65a67265d7942a597b9e8466194349d3268ae0b6
[oota-llvm.git] / lib / CodeGen / SelectionDAG / FunctionLoweringInfo.cpp
1 //===-- FunctionLoweringInfo.cpp ------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating functions from LLVM IR into
11 // Machine IR.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/CodeGen/FunctionLoweringInfo.h"
16 #include "llvm/ADT/PostOrderIterator.h"
17 #include "llvm/CodeGen/Analysis.h"
18 #include "llvm/CodeGen/MachineFrameInfo.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineModuleInfo.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/WinEHFuncInfo.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/DebugInfo.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/IntrinsicInst.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/MathExtras.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Target/TargetFrameLowering.h"
37 #include "llvm/Target/TargetInstrInfo.h"
38 #include "llvm/Target/TargetLowering.h"
39 #include "llvm/Target/TargetOptions.h"
40 #include "llvm/Target/TargetRegisterInfo.h"
41 #include "llvm/Target/TargetSubtargetInfo.h"
42 #include <algorithm>
43 using namespace llvm;
44
45 #define DEBUG_TYPE "function-lowering-info"
46
47 /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
48 /// PHI nodes or outside of the basic block that defines it, or used by a
49 /// switch or atomic instruction, which may expand to multiple basic blocks.
50 static bool isUsedOutsideOfDefiningBlock(const Instruction *I) {
51   if (I->use_empty()) return false;
52   if (isa<PHINode>(I)) return true;
53   const BasicBlock *BB = I->getParent();
54   for (const User *U : I->users())
55     if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U))
56       return true;
57
58   return false;
59 }
60
61 static ISD::NodeType getPreferredExtendForValue(const Value *V) {
62   // For the users of the source value being used for compare instruction, if
63   // the number of signed predicate is greater than unsigned predicate, we
64   // prefer to use SIGN_EXTEND.
65   //
66   // With this optimization, we would be able to reduce some redundant sign or
67   // zero extension instruction, and eventually more machine CSE opportunities
68   // can be exposed.
69   ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
70   unsigned NumOfSigned = 0, NumOfUnsigned = 0;
71   for (const User *U : V->users()) {
72     if (const auto *CI = dyn_cast<CmpInst>(U)) {
73       NumOfSigned += CI->isSigned();
74       NumOfUnsigned += CI->isUnsigned();
75     }
76   }
77   if (NumOfSigned > NumOfUnsigned)
78     ExtendKind = ISD::SIGN_EXTEND;
79
80   return ExtendKind;
81 }
82
83 namespace {
84 struct WinEHNumbering {
85   WinEHNumbering(WinEHFuncInfo &FuncInfo) : FuncInfo(FuncInfo), NextState(0) {}
86
87   WinEHFuncInfo &FuncInfo;
88   int NextState;
89
90   SmallVector<ActionHandler *, 4> HandlerStack;
91   SmallPtrSet<const Function *, 4> VisitedHandlers;
92
93   int currentEHNumber() const {
94     return HandlerStack.empty() ? -1 : HandlerStack.back()->getEHState();
95   }
96
97   void createUnwindMapEntry(int ToState, ActionHandler *AH);
98   void createTryBlockMapEntry(int TryLow, int TryHigh,
99                               ArrayRef<CatchHandler *> Handlers);
100   void processCallSite(ArrayRef<ActionHandler *> Actions, ImmutableCallSite CS);
101   void calculateStateNumbers(const Function &F);
102 };
103 }
104
105 void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf,
106                                SelectionDAG *DAG) {
107   Fn = &fn;
108   MF = &mf;
109   TLI = MF->getSubtarget().getTargetLowering();
110   RegInfo = &MF->getRegInfo();
111   MachineModuleInfo &MMI = MF->getMMI();
112
113   // Check whether the function can return without sret-demotion.
