73061b6dc3e74d32e1ceb1daa3cbed6148cd2dd2
[oota-llvm.git] / lib / CodeGen / SelectionDAG / FastISel.cpp
1 //===-- FastISel.cpp - Implementation of the FastISel class ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the implementation of the FastISel class.
11 //
12 // "Fast" instruction selection is designed to emit very poor code quickly.
13 // Also, it is not designed to be able to do much lowering, so most illegal
14 // types (e.g. i64 on 32-bit targets) and operations are not supported.  It is
15 // also not intended to be able to do much optimization, except in a few cases
16 // where doing optimizations reduces overall compile time.  For example, folding
17 // constants into immediate fields is often done, because it's cheap and it
18 // reduces the number of instructions later phases have to examine.
19 //
20 // "Fast" instruction selection is able to fail gracefully and transfer
21 // control to the SelectionDAG selector for operations that it doesn't
22 // support.  In many cases, this allows us to avoid duplicating a lot of
23 // the complicated lowering logic that SelectionDAG currently has.
24 //
25 // The intended use for "fast" instruction selection is "-O0" mode
26 // compilation, where the quality of the generated code is irrelevant when
27 // weighed against the speed at which the code can be generated.  Also,
28 // at -O0, the LLVM optimizers are not running, and this makes the
29 // compile time of codegen a much higher portion of the overall compile
30 // time.  Despite its limitations, "fast" instruction selection is able to
31 // handle enough code on its own to provide noticeable overall speedups
32 // in -O0 compiles.
33 //
34 // Basic operations are supported in a target-independent way, by reading
35 // the same instruction descriptions that the SelectionDAG selector reads,
36 // and identifying simple arithmetic operations that can be directly selected
37 // from simple operators.  More complicated operations currently require
38 // target-specific code.
39 //
40 //===----------------------------------------------------------------------===//
41
42 #include "llvm/CodeGen/Analysis.h"
43 #include "llvm/ADT/Optional.h"
44 #include "llvm/ADT/Statistic.h"
45 #include "llvm/Analysis/BranchProbabilityInfo.h"
46 #include "llvm/Analysis/Loads.h"
47 #include "llvm/Analysis/TargetLibraryInfo.h"
48 #include "llvm/CodeGen/Analysis.h"
49 #include "llvm/CodeGen/FastISel.h"
50 #include "llvm/CodeGen/FunctionLoweringInfo.h"
51 #include "llvm/CodeGen/MachineFrameInfo.h"
52 #include "llvm/CodeGen/MachineInstrBuilder.h"
53 #include "llvm/CodeGen/MachineModuleInfo.h"
54 #include "llvm/CodeGen/MachineRegisterInfo.h"
55 #include "llvm/CodeGen/StackMaps.h"
56 #include "llvm/IR/DataLayout.h"
57 #include "llvm/IR/DebugInfo.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/GlobalVariable.h"
60 #include "llvm/IR/Instructions.h"
61 #include "llvm/IR/IntrinsicInst.h"
62 #include "llvm/IR/Operator.h"
63 #include "llvm/Support/Debug.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/raw_ostream.h"
66 #include "llvm/Target/TargetInstrInfo.h"
67 #include "llvm/Target/TargetLowering.h"
68 #include "llvm/Target/TargetMachine.h"
69 #include "llvm/Target/TargetSubtargetInfo.h"
70 using namespace llvm;
71
72 #define DEBUG_TYPE "isel"
73
74 STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by "
75                                          "target-independent selector");
76 STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by "
77                                     "target-specific selector");
78 STATISTIC(NumFastIselDead, "Number of dead insts removed on failure");
79
80 void FastISel::ArgListEntry::setAttributes(ImmutableCallSite *CS,
81                                            unsigned AttrIdx) {
82   IsSExt = CS->paramHasAttr(AttrIdx, Attribute::SExt);
83   IsZExt = CS->paramHasAttr(AttrIdx, Attribute::ZExt);
84   IsInReg = CS->paramHasAttr(AttrIdx, Attribute::InReg);
85   IsSRet = CS->paramHasAttr(AttrIdx, Attribute::StructRet);
86   IsNest = CS->paramHasAttr(AttrIdx, Attribute::Nest);
87   IsByVal = CS->paramHasAttr(AttrIdx, Attribute::ByVal);
88   IsInAlloca = CS->paramHasAttr(AttrIdx, Attribute::InAlloca);
89   IsReturned = CS->paramHasAttr(AttrIdx, Attribute::Returned);
90   Alignment = CS->getParamAlignment(AttrIdx);
91 }
92
93 /// Set the current block to which generated machine instructions will be
94 /// appended, and clear the local CSE map.
