl,
3098                            MVT::f32, LogOfExponent, LogOfMantissa);
3099     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3100       // For floating-point precision of 12:
3101       //
3102       //   LogOfMantissa =
3103       //     -1.7417939f +
3104       //       (2.8212026f +
3105       //         (-1.4699568f +
3106       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3107       //
3108       // error 0.000061011436, which is 14 bits
3109       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3110                                getF32Constant(DAG, 0xbd67b6d6));
3111       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3112                                getF32Constant(DAG, 0x3ee4f4b8));
3113       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3114       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3115                                getF32Constant(DAG, 0x3fbc278b));
3116       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3117       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3118                                getF32Constant(DAG, 0x40348e95));
3119       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3120       SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3121                                           getF32Constant(DAG, 0x3fdef31a));
3122
3123       result = DAG.getNode(ISD::FADD, dl,
3124                            MVT::f32, LogOfExponent, LogOfMantissa);
3125     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3126       // For floating-point precision of 18:
3127       //
3128       //   LogOfMantissa =
3129       //     -2.1072184f +
3130       //       (4.2372794f +
3131       //         (-3.7029485f +
3132       //           (2.2781945f +
3133       //             (-0.87823314f +
3134       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3135       //
3136       // error 0.0000023660568, which is better than 18 bits
3137       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3138                                getF32Constant(DAG, 0xbc91e5ac));
3139       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3140                                getF32Constant(DAG, 0x3e4350aa));
3141       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3142       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3143                                getF32Constant(DAG, 0x3f60d3e3));
3144       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3145       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3146                                getF32Constant(DAG, 0x4011cdf0));
3147       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3148       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3149                                getF32Constant(DAG, 0x406cfd1c));
3150       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3151       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3152                                getF32Constant(DAG, 0x408797cb));
3153       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3154       SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3155                                           getF32Constant(DAG, 0x4006dcab));
3156
3157       result = DAG.getNode(ISD::FADD, dl,
3158                            MVT::f32, LogOfExponent, LogOfMantissa);
3159     }
3160   } else {
3161     // No special expansion.
3162     result = DAG.getNode(ISD::FLOG, dl,
3163                          getValue(I.getOperand(1)).getValueType(),
3164                          getValue(I.getOperand(1)));
3165   }
3166
3167   setValue(&I, result);
3168 }
3169
3170 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3171 /// limited-precision mode.
3172 void
3173 SelectionDAGBuilder::visitLog2(const CallInst &I) {
3174   SDValue result;
3175   DebugLoc dl = getCurDebugLoc();
3176
3177   if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3178       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3179     SDValue Op = getValue(I.getOperand(1));
3180     SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3181
3182     // Get the exponent.
3183     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3184
3185     // Get the significand and build it into a floating-point number with
3186     // exponent of 1.
3187     SDValue X = GetSignificand(DAG, Op1, dl);
3188
3189     // Different possible minimax approximations of significand in
3190     // floating-point for various degrees of accuracy over [1,2].
3191     if (LimitFloatPrecision <= 6) {
3192       // For floating-point precision of 6:
3193       //
3194       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3195       //
3196       // error 0.0049451742, which is more than 7 bits
3197       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3198                                getF32Constant(DAG, 0xbeb08fe0));
3199       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3200                                getF32Constant(DAG, 0x40019463));
3201       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3202       SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3203                                            getF32Constant(DAG, 0x3fd6633d));
3204
3205       result = DAG.getNode(ISD::FADD, dl,
3206                            MVT::f32, LogOfExponent, Log2ofMantissa);
3207     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3208       // For floating-point precision of 12:
3209       //
3210       //   Log2ofMantissa =
3211       //     -2.51285454f +
3212       //       (4.07009056f +
3213       //         (-2.12067489f +
3214       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3215       //
3216       // error 0.0000876136000, which is better than 13 bits
3217       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3218                                getF32Constant(DAG, 0xbda7262e));
3219       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3220                                getF32Constant(DAG, 0x3f25280b));
3221       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3222       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3223                                getF32Constant(DAG, 0x4007b923));
3224       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3225       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3226                                getF32Constant(DAG, 0x40823e2f));
3227       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3228       SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3229                                            getF32Constant(DAG, 0x4020d29c));
3230
3231       result = DAG.getNode(ISD::FADD, dl,
3232                            MVT::f32, LogOfExponent, Log2ofMantissa);
3233     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3234       // For floating-point precision of 18:
3235       //
3236       //   Log2ofMantissa =
3237       //     -3.0400495f +
3238       //       (6.1129976f +
3239       //         (-5.3420409f +
3240       //           (3.2865683f +
3241       //             (-1.2669343f +
3242       //               (0.27515199f -
3243       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3244       //
3245       // error 0.0000018516, which is better than 18 bits
3246       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3247                                getF32Constant(DAG, 0xbcd2769e));
3248       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3249                                getF32Constant(DAG, 0x3e8ce0b9));
3250       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3251       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3252                                getF32Constant(DAG, 0x3fa22ae7));
3253       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3254       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3255                                getF32Constant(DAG, 0x40525723));
3256       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3257       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3258                                getF32Constant(DAG, 0x40aaf200));
3259       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3260       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3261                                getF32Constant(DAG, 0x40c39dad));
3262       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3263       SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3264                                            getF32Constant(DAG, 0x4042902c));
3265
3266       result = DAG.getNode(ISD::FADD, dl,
3267                            MVT::f32, LogOfExponent, Log2ofMantissa);
3268     }
3269   } else {
3270     // No special expansion.
3271     result = DAG.getNode(ISD::FLOG2, dl,
3272                          getValue(I.getOperand(1)).getValueType(),
3273                          getValue(I.getOperand(1)));
3274   }
3275
3276   setValue(&I, result);
3277 }
3278
3279 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3280 /// limited-precision mode.
3281 void
3282 SelectionDAGBuilder::visitLog10(const CallInst &I) {
3283   SDValue result;
3284   DebugLoc dl = getCurDebugLoc();
3285
3286   if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3287       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3288     SDValue Op = getValue(I.getOperand(1));
3289     SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3290
3291     // Scale the exponent by log10(2) [0.30102999f].
3292     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3293     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3294                                         getF32Constant(DAG, 0x3e9a209a));
3295
3296     // Get the significand and build it into a floating-point number with
3297     // exponent of 1.
3298     SDValue X = GetSignificand(DAG, Op1, dl);
3299
3300     if (LimitFloatPrecision <= 6) {
3301       // For floating-point precision of 6:
3302       //
3303       //   Log10ofMantissa =
3304       //     -0.50419619f +
3305       //       (0.60948995f - 0.10380950f * x) * x;
3306       //
3307       // error 0.0014886165, which is 6 bits
3308       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3309                                getF32Constant(DAG, 0xbdd49a13));
3310       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3311                                getF32Constant(DAG, 0x3f1c0789));
3312       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3313       SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3314                                             getF32Constant(DAG, 0x3f011300));
3315
3316       result = DAG.getNode(ISD::FADD, dl,
3317                            MVT::f32, LogOfExponent, Log10ofMantissa);
3318     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3319       // For floating-point precision of 12:
3320       //
3321       //   Log10ofMantissa =
3322       //     -0.64831180f +
3323       //       (0.91751397f +
3324       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
3325       //
3326       // error 0.00019228036, which is better than 12 bits
3327       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3328                                getF32Constant(DAG, 0x3d431f31));
3329       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3330                                getF32Constant(DAG, 0x3ea21fb2));
3331       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3332       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3333                                getF32Constant(DAG, 0x3f6ae232));
3334       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3335       SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3336                                             getF32Constant(DAG, 0x3f25f7c3));
3337
3338       result = DAG.getNode(ISD::FADD, dl,
3339                            MVT::f32, LogOfExponent, Log10ofMantissa);
3340     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3341       // For floating-point precision of 18:
3342       //
3343       //   Log10ofMantissa =
3344       //     -0.84299375f +
3345       //       (1.5327582f +
3346       //         (-1.0688956f +
3347       //           (0.49102474f +
3348       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
3349       //
3350       // error 0.0000037995730, which is better than 18 bits
3351       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3352                                getF32Constant(DAG, 0x3c5d51ce));
3353       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3354                                getF32Constant(DAG, 0x3e00685a));
3355       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3356       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3357                                getF32Constant(DAG, 0x3efb6798));
3358       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3359       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3360                                getF32Constant(DAG, 0x3f88d192));
3361       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3362       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3363                                getF32Constant(DAG, 0x3fc4316c));
3364       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3365       SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
3366                                             getF32Constant(DAG, 0x3f57ce70));
3367
3368       result = DAG.getNode(ISD::FADD, dl,
3369                            MVT::f32, LogOfExponent, Log10ofMantissa);
3370     }
3371   } else {
3372     // No special expansion.
3373     result = DAG.getNode(ISD::FLOG10, dl,
3374                          getValue(I.getOperand(1)).getValueType(),
3375                          getValue(I.getOperand(1)));
3376   }
3377
3378   setValue(&I, result);
3379 }
3380
3381 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
3382 /// limited-precision mode.
3383 void
3384 SelectionDAGBuilder::visitExp2(const CallInst &I) {
3385   SDValue result;
3386   DebugLoc dl = getCurDebugLoc();
3387
3388   if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3389       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3390     SDValue Op = getValue(I.getOperand(1));
3391
3392     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
3393
3394     //   FractionalPartOfX = x - (float)IntegerPartOfX;
3395     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3396     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
3397
3398     //   IntegerPartOfX <<= 23;
3399     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3400                                  DAG.getConstant(23, TLI.getPointerTy()));
3401
3402     if (LimitFloatPrecision <= 6) {
3403       // For floating-point precision of 6:
3404       //
3405       //   TwoToFractionalPartOfX =
3406       //     0.997535578f +
3407       //       (0.735607626f + 0.252464424f * x) * x;
3408       //
3409       // error 0.0144103317, which is 6 bits
3410       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3411                                getF32Constant(DAG, 0x3e814304));
3412       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3413                                getF32Constant(DAG, 0x3f3c50c8));
3414       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3415       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3416                                getF32Constant(DAG, 0x3f7f5e7e));
3417       SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
3418       SDValue TwoToFractionalPartOfX =
3419         DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3420
3421       result = DAG.getNode(ISD::BIT_CONVERT, dl,
3422                            MVT::f32, TwoToFractionalPartOfX);
3423     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3424       // For floating-point precision of 12:
3425       //
3426       //   TwoToFractionalPartOfX =
3427       //     0.999892986f +
3428       //       (0.696457318f +
3429       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3430       //
3431       // error 0.000107046256, which is 13 to 14 bits
3432       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3433                                getF32Constant(DAG, 0x3da235e3));
3434       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3435                                getF32Constant(DAG, 0x3e65b8f3));
3436       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3437       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3438                                getF32Constant(DAG, 0x3f324b07));
3439       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3440       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3441                                getF32Constant(DAG, 0x3f7ff8fd));
3442       SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
3443       SDValue TwoToFractionalPartOfX =
3444         DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3445
3446       result = DAG.getNode(ISD::BIT_CONVERT, dl,
3447                            MVT::f32, TwoToFractionalPartOfX);
3448     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3449       // For floating-point precision of 18:
3450       //
3451       //   TwoToFractionalPartOfX =
3452       //     0.999999982f +
3453       //       (0.693148872f +
3454       //         (0.240227044f +
3455       //           (0.554906021e-1f +
3456       //             (0.961591928e-2f +
3457       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3458       // error 2.47208000*10^(-7), which is better than 18 bits
3459       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3460                                getF32Constant(DAG, 0x3924b03e));
3461       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3462                                getF32Constant(DAG, 0x3ab24b87));
3463       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3464       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3465                                getF32Constant(DAG, 0x3c1d8c17));
3466       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3467       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3468                                getF32Constant(DAG, 0x3d634a1d));
3469       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3470       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3471                                getF32Constant(DAG, 0x3e75fe14));
3472       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3473       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3474                                 getF32Constant(DAG, 0x3f317234));
3475       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3476       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3477                                 getF32Constant(DAG, 0x3f800000));
3478       SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
3479       SDValue TwoToFractionalPartOfX =
3480         DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3481
3482       result = DAG.getNode(ISD::BIT_CONVERT, dl,
3483                            MVT::f32, TwoToFractionalPartOfX);
3484     }
3485   } else {
3486     // No special expansion.
3487     result = DAG.getNode(ISD::FEXP2, dl,
3488                          getValue(I.getOperand(1)).getValueType(),
3489                          getValue(I.getOperand(1)));
3490   }
3491
3492   setValue(&I, result);
3493 }
3494
3495 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
3496 /// limited-precision mode with x == 10.0f.