114   SmallVector<ISD::OutputArg, 4> Outs;
115   GetReturnInfo(Fn->getReturnType(), Fn->getAttributes(), Outs, *TLI);
116   CanLowerReturn = TLI->CanLowerReturn(Fn->getCallingConv(), *MF,
117                                        Fn->isVarArg(), Outs, Fn->getContext());
118
119   // Initialize the mapping of values to registers.  This is only set up for
120   // instruction values that are used outside of the block that defines
121   // them.
122   Function::const_iterator BB = Fn->begin(), EB = Fn->end();
123   for (; BB != EB; ++BB)
124     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
125          I != E; ++I) {
126       if (const AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
127         // Static allocas can be folded into the initial stack frame adjustment.
128         if (AI->isStaticAlloca()) {
129           const ConstantInt *CUI = cast<ConstantInt>(AI->getArraySize());
130           Type *Ty = AI->getAllocatedType();
131           uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty);
132           unsigned Align =
133               std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty),
134                        AI->getAlignment());
135
136           TySize *= CUI->getZExtValue();   // Get total allocated size.
137           if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
138
139           StaticAllocaMap[AI] =
140             MF->getFrameInfo()->CreateStackObject(TySize, Align, false, AI);
141
142         } else {
143           unsigned Align = std::max(
144               (unsigned)TLI->getDataLayout()->getPrefTypeAlignment(
145                 AI->getAllocatedType()),
146               AI->getAlignment());
147           unsigned StackAlign =
148               MF->getSubtarget().getFrameLowering()->getStackAlignment();
149           if (Align <= StackAlign)
150             Align = 0;
151           // Inform the Frame Information that we have variable-sized objects.
152           MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1, AI);
153         }
154       }
155
156       // Look for inline asm that clobbers the SP register.
157       if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
158         ImmutableCallSite CS(I);
159         if (isa<InlineAsm>(CS.getCalledValue())) {
160           unsigned SP = TLI->getStackPointerRegisterToSaveRestore();
161           const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
162           std::vector<TargetLowering::AsmOperandInfo> Ops =
163               TLI->ParseConstraints(TRI, CS);
164           for (size_t I = 0, E = Ops.size(); I != E; ++I) {
165             TargetLowering::AsmOperandInfo &Op = Ops[I];
166             if (Op.Type == InlineAsm::isClobber) {
167               // Clobbers don't have SDValue operands, hence SDValue().
168               TLI->ComputeConstraintToUse(Op, SDValue(), DAG);
169               std::pair<unsigned, const TargetRegisterClass *> PhysReg =
170                   TLI->getRegForInlineAsmConstraint(TRI, Op.ConstraintCode,
171                                                     Op.ConstraintVT);
172               if (PhysReg.first == SP)
173                 MF->getFrameInfo()->setHasInlineAsmWithSPAdjust(true);
174             }
175           }
176         }
177       }
178
179       // Look for calls to the @llvm.va_start intrinsic. We can omit some
180       // prologue boilerplate for variadic functions that don't examine their
181       // arguments.
182       if (const auto *II = dyn_cast<IntrinsicInst>(I)) {
183         if (II->getIntrinsicID() == Intrinsic::vastart)
184           MF->getFrameInfo()->setHasVAStart(true);
185       }
186
187       // If we have a musttail call in a variadic funciton, we need to ensure we
188       // forward implicit register parameters.
189       if (const auto *CI = dyn_cast<CallInst>(I)) {
190         if (CI->isMustTailCall() && Fn->isVarArg())
191           MF->getFrameInfo()->setHasMustTailInVarArgFunc(true);
192       }
193
194       // Mark values used outside their block as exported, by allocating
195       // a virtual register for them.
196       if (isUsedOutsideOfDefiningBlock(I))
197         if (!isa<AllocaInst>(I) ||
198             !StaticAllocaMap.count(cast<AllocaInst>(I)))
199           InitializeRegForValue(I);
200
201       // Collect llvm.dbg.declare information. This is done now instead of
202       // during the initial isel pass through the IR so that it is done
203       // in a predictable order.
204       if (const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(I)) {
205         DIVariable DIVar = DI->getVariable();
206         if (MMI.hasDebugInfo() && DIVar && DI->getDebugLoc()) {
207           // Don't handle byval struct arguments or VLAs, for example.