95 void FastISel::startNewBlock() {
96   LocalValueMap.clear();
97
98   // Instructions are appended to FuncInfo.MBB. If the basic block already
99   // contains labels or copies, use the last instruction as the last local
100   // value.
101   EmitStartPt = nullptr;
102   if (!FuncInfo.MBB->empty())
103     EmitStartPt = &FuncInfo.MBB->back();
104   LastLocalValue = EmitStartPt;
105 }
106
107 bool FastISel::lowerArguments() {
108   if (!FuncInfo.CanLowerReturn)
109     // Fallback to SDISel argument lowering code to deal with sret pointer
110     // parameter.
111     return false;
112
113   if (!fastLowerArguments())
114     return false;
115
116   // Enter arguments into ValueMap for uses in non-entry BBs.
117   for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(),
118                                     E = FuncInfo.Fn->arg_end();
119        I != E; ++I) {
120     DenseMap<const Value *, unsigned>::iterator VI = LocalValueMap.find(I);
121     assert(VI != LocalValueMap.end() && "Missed an argument?");
122     FuncInfo.ValueMap[I] = VI->second;
123   }
124   return true;
125 }
126
127 void FastISel::flushLocalValueMap() {
128   LocalValueMap.clear();
129   LastLocalValue = EmitStartPt;
130   recomputeInsertPt();
131   SavedInsertPt = FuncInfo.InsertPt;
132 }
133
134 bool FastISel::hasTrivialKill(const Value *V) {
135   // Don't consider constants or arguments to have trivial kills.
136   const Instruction *I = dyn_cast<Instruction>(V);
137   if (!I)
138     return false;
139
140   // No-op casts are trivially coalesced by fast-isel.
141   if (const auto *Cast = dyn_cast<CastInst>(I))
142     if (Cast->isNoopCast(DL.getIntPtrType(Cast->getContext())) &&
143         !hasTrivialKill(Cast->getOperand(0)))
144       return false;
145
146   // Even the value might have only one use in the LLVM IR, it is possible that
147   // FastISel might fold the use into another instruction and now there is more
148   // than one use at the Machine Instruction level.
149   unsigned Reg = lookUpRegForValue(V);
150   if (Reg && !MRI.use_empty(Reg))
151     return false;
152
153   // GEPs with all zero indices are trivially coalesced by fast-isel.
154   if (const auto *GEP = dyn_cast<GetElementPtrInst>(I))
155     if (GEP->hasAllZeroIndices() && !hasTrivialKill(GEP->getOperand(0)))
156       return false;
157
158   // Only instructions with a single use in the same basic block are considered
159   // to have trivial kills.
160   return I->hasOneUse() &&
161          !(I->getOpcode() == Instruction::BitCast ||
162            I->getOpcode() == Instruction::PtrToInt ||
163            I->getOpcode() == Instruction::IntToPtr) &&
164          cast<Instruction>(*I->user_begin())->getParent() == I->getParent();
165 }
166
167 unsigned FastISel::getRegForValue(const Value *V) {
168   EVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true);
169   // Don't handle non-simple values in FastISel.
170   if (!RealVT.isSimple())
171     return 0;
172
173   // Ignore illegal types. We must do this before looking up the value
174   // in ValueMap because Arguments are given virtual registers regardless
175   // of whether FastISel can handle them.