3497 void
3498 SelectionDAGBuilder::visitPow(const CallInst &I) {
3499   SDValue result;
3500   const Value *Val = I.getOperand(1);
3501   DebugLoc dl = getCurDebugLoc();
3502   bool IsExp10 = false;
3503
3504   if (getValue(Val).getValueType() == MVT::f32 &&
3505       getValue(I.getOperand(2)).getValueType() == MVT::f32 &&
3506       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3507     if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
3508       if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3509         APFloat Ten(10.0f);
3510         IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
3511       }
3512     }
3513   }
3514
3515   if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3516     SDValue Op = getValue(I.getOperand(2));
3517
3518     // Put the exponent in the right bit position for later addition to the
3519     // final result:
3520     //
3521     //   #define LOG2OF10 3.3219281f
3522     //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
3523     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3524                              getF32Constant(DAG, 0x40549a78));
3525     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3526
3527     //   FractionalPartOfX = x - (float)IntegerPartOfX;
3528     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3529     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3530
3531     //   IntegerPartOfX <<= 23;
3532     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3533                                  DAG.getConstant(23, TLI.getPointerTy()));
3534
3535     if (LimitFloatPrecision <= 6) {
3536       // For floating-point precision of 6:
3537       //
3538       //   twoToFractionalPartOfX =
3539       //     0.997535578f +
3540       //       (0.735607626f + 0.252464424f * x) * x;
3541       //
3542       // error 0.0144103317, which is 6 bits
3543       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3544                                getF32Constant(DAG, 0x3e814304));
3545       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3546                                getF32Constant(DAG, 0x3f3c50c8));
3547       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3548       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3549                                getF32Constant(DAG, 0x3f7f5e7e));
3550       SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
3551       SDValue TwoToFractionalPartOfX =
3552         DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3553
3554       result = DAG.getNode(ISD::BIT_CONVERT, dl,
3555                            MVT::f32, TwoToFractionalPartOfX);
3556     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3557       // For floating-point precision of 12:
3558       //
3559       //   TwoToFractionalPartOfX =
3560       //     0.999892986f +
3561       //       (0.696457318f +
3562       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3563       //
3564       // error 0.000107046256, which is 13 to 14 bits
3565       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3566                                getF32Constant(DAG, 0x3da235e3));
3567       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3568                                getF32Constant(DAG, 0x3e65b8f3));
3569       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3570       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3571                                getF32Constant(DAG, 0x3f324b07));
3572       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3573       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3574                                getF32Constant(DAG, 0x3f7ff8fd));
3575       SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
3576       SDValue TwoToFractionalPartOfX =
3577         DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3578
3579       result = DAG.getNode(ISD::BIT_CONVERT, dl,
3580                            MVT::f32, TwoToFractionalPartOfX);
3581     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3582       // For floating-point precision of 18:
3583       //
3584       //   TwoToFractionalPartOfX =
3585       //     0.999999982f +
3586       //       (0.693148872f +
3587       //         (0.240227044f +
3588       //           (0.554906021e-1f +
3589       //             (0.961591928e-2f +
3590       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3591       // error 2.47208000*10^(-7), which is better than 18 bits
3592       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3593                                getF32Constant(DAG, 0x3924b03e));
3594       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3595                                getF32Constant(DAG, 0x3ab24b87));
3596       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3597       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3598                                getF32Constant(DAG, 0x3c1d8c17));
3599       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3600       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3601                                getF32Constant(DAG, 0x3d634a1d));
3602       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3603       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3604                                getF32Constant(DAG, 0x3e75fe14));
3605       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3606       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3607                                 getF32Constant(DAG, 0x3f317234));
3608       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3609       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3610                                 getF32Constant(DAG, 0x3f800000));
3611       SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
3612       SDValue TwoToFractionalPartOfX =
3613         DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3614
3615       result = DAG.getNode(ISD::BIT_CONVERT, dl,
3616                            MVT::f32, TwoToFractionalPartOfX);
3617     }
3618   } else {
3619     // No special expansion.
3620     result = DAG.getNode(ISD::FPOW, dl,
3621                          getValue(I.getOperand(1)).getValueType(),
3622                          getValue(I.getOperand(1)),
3623                          getValue(I.getOperand(2)));
3624   }
3625
3626   setValue(&I, result);
3627 }
3628
3629
3630 /// ExpandPowI - Expand a llvm.powi intrinsic.
3631 static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
3632                           SelectionDAG &DAG) {
3633   // If RHS is a constant, we can expand this out to a multiplication tree,
3634   // otherwise we end up lowering to a call to __powidf2 (for example).  When
3635   // optimizing for size, we only want to do this if the expansion would produce
3636   // a small number of multiplies, otherwise we do the full expansion.
3637   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3638     // Get the exponent as a positive value.
3639     unsigned Val = RHSC->getSExtValue();
3640     if ((int)Val < 0) Val = -Val;
3641
3642     // powi(x, 0) -> 1.0
3643     if (Val == 0)
3644       return DAG.getConstantFP(1.0, LHS.getValueType());
3645
3646     const Function *F = DAG.getMachineFunction().getFunction();
3647     if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
3648         // If optimizing for size, don't insert too many multiplies.  This
3649         // inserts up to 5 multiplies.
3650         CountPopulation_32(Val)+Log2_32(Val) < 7) {
3651       // We use the simple binary decomposition method to generate the multiply
3652       // sequence.  There are more optimal ways to do this (for example,
3653       // powi(x,15) generates one more multiply than it should), but this has
3654       // the benefit of being both really simple and much better than a libcall.
3655       SDValue Res;  // Logically starts equal to 1.0
3656       SDValue CurSquare = LHS;
3657       while (Val) {
3658         if (Val & 1) {
3659           if (Res.getNode())
3660             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
3661           else
3662             Res = CurSquare;  // 1.0*CurSquare.
3663         }
3664
3665         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
3666                                 CurSquare, CurSquare);
3667         Val >>= 1;
3668       }
3669
3670       // If the original was negative, invert the result, producing 1/(x*x*x).
3671       if (RHSC->getSExtValue() < 0)
3672         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
3673                           DAG.getConstantFP(1.0, LHS.getValueType()), Res);
3674       return Res;
3675     }
3676   }
3677
3678   // Otherwise, expand to a libcall.
3679   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
3680 }
3681
3682 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
3683 /// argument, create the corresponding DBG_VALUE machine instruction for it now.
3684 /// At the end of instruction selection, they will be inserted to the entry BB.
3685 bool
3686 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const DbgValueInst &DI,
3687                                               const Value *V, MDNode *Variable,
3688                                               uint64_t Offset,
3689                                               const SDValue &N) {
3690   if (!isa<Argument>(V))
3691     return false;
3692
3693   MachineFunction &MF = DAG.getMachineFunction();
3694   // Ignore inlined function arguments here.
3695   DIVariable DV(Variable);
3696   if (DV.isInlinedFnArgument(MF.getFunction()))
3697     return false;
3698
3699   MachineBasicBlock *MBB = FuncInfo.MBBMap[DI.getParent()];
3700   if (MBB != &MF.front())
3701     return false;
3702
3703   unsigned Reg = 0;
3704   if (N.getOpcode() == ISD::CopyFromReg) {
3705     Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
3706     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
3707       MachineRegisterInfo &RegInfo = MF.getRegInfo();
3708       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
3709       if (PR)
3710         Reg = PR;
3711     }
3712   }
3713
3714   if (!Reg) {
3715     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
3716     if (VMI == FuncInfo.ValueMap.end())
3717       return false;
3718     Reg = VMI->second;
3719   }
3720
3721   const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
3722   MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
3723                                     TII->get(TargetOpcode::DBG_VALUE))
3724     .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
3725   FuncInfo.ArgDbgValues.push_back(&*MIB);
3726   return true;
3727 }
3728
3729 // VisualStudio defines setjmp as _setjmp
3730 #if defined(_MSC_VER) && defined(setjmp)
3731 #define setjmp_undefined_for_visual_studio
3732 #undef setjmp
3733 #endif
3734
3735 /// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
3736 /// we want to emit this as a call to a named external function, return the name
3737 /// otherwise lower it and return null.
3738 const char *
3739 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
3740   DebugLoc dl = getCurDebugLoc();
3741   SDValue Res;
3742
3743   switch (Intrinsic) {
3744   default:
3745     // By default, turn this into a target intrinsic node.
3746     visitTargetIntrinsic(I, Intrinsic);
3747     return 0;
3748   case Intrinsic::vastart:  visitVAStart(I); return 0;
3749   case Intrinsic::vaend:    visitVAEnd(I); return 0;
3750   case Intrinsic::vacopy:   visitVACopy(I); return 0;
3751   case Intrinsic::returnaddress:
3752     setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
3753                              getValue(I.getOperand(1))));
3754     return 0;
3755   case Intrinsic::frameaddress:
3756     setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
3757                              getValue(I.getOperand(1))));
3758     return 0;
3759   case Intrinsic::setjmp:
3760     return "_setjmp"+!TLI.usesUnderscoreSetJmp();
3761   case Intrinsic::longjmp:
3762     return "_longjmp"+!TLI.usesUnderscoreLongJmp();
3763   case Intrinsic::memcpy: {
3764     // Assert for address < 256 since we support only user defined address
3765     // spaces.
3766     assert(cast<PointerType>(I.getOperand(1)->getType())->getAddressSpace()
3767            < 256 &&
3768            cast<PointerType>(I.getOperand(2)->getType())->getAddressSpace()
3769            < 256 &&
3770            "Unknown address space");
3771     SDValue Op1 = getValue(I.getOperand(1));
3772     SDValue Op2 = getValue(I.getOperand(2));
3773     SDValue Op3 = getValue(I.getOperand(3));
3774     unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3775     bool isVol = cast<ConstantInt>(I.getOperand(5))->getZExtValue();
3776     DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
3777                               I.getOperand(1), 0, I.getOperand(2), 0));
3778     return 0;
3779   }
3780   case Intrinsic::memset: {
3781     // Assert for address < 256 since we support only user defined address
3782     // spaces.
3783     assert(cast<PointerType>(I.getOperand(1)->getType())->getAddressSpace()
3784            < 256 &&
3785            "Unknown address space");
3786     SDValue Op1 = getValue(I.getOperand(1));
3787     SDValue Op2 = getValue(I.getOperand(2));
3788     SDValue Op3 = getValue(I.getOperand(3));
3789     unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3790     bool isVol = cast<ConstantInt>(I.getOperand(5))->getZExtValue();
3791     DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
3792                               I.getOperand(1), 0));
3793     return 0;
3794   }
3795   case Intrinsic::memmove: {
3796     // Assert for address < 256 since we support only user defined address
3797     // spaces.
3798     assert(cast<PointerType>(I.getOperand(1)->getType())->getAddressSpace()
3799            < 256 &&
3800            cast<PointerType>(I.getOperand(2)->getType())->getAddressSpace()
3801            < 256 &&
3802            "Unknown address space");
3803     SDValue Op1 = getValue(I.getOperand(1));
3804     SDValue Op2 = getValue(I.getOperand(2));
3805     SDValue Op3 = getValue(I.getOperand(3));
3806     unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3807     bool isVol = cast<ConstantInt>(I.getOperand(5))->getZExtValue();
3808
3809     // If the source and destination are known to not be aliases, we can
3810     // lower memmove as memcpy.
3811     uint64_t Size = -1ULL;
3812     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
3813       Size = C->getZExtValue();
3814     if (AA->alias(I.getOperand(1), Size, I.getOperand(2), Size) ==
3815         AliasAnalysis::NoAlias) {
3816       DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 
3817                                 false, I.getOperand(1), 0, I.getOperand(2), 0));
3818       return 0;
3819     }
3820
3821     DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
3822                                I.getOperand(1), 0, I.getOperand(2), 0));
3823     return 0;
3824   }
3825   case Intrinsic::dbg_declare: {
3826     const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
3827     if (!DIVariable(DI.getVariable()).Verify())
3828       return 0;
3829
3830     MDNode *Variable = DI.getVariable();
3831     // Parameters are handled specially.
3832     bool isParameter = 
3833       DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable;
3834     const Value *Address = DI.getAddress();
3835     if (!Address)
3836       return 0;
3837     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
3838       Address = BCI->getOperand(0);
3839     const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
3840     if (AI) {
3841       // Don't handle byval arguments or VLAs, for example.
3842       // Non-byval arguments are handled here (they refer to the stack temporary
3843       // alloca at this point).
3844       DenseMap<const AllocaInst*, int>::iterator SI =
3845         FuncInfo.StaticAllocaMap.find(AI);
3846       if (SI == FuncInfo.StaticAllocaMap.end())
3847         return 0; // VLAs.
3848       int FI = SI->second;
3849
3850       MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
3851       if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
3852         MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
3853     }
3854
3855     // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
3856     // but do not always have a corresponding SDNode built.  The SDNodeOrder
3857     // absolute, but not relative, values are different depending on whether
3858     // debug info exists.
3859     ++SDNodeOrder;
3860     SDValue &N = NodeMap[Address];
3861     SDDbgValue *SDV;
3862     if (N.getNode()) {
3863       if (isParameter && !AI) {
3864         FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
3865         if (FINode)
3866           // Byval parameter.  We have a frame index at this point.
3867           SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
3868                                 0, dl, SDNodeOrder);
3869         else
3870           // Can't do anything with other non-AI cases yet.  This might be a
3871           // parameter of a callee function that got inlined, for example.
3872           return 0;
3873       } else if (AI)
3874         SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
3875                               0, dl, SDNodeOrder);
3876       else
3877         // Can't do anything with other non-AI cases yet.
3878         return 0;
3879       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
3880     } else {
3881       // This isn't useful, but it shows what we're missing.
3882       SDV = DAG.getDbgValue(Variable, UndefValue::get(Address->getType()),
3883                             0, dl, SDNodeOrder);
3884       DAG.AddDbgValue(SDV, 0, isParameter);
3885     }
3886     return 0;
3887   }
3888   case Intrinsic::dbg_value: {
3889     const DbgValueInst &DI = cast<DbgValueInst>(I);
3890     if (!DIVariable(DI.getVariable()).Verify())
3891       return 0;
3892
3893     MDNode *Variable = DI.getVariable();
3894     uint64_t Offset = DI.getOffset();
3895     const Value *V = DI.getValue();
3896     if (!V)
3897       return 0;
3898
3899     // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
3900     // but do not always have a corresponding SDNode built.  The SDNodeOrder
3901     // absolute, but not relative, values are different depending on whether
3902     // debug info exists.