208           // Non-byval arguments are handled here (they refer to the stack
209           // temporary alloca at this point).
210           const Value *Address = DI->getAddress();
211           if (Address) {
212             if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
213               Address = BCI->getOperand(0);
214             if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
215               DenseMap<const AllocaInst *, int>::iterator SI =
216                 StaticAllocaMap.find(AI);
217               if (SI != StaticAllocaMap.end()) { // Check for VLAs.
218                 int FI = SI->second;
219                 MMI.setVariableDbgInfo(DI->getVariable(), DI->getExpression(),
220                                        FI, DI->getDebugLoc());
221               }
222             }
223           }
224         }
225       }
226
227       // Decide the preferred extend type for a value.
228       PreferredExtendType[I] = getPreferredExtendForValue(I);
229     }
230
231   // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
232   // also creates the initial PHI MachineInstrs, though none of the input
233   // operands are populated.
234   for (BB = Fn->begin(); BB != EB; ++BB) {
235     MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB);
236     MBBMap[BB] = MBB;
237     MF->push_back(MBB);
238
239     // Transfer the address-taken flag. This is necessary because there could
240     // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only
241     // the first one should be marked.
242     if (BB->hasAddressTaken())
243       MBB->setHasAddressTaken();
244
245     // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
246     // appropriate.
247     for (BasicBlock::const_iterator I = BB->begin();
248          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
249       if (PN->use_empty()) continue;
250
251       // Skip empty types
252       if (PN->getType()->isEmptyTy())
253         continue;
254
255       DebugLoc DL = PN->getDebugLoc();
256       unsigned PHIReg = ValueMap[PN];
257       assert(PHIReg && "PHI node does not have an assigned virtual register!");
258
259       SmallVector<EVT, 4> ValueVTs;
260       ComputeValueVTs(*TLI, PN->getType(), ValueVTs);
261       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
262         EVT VT = ValueVTs[vti];
263         unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT);
264         const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
265         for (unsigned i = 0; i != NumRegisters; ++i)
266           BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i);
267         PHIReg += NumRegisters;
268       }
269     }
270   }
271
272   // Mark landing pad blocks.
273   for (BB = Fn->begin(); BB != EB; ++BB)
274     if (const auto *Invoke = dyn_cast<InvokeInst>(BB->getTerminator()))
275       MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
276
277   // Calculate EH numbers for WinEH.
278   if (fn.hasFnAttribute("wineh-parent")) {
279     const Function *WinEHParentFn = MMI.getWinEHParent(&fn);
280     WinEHFuncInfo &FI = MMI.getWinEHFuncInfo(WinEHParentFn);
281     if (FI.LandingPadStateMap.empty()) {
282       WinEHNumbering Num(FI);
283       Num.calculateStateNumbers(*WinEHParentFn);
284       // Pop everything on the handler stack.
285       Num.processCallSite(None, ImmutableCallSite());
286     }
287   }
288 }
289
290 void WinEHNumbering::createUnwindMapEntry(int ToState, ActionHandler *AH) {
291   WinEHUnwindMapEntry UME;
292   UME.ToState = ToState;
293   if (auto *CH = dyn_cast_or_null<CleanupHandler>(AH))
294     UME.Cleanup = cast<Function>(CH->getHandlerBlockOrFunc());
295   else
296     UME.Cleanup = nullptr;
297   FuncInfo.UnwindMap.push_back(UME);
298 }
299
300 void WinEHNumbering::createTryBlockMapEntry(int TryLow, int TryHigh,
301                                             ArrayRef<CatchHandler *> Handlers) {
302   WinEHTryBlockMapEntry TBME;
303   TBME.TryLow = TryLow;
304   TBME.TryHigh = TryHigh;
305   assert(TBME.TryLow <= TBME.TryHigh);
306   for (CatchHandler *CH : Handlers) {
307     WinEHHandlerType HT;
308     if (CH->getSelector()->isNullValue()) {
309       HT.Adjectives = 0x40;
310       HT.TypeDescriptor = nullptr;
311     } else {
312       auto *GV = cast<GlobalVariable>(CH->getSelector()->stripPointerCasts());
313       // Selectors are always pointers to GlobalVariables with 'struct' type.