176   MVT VT = RealVT.getSimpleVT();
177   if (!TLI.isTypeLegal(VT)) {
178     // Handle integer promotions, though, because they're common and easy.
179     if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
180       VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT();
181     else
182       return 0;
183   }
184
185   // Look up the value to see if we already have a register for it.
186   unsigned Reg = lookUpRegForValue(V);
187   if (Reg)
188     return Reg;
189
190   // In bottom-up mode, just create the virtual register which will be used
191   // to hold the value. It will be materialized later.
192   if (isa<Instruction>(V) &&
193       (!isa<AllocaInst>(V) ||
194        !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V))))
195     return FuncInfo.InitializeRegForValue(V);
196
197   SavePoint SaveInsertPt = enterLocalValueArea();
198
199   // Materialize the value in a register. Emit any instructions in the
200   // local value area.
201   Reg = materializeRegForValue(V, VT);
202
203   leaveLocalValueArea(SaveInsertPt);
204
205   return Reg;
206 }
207
208 unsigned FastISel::materializeConstant(const Value *V, MVT VT) {
209   unsigned Reg = 0;
210   if (const auto *CI = dyn_cast<ConstantInt>(V)) {
211     if (CI->getValue().getActiveBits() <= 64)
212       Reg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
213   } else if (isa<AllocaInst>(V))
214     Reg = fastMaterializeAlloca(cast<AllocaInst>(V));
215   else if (isa<ConstantPointerNull>(V))
216     // Translate this as an integer zero so that it can be
217     // local-CSE'd with actual integer zeros.
218     Reg = getRegForValue(
219         Constant::getNullValue(DL.getIntPtrType(V->getContext())));
220   else if (const auto *CF = dyn_cast<ConstantFP>(V)) {
221     if (CF->isNullValue())
222       Reg = fastMaterializeFloatZero(CF);
223     else
224       // Try to emit the constant directly.
225       Reg = fastEmit_f(VT, VT, ISD::ConstantFP, CF);
226
227     if (!Reg) {
228       // Try to emit the constant by using an integer constant with a cast.
229       const APFloat &Flt = CF->getValueAPF();
230       EVT IntVT = TLI.getPointerTy();
231
232       uint64_t x[2];
233       uint32_t IntBitWidth = IntVT.getSizeInBits();
234       bool isExact;
235       (void)Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
236                                  APFloat::rmTowardZero, &isExact);
237       if (isExact) {
238         APInt IntVal(IntBitWidth, x);
239
240         unsigned IntegerReg =
241             getRegForValue(ConstantInt::get(V->getContext(), IntVal));
242         if (IntegerReg != 0)
243           Reg = fastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg,
244                            /*Kill=*/false);
245       }
246     }
247   } else if (const auto *Op = dyn_cast<Operator>(V)) {
248     if (!selectOperator(Op, Op->getOpcode()))
249       if (!isa<Instruction>(Op) ||
250           !fastSelectInstruction(cast<Instruction>(Op)))
251         return 0;
252     Reg = lookUpRegForValue(Op);
253   } else if (isa<UndefValue>(V)) {
254     Reg = createResultReg(TLI.getRegClassFor(VT));
255     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
256             TII.get(TargetOpcode::IMPLICIT_DEF), Reg);
257   }
258   return Reg;
259 }
260
261 /// Helper for getRegForValue. This function is called when the value isn't
262 /// already available in a register and must be materialized with new
263 /// instructions.
264 unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) {
265   unsigned Reg = 0;
266   // Give the target-specific code a try first.
267   if (isa<Constant>(V))
268     Reg = fastMaterializeConstant(cast<Constant>(V));
269
270   // If target-specific code couldn't or didn't want to handle the value, then
271   // give target-independent code a try.
272   if (!Reg)
273     Reg = materializeConstant(V, VT);
274
275   // Don't cache constant materializations in the general ValueMap.
276   // To do so would require tracking what uses they dominate.