3903     ++SDNodeOrder;
3904     SDDbgValue *SDV;
3905     if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) {
3906       SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
3907       DAG.AddDbgValue(SDV, 0, false);
3908     } else {
3909       bool createUndef = false;
3910       // FIXME : Why not use getValue() directly ?
3911       SDValue &N = NodeMap[V];
3912       if (N.getNode()) {
3913         if (!EmitFuncArgumentDbgValue(DI, V, Variable, Offset, N)) {
3914           SDV = DAG.getDbgValue(Variable, N.getNode(),
3915                                 N.getResNo(), Offset, dl, SDNodeOrder);
3916           DAG.AddDbgValue(SDV, N.getNode(), false);
3917         }
3918       } else if (isa<PHINode>(V) && !V->use_empty()) {
3919         SDValue N = getValue(V);
3920         if (N.getNode()) {
3921           if (!EmitFuncArgumentDbgValue(DI, V, Variable, Offset, N)) {
3922             SDV = DAG.getDbgValue(Variable, N.getNode(),
3923                                   N.getResNo(), Offset, dl, SDNodeOrder);
3924             DAG.AddDbgValue(SDV, N.getNode(), false);
3925           }
3926         } else
3927           createUndef = true;
3928       } else
3929         createUndef = true;
3930       if (createUndef) {
3931         // We may expand this to cover more cases.  One case where we have no
3932         // data available is an unreferenced parameter; we need this fallback.
3933         SDV = DAG.getDbgValue(Variable, UndefValue::get(V->getType()),
3934                               Offset, dl, SDNodeOrder);
3935         DAG.AddDbgValue(SDV, 0, false);
3936       }
3937     }
3938
3939     // Build a debug info table entry.
3940     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
3941       V = BCI->getOperand(0);
3942     const AllocaInst *AI = dyn_cast<AllocaInst>(V);
3943     // Don't handle byval struct arguments or VLAs, for example.
3944     if (!AI)
3945       return 0;
3946     DenseMap<const AllocaInst*, int>::iterator SI =
3947       FuncInfo.StaticAllocaMap.find(AI);
3948     if (SI == FuncInfo.StaticAllocaMap.end())
3949       return 0; // VLAs.
3950     int FI = SI->second;
3951     
3952     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
3953     if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
3954       MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
3955     return 0;
3956   }
3957   case Intrinsic::eh_exception: {
3958     // Insert the EXCEPTIONADDR instruction.
3959     assert(FuncInfo.MBBMap[I.getParent()]->isLandingPad() &&
3960            "Call to eh.exception not in landing pad!");
3961     SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
3962     SDValue Ops[1];
3963     Ops[0] = DAG.getRoot();
3964     SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
3965     setValue(&I, Op);
3966     DAG.setRoot(Op.getValue(1));
3967     return 0;
3968   }
3969
3970   case Intrinsic::eh_selector: {
3971     MachineBasicBlock *CallMBB = FuncInfo.MBBMap[I.getParent()];
3972     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
3973     if (CallMBB->isLandingPad())
3974       AddCatchInfo(I, &MMI, CallMBB);
3975     else {
3976 #ifndef NDEBUG
3977       FuncInfo.CatchInfoLost.insert(&I);
3978 #endif
3979       // FIXME: Mark exception selector register as live in.  Hack for PR1508.
3980       unsigned Reg = TLI.getExceptionSelectorRegister();
3981       if (Reg) FuncInfo.MBBMap[I.getParent()]->addLiveIn(Reg);
3982     }
3983
3984     // Insert the EHSELECTION instruction.
3985     SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
3986     SDValue Ops[2];
3987     Ops[0] = getValue(I.getOperand(1));
3988     Ops[1] = getRoot();
3989     SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
3990     DAG.setRoot(Op.getValue(1));
3991     setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32));
3992     return 0;
3993   }
3994
3995   case Intrinsic::eh_typeid_for: {
3996     // Find the type id for the given typeinfo.
3997     GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1));
3998     unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
3999     Res = DAG.getConstant(TypeID, MVT::i32);
4000     setValue(&I, Res);
4001     return 0;
4002   }
4003
4004   case Intrinsic::eh_return_i32:
4005   case Intrinsic::eh_return_i64:
4006     DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4007     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
4008                             MVT::Other,
4009                             getControlRoot(),
4010                             getValue(I.getOperand(1)),
4011                             getValue(I.getOperand(2))));
4012     return 0;
4013   case Intrinsic::eh_unwind_init:
4014     DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4015     return 0;
4016   case Intrinsic::eh_dwarf_cfa: {
4017     EVT VT = getValue(I.getOperand(1)).getValueType();
4018     SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), dl,
4019                                         TLI.getPointerTy());
4020     SDValue Offset = DAG.getNode(ISD::ADD, dl,
4021                                  TLI.getPointerTy(),
4022                                  DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4023                                              TLI.getPointerTy()),
4024                                  CfaArg);
4025     SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4026                              TLI.getPointerTy(),
4027                              DAG.getConstant(0, TLI.getPointerTy()));
4028     setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4029                              FA, Offset));
4030     return 0;
4031   }
4032   case Intrinsic::eh_sjlj_callsite: {
4033     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4034     ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1));
4035     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4036     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4037
4038     MMI.setCurrentCallSite(CI->getZExtValue());
4039     return 0;
4040   }
4041
4042   case Intrinsic::convertff:
4043   case Intrinsic::convertfsi:
4044   case Intrinsic::convertfui:
4045   case Intrinsic::convertsif:
4046   case Intrinsic::convertuif:
4047   case Intrinsic::convertss:
4048   case Intrinsic::convertsu:
4049   case Intrinsic::convertus:
4050   case Intrinsic::convertuu: {
4051     ISD::CvtCode Code = ISD::CVT_INVALID;
4052     switch (Intrinsic) {
4053     case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4054     case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4055     case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4056     case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4057     case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4058     case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4059     case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4060     case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4061     case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4062     }
4063     EVT DestVT = TLI.getValueType(I.getType());
4064     const Value *Op1 = I.getOperand(1);
4065     Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
4066                                DAG.getValueType(DestVT),
4067                                DAG.getValueType(getValue(Op1).getValueType()),
4068                                getValue(I.getOperand(2)),
4069                                getValue(I.getOperand(3)),
4070                                Code);
4071     setValue(&I, Res);
4072     return 0;
4073   }
4074   case Intrinsic::sqrt:
4075     setValue(&I, DAG.getNode(ISD::FSQRT, dl,
4076                              getValue(I.getOperand(1)).getValueType(),
4077                              getValue(I.getOperand(1))));
4078     return 0;
4079   case Intrinsic::powi:
4080     setValue(&I, ExpandPowI(dl, getValue(I.getOperand(1)),
4081                             getValue(I.getOperand(2)), DAG));
4082     return 0;
4083   case Intrinsic::sin:
4084     setValue(&I, DAG.getNode(ISD::FSIN, dl,
4085                              getValue(I.getOperand(1)).getValueType(),
4086                              getValue(I.getOperand(1))));
4087     return 0;
4088   case Intrinsic::cos:
4089     setValue(&I, DAG.getNode(ISD::FCOS, dl,
4090                              getValue(I.getOperand(1)).getValueType(),
4091                              getValue(I.getOperand(1))));
4092     return 0;
4093   case Intrinsic::log:
4094     visitLog(I);
4095     return 0;
4096   case Intrinsic::log2:
4097     visitLog2(I);
4098     return 0;
4099   case Intrinsic::log10:
4100     visitLog10(I);
4101     return 0;
4102   case Intrinsic::exp:
4103     visitExp(I);
4104     return 0;
4105   case Intrinsic::exp2:
4106     visitExp2(I);
4107     return 0;
4108   case Intrinsic::pow:
4109     visitPow(I);
4110     return 0;
4111   case Intrinsic::convert_to_fp16:
4112     setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4113                              MVT::i16, getValue(I.getOperand(1))));
4114     return 0;
4115   case Intrinsic::convert_from_fp16:
4116     setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4117                              MVT::f32, getValue(I.getOperand(1))));
4118     return 0;
4119   case Intrinsic::pcmarker: {
4120     SDValue Tmp = getValue(I.getOperand(1));
4121     DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4122     return 0;
4123   }
4124   case Intrinsic::readcyclecounter: {
4125     SDValue Op = getRoot();
4126     Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4127                       DAG.getVTList(MVT::i64, MVT::Other),
4128                       &Op, 1);
4129     setValue(&I, Res);
4130     DAG.setRoot(Res.getValue(1));
4131     return 0;
4132   }
4133   case Intrinsic::bswap:
4134     setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4135                              getValue(I.getOperand(1)).getValueType(),
4136                              getValue(I.getOperand(1))));
4137     return 0;
4138   case Intrinsic::cttz: {
4139     SDValue Arg = getValue(I.getOperand(1));
4140     EVT Ty = Arg.getValueType();
4141     setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg));
4142     return 0;
4143   }
4144   case Intrinsic::ctlz: {
4145     SDValue Arg = getValue(I.getOperand(1));
4146     EVT Ty = Arg.getValueType();
4147     setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg));
4148     return 0;
4149   }
4150   case Intrinsic::ctpop: {
4151     SDValue Arg = getValue(I.getOperand(1));
4152     EVT Ty = Arg.getValueType();
4153     setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4154     return 0;
4155   }
4156   case Intrinsic::stacksave: {
4157     SDValue Op = getRoot();
4158     Res = DAG.getNode(ISD::STACKSAVE, dl,
4159                       DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4160     setValue(&I, Res);
4161     DAG.setRoot(Res.getValue(1));
4162     return 0;
4163   }
4164   case Intrinsic::stackrestore: {
4165     Res = getValue(I.getOperand(1));
4166     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4167     return 0;
4168   }
4169   case Intrinsic::stackprotector: {
4170     // Emit code into the DAG to store the stack guard onto the stack.
4171     MachineFunction &MF = DAG.getMachineFunction();
4172     MachineFrameInfo *MFI = MF.getFrameInfo();
4173     EVT PtrTy = TLI.getPointerTy();
4174
4175     SDValue Src = getValue(I.getOperand(1));   // The guard's value.
4176     AllocaInst *Slot = cast<AllocaInst>(I.getOperand(2));
4177
4178     int FI = FuncInfo.StaticAllocaMap[Slot];
4179     MFI->setStackProtectorIndex(FI);
4180
4181     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4182
4183     // Store the stack protector onto the stack.
4184     Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
4185                        PseudoSourceValue::getFixedStack(FI),
4186                        0, true, false, 0);
4187     setValue(&I, Res);
4188     DAG.setRoot(Res);
4189     return 0;
4190   }
4191   case Intrinsic::objectsize: {
4192     // If we don't know by now, we're never going to know.