314       // The struct has two fields, adjectives and a type descriptor.
315       auto *CS = cast<ConstantStruct>(GV->getInitializer());
316       HT.Adjectives =
317           cast<ConstantInt>(CS->getAggregateElement(0U))->getZExtValue();
318       HT.TypeDescriptor =
319           cast<GlobalVariable>(CS->getAggregateElement(1)->stripPointerCasts());
320     }
321     HT.Handler = cast<Function>(CH->getHandlerBlockOrFunc());
322     HT.CatchObjRecoverIdx = CH->getExceptionVarIndex();
323     TBME.HandlerArray.push_back(HT);
324   }
325   FuncInfo.TryBlockMap.push_back(TBME);
326 }
327
328 static void print_name(const Value *V) {
329 #ifndef NDEBUG
330   if (!V) {
331     DEBUG(dbgs() << "null");
332     return;
333   }
334
335   if (const auto *F = dyn_cast<Function>(V))
336     DEBUG(dbgs() << F->getName());
337   else
338     DEBUG(V->dump());
339 #endif
340 }
341
342 void WinEHNumbering::processCallSite(ArrayRef<ActionHandler *> Actions,
343                                      ImmutableCallSite CS) {
344   int FirstMismatch = 0;
345   for (int E = std::min(HandlerStack.size(), Actions.size()); FirstMismatch < E;
346        ++FirstMismatch) {
347     if (HandlerStack[FirstMismatch]->getHandlerBlockOrFunc() !=
348         Actions[FirstMismatch]->getHandlerBlockOrFunc())
349       break;
350     delete Actions[FirstMismatch];
351   }
352
353   bool EnteringScope = (int)Actions.size() > FirstMismatch;
354
355   // Don't recurse while we are looping over the handler stack.  Instead, defer
356   // the numbering of the catch handlers until we are done popping.
357   SmallVector<CatchHandler *, 4> PoppedCatches;
358   for (int I = HandlerStack.size() - 1; I >= FirstMismatch; --I) {
359     if (auto *CH = dyn_cast<CatchHandler>(HandlerStack.back())) {
360       PoppedCatches.push_back(CH);
361     } else {
362       // Delete cleanup handlers
363       delete HandlerStack.back();
364     }
365     HandlerStack.pop_back();
366   }
367
368   // We need to create a new state number if we are exiting a try scope and we
369   // will not push any more actions.
370   int TryHigh = NextState - 1;
371   if (!EnteringScope && !PoppedCatches.empty()) {
372     createUnwindMapEntry(currentEHNumber(), nullptr);
373     ++NextState;
374   }
375
376   int LastTryLowIdx = 0;
377   for (int I = 0, E = PoppedCatches.size(); I != E; ++I) {
378     CatchHandler *CH = PoppedCatches[I];
379     if (I + 1 == E || CH->getEHState() != PoppedCatches[I + 1]->getEHState()) {
380       int TryLow = CH->getEHState();
381       auto Handlers =
382           makeArrayRef(&PoppedCatches[LastTryLowIdx], I - LastTryLowIdx + 1);
383       createTryBlockMapEntry(TryLow, TryHigh, Handlers);
384       LastTryLowIdx = I + 1;
385     }
386   }
387
388   for (CatchHandler *CH : PoppedCatches) {
389     if (auto *F = dyn_cast<Function>(CH->getHandlerBlockOrFunc()))
390       calculateStateNumbers(*F);
391     delete CH;
392   }
393
394   bool LastActionWasCatch = false;
395   for (size_t I = FirstMismatch; I != Actions.size(); ++I) {
396     // We can reuse eh states when pushing two catches for the same invoke.
397     bool CurrActionIsCatch = isa<CatchHandler>(Actions[I]);
398     // FIXME: Reenable this optimization!