277   if (Reg) {
278     LocalValueMap[V] = Reg;
279     LastLocalValue = MRI.getVRegDef(Reg);
280   }
281   return Reg;
282 }
283
284 unsigned FastISel::lookUpRegForValue(const Value *V) {
285   // Look up the value to see if we already have a register for it. We
286   // cache values defined by Instructions across blocks, and other values
287   // only locally. This is because Instructions already have the SSA
288   // def-dominates-use requirement enforced.
289   DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V);
290   if (I != FuncInfo.ValueMap.end())
291     return I->second;
292   return LocalValueMap[V];
293 }
294
295 void FastISel::updateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) {
296   if (!isa<Instruction>(I)) {
297     LocalValueMap[I] = Reg;
298     return;
299   }
300
301   unsigned &AssignedReg = FuncInfo.ValueMap[I];
302   if (AssignedReg == 0)
303     // Use the new register.
304     AssignedReg = Reg;
305   else if (Reg != AssignedReg) {
306     // Arrange for uses of AssignedReg to be replaced by uses of Reg.
307     for (unsigned i = 0; i < NumRegs; i++)
308       FuncInfo.RegFixups[AssignedReg + i] = Reg + i;
309
310     AssignedReg = Reg;
311   }
312 }
313
314 std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) {
315   unsigned IdxN = getRegForValue(Idx);
316   if (IdxN == 0)
317     // Unhandled operand. Halt "fast" selection and bail.
318     return std::pair<unsigned, bool>(0, false);
319
320   bool IdxNIsKill = hasTrivialKill(Idx);
321
322   // If the index is smaller or larger than intptr_t, truncate or extend it.
323   MVT PtrVT = TLI.getPointerTy();
324   EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
325   if (IdxVT.bitsLT(PtrVT)) {
326     IdxN = fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN,
327                       IdxNIsKill);
328     IdxNIsKill = true;
329   } else if (IdxVT.bitsGT(PtrVT)) {
330     IdxN =
331         fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN, IdxNIsKill);
332     IdxNIsKill = true;
333   }
334   return std::pair<unsigned, bool>(IdxN, IdxNIsKill);
335 }
336
337 void FastISel::recomputeInsertPt() {
338   if (getLastLocalValue()) {
339     FuncInfo.InsertPt = getLastLocalValue();
340     FuncInfo.MBB = FuncInfo.InsertPt->getParent();
341     ++FuncInfo.InsertPt;
342   } else
343     FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI();
344
345   // Now skip past any EH_LABELs, which must remain at the beginning.
346   while (FuncInfo.InsertPt != FuncInfo.MBB->end() &&
347          FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL)
348     ++FuncInfo.InsertPt;
349 }
350
351 void FastISel::removeDeadCode(MachineBasicBlock::iterator I,
352                               MachineBasicBlock::iterator E) {
353   assert(I && E && std::distance(I, E) > 0 && "Invalid iterator!");
354   while (I != E) {
355     MachineInstr *Dead = &*I;
356     ++I;
357     Dead->eraseFromParent();
358     ++NumFastIselDead;
359   }
360   recomputeInsertPt();
361 }
362
363 FastISel::SavePoint FastISel::enterLocalValueArea() {
364   MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt;
365   DebugLoc OldDL = DbgLoc;
366   recomputeInsertPt();
367   DbgLoc = DebugLoc();
368   SavePoint SP = {OldInsertPt, OldDL};
369   return SP;
370 }
371
372 void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) {
373   if (FuncInfo.InsertPt != FuncInfo.MBB->begin())
374     LastLocalValue = std::prev(FuncInfo.InsertPt);
375
376   // Restore the previous insert position.
377   FuncInfo.InsertPt = OldInsertPt.InsertPt;
378   DbgLoc = OldInsertPt.DL;
379 }
380
381 bool FastISel::selectBinaryOp(const User *I, unsigned ISDOpcode) {
382   EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
383   if (VT == MVT::Other || !VT.isSimple())
384     // Unhandled type. Halt "fast" selection and bail.