4193     ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(2));
4194
4195     assert(CI && "Non-constant type in __builtin_object_size?");
4196
4197     SDValue Arg = getValue(I.getOperand(0));
4198     EVT Ty = Arg.getValueType();
4199
4200     if (CI->getZExtValue() == 0)
4201       Res = DAG.getConstant(-1ULL, Ty);
4202     else
4203       Res = DAG.getConstant(0, Ty);
4204
4205     setValue(&I, Res);
4206     return 0;
4207   }
4208   case Intrinsic::var_annotation:
4209     // Discard annotate attributes
4210     return 0;
4211
4212   case Intrinsic::init_trampoline: {
4213     const Function *F = cast<Function>(I.getOperand(2)->stripPointerCasts());
4214
4215     SDValue Ops[6];
4216     Ops[0] = getRoot();
4217     Ops[1] = getValue(I.getOperand(1));
4218     Ops[2] = getValue(I.getOperand(2));
4219     Ops[3] = getValue(I.getOperand(3));
4220     Ops[4] = DAG.getSrcValue(I.getOperand(1));
4221     Ops[5] = DAG.getSrcValue(F);
4222
4223     Res = DAG.getNode(ISD::TRAMPOLINE, dl,
4224                       DAG.getVTList(TLI.getPointerTy(), MVT::Other),
4225                       Ops, 6);
4226
4227     setValue(&I, Res);
4228     DAG.setRoot(Res.getValue(1));
4229     return 0;
4230   }
4231   case Intrinsic::gcroot:
4232     if (GFI) {
4233       const Value *Alloca = I.getOperand(1);
4234       const Constant *TypeMap = cast<Constant>(I.getOperand(2));
4235
4236       FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
4237       GFI->addStackRoot(FI->getIndex(), TypeMap);
4238     }
4239     return 0;
4240   case Intrinsic::gcread:
4241   case Intrinsic::gcwrite:
4242     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
4243     return 0;
4244   case Intrinsic::flt_rounds:
4245     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
4246     return 0;
4247   case Intrinsic::trap:
4248     DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
4249     return 0;
4250   case Intrinsic::uadd_with_overflow:
4251     return implVisitAluOverflow(I, ISD::UADDO);
4252   case Intrinsic::sadd_with_overflow:
4253     return implVisitAluOverflow(I, ISD::SADDO);
4254   case Intrinsic::usub_with_overflow:
4255     return implVisitAluOverflow(I, ISD::USUBO);
4256   case Intrinsic::ssub_with_overflow:
4257     return implVisitAluOverflow(I, ISD::SSUBO);
4258   case Intrinsic::umul_with_overflow:
4259     return implVisitAluOverflow(I, ISD::UMULO);
4260   case Intrinsic::smul_with_overflow:
4261     return implVisitAluOverflow(I, ISD::SMULO);
4262
4263   case Intrinsic::prefetch: {
4264     SDValue Ops[4];
4265     Ops[0] = getRoot();
4266     Ops[1] = getValue(I.getOperand(1));
4267     Ops[2] = getValue(I.getOperand(2));
4268     Ops[3] = getValue(I.getOperand(3));
4269     DAG.setRoot(DAG.getNode(ISD::PREFETCH, dl, MVT::Other, &Ops[0], 4));
4270     return 0;
4271   }
4272
4273   case Intrinsic::memory_barrier: {
4274     SDValue Ops[6];
4275     Ops[0] = getRoot();
4276     for (int x = 1; x < 6; ++x)
4277       Ops[x] = getValue(I.getOperand(x));
4278
4279     DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6));
4280     return 0;
4281   }
4282   case Intrinsic::atomic_cmp_swap: {
4283     SDValue Root = getRoot();
4284     SDValue L =
4285       DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(),
4286                     getValue(I.getOperand(2)).getValueType().getSimpleVT(),
4287                     Root,
4288                     getValue(I.getOperand(1)),
4289                     getValue(I.getOperand(2)),
4290                     getValue(I.getOperand(3)),
4291                     I.getOperand(1));
4292     setValue(&I, L);
4293     DAG.setRoot(L.getValue(1));
4294     return 0;
4295   }
4296   case Intrinsic::atomic_load_add:
4297     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
4298   case Intrinsic::atomic_load_sub:
4299     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
4300   case Intrinsic::atomic_load_or:
4301     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
4302   case Intrinsic::atomic_load_xor:
4303     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
4304   case Intrinsic::atomic_load_and:
4305     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
4306   case Intrinsic::atomic_load_nand:
4307     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
4308   case Intrinsic::atomic_load_max:
4309     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
4310   case Intrinsic::atomic_load_min:
4311     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
4312   case Intrinsic::atomic_load_umin:
4313     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
4314   case Intrinsic::atomic_load_umax:
4315     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
4316   case Intrinsic::atomic_swap:
4317     return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
4318
4319   case Intrinsic::invariant_start:
4320   case Intrinsic::lifetime_start:
4321     // Discard region information.
4322     setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
4323     return 0;
4324   case Intrinsic::invariant_end:
4325   case Intrinsic::lifetime_end:
4326     // Discard region information.
4327     return 0;
4328   }
4329 }
4330
4331 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
4332                                       bool isTailCall,
4333                                       MachineBasicBlock *LandingPad) {
4334   const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
4335   const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
4336   const Type *RetTy = FTy->getReturnType();
4337   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4338   MCSymbol *BeginLabel = 0;
4339
4340   TargetLowering::ArgListTy Args;
4341   TargetLowering::ArgListEntry Entry;
4342   Args.reserve(CS.arg_size());
4343
4344   // Check whether the function can return without sret-demotion.
4345   SmallVector<EVT, 4> OutVTs;
4346   SmallVector<ISD::ArgFlagsTy, 4> OutsFlags;
4347   SmallVector<uint64_t, 4> Offsets;
4348   getReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
4349                 OutVTs, OutsFlags, TLI, &Offsets);
4350
4351   bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
4352                         FTy->isVarArg(), OutVTs, OutsFlags, DAG);
4353
4354   SDValue DemoteStackSlot;
4355
4356   if (!CanLowerReturn) {
4357     uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
4358                       FTy->getReturnType());
4359     unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
4360                       FTy->getReturnType());
4361     MachineFunction &MF = DAG.getMachineFunction();
4362     int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
4363     const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
4364
4365     DemoteStackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
4366     Entry.Node = DemoteStackSlot;
4367     Entry.Ty = StackSlotPtrType;
4368     Entry.isSExt = false;
4369     Entry.isZExt = false;
4370     Entry.isInReg = false;
4371     Entry.isSRet = true;
4372     Entry.isNest = false;
4373     Entry.isByVal = false;
4374     Entry.Alignment = Align;
4375     Args.push_back(Entry);
4376     RetTy = Type::getVoidTy(FTy->getContext());
4377   }
4378
4379   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
4380        i != e; ++i) {
4381     SDValue ArgNode = getValue(*i);
4382     Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
4383
4384     unsigned attrInd = i - CS.arg_begin() + 1;
4385     Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
4386     Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
4387     Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
4388     Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
4389     Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
4390     Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
4391     Entry.Alignment = CS.getParamAlignment(attrInd);
4392     Args.push_back(Entry);
4393   }
4394
4395   if (LandingPad) {
4396     // Insert a label before the invoke call to mark the try range.  This can be
4397     // used to detect deletion of the invoke via the MachineModuleInfo.
4398     BeginLabel = MMI.getContext().CreateTempSymbol();
4399
4400     // For SjLj, keep track of which landing pads go with which invokes
4401     // so as to maintain the ordering of pads in the LSDA.
4402     unsigned CallSiteIndex = MMI.getCurrentCallSite();
4403     if (CallSiteIndex) {
4404       MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
4405       // Now that the call site is handled, stop tracking it.
4406       MMI.setCurrentCallSite(0);
4407     }
4408
4409     // Both PendingLoads and PendingExports must be flushed here;
4410     // this call might not return.
4411     (void)getRoot();
4412     DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
4413   }
4414
4415   // Check if target-independent constraints permit a tail call here.
4416   // Target-dependent constraints are checked within TLI.LowerCallTo.
4417   if (isTailCall &&
4418       !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
4419     isTailCall = false;
4420
4421   std::pair<SDValue,SDValue> Result =
4422     TLI.LowerCallTo(getRoot(), RetTy,
4423                     CS.paramHasAttr(0, Attribute::SExt),
4424                     CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
4425                     CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
4426                     CS.getCallingConv(),
4427                     isTailCall,
4428                     !CS.getInstruction()->use_empty(),
4429                     Callee, Args, DAG, getCurDebugLoc());
4430   assert((isTailCall || Result.second.getNode()) &&
4431          "Non-null chain expected with non-tail call!");
4432   assert((Result.second.getNode() || !Result.first.getNode()) &&
4433          "Null value expected with tail call!");
4434   if (Result.first.getNode()) {
4435     setValue(CS.getInstruction(), Result.first);
4436   } else if (!CanLowerReturn && Result.second.getNode()) {
4437     // The instruction result is the result of loading from the
4438     // hidden sret parameter.
4439     SmallVector<EVT, 1> PVTs;
4440     const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
4441
4442     ComputeValueVTs(TLI, PtrRetTy, PVTs);
4443     assert(PVTs.size() == 1 && "Pointers should fit in one register");
4444     EVT PtrVT = PVTs[0];
4445     unsigned NumValues = OutVTs.size();
4446     SmallVector<SDValue, 4> Values(NumValues);
4447     SmallVector<SDValue, 4> Chains(NumValues);
4448
4449     for (unsigned i = 0; i < NumValues; ++i) {
4450       SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
4451                                 DemoteStackSlot,
4452                                 DAG.getConstant(Offsets[i], PtrVT));
4453       SDValue L = DAG.getLoad(OutVTs[i], getCurDebugLoc(), Result.second,
4454                               Add, NULL, Offsets[i], false, false, 1);
4455       Values[i] = L;
4456       Chains[i] = L.getValue(1);
4457     }
4458
4459     SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
4460                                 MVT::Other, &Chains[0], NumValues);
4461     PendingLoads.push_back(Chain);
4462     
4463     // Collect the legal value parts into potentially illegal values
4464     // that correspond to the original function's return values.
4465     SmallVector<EVT, 4> RetTys;
4466     RetTy = FTy->getReturnType();
4467     ComputeValueVTs(TLI, RetTy, RetTys);
4468     ISD::NodeType AssertOp = ISD::DELETED_NODE;
4469     SmallVector<SDValue, 4> ReturnValues;
4470     unsigned CurReg = 0;
4471     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
4472       EVT VT = RetTys[I];
4473       EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
4474       unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
4475   
4476       SDValue ReturnValue =
4477         getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs,
4478                          RegisterVT, VT, AssertOp);
4479       ReturnValues.push_back(ReturnValue);
4480       CurReg += NumRegs;
4481     }
4482
4483     setValue(CS.getInstruction(),
4484              DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
4485                          DAG.getVTList(&RetTys[0], RetTys.size()),
4486                          &ReturnValues[0], ReturnValues.size()));
4487
4488   }
4489
4490   // As a special case, a null chain means that a tail call has been emitted and
4491   // the DAG root is already updated.
4492   if (Result.second.getNode())
4493     DAG.setRoot(Result.second);
4494   else
4495     HasTailCall = true;
4496
4497   if (LandingPad) {
4498     // Insert a label at the end of the invoke call to mark the try range.  This
4499     // can be used to detect deletion of the invoke via the MachineModuleInfo.
4500     MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
4501     DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
4502
4503     // Inform MachineModuleInfo of range.
4504     MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
4505   }
4506 }
4507
4508 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
4509 /// value is equal or not-equal to zero.
4510 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
4511   for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
4512        UI != E; ++UI) {
4513     if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
4514       if (IC->isEquality())
4515         if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
4516           if (C->isNullValue())
4517             continue;
4518     // Unknown instruction.
4519     return false;
4520   }
4521   return true;
4522 }
4523
4524 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
4525                              const Type *LoadTy,
4526                              SelectionDAGBuilder &Builder) {
4527
4528   // Check to see if this load can be trivially constant folded, e.g. if the
4529   // input is from a string literal.
4530   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
4531     // Cast pointer to the type we really want to load.
4532     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
4533                                          PointerType::getUnqual(LoadTy));
4534
4535     if (const Constant *LoadCst =
4536           ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
4537                                        Builder.TD))
4538       return Builder.getValue(LoadCst);
4539   }
4540
4541   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
4542   // still constant memory, the input chain can be the entry node.
4543   SDValue Root;
4544   bool ConstantMemory = false;
4545
4546   // Do not serialize (non-volatile) loads of constant memory with anything.
4547   if (Builder.AA->pointsToConstantMemory(PtrVal)) {
4548     Root = Builder.DAG.getEntryNode();
4549     ConstantMemory = true;
4550   } else {
4551     // Do not serialize non-volatile loads against each other.
4552     Root = Builder.DAG.getRoot();
4553   }
4554
4555   SDValue Ptr = Builder.getValue(PtrVal);
4556   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
4557                                         Ptr, PtrVal /*SrcValue*/, 0/*SVOffset*/,
4558                                         false /*volatile*/,
4559                                         false /*nontemporal*/, 1 /* align=1 */);
4560
4561   if (!ConstantMemory)
4562     Builder.PendingLoads.push_back(LoadVal.getValue(1));
4563   return LoadVal;
4564 }
4565
4566
4567 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
4568 /// If so, return true and lower it, otherwise return false and it will be
4569 /// lowered like a normal call.
4570 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
4571   // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
4572   if (I.getNumOperands() != 4)
4573     return false;
4574
4575   const Value *LHS = I.getOperand(1), *RHS = I.getOperand(2);
4576   if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
4577       !I.getOperand(3)->getType()->isIntegerTy() ||
4578       !I.getType()->isIntegerTy())
4579     return false;
4580
4581   const ConstantInt *Size = dyn_cast<ConstantInt>(I.getOperand(3));
4582
4583   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
4584   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
4585   if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
4586     bool ActuallyDoIt = true;
4587     MVT LoadVT;
4588     const Type *LoadTy;
4589     switch (Size->getZExtValue()) {
4590     default:
4591       LoadVT = MVT::Other;
4592       LoadTy = 0;
4593       ActuallyDoIt = false;
4594       break;
4595     case 2:
4596       LoadVT = MVT::i16;
4597       LoadTy = Type::getInt16Ty(Size->getContext());
4598       break;
4599     case 4:
4600       LoadVT = MVT::i32;
4601       LoadTy = Type::getInt32Ty(Size->getContext());
4602       break;
4603     case 8:
4604       LoadVT = MVT::i64;
4605       LoadTy = Type::getInt64Ty(Size->getContext());
4606       break;
4607         /*
4608     case 16:
4609       LoadVT = MVT::v4i32;
4610       LoadTy = Type::getInt32Ty(Size->getContext());
4611       LoadTy = VectorType::get(LoadTy, 4);
4612       break;
4613          */
4614     }
4615
4616     // This turns into unaligned loads.  We only do this if the target natively
4617     // supports the MVT we'll be loading or if it is small enough (<= 4) that
4618     // we'll only produce a small number of byte loads.
4619
4620     // Require that we can find a legal MVT, and only do this if the target
4621     // supports unaligned loads of that type.  Expanding into byte loads would
4622     // bloat the code.