399     if (CurrActionIsCatch && LastActionWasCatch && false) {
400       Actions[I]->setEHState(currentEHNumber());
401     } else {
402       createUnwindMapEntry(currentEHNumber(), Actions[I]);
403       Actions[I]->setEHState(NextState);
404       NextState++;
405       DEBUG(dbgs() << "Creating unwind map entry for: (");
406       print_name(Actions[I]->getHandlerBlockOrFunc());
407       DEBUG(dbgs() << ", " << currentEHNumber() << ")\n");
408     }
409     HandlerStack.push_back(Actions[I]);
410     LastActionWasCatch = CurrActionIsCatch;
411   }
412
413   DEBUG(dbgs() << "In EHState " << currentEHNumber() << " for CallSite: ");
414   print_name(CS ? CS.getCalledValue() : nullptr);
415   DEBUG(dbgs() << '\n');
416 }
417
418 void WinEHNumbering::calculateStateNumbers(const Function &F) {
419   auto I = VisitedHandlers.insert(&F);
420   if (!I.second)
421     return; // We've already visited this handler, don't renumber it.
422
423   DEBUG(dbgs() << "Calculating state numbers for: " << F.getName() << '\n');
424   SmallVector<ActionHandler *, 4> ActionList;
425   for (const BasicBlock &BB : F) {
426     for (const Instruction &I : BB) {
427       const auto *CI = dyn_cast<CallInst>(&I);
428       if (!CI || CI->doesNotThrow())
429         continue;
430       processCallSite(None, CI);
431     }
432     const auto *II = dyn_cast<InvokeInst>(BB.getTerminator());
433     if (!II)
434       continue;
435     const LandingPadInst *LPI = II->getLandingPadInst();
436     auto *ActionsCall = dyn_cast<IntrinsicInst>(LPI->getNextNode());
437     if (!ActionsCall)
438       continue;
439     assert(ActionsCall->getIntrinsicID() == Intrinsic::eh_actions);
440     parseEHActions(ActionsCall, ActionList);
441     processCallSite(ActionList, II);
442     ActionList.clear();
443     FuncInfo.LandingPadStateMap[LPI] = currentEHNumber();
444   }
445
446   FuncInfo.CatchHandlerMaxState[&F] = NextState - 1;
447 }
448
449 /// clear - Clear out all the function-specific state. This returns this
450 /// FunctionLoweringInfo to an empty state, ready to be used for a
451 /// different function.
452 void FunctionLoweringInfo::clear() {
453   assert(CatchInfoFound.size() == CatchInfoLost.size() &&
454          "Not all catch info was assigned to a landing pad!");
455
456   MBBMap.clear();
457   ValueMap.clear();
458   StaticAllocaMap.clear();
459 #ifndef NDEBUG
460   CatchInfoLost.clear();
461   CatchInfoFound.clear();
462 #endif
463   LiveOutRegInfo.clear();
464   VisitedBBs.clear();
465   ArgDbgValues.clear();
466   ByValArgFrameIndexMap.clear();
467   RegFixups.clear();
468   StatepointStackSlots.clear();
469   PreferredExtendType.clear();
470 }
471
472 /// CreateReg - Allocate a single virtual register for the given type.
473 unsigned FunctionLoweringInfo::CreateReg(MVT VT) {
474   return RegInfo->createVirtualRegister(
475       MF->getSubtarget().getTargetLowering()->getRegClassFor(VT));
476 }
477
478 /// CreateRegs - Allocate the appropriate number of virtual registers of
479 /// the correctly promoted or expanded types.  Assign these registers
480 /// consecutive vreg numbers and return the first assigned number.
481 ///
482 /// In the case that the given value has struct or array type, this function
483 /// will assign registers for each member or element.