385     return false;
386
387   // We only handle legal types. For example, on x86-32 the instruction
388   // selector contains all of the 64-bit instructions from x86-64,
389   // under the assumption that i64 won't be used if the target doesn't
390   // support it.
391   if (!TLI.isTypeLegal(VT)) {
392     // MVT::i1 is special. Allow AND, OR, or XOR because they
393     // don't require additional zeroing, which makes them easy.
394     if (VT == MVT::i1 && (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
395                           ISDOpcode == ISD::XOR))
396       VT = TLI.getTypeToTransformTo(I->getContext(), VT);
397     else
398       return false;
399   }
400
401   // Check if the first operand is a constant, and handle it as "ri".  At -O0,
402   // we don't have anything that canonicalizes operand order.
403   if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(0)))
404     if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) {
405       unsigned Op1 = getRegForValue(I->getOperand(1));
406       if (!Op1)
407         return false;
408       bool Op1IsKill = hasTrivialKill(I->getOperand(1));
409
410       unsigned ResultReg =
411           fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, Op1IsKill,
412                        CI->getZExtValue(), VT.getSimpleVT());
413       if (!ResultReg)
414         return false;
415
416       // We successfully emitted code for the given LLVM Instruction.
417       updateValueMap(I, ResultReg);
418       return true;
419     }
420
421   unsigned Op0 = getRegForValue(I->getOperand(0));
422   if (!Op0) // Unhandled operand. Halt "fast" selection and bail.
423     return false;
424   bool Op0IsKill = hasTrivialKill(I->getOperand(0));
425
426   // Check if the second operand is a constant and handle it appropriately.
427   if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
428     uint64_t Imm = CI->getZExtValue();
429
430     // Transform "sdiv exact X, 8" -> "sra X, 3".
431     if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) &&
432         cast<BinaryOperator>(I)->isExact() && isPowerOf2_64(Imm)) {
433       Imm = Log2_64(Imm);
434       ISDOpcode = ISD::SRA;
435     }
436
437     // Transform "urem x, pow2" -> "and x, pow2-1".
438     if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) &&
439         isPowerOf2_64(Imm)) {
440       --Imm;
441       ISDOpcode = ISD::AND;
442     }
443
444     unsigned ResultReg = fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0,
445                                       Op0IsKill, Imm, VT.getSimpleVT());
446     if (!ResultReg)
447       return false;
448
449     // We successfully emitted code for the given LLVM Instruction.
450     updateValueMap(I, ResultReg);
451     return true;
452   }
453
454   // Check if the second operand is a constant float.
455   if (const auto *CF = dyn_cast<ConstantFP>(I->getOperand(1))) {
456     unsigned ResultReg = fastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(),
457                                      ISDOpcode, Op0, Op0IsKill, CF);
458     if (ResultReg) {
459       // We successfully emitted code for the given LLVM Instruction.
460       updateValueMap(I, ResultReg);
461       return true;
462     }
463   }
464
465   unsigned Op1 = getRegForValue(I->getOperand(1));
466   if (!Op1) // Unhandled operand. Halt "fast" selection and bail.
467     return false;
468   bool Op1IsKill = hasTrivialKill(I->getOperand(1));
469
470   // Now we have both operands in registers. Emit the instruction.
471   unsigned ResultReg = fastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
472                                    ISDOpcode, Op0, Op0IsKill, Op1, Op1IsKill);
473   if (!ResultReg)
474     // Target-specific code wasn't able to find a machine opcode for
475     // the given ISD opcode and type. Halt "fast" selection and bail.
476     return false;
477
478   // We successfully emitted code for the given LLVM Instruction.
479   updateValueMap(I, ResultReg);
480   return true;
481 }
482
483 bool FastISel::selectGetElementPtr(const User *I) {
484   unsigned N = getRegForValue(I->getOperand(0));
485   if (!N) // Unhandled operand. Halt "fast" selection and bail.