4623     if (ActuallyDoIt && Size->getZExtValue() > 4) {
4624       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
4625       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
4626       if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
4627         ActuallyDoIt = false;
4628     }
4629
4630     if (ActuallyDoIt) {
4631       SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
4632       SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
4633
4634       SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
4635                                  ISD::SETNE);
4636       EVT CallVT = TLI.getValueType(I.getType(), true);
4637       setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
4638       return true;
4639     }
4640   }
4641
4642
4643   return false;
4644 }
4645
4646
4647 void SelectionDAGBuilder::visitCall(const CallInst &I) {
4648   const char *RenameFn = 0;
4649   if (Function *F = I.getCalledFunction()) {
4650     if (F->isDeclaration()) {
4651       const TargetIntrinsicInfo *II = TM.getIntrinsicInfo();
4652       if (II) {
4653         if (unsigned IID = II->getIntrinsicID(F)) {
4654           RenameFn = visitIntrinsicCall(I, IID);
4655           if (!RenameFn)
4656             return;
4657         }
4658       }
4659       if (unsigned IID = F->getIntrinsicID()) {
4660         RenameFn = visitIntrinsicCall(I, IID);
4661         if (!RenameFn)
4662           return;
4663       }
4664     }
4665
4666     // Check for well-known libc/libm calls.  If the function is internal, it
4667     // can't be a library call.
4668     if (!F->hasLocalLinkage() && F->hasName()) {
4669       StringRef Name = F->getName();
4670       if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") {
4671         if (I.getNumOperands() == 3 &&   // Basic sanity checks.
4672             I.getOperand(1)->getType()->isFloatingPointTy() &&
4673             I.getType() == I.getOperand(1)->getType() &&
4674             I.getType() == I.getOperand(2)->getType()) {
4675           SDValue LHS = getValue(I.getOperand(1));
4676           SDValue RHS = getValue(I.getOperand(2));
4677           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
4678                                    LHS.getValueType(), LHS, RHS));
4679           return;
4680         }
4681       } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") {
4682         if (I.getNumOperands() == 2 &&   // Basic sanity checks.
4683             I.getOperand(1)->getType()->isFloatingPointTy() &&
4684             I.getType() == I.getOperand(1)->getType()) {
4685           SDValue Tmp = getValue(I.getOperand(1));
4686           setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
4687                                    Tmp.getValueType(), Tmp));
4688           return;
4689         }
4690       } else if (Name == "sin" || Name == "sinf" || Name == "sinl") {
4691         if (I.getNumOperands() == 2 &&   // Basic sanity checks.
4692             I.getOperand(1)->getType()->isFloatingPointTy() &&
4693             I.getType() == I.getOperand(1)->getType() &&
4694             I.onlyReadsMemory()) {
4695           SDValue Tmp = getValue(I.getOperand(1));
4696           setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
4697                                    Tmp.getValueType(), Tmp));
4698           return;
4699         }
4700       } else if (Name == "cos" || Name == "cosf" || Name == "cosl") {
4701         if (I.getNumOperands() == 2 &&   // Basic sanity checks.
4702             I.getOperand(1)->getType()->isFloatingPointTy() &&
4703             I.getType() == I.getOperand(1)->getType() &&
4704             I.onlyReadsMemory()) {
4705           SDValue Tmp = getValue(I.getOperand(1));
4706           setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
4707                                    Tmp.getValueType(), Tmp));
4708           return;
4709         }
4710       } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") {
4711         if (I.getNumOperands() == 2 &&   // Basic sanity checks.
4712             I.getOperand(1)->getType()->isFloatingPointTy() &&
4713             I.getType() == I.getOperand(1)->getType() &&
4714             I.onlyReadsMemory()) {
4715           SDValue Tmp = getValue(I.getOperand(1));
4716           setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
4717                                    Tmp.getValueType(), Tmp));
4718           return;
4719         }
4720       } else if (Name == "memcmp") {
4721         if (visitMemCmpCall(I))
4722           return;
4723       }
4724     }
4725   } else if (isa<InlineAsm>(I.getOperand(0))) {
4726     visitInlineAsm(&I);
4727     return;
4728   }
4729
4730   SDValue Callee;
4731   if (!RenameFn)
4732     Callee = getValue(I.getOperand(0));
4733   else
4734     Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
4735
4736   // Check if we can potentially perform a tail call. More detailed checking is
4737   // be done within LowerCallTo, after more information about the call is known.
4738   LowerCallTo(&I, Callee, I.isTailCall());
4739 }
4740
4741 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
4742 /// this value and returns the result as a ValueVT value.  This uses
4743 /// Chain/Flag as the input and updates them for the output Chain/Flag.
4744 /// If the Flag pointer is NULL, no flag is used.
4745 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl,
4746                                       SDValue &Chain, SDValue *Flag) const {
4747   // Assemble the legal parts into the final values.
4748   SmallVector<SDValue, 4> Values(ValueVTs.size());
4749   SmallVector<SDValue, 8> Parts;
4750   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
4751     // Copy the legal parts from the registers.
4752     EVT ValueVT = ValueVTs[Value];
4753     unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVT);
4754     EVT RegisterVT = RegVTs[Value];
4755
4756     Parts.resize(NumRegs);
4757     for (unsigned i = 0; i != NumRegs; ++i) {
4758       SDValue P;
4759       if (Flag == 0) {
4760         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
4761       } else {
4762         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
4763         *Flag = P.getValue(2);
4764       }
4765
4766       Chain = P.getValue(1);
4767
4768       // If the source register was virtual and if we know something about it,
4769       // add an assert node.
4770       if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) &&
4771           RegisterVT.isInteger() && !RegisterVT.isVector()) {
4772         unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister;
4773         FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
4774         if (FLI.LiveOutRegInfo.size() > SlotNo) {
4775           FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[SlotNo];
4776
4777           unsigned RegSize = RegisterVT.getSizeInBits();
4778           unsigned NumSignBits = LOI.NumSignBits;
4779           unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes();
4780
4781           // FIXME: We capture more information than the dag can represent.  For
4782           // now, just use the tightest assertzext/assertsext possible.
4783           bool isSExt = true;
4784           EVT FromVT(MVT::Other);
4785           if (NumSignBits == RegSize)
4786             isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
4787           else if (NumZeroBits >= RegSize-1)
4788             isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
4789           else if (NumSignBits > RegSize-8)
4790             isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
4791           else if (NumZeroBits >= RegSize-8)
4792             isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
4793           else if (NumSignBits > RegSize-16)
4794             isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
4795           else if (NumZeroBits >= RegSize-16)
4796             isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
4797           else if (NumSignBits > RegSize-32)
4798             isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
4799           else if (NumZeroBits >= RegSize-32)
4800             isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
4801
4802           if (FromVT != MVT::Other)
4803             P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
4804                             RegisterVT, P, DAG.getValueType(FromVT));
4805         }
4806       }
4807
4808       Parts[i] = P;
4809     }
4810
4811     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
4812                                      NumRegs, RegisterVT, ValueVT);
4813     Part += NumRegs;
4814     Parts.clear();
4815   }
4816
4817   return DAG.getNode(ISD::MERGE_VALUES, dl,
4818                      DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
4819                      &Values[0], ValueVTs.size());
4820 }
4821
4822 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
4823 /// specified value into the registers specified by this object.  This uses
4824 /// Chain/Flag as the input and updates them for the output Chain/Flag.
4825 /// If the Flag pointer is NULL, no flag is used.
4826 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
4827                                  SDValue &Chain, SDValue *Flag) const {
4828   // Get the list of the values's legal parts.
4829   unsigned NumRegs = Regs.size();
4830   SmallVector<SDValue, 8> Parts(NumRegs);
4831   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
4832     EVT ValueVT = ValueVTs[Value];
4833     unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), ValueVT);
4834     EVT RegisterVT = RegVTs[Value];
4835
4836     getCopyToParts(DAG, dl,
4837                    Val.getValue(Val.getResNo() + Value),
4838                    &Parts[Part], NumParts, RegisterVT);
4839     Part += NumParts;
4840   }
4841
4842   // Copy the parts into the registers.
4843   SmallVector<SDValue, 8> Chains(NumRegs);
4844   for (unsigned i = 0; i != NumRegs; ++i) {
4845     SDValue Part;
4846     if (Flag == 0) {
4847       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
4848     } else {
4849       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
4850       *Flag = Part.getValue(1);
4851     }
4852
4853     Chains[i] = Part.getValue(0);
4854   }
4855
4856   if (NumRegs == 1 || Flag)
4857     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
4858     // flagged to it. That is the CopyToReg nodes and the user are considered
4859     // a single scheduling unit. If we create a TokenFactor and return it as
4860     // chain, then the TokenFactor is both a predecessor (operand) of the
4861     // user as well as a successor (the TF operands are flagged to the user).
4862     // c1, f1 = CopyToReg
4863     // c2, f2 = CopyToReg
4864     // c3     = TokenFactor c1, c2
4865     // ...
4866     //        = op c3, ..., f2
4867     Chain = Chains[NumRegs-1];
4868   else
4869     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
4870 }
4871
4872 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
4873 /// operand list.  This adds the code marker and includes the number of
4874 /// values added into it.
4875 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
4876                                         unsigned MatchingIdx,
4877                                         SelectionDAG &DAG,
4878                                         std::vector<SDValue> &Ops) const {
4879   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
4880   if (HasMatching)
4881     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
4882   SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
4883   Ops.push_back(Res);
4884
4885   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
4886     unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
4887     EVT RegisterVT = RegVTs[Value];
4888     for (unsigned i = 0; i != NumRegs; ++i) {
4889       assert(Reg < Regs.size() && "Mismatch in # registers expected");
4890       Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
4891     }
4892   }
4893 }
4894
4895 /// isAllocatableRegister - If the specified register is safe to allocate,
4896 /// i.e. it isn't a stack pointer or some other special register, return the
4897 /// register class for the register.  Otherwise, return null.
4898 static const TargetRegisterClass *
4899 isAllocatableRegister(unsigned Reg, MachineFunction &MF,
4900                       const TargetLowering &TLI,
4901                       const TargetRegisterInfo *TRI) {
4902   EVT FoundVT = MVT::Other;
4903   const TargetRegisterClass *FoundRC = 0;
4904   for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
4905        E = TRI->regclass_end(); RCI != E; ++RCI) {
4906     EVT ThisVT = MVT::Other;
4907
4908     const TargetRegisterClass *RC = *RCI;
4909     // If none of the value types for this register class are valid, we
4910     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
4911     for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
4912          I != E; ++I) {
4913       if (TLI.isTypeLegal(*I)) {
4914         // If we have already found this register in a different register class,
4915         // choose the one with the largest VT specified.  For example, on
4916         // PowerPC, we favor f64 register classes over f32.
4917         if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) {
4918           ThisVT = *I;
4919           break;
4920         }
4921       }
4922     }
4923
4924     if (ThisVT == MVT::Other) continue;
4925
4926     // NOTE: This isn't ideal.  In particular, this might allocate the
4927     // frame pointer in functions that need it (due to them not being taken
4928     // out of allocation, because a variable sized allocation hasn't been seen
4929     // yet).  This is a slight code pessimization, but should still work.
4930     for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
4931          E = RC->allocation_order_end(MF); I != E; ++I)
4932       if (*I == Reg) {
4933         // We found a matching register class.  Keep looking at others in case
4934         // we find one with larger registers that this physreg is also in.
4935         FoundRC = RC;
4936         FoundVT = ThisVT;
4937         break;
4938       }
4939   }
4940   return FoundRC;
4941 }
4942
4943
4944 namespace llvm {
4945 /// AsmOperandInfo - This contains information for each constraint that we are
4946 /// lowering.
4947 class VISIBILITY_HIDDEN SDISelAsmOperandInfo :
4948     public TargetLowering::AsmOperandInfo {
4949 public:
4950   /// CallOperand - If this is the result output operand or a clobber
4951   /// this is null, otherwise it is the incoming operand to the CallInst.
4952   /// This gets modified as the asm is processed.
4953   SDValue CallOperand;
4954
4955   /// AssignedRegs - If this is a register or register class operand, this
4956   /// contains the set of register corresponding to the operand.
4957   RegsForValue AssignedRegs;
4958
4959   explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info)
4960     : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
4961   }
4962
4963   /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
4964   /// busy in OutputRegs/InputRegs.
4965   void MarkAllocatedRegs(bool isOutReg, bool isInReg,
4966                          std::set<unsigned> &OutputRegs,
4967                          std::set<unsigned> &InputRegs,
4968                          const TargetRegisterInfo &TRI) const {
4969     if (isOutReg) {
4970       for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
4971         MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
4972     }
4973     if (isInReg) {
4974       for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
4975         MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
4976     }
4977   }
4978
4979   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
4980   /// corresponds to.  If there is no Value* for this operand, it returns
4981   /// MVT::Other.
4982   EVT getCallOperandValEVT(LLVMContext &Context,
4983                            const TargetLowering &TLI,
4984                            const TargetData *TD) const {
4985     if (CallOperandVal == 0) return MVT::Other;
4986
4987     if (isa<BasicBlock>(CallOperandVal))
4988       return TLI.getPointerTy();
4989
4990     const llvm::Type *OpTy = CallOperandVal->getType();
4991
4992     // If this is an indirect operand, the operand is a pointer to the
4993     // accessed type.
4994     if (isIndirect) {
4995       const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
4996       if (!PtrTy)
4997         report_fatal_error("Indirect operand for inline asm not a pointer!");
4998       OpTy = PtrTy->getElementType();
4999     }
5000
5001     // If OpTy is not a single value, it may be a struct/union that we
5002     // can tile with integers.