484 ///
485 unsigned FunctionLoweringInfo::CreateRegs(Type *Ty) {
486   const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
487
488   SmallVector<EVT, 4> ValueVTs;
489   ComputeValueVTs(*TLI, Ty, ValueVTs);
490
491   unsigned FirstReg = 0;
492   for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
493     EVT ValueVT = ValueVTs[Value];
494     MVT RegisterVT = TLI->getRegisterType(Ty->getContext(), ValueVT);
495
496     unsigned NumRegs = TLI->getNumRegisters(Ty->getContext(), ValueVT);
497     for (unsigned i = 0; i != NumRegs; ++i) {
498       unsigned R = CreateReg(RegisterVT);
499       if (!FirstReg) FirstReg = R;
500     }
501   }
502   return FirstReg;
503 }
504
505 /// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the
506 /// register is a PHI destination and the PHI's LiveOutInfo is not valid. If
507 /// the register's LiveOutInfo is for a smaller bit width, it is extended to
508 /// the larger bit width by zero extension. The bit width must be no smaller
509 /// than the LiveOutInfo's existing bit width.
510 const FunctionLoweringInfo::LiveOutInfo *
511 FunctionLoweringInfo::GetLiveOutRegInfo(unsigned Reg, unsigned BitWidth) {
512   if (!LiveOutRegInfo.inBounds(Reg))
513     return nullptr;
514
515   LiveOutInfo *LOI = &LiveOutRegInfo[Reg];
516   if (!LOI->IsValid)
517     return nullptr;
518
519   if (BitWidth > LOI->KnownZero.getBitWidth()) {
520     LOI->NumSignBits = 1;
521     LOI->KnownZero = LOI->KnownZero.zextOrTrunc(BitWidth);
522     LOI->KnownOne = LOI->KnownOne.zextOrTrunc(BitWidth);
523   }
524
525   return LOI;
526 }
527
528 /// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination
529 /// register based on the LiveOutInfo of its operands.
530 void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) {
531   Type *Ty = PN->getType();
532   if (!Ty->isIntegerTy() || Ty->isVectorTy())
533     return;
534
535   SmallVector<EVT, 1> ValueVTs;
536   ComputeValueVTs(*TLI, Ty, ValueVTs);
537   assert(ValueVTs.size() == 1 &&
538          "PHIs with non-vector integer types should have a single VT.");
539   EVT IntVT = ValueVTs[0];
540
541   if (TLI->getNumRegisters(PN->getContext(), IntVT) != 1)
542     return;
543   IntVT = TLI->getTypeToTransformTo(PN->getContext(), IntVT);
544   unsigned BitWidth = IntVT.getSizeInBits();
545
546   unsigned DestReg = ValueMap[PN];
547   if (!TargetRegisterInfo::isVirtualRegister(DestReg))
548     return;
549   LiveOutRegInfo.grow(DestReg);
550   LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg];
551
552   Value *V = PN->getIncomingValue(0);
553   if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
554     DestLOI.NumSignBits = 1;
555     APInt Zero(BitWidth, 0);
556     DestLOI.KnownZero = Zero;
557     DestLOI.KnownOne = Zero;
558     return;
559   }
560
561   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
562     APInt Val = CI->getValue().zextOrTrunc(BitWidth);
563     DestLOI.NumSignBits = Val.getNumSignBits();
564     DestLOI.KnownZero = ~Val;
565     DestLOI.KnownOne = Val;
566   } else {
567     assert(ValueMap.count(V) && "V should have been placed in ValueMap when its"
568                                 "CopyToReg node was created.");
569     unsigned SrcReg = ValueMap[V];
570     if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) {
571       DestLOI.IsValid = false;
572       return;
573     }
574     const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
575     if (!SrcLOI) {
576       DestLOI.IsValid = false;
577       return;
578     }
579     DestLOI = *SrcLOI;
580   }
581
582   assert(DestLOI.KnownZero.getBitWidth() == BitWidth &&
583          DestLOI.KnownOne.getBitWidth() == BitWidth &&
584          "Masks should have the same bit width as the type.");
585
586   for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
587     Value *V = PN->getIncomingValue(i);
588     if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
589       DestLOI.NumSignBits = 1;
590       APInt Zero(BitWidth, 0);
591       DestLOI.KnownZero = Zero;
592       DestLOI.KnownOne = Zero;
593       return;
594     }
595
596     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
597       APInt Val = CI->getValue().zextOrTrunc(BitWidth);
598       DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits());
599       DestLOI.KnownZero &= ~Val;
600       DestLOI.KnownOne &= Val;
601       continue;
602     }
603
604     assert(ValueMap.count(V) && "V should have been placed in ValueMap when "
605                                 "its CopyToReg node was created.");
606     unsigned SrcReg = ValueMap[V];
607     if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) {
608       DestLOI.IsValid = false;
609       return;
610     }
611     const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
612     if (!SrcLOI) {
613       DestLOI.IsValid = false;
614       return;
615     }
616     DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits);
617     DestLOI.KnownZero &= SrcLOI->KnownZero;
618     DestLOI.KnownOne &= SrcLOI->KnownOne;
619   }
620 }
621
622 /// setArgumentFrameIndex - Record frame index for the byval
623 /// argument. This overrides previous frame index entry for this argument,
624 /// if any.