486     return false;
487   bool NIsKill = hasTrivialKill(I->getOperand(0));
488
489   // Keep a running tab of the total offset to coalesce multiple N = N + Offset
490   // into a single N = N + TotalOffset.
491   uint64_t TotalOffs = 0;
492   // FIXME: What's a good SWAG number for MaxOffs?
493   uint64_t MaxOffs = 2048;
494   Type *Ty = I->getOperand(0)->getType();
495   MVT VT = TLI.getPointerTy();
496   for (GetElementPtrInst::const_op_iterator OI = I->op_begin() + 1,
497                                             E = I->op_end();
498        OI != E; ++OI) {
499     const Value *Idx = *OI;
500     if (auto *StTy = dyn_cast<StructType>(Ty)) {
501       uint64_t Field = cast<ConstantInt>(Idx)->getZExtValue();
502       if (Field) {
503         // N = N + Offset
504         TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field);
505         if (TotalOffs >= MaxOffs) {
506           N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
507           if (!N) // Unhandled operand. Halt "fast" selection and bail.
508             return false;
509           NIsKill = true;
510           TotalOffs = 0;
511         }
512       }
513       Ty = StTy->getElementType(Field);
514     } else {
515       Ty = cast<SequentialType>(Ty)->getElementType();
516
517       // If this is a constant subscript, handle it quickly.
518       if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
519         if (CI->isZero())
520           continue;
521         // N = N + Offset
522         uint64_t IdxN = CI->getValue().sextOrTrunc(64).getSExtValue();
523         TotalOffs += DL.getTypeAllocSize(Ty) * IdxN;
524         if (TotalOffs >= MaxOffs) {
525           N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
526           if (!N) // Unhandled operand. Halt "fast" selection and bail.
527             return false;
528           NIsKill = true;
529           TotalOffs = 0;
530         }
531         continue;
532       }
533       if (TotalOffs) {
534         N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
535         if (!N) // Unhandled operand. Halt "fast" selection and bail.
536           return false;
537         NIsKill = true;
538         TotalOffs = 0;
539       }
540
541       // N = N + Idx * ElementSize;
542       uint64_t ElementSize = DL.getTypeAllocSize(Ty);
543       std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx);
544       unsigned IdxN = Pair.first;
545       bool IdxNIsKill = Pair.second;
546       if (!IdxN) // Unhandled operand. Halt "fast" selection and bail.
547         return false;
548
549       if (ElementSize != 1) {
550         IdxN = fastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT);
551         if (!IdxN) // Unhandled operand. Halt "fast" selection and bail.
552           return false;
553         IdxNIsKill = true;
554       }
555       N = fastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill);
556       if (!N) // Unhandled operand. Halt "fast" selection and bail.
557         return false;
558     }
559   }
560   if (TotalOffs) {
561     N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
562     if (!N) // Unhandled operand. Halt "fast" selection and bail.
563       return false;
564   }
565
566   // We successfully emitted code for the given LLVM Instruction.
567   updateValueMap(I, N);
568   return true;
569 }
570
571 bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops,
572                                    const CallInst *CI, unsigned StartIdx) {
573   for (unsigned i = StartIdx, e = CI->getNumArgOperands(); i != e; ++i) {
574     Value *Val = CI->getArgOperand(i);
575     // Check for constants and encode them with a StackMaps::ConstantOp prefix.
576     if (const auto *C = dyn_cast<ConstantInt>(Val)) {
577       Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp));
578       Ops.push_back(MachineOperand::CreateImm(C->getSExtValue()));
579     } else if (isa<ConstantPointerNull>(Val)) {
580       Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp));
581       Ops.push_back(MachineOperand::CreateImm(0));
582     } else if (auto *AI = dyn_cast<AllocaInst>(Val)) {
583       // Values coming from a stack location also require a sepcial encoding,
584       // but that is added later on by the target specific frame index
585       // elimination implementation.