5003     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5004       unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5005       switch (BitSize) {
5006       default: break;
5007       case 1:
5008       case 8:
5009       case 16:
5010       case 32:
5011       case 64:
5012       case 128:
5013         OpTy = IntegerType::get(Context, BitSize);
5014         break;
5015       }
5016     }
5017
5018     return TLI.getValueType(OpTy, true);
5019   }
5020
5021 private:
5022   /// MarkRegAndAliases - Mark the specified register and all aliases in the
5023   /// specified set.
5024   static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
5025                                 const TargetRegisterInfo &TRI) {
5026     assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
5027     Regs.insert(Reg);
5028     if (const unsigned *Aliases = TRI.getAliasSet(Reg))
5029       for (; *Aliases; ++Aliases)
5030         Regs.insert(*Aliases);
5031   }
5032 };
5033 } // end llvm namespace.
5034
5035
5036 /// GetRegistersForValue - Assign registers (virtual or physical) for the
5037 /// specified operand.  We prefer to assign virtual registers, to allow the
5038 /// register allocator to handle the assignment process.  However, if the asm
5039 /// uses features that we can't model on machineinstrs, we have SDISel do the
5040 /// allocation.  This produces generally horrible, but correct, code.
5041 ///
5042 ///   OpInfo describes the operand.
5043 ///   Input and OutputRegs are the set of already allocated physical registers.
5044 ///
5045 void SelectionDAGBuilder::
5046 GetRegistersForValue(SDISelAsmOperandInfo &OpInfo,
5047                      std::set<unsigned> &OutputRegs,
5048                      std::set<unsigned> &InputRegs) {
5049   LLVMContext &Context = FuncInfo.Fn->getContext();
5050
5051   // Compute whether this value requires an input register, an output register,
5052   // or both.
5053   bool isOutReg = false;
5054   bool isInReg = false;
5055   switch (OpInfo.Type) {
5056   case InlineAsm::isOutput:
5057     isOutReg = true;
5058
5059     // If there is an input constraint that matches this, we need to reserve
5060     // the input register so no other inputs allocate to it.
5061     isInReg = OpInfo.hasMatchingInput();
5062     break;
5063   case InlineAsm::isInput:
5064     isInReg = true;
5065     isOutReg = false;
5066     break;
5067   case InlineAsm::isClobber:
5068     isOutReg = true;
5069     isInReg = true;
5070     break;
5071   }
5072
5073
5074   MachineFunction &MF = DAG.getMachineFunction();
5075   SmallVector<unsigned, 4> Regs;
5076
5077   // If this is a constraint for a single physreg, or a constraint for a
5078   // register class, find it.
5079   std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5080     TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5081                                      OpInfo.ConstraintVT);
5082
5083   unsigned NumRegs = 1;
5084   if (OpInfo.ConstraintVT != MVT::Other) {
5085     // If this is a FP input in an integer register (or visa versa) insert a bit
5086     // cast of the input value.  More generally, handle any case where the input
5087     // value disagrees with the register class we plan to stick this in.
5088     if (OpInfo.Type == InlineAsm::isInput &&
5089         PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5090       // Try to convert to the first EVT that the reg class contains.  If the
5091       // types are identical size, use a bitcast to convert (e.g. two differing
5092       // vector types).
5093       EVT RegVT = *PhysReg.second->vt_begin();
5094       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5095         OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5096                                          RegVT, OpInfo.CallOperand);
5097         OpInfo.ConstraintVT = RegVT;
5098       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5099         // If the input is a FP value and we want it in FP registers, do a
5100         // bitcast to the corresponding integer type.  This turns an f64 value
5101         // into i64, which can be passed with two i32 values on a 32-bit
5102         // machine.
5103         RegVT = EVT::getIntegerVT(Context,
5104                                   OpInfo.ConstraintVT.getSizeInBits());
5105         OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5106                                          RegVT, OpInfo.CallOperand);
5107         OpInfo.ConstraintVT = RegVT;
5108       }
5109     }
5110
5111     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5112   }
5113
5114   EVT RegVT;
5115   EVT ValueVT = OpInfo.ConstraintVT;
5116
5117   // If this is a constraint for a specific physical register, like {r17},
5118   // assign it now.
5119   if (unsigned AssignedReg = PhysReg.first) {
5120     const TargetRegisterClass *RC = PhysReg.second;
5121     if (OpInfo.ConstraintVT == MVT::Other)
5122       ValueVT = *RC->vt_begin();
5123
5124     // Get the actual register value type.  This is important, because the user
5125     // may have asked for (e.g.) the AX register in i32 type.  We need to
5126     // remember that AX is actually i16 to get the right extension.
5127     RegVT = *RC->vt_begin();
5128
5129     // This is a explicit reference to a physical register.
5130     Regs.push_back(AssignedReg);
5131
5132     // If this is an expanded reference, add the rest of the regs to Regs.
5133     if (NumRegs != 1) {
5134       TargetRegisterClass::iterator I = RC->begin();
5135       for (; *I != AssignedReg; ++I)
5136         assert(I != RC->end() && "Didn't find reg!");
5137
5138       // Already added the first reg.
5139       --NumRegs; ++I;
5140       for (; NumRegs; --NumRegs, ++I) {
5141         assert(I != RC->end() && "Ran out of registers to allocate!");
5142         Regs.push_back(*I);
5143       }
5144     }
5145
5146     OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
5147     const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5148     OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5149     return;
5150   }
5151
5152   // Otherwise, if this was a reference to an LLVM register class, create vregs
5153   // for this reference.
5154   if (const TargetRegisterClass *RC = PhysReg.second) {
5155     RegVT = *RC->vt_begin();
5156     if (OpInfo.ConstraintVT == MVT::Other)
5157       ValueVT = RegVT;
5158
5159     // Create the appropriate number of virtual registers.
5160     MachineRegisterInfo &RegInfo = MF.getRegInfo();
5161     for (; NumRegs; --NumRegs)
5162       Regs.push_back(RegInfo.createVirtualRegister(RC));
5163
5164     OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
5165     return;
5166   }
5167
5168   // This is a reference to a register class that doesn't directly correspond
5169   // to an LLVM register class.  Allocate NumRegs consecutive, available,
5170   // registers from the class.
5171   std::vector<unsigned> RegClassRegs
5172     = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
5173                                             OpInfo.ConstraintVT);
5174
5175   const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5176   unsigned NumAllocated = 0;
5177   for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
5178     unsigned Reg = RegClassRegs[i];
5179     // See if this register is available.
5180     if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
5181         (isInReg  && InputRegs.count(Reg))) {    // Already used.
5182       // Make sure we find consecutive registers.
5183       NumAllocated = 0;
5184       continue;
5185     }
5186
5187     // Check to see if this register is allocatable (i.e. don't give out the
5188     // stack pointer).
5189     const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI);
5190     if (!RC) {        // Couldn't allocate this register.
5191       // Reset NumAllocated to make sure we return consecutive registers.
5192       NumAllocated = 0;
5193       continue;
5194     }
5195
5196     // Okay, this register is good, we can use it.
5197     ++NumAllocated;
5198
5199     // If we allocated enough consecutive registers, succeed.
5200     if (NumAllocated == NumRegs) {
5201       unsigned RegStart = (i-NumAllocated)+1;
5202       unsigned RegEnd   = i+1;
5203       // Mark all of the allocated registers used.
5204       for (unsigned i = RegStart; i != RegEnd; ++i)
5205         Regs.push_back(RegClassRegs[i]);
5206
5207       OpInfo.AssignedRegs = RegsForValue(TLI, Regs, *RC->vt_begin(),
5208                                          OpInfo.ConstraintVT);
5209       OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5210       return;
5211     }
5212   }
5213
5214   // Otherwise, we couldn't allocate enough registers for this.
5215 }
5216
5217 /// visitInlineAsm - Handle a call to an InlineAsm object.
5218 ///
5219 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5220   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5221
5222   /// ConstraintOperands - Information about all of the constraints.
5223   std::vector<SDISelAsmOperandInfo> ConstraintOperands;
5224
5225   std::set<unsigned> OutputRegs, InputRegs;
5226
5227   // Do a prepass over the constraints, canonicalizing them, and building up the
5228   // ConstraintOperands list.
5229   std::vector<InlineAsm::ConstraintInfo>
5230     ConstraintInfos = IA->ParseConstraints();
5231
5232   bool hasMemory = hasInlineAsmMemConstraint(ConstraintInfos, TLI);
5233
5234   SDValue Chain, Flag;
5235
5236   // We won't need to flush pending loads if this asm doesn't touch
5237   // memory and is nonvolatile.
5238   if (hasMemory || IA->hasSideEffects())
5239     Chain = getRoot();
5240   else
5241     Chain = DAG.getRoot();
5242
5243   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5244   unsigned ResNo = 0;   // ResNo - The result number of the next output.
5245   for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
5246     ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i]));
5247     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5248
5249     EVT OpVT = MVT::Other;
5250
5251     // Compute the value type for each operand.
5252     switch (OpInfo.Type) {
5253     case InlineAsm::isOutput:
5254       // Indirect outputs just consume an argument.
5255       if (OpInfo.isIndirect) {
5256         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5257         break;
5258       }
5259
5260       // The return value of the call is this value.  As such, there is no
5261       // corresponding argument.
5262       assert(!CS.getType()->isVoidTy() &&
5263              "Bad inline asm!");
5264       if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
5265         OpVT = TLI.getValueType(STy->getElementType(ResNo));
5266       } else {
5267         assert(ResNo == 0 && "Asm only has one result!");
5268         OpVT = TLI.getValueType(CS.getType());
5269       }
5270       ++ResNo;
5271       break;
5272     case InlineAsm::isInput:
5273       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5274       break;
5275     case InlineAsm::isClobber:
5276       // Nothing to do.
5277       break;
5278     }
5279
5280     // If this is an input or an indirect output, process the call argument.
5281     // BasicBlocks are labels, currently appearing only in asm's.
5282     if (OpInfo.CallOperandVal) {
5283       // Strip bitcasts, if any.  This mostly comes up for functions.
5284       OpInfo.CallOperandVal = OpInfo.CallOperandVal->stripPointerCasts();
5285
5286       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5287         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5288       } else {
5289         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5290       }
5291
5292       OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5293     }
5294
5295     OpInfo.ConstraintVT = OpVT;
5296   }
5297
5298   // Second pass over the constraints: compute which constraint option to use
5299   // and assign registers to constraints that want a specific physreg.
5300   for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
5301     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5302
5303     // If this is an output operand with a matching input operand, look up the
5304     // matching input. If their types mismatch, e.g. one is an integer, the
5305     // other is floating point, or their sizes are different, flag it as an
5306     // error.
5307     if (OpInfo.hasMatchingInput()) {
5308       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5309       
5310       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5311         if ((OpInfo.ConstraintVT.isInteger() !=
5312              Input.ConstraintVT.isInteger()) ||
5313             (OpInfo.ConstraintVT.getSizeInBits() !=
5314              Input.ConstraintVT.getSizeInBits())) {
5315           report_fatal_error("Unsupported asm: input constraint"
5316                              " with a matching output constraint of"
5317                              " incompatible type!");
5318         }
5319         Input.ConstraintVT = OpInfo.ConstraintVT;
5320       }
5321     }
5322
5323     // Compute the constraint code and ConstraintType to use.
5324     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, hasMemory, &DAG);
5325
5326     // If this is a memory input, and if the operand is not indirect, do what we
5327     // need to to provide an address for the memory input.
5328     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5329         !OpInfo.isIndirect) {
5330       assert(OpInfo.Type == InlineAsm::isInput &&
5331              "Can only indirectify direct input operands!");
5332
5333       // Memory operands really want the address of the value.  If we don't have
5334       // an indirect input, put it in the constpool if we can, otherwise spill
5335       // it to a stack slot.
5336
5337       // If the operand is a float, integer, or vector constant, spill to a
5338       // constant pool entry to get its address.
5339       const Value *OpVal = OpInfo.CallOperandVal;
5340       if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5341           isa<ConstantVector>(OpVal)) {
5342         OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5343                                                  TLI.getPointerTy());
5344       } else {
5345         // Otherwise, create a stack slot and emit a store to it before the
5346         // asm.
5347         const Type *Ty = OpVal->getType();
5348         uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
5349         unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
5350         MachineFunction &MF = DAG.getMachineFunction();
5351         int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5352         SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5353         Chain = DAG.getStore(Chain, getCurDebugLoc(),
5354                              OpInfo.CallOperand, StackSlot, NULL, 0,
5355                              false, false, 0);
5356         OpInfo.CallOperand = StackSlot;
5357       }
5358
5359       // There is no longer a Value* corresponding to this operand.
5360       OpInfo.CallOperandVal = 0;
5361
5362       // It is now an indirect operand.
5363       OpInfo.isIndirect = true;
5364     }
5365
5366     // If this constraint is for a specific register, allocate it before
5367     // anything else.
5368     if (OpInfo.ConstraintType == TargetLowering::C_Register)
5369       GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5370   }
5371
5372   ConstraintInfos.clear();
5373
5374   // Second pass - Loop over all of the operands, assigning virtual or physregs
5375   // to register class operands.
5376   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5377     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5378
5379     // C_Register operands have already been allocated, Other/Memory don't need
5380     // to be.
5381     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
5382       GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5383   }
5384
5385   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
5386   std::vector<SDValue> AsmNodeOperands;
5387   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
5388   AsmNodeOperands.push_back(
5389           DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
5390                                       TLI.getPointerTy()));
5391
5392   // If we have a !srcloc metadata node associated with it, we want to attach
5393   // this to the ultimately generated inline asm machineinstr.  To do this, we
5394   // pass in the third operand as this (potentially null) inline asm MDNode.