625 void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A,
626                                                  int FI) {
627   ByValArgFrameIndexMap[A] = FI;
628 }
629
630 /// getArgumentFrameIndex - Get frame index for the byval argument.
631 /// If the argument does not have any assigned frame index then 0 is
632 /// returned.
633 int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) {
634   DenseMap<const Argument *, int>::iterator I =
635     ByValArgFrameIndexMap.find(A);
636   if (I != ByValArgFrameIndexMap.end())
637     return I->second;
638   DEBUG(dbgs() << "Argument does not have assigned frame index!\n");
639   return 0;
640 }
641
642 /// ComputeUsesVAFloatArgument - Determine if any floating-point values are
643 /// being passed to this variadic function, and set the MachineModuleInfo's
644 /// usesVAFloatArgument flag if so. This flag is used to emit an undefined
645 /// reference to _fltused on Windows, which will link in MSVCRT's
646 /// floating-point support.
647 void llvm::ComputeUsesVAFloatArgument(const CallInst &I,
648                                       MachineModuleInfo *MMI)
649 {
650   FunctionType *FT = cast<FunctionType>(
651     I.getCalledValue()->getType()->getContainedType(0));
652   if (FT->isVarArg() && !MMI->usesVAFloatArgument()) {
653     for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
654       Type* T = I.getArgOperand(i)->getType();
655       for (po_iterator<Type*> i = po_begin(T), e = po_end(T);
656            i != e; ++i) {
657         if (i->isFloatingPointTy()) {
658           MMI->setUsesVAFloatArgument(true);
659           return;
660         }
661       }
662     }
663   }
664 }
665
666 /// AddLandingPadInfo - Extract the exception handling information from the
667 /// landingpad instruction and add them to the specified machine module info.
668 void llvm::AddLandingPadInfo(const LandingPadInst &I, MachineModuleInfo &MMI,
669                              MachineBasicBlock *MBB) {
670   MMI.addPersonality(MBB,
671                      cast<Function>(I.getPersonalityFn()->stripPointerCasts()));
672
673   if (I.isCleanup())
674     MMI.addCleanup(MBB);
675
676   // FIXME: New EH - Add the clauses in reverse order. This isn't 100% correct,
677   //        but we need to do it this way because of how the DWARF EH emitter
678   //        processes the clauses.
679   for (unsigned i = I.getNumClauses(); i != 0; --i) {
680     Value *Val = I.getClause(i - 1);
681     if (I.isCatch(i - 1)) {
682       MMI.addCatchTypeInfo(MBB,
683                            dyn_cast<GlobalValue>(Val->stripPointerCasts()));
684     } else {
685       // Add filters in a list.
686       Constant *CVal = cast<Constant>(Val);
687       SmallVector<const GlobalValue*, 4> FilterList;
688       for (User::op_iterator
689              II = CVal->op_begin(), IE = CVal->op_end(); II != IE; ++II)
690         FilterList.push_back(cast<GlobalValue>((*II)->stripPointerCasts()));
691
692       MMI.addFilterTypeInfo(MBB, FilterList);
693     }
694   }
695 }