5395   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
5396   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
5397
5398   // Loop over all of the inputs, copying the operand values into the
5399   // appropriate registers and processing the output regs.
5400   RegsForValue RetValRegs;
5401
5402   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
5403   std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
5404
5405   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5406     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5407
5408     switch (OpInfo.Type) {
5409     case InlineAsm::isOutput: {
5410       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
5411           OpInfo.ConstraintType != TargetLowering::C_Register) {
5412         // Memory output, or 'other' output (e.g. 'X' constraint).
5413         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
5414
5415         // Add information to the INLINEASM node to know about this output.
5416         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5417         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
5418                                                         TLI.getPointerTy()));
5419         AsmNodeOperands.push_back(OpInfo.CallOperand);
5420         break;
5421       }
5422
5423       // Otherwise, this is a register or register class output.
5424
5425       // Copy the output from the appropriate register.  Find a register that
5426       // we can use.
5427       if (OpInfo.AssignedRegs.Regs.empty())
5428         report_fatal_error("Couldn't allocate output reg for constraint '" +
5429                            Twine(OpInfo.ConstraintCode) + "'!");
5430
5431       // If this is an indirect operand, store through the pointer after the
5432       // asm.
5433       if (OpInfo.isIndirect) {
5434         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
5435                                                       OpInfo.CallOperandVal));
5436       } else {
5437         // This is the result value of the call.
5438         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5439         // Concatenate this output onto the outputs list.
5440         RetValRegs.append(OpInfo.AssignedRegs);
5441       }
5442
5443       // Add information to the INLINEASM node to know that this register is
5444       // set.
5445       OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
5446                                            InlineAsm::Kind_RegDefEarlyClobber :
5447                                                InlineAsm::Kind_RegDef,
5448                                                false,
5449                                                0,
5450                                                DAG,
5451                                                AsmNodeOperands);
5452       break;
5453     }
5454     case InlineAsm::isInput: {
5455       SDValue InOperandVal = OpInfo.CallOperand;
5456
5457       if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
5458         // If this is required to match an output register we have already set,
5459         // just use its register.
5460         unsigned OperandNo = OpInfo.getMatchedOperand();
5461
5462         // Scan until we find the definition we already emitted of this operand.
5463         // When we find it, create a RegsForValue operand.
5464         unsigned CurOp = InlineAsm::Op_FirstOperand;
5465         for (; OperandNo; --OperandNo) {
5466           // Advance to the next operand.
5467           unsigned OpFlag =
5468             cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5469           assert((InlineAsm::isRegDefKind(OpFlag) ||
5470                   InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
5471                   InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
5472           CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
5473         }
5474
5475         unsigned OpFlag =
5476           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5477         if (InlineAsm::isRegDefKind(OpFlag) ||
5478             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
5479           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
5480           if (OpInfo.isIndirect) {
5481             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
5482             LLVMContext &Ctx = *DAG.getContext();
5483             Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
5484                           " don't know how to handle tied "
5485                           "indirect register inputs");
5486           }
5487           
5488           RegsForValue MatchedRegs;
5489           MatchedRegs.TLI = &TLI;
5490           MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
5491           EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
5492           MatchedRegs.RegVTs.push_back(RegVT);
5493           MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
5494           for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
5495                i != e; ++i)
5496             MatchedRegs.Regs.push_back
5497               (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
5498
5499           // Use the produced MatchedRegs object to
5500           MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5501                                     Chain, &Flag);
5502           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
5503                                            true, OpInfo.getMatchedOperand(),
5504                                            DAG, AsmNodeOperands);
5505           break;
5506         }
5507         
5508         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
5509         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
5510                "Unexpected number of operands");
5511         // Add information to the INLINEASM node to know about this input.
5512         // See InlineAsm.h isUseOperandTiedToDef.
5513         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
5514                                                     OpInfo.getMatchedOperand());
5515         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
5516                                                         TLI.getPointerTy()));
5517         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
5518         break;
5519       }
5520
5521       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
5522         assert(!OpInfo.isIndirect &&
5523                "Don't know how to handle indirect other inputs yet!");
5524
5525         std::vector<SDValue> Ops;
5526         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
5527                                          hasMemory, Ops, DAG);
5528         if (Ops.empty())
5529           report_fatal_error("Invalid operand for inline asm constraint '" +
5530                              Twine(OpInfo.ConstraintCode) + "'!");
5531
5532         // Add information to the INLINEASM node to know about this input.
5533         unsigned ResOpType =
5534           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
5535         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5536                                                         TLI.getPointerTy()));
5537         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
5538         break;
5539       }
5540       
5541       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
5542         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
5543         assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
5544                "Memory operands expect pointer values");
5545
5546         // Add information to the INLINEASM node to know about this input.
5547         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5548         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5549                                                         TLI.getPointerTy()));
5550         AsmNodeOperands.push_back(InOperandVal);
5551         break;
5552       }
5553
5554       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
5555               OpInfo.ConstraintType == TargetLowering::C_Register) &&
5556              "Unknown constraint type!");
5557       assert(!OpInfo.isIndirect &&
5558              "Don't know how to handle indirect register inputs yet!");
5559
5560       // Copy the input into the appropriate registers.
5561       if (OpInfo.AssignedRegs.Regs.empty() ||
5562           !OpInfo.AssignedRegs.areValueTypesLegal())
5563         report_fatal_error("Couldn't allocate input reg for constraint '" +
5564                            Twine(OpInfo.ConstraintCode) + "'!");
5565
5566       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5567                                         Chain, &Flag);
5568
5569       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
5570                                                DAG, AsmNodeOperands);
5571       break;
5572     }
5573     case InlineAsm::isClobber: {
5574       // Add the clobbered value to the operand list, so that the register
5575       // allocator is aware that the physreg got clobbered.
5576       if (!OpInfo.AssignedRegs.Regs.empty())
5577         OpInfo.AssignedRegs.AddInlineAsmOperands(
5578                                             InlineAsm::Kind_RegDefEarlyClobber,
5579                                                  false, 0, DAG,
5580                                                  AsmNodeOperands);
5581       break;
5582     }
5583     }
5584   }
5585
5586   // Finish up input operands.  Set the input chain and add the flag last.
5587   AsmNodeOperands[0] = Chain;
5588   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
5589
5590   Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
5591                       DAG.getVTList(MVT::Other, MVT::Flag),
5592                       &AsmNodeOperands[0], AsmNodeOperands.size());
5593   Flag = Chain.getValue(1);
5594
5595   // If this asm returns a register value, copy the result from that register
5596   // and set it as the value of the call.
5597   if (!RetValRegs.Regs.empty()) {
5598     SDValue Val = RetValRegs.getCopyFromRegs(DAG, getCurDebugLoc(),
5599                                              Chain, &Flag);
5600
5601     // FIXME: Why don't we do this for inline asms with MRVs?
5602     if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
5603       EVT ResultType = TLI.getValueType(CS.getType());
5604
5605       // If any of the results of the inline asm is a vector, it may have the
5606       // wrong width/num elts.  This can happen for register classes that can
5607       // contain multiple different value types.  The preg or vreg allocated may
5608       // not have the same VT as was expected.  Convert it to the right type
5609       // with bit_convert.
5610       if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
5611         Val = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5612                           ResultType, Val);
5613
5614       } else if (ResultType != Val.getValueType() &&
5615                  ResultType.isInteger() && Val.getValueType().isInteger()) {
5616         // If a result value was tied to an input value, the computed result may
5617         // have a wider width than the expected result.  Extract the relevant
5618         // portion.
5619         Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
5620       }
5621
5622       assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
5623     }
5624
5625     setValue(CS.getInstruction(), Val);
5626     // Don't need to use this as a chain in this case.
5627     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
5628       return;
5629   }
5630
5631   std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
5632
5633   // Process indirect outputs, first output all of the flagged copies out of
5634   // physregs.
5635   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
5636     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
5637     const Value *Ptr = IndirectStoresToEmit[i].second;
5638     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, getCurDebugLoc(),
5639                                              Chain, &Flag);
5640     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
5641   }
5642
5643   // Emit the non-flagged stores from the physregs.
5644   SmallVector<SDValue, 8> OutChains;
5645   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
5646     SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
5647                                StoresToEmit[i].first,
5648                                getValue(StoresToEmit[i].second),
5649                                StoresToEmit[i].second, 0,
5650                                false, false, 0);
5651     OutChains.push_back(Val);
5652   }
5653
5654   if (!OutChains.empty())
5655     Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
5656                         &OutChains[0], OutChains.size());
5657
5658   DAG.setRoot(Chain);
5659 }
5660
5661 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
5662   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
5663                           MVT::Other, getRoot(),
5664                           getValue(I.getOperand(1)),
5665                           DAG.getSrcValue(I.getOperand(1))));
5666 }
5667
5668 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
5669   SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
5670                            getRoot(), getValue(I.getOperand(0)),
5671                            DAG.getSrcValue(I.getOperand(0)));
5672   setValue(&I, V);
5673   DAG.setRoot(V.getValue(1));
5674 }
5675
5676 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
5677   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
5678                           MVT::Other, getRoot(),
5679                           getValue(I.getOperand(1)),
5680                           DAG.getSrcValue(I.getOperand(1))));
5681 }
5682
5683 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
5684   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
5685                           MVT::Other, getRoot(),
5686                           getValue(I.getOperand(1)),
5687                           getValue(I.getOperand(2)),
5688                           DAG.getSrcValue(I.getOperand(1)),
5689                           DAG.getSrcValue(I.getOperand(2))));
5690 }
5691
5692 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
5693 /// implementation, which just calls LowerCall.
5694 /// FIXME: When all targets are
5695 /// migrated to using LowerCall, this hook should be integrated into SDISel.
5696 std::pair<SDValue, SDValue>
5697 TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy,
5698                             bool RetSExt, bool RetZExt, bool isVarArg,
5699                             bool isInreg, unsigned NumFixedArgs,
5700                             CallingConv::ID CallConv, bool isTailCall,
5701                             bool isReturnValueUsed,
5702                             SDValue Callee,
5703                             ArgListTy &Args, SelectionDAG &DAG,
5704                             DebugLoc dl) const {
5705   // Handle all of the outgoing arguments.
5706   SmallVector<ISD::OutputArg, 32> Outs;
5707   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
5708     SmallVector<EVT, 4> ValueVTs;
5709     ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
5710     for (unsigned Value = 0, NumValues = ValueVTs.size();
5711          Value != NumValues; ++Value) {
5712       EVT VT = ValueVTs[Value];
5713       const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
5714       SDValue Op = SDValue(Args[i].Node.getNode(),
5715                            Args[i].Node.getResNo() + Value);
5716       ISD::ArgFlagsTy Flags;
5717       unsigned OriginalAlignment =
5718         getTargetData()->getABITypeAlignment(ArgTy);
5719
5720       if (Args[i].isZExt)
5721         Flags.setZExt();
5722       if (Args[i].isSExt)
5723         Flags.setSExt();
5724       if (Args[i].isInReg)
5725         Flags.setInReg();
5726       if (Args[i].isSRet)
5727         Flags.setSRet();
5728       if (Args[i].isByVal) {
5729         Flags.setByVal();
5730         const PointerType *Ty = cast<PointerType>(Args[i].Ty);
5731         const Type *ElementTy = Ty->getElementType();
5732         unsigned FrameAlign = getByValTypeAlignment(ElementTy);
5733         unsigned FrameSize  = getTargetData()->getTypeAllocSize(ElementTy);
5734         // For ByVal, alignment should come from FE.  BE will guess if this
5735         // info is not there but there are cases it cannot get right.
5736         if (Args[i].Alignment)
5737           FrameAlign = Args[i].Alignment;
5738         Flags.setByValAlign(FrameAlign);
5739         Flags.setByValSize(FrameSize);
5740       }
5741       if (Args[i].isNest)
5742         Flags.setNest();
5743       Flags.setOrigAlign(OriginalAlignment);
5744
5745       EVT PartVT = getRegisterType(RetTy->getContext(), VT);
5746       unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
5747       SmallVector<SDValue, 4> Parts(NumParts);
5748       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
5749
5750       if (Args[i].isSExt)
5751         ExtendKind = ISD::SIGN_EXTEND;
5752       else if (Args[i].isZExt)
5753         ExtendKind = ISD::ZERO_EXTEND;
5754
5755       getCopyToParts(DAG, dl, Op, &Parts[0], NumParts,
5756                      PartVT, ExtendKind);
5757
5758       for (unsigned j = 0; j != NumParts; ++j) {
5759         // if it isn't first piece, alignment must be 1
5760         ISD::OutputArg MyFlags(Flags, Parts[j], i < NumFixedArgs);
5761         if (NumParts > 1 && j == 0)
5762           MyFlags.Flags.setSplit();
5763         else if (j != 0)
5764           MyFlags.Flags.setOrigAlign(1);
5765
5766         Outs.push_back(MyFlags);
5767       }
5768     }
5769   }
5770
5771   // Handle the incoming return values from the call.
5772   SmallVector<ISD::InputArg, 32> Ins;
5773   SmallVector<EVT, 4> RetTys;
5774   ComputeValueVTs(*this, RetTy, RetTys);
5775   for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5776     EVT VT = RetTys[I];
5777     EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
5778     unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
5779     for (unsigned i = 0; i != NumRegs; ++i) {
5780       ISD::InputArg MyFlags;
5781       MyFlags.VT = RegisterVT;
5782       MyFlags.Used = isReturnValueUsed;
5783       if (RetSExt)
5784         MyFlags.Flags.setSExt();
5785       if (RetZExt)
5786         MyFlags.Flags.setZExt();
5787       if (isInreg)
5788         MyFlags.Flags.setInReg();
5789       Ins.push_back(MyFlags);
5790     }
5791   }
5792
5793   SmallVector<SDValue, 4> InVals;
5794   Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
5795                     Outs, Ins, dl, DAG, InVals);
5796
5797   // Verify that the target's LowerCall behaved as expected.
5798   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
5799          "LowerCall didn't return a valid chain!");
5800   assert((!isTailCall || InVals.empty()) &&
5801          "LowerCall emitted a return value for a tail call!");
5802   assert((isTailCall || InVals.size() == Ins.size()) &&
5803          "LowerCall didn't emit the correct number of values!");
5804
5805   // For a tail call, the return value is merely live-out and there aren't
5806   // any nodes in the DAG representing it. Return a special value to
5807   // indicate that a tail call has been emitted and no more Instructions
5808   // should be processed in the current block.
5809   if (isTailCall) {
5810     DAG.setRoot(Chain);
5811     return std::make_pair(SDValue(), SDValue());
5812   }
5813
5814   DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
5815           assert(InVals[i].getNode() &&
5816                  "LowerCall emitted a null value!");
5817           assert(Ins[i].VT == InVals[i].getValueType() &&
5818                  "LowerCall emitted a value with the wrong type!");
5819         });
5820
5821   // Collect the legal value parts into potentially illegal values
5822   // that correspond to the original function's return values.
5823   ISD::NodeType AssertOp = ISD::DELETED_NODE;
5824   if (RetSExt)
5825     AssertOp = ISD::AssertSext;
5826   else if (RetZExt)
5827     AssertOp = ISD::AssertZext;
5828   SmallVector<SDValue, 4> ReturnValues;
5829   unsigned CurReg = 0;
5830   for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5831     EVT VT = RetTys[I];
5832     EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
5833     unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
5834
5835     ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg],
5836                                             NumRegs, RegisterVT, VT,
5837                                             AssertOp));
5838     CurReg += NumRegs;
5839   }
5840
5841   // For a function returning void, there is no return value. We can't create
5842   // such a node, so we just return a null return value in that case. In
5843   // that case, nothing will actualy look at the value.
5844   if (ReturnValues.empty())
5845     return std::make_pair(SDValue(), Chain);
5846
5847   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
5848                             DAG.getVTList(&RetTys[0], RetTys.size()),
5849                             &ReturnValues[0], ReturnValues.size());
5850   return std::make_pair(Res, Chain);
5851 }
5852
5853 void TargetLowering::LowerOperationWrapper(SDNode *N,
5854                                            SmallVectorImpl<SDValue> &Results,
5855                                            SelectionDAG &DAG) const {
5856   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
5857   if (Res.getNode())
5858     Results.push_back(Res);
5859 }
5860
5861 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
5862   llvm_unreachable("LowerOperation not implemented for this target!");
5863   return SDValue();
5864 }
5865
5866 void
5867 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
5868   SDValue Op = getValue(V);
5869   assert((Op.getOpcode() != ISD::CopyFromReg ||
5870           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
5871          "Copy from a reg to the same reg!");
5872   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
5873
5874   RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
5875   SDValue Chain = DAG.getEntryNode();
5876   RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
5877   PendingExports.push_back(Chain);
5878 }
5879
5880 #include "llvm/CodeGen/SelectionDAGISel.h"
5881
5882 void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
5883   // If this is the entry block, emit arguments.
5884   const Function &F = *LLVMBB->getParent();
5885   SelectionDAG &DAG = SDB->DAG;
5886   SDValue OldRoot = DAG.getRoot();
5887   DebugLoc dl = SDB->getCurDebugLoc();
5888   const TargetData *TD = TLI.getTargetData();
5889   SmallVector<ISD::InputArg, 16> Ins;
5890
5891   // Check whether the function can return without sret-demotion.
5892   SmallVector<EVT, 4> OutVTs;
5893   SmallVector<ISD::ArgFlagsTy, 4> OutsFlags;
5894   getReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
5895                 OutVTs, OutsFlags, TLI);
5896   FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
5897
5898   FLI.CanLowerReturn = TLI.CanLowerReturn(F.getCallingConv(), F.isVarArg(),
5899                                           OutVTs, OutsFlags, DAG);
5900   if (!FLI.CanLowerReturn) {
5901     // Put in an sret pointer parameter before all the other parameters.
5902     SmallVector<EVT, 1> ValueVTs;
5903     ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
5904
5905     // NOTE: Assuming that a pointer will never break down to more than one VT
5906     // or one register.
5907     ISD::ArgFlagsTy Flags;
5908     Flags.setSRet();
5909     EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
5910     ISD::InputArg RetArg(Flags, RegisterVT, true);
5911     Ins.push_back(RetArg);
5912   }
5913
5914   // Set up the incoming argument description vector.
5915   unsigned Idx = 1;
5916   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
5917        I != E; ++I, ++Idx) {
5918     SmallVector<EVT, 4> ValueVTs;
5919     ComputeValueVTs(TLI, I->getType(), ValueVTs);
5920     bool isArgValueUsed = !I->use_empty();
5921     for (unsigned Value = 0, NumValues = ValueVTs.size();
5922          Value != NumValues; ++Value) {
5923       EVT VT = ValueVTs[Value];
5924       const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
5925       ISD::ArgFlagsTy Flags;
5926       unsigned OriginalAlignment =
5927         TD->getABITypeAlignment(ArgTy);
5928
5929       if (F.paramHasAttr(Idx, Attribute::ZExt))
5930         Flags.setZExt();
5931       if (F.paramHasAttr(Idx, Attribute::SExt))
5932         Flags.setSExt();
5933       if (F.paramHasAttr(Idx, Attribute::InReg))
5934         Flags.setInReg();
5935       if (F.paramHasAttr(Idx, Attribute::StructRet))
5936         Flags.setSRet();
5937       if (F.paramHasAttr(Idx, Attribute::ByVal)) {
5938         Flags.setByVal();
5939         const PointerType *Ty = cast<PointerType>(I->getType());
5940         const Type *ElementTy = Ty->getElementType();
5941         unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy);
5942         unsigned FrameSize  = TD->getTypeAllocSize(ElementTy);
5943         // For ByVal, alignment should be passed from FE.  BE will guess if
5944         // this info is not there but there are cases it cannot get right.
5945         if (F.getParamAlignment(Idx))
5946           FrameAlign = F.getParamAlignment(Idx);
5947         Flags.setByValAlign(FrameAlign);
5948         Flags.setByValSize(FrameSize);
5949       }
5950       if (F.paramHasAttr(Idx, Attribute::Nest))
5951         Flags.setNest();
5952       Flags.setOrigAlign(OriginalAlignment);
5953
5954       EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
5955       unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
5956       for (unsigned i = 0; i != NumRegs; ++i) {
5957         ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
5958         if (NumRegs > 1 && i == 0)
5959           MyFlags.Flags.setSplit();
5960         // if it isn't first piece, alignment must be 1
5961         else if (i > 0)
5962           MyFlags.Flags.setOrigAlign(1);
5963         Ins.push_back(MyFlags);
5964       }
5965     }
5966   }
5967
5968   // Call the target to set up the argument values.
5969   SmallVector<SDValue, 8> InVals;
5970   SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
5971                                              F.isVarArg(), Ins,
5972                                              dl, DAG, InVals);
5973
5974   // Verify that the target's LowerFormalArguments behaved as expected.
5975   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
5976          "LowerFormalArguments didn't return a valid chain!");
5977   assert(InVals.size() == Ins.size() &&
5978          "LowerFormalArguments didn't emit the correct number of values!");
5979   DEBUG({
5980       for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
5981         assert(InVals[i].getNode() &&
5982                "LowerFormalArguments emitted a null value!");
5983         assert(Ins[i].VT == InVals[i].getValueType() &&
5984                "LowerFormalArguments emitted a value with the wrong type!");
5985       }
5986     });
5987
5988   // Update the DAG with the new chain value resulting from argument lowering.
5989   DAG.setRoot(NewRoot);
5990
5991   // Set up the argument values.
5992   unsigned i = 0;
5993   Idx = 1;
5994   if (!FLI.CanLowerReturn) {
5995     // Create a virtual register for the sret pointer, and put in a copy
5996     // from the sret argument into it.
5997     SmallVector<EVT, 1> ValueVTs;
5998     ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
5999     EVT VT = ValueVTs[0];
6000     EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6001     ISD::NodeType AssertOp = ISD::DELETED_NODE;
6002     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6003                                         RegVT, VT, AssertOp);
6004
6005     MachineFunction& MF = SDB->DAG.getMachineFunction();
6006     MachineRegisterInfo& RegInfo = MF.getRegInfo();
6007     unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6008     FLI.DemoteRegister = SRetReg;
6009     NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6010                                     SRetReg, ArgValue);
6011     DAG.setRoot(NewRoot);
6012
6013     // i indexes lowered arguments.  Bump it past the hidden sret argument.
6014     // Idx indexes LLVM arguments.  Don't touch it.
6015     ++i;
6016   }
6017
6018   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6019       ++I, ++Idx) {
6020     SmallVector<SDValue, 4> ArgValues;
6021     SmallVector<EVT, 4> ValueVTs;
6022     ComputeValueVTs(TLI, I->getType(), ValueVTs);
6023     unsigned NumValues = ValueVTs.size();
6024     for (unsigned Value = 0; Value != NumValues; ++Value) {
6025       EVT VT = ValueVTs[Value];
6026       EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6027       unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6028
6029       if (!I->use_empty()) {
6030         ISD::NodeType AssertOp = ISD::DELETED_NODE;
6031         if (F.paramHasAttr(Idx, Attribute::SExt))
6032           AssertOp = ISD::AssertSext;
6033         else if (F.paramHasAttr(Idx, Attribute::ZExt))
6034           AssertOp = ISD::AssertZext;
6035
6036         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6037                                              NumParts, PartVT, VT,
6038                                              AssertOp));
6039       }
6040
6041       i += NumParts;
6042     }
6043
6044     if (!I->use_empty()) {
6045       SDValue Res;
6046       if (!ArgValues.empty())
6047         Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6048                                  SDB->getCurDebugLoc());
6049       SDB->setValue(I, Res);
6050
6051       // If this argument is live outside of the entry block, insert a copy from
6052       // whereever we got it to the vreg that other BB's will reference it as.
6053       SDB->CopyToExportRegsIfNeeded(I);
6054     }
6055   }
6056
6057   assert(i == InVals.size() && "Argument register count mismatch!");
6058
6059   // Finally, if the target has anything special to do, allow it to do so.
6060   // FIXME: this should insert code into the DAG!
6061   EmitFunctionEntryCode();
6062 }
6063
6064 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6065 /// ensure constants are generated when needed.  Remember the virtual registers
6066 /// that need to be added to the Machine PHI nodes as input.  We cannot just
6067 /// directly add them, because expansion might result in multiple MBB's for one
6068 /// BB.  As such, the start of the BB might correspond to a different MBB than
6069 /// the end.
6070 ///
6071 void
6072 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6073   const TerminatorInst *TI = LLVMBB->getTerminator();
6074
6075   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6076
6077   // Check successor nodes' PHI nodes that expect a constant to be available
6078   // from this block.
6079   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6080     const BasicBlock *SuccBB = TI->getSuccessor(succ);
6081     if (!isa<PHINode>(SuccBB->begin())) continue;
6082     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6083
6084     // If this terminator has multiple identical successors (common for
6085     // switches), only handle each succ once.
6086     if (!SuccsHandled.insert(SuccMBB)) continue;
6087
6088     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6089
6090     // At this point we know that there is a 1-1 correspondence between LLVM PHI
6091     // nodes and Machine PHI nodes, but the incoming operands have not been
6092     // emitted yet.
6093     for (BasicBlock::const_iterator I = SuccBB->begin();
6094          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6095       // Ignore dead phi's.
6096       if (PN->use_empty()) continue;
6097
6098       unsigned Reg;
6099       const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6100
6101       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6102         unsigned &RegOut = ConstantsOut[C];
6103         if (RegOut == 0) {
6104           RegOut = FuncInfo.CreateRegForValue(C);
6105           CopyValueToVirtualRegister(C, RegOut);
6106         }
6107         Reg = RegOut;
6108       } else {
6109         Reg = FuncInfo.ValueMap[PHIOp];
6110         if (Reg == 0) {
6111           assert(isa<AllocaInst>(PHIOp) &&
6112                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6113                  "Didn't codegen value into a register!??");
6114           Reg = FuncInfo.CreateRegForValue(PHIOp);
6115           CopyValueToVirtualRegister(PHIOp, Reg);
6116         }
6117       }
6118
6119       // Remember that this register needs to added to the machine PHI node as
6120       // the input for this MBB.
6121       SmallVector<EVT, 4> ValueVTs;
6122       ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6123       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6124         EVT VT = ValueVTs[vti];
6125         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6126         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6127           FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6128         Reg += NumRegisters;
6129       }
6130     }
6131   }
6132   ConstantsOut.clear();
6133 }