586       auto SI = FuncInfo.StaticAllocaMap.find(AI);
587       if (SI != FuncInfo.StaticAllocaMap.end())
588         Ops.push_back(MachineOperand::CreateFI(SI->second));
589       else
590         return false;
591     } else {
592       unsigned Reg = getRegForValue(Val);
593       if (!Reg)
594         return false;
595       Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false));
596     }
597   }
598   return true;
599 }
600
601 bool FastISel::selectStackmap(const CallInst *I) {
602   // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
603   //                                  [live variables...])
604   assert(I->getCalledFunction()->getReturnType()->isVoidTy() &&
605          "Stackmap cannot return a value.");
606
607   // The stackmap intrinsic only records the live variables (the arguments
608   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
609   // intrinsic, this won't be lowered to a function call. This means we don't
610   // have to worry about calling conventions and target-specific lowering code.
611   // Instead we perform the call lowering right here.
612   //
613   // CALLSEQ_START(0)
614   // STACKMAP(id, nbytes, ...)
615   // CALLSEQ_END(0, 0)
616   //
617   SmallVector<MachineOperand, 32> Ops;
618
619   // Add the <id> and <numBytes> constants.
620   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) &&
621          "Expected a constant integer.");
622   const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos));
623   Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue()));
624
625   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) &&
626          "Expected a constant integer.");
627   const auto *NumBytes =
628       cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos));
629   Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue()));
630
631   // Push live variables for the stack map (skipping the first two arguments
632   // <id> and <numBytes>).
633   if (!addStackMapLiveVars(Ops, I, 2))
634     return false;
635
636   // We are not adding any register mask info here, because the stackmap doesn't
637   // clobber anything.
638
639   // Add scratch registers as implicit def and early clobber.
640   CallingConv::ID CC = I->getCallingConv();
641   const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC);
642   for (unsigned i = 0; ScratchRegs[i]; ++i)
643     Ops.push_back(MachineOperand::CreateReg(
644         ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false,
645         /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true));
646
647   // Issue CALLSEQ_START
648   unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
649   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown))
650       .addImm(0);
651
652   // Issue STACKMAP.
653   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
654                                     TII.get(TargetOpcode::STACKMAP));
655   for (auto const &MO : Ops)
656     MIB.addOperand(MO);
657
658   // Issue CALLSEQ_END
659   unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
660   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
661       .addImm(0)
662       .addImm(0);
663
664   // Inform the Frame Information that we have a stackmap in this function.
665   FuncInfo.MF->getFrameInfo()->setHasStackMap();
666
667   return true;
668 }
669
670 /// \brief Lower an argument list according to the target calling convention.
671 ///
672 /// This is a helper for lowering intrinsics that follow a target calling
673 /// convention or require stack pointer adjustment. Only a subset of the
674 /// intrinsic's operands need to participate in the calling convention.
675 bool FastISel::lowerCallOperands(const CallInst *CI, unsigned ArgIdx,
676                                  unsigned NumArgs, const Value *Callee,
677                                  bool ForceRetVoidTy, CallLoweringInfo &CLI) {
678   ArgListTy Args;
679   Args.reserve(NumArgs);
680
681   // Populate the argument list.
682   // Attributes for args start at offset 1, after the return attribute.
683   ImmutableCallSite CS(CI);
684   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1;
685        ArgI != ArgE; ++ArgI) {
686     Value *V = CI->getOperand(ArgI);
687
688     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
689
690     ArgListEntry Entry;
691     Entry.Val = V;
692     Entry.Ty = V->getType();
693     Entry.setAttributes(&CS, AttrI);
694     Args.push_back(Entry);
695   }
696
697   Type *RetTy = ForceRetVoidTy ? Type::getVoidTy(CI->getType()->getContext())
698                                : CI->getType();
699   CLI.setCallee(CI->getCallingConv(), RetTy, Callee, std::move(Args), NumArgs);
700
701   return lowerCallTo(CLI);
702 }
703
704 bool FastISel::selectPatchpoint(const CallInst *I) {
705   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
706   //                                                 i32 <numBytes>,
707   //                                                 i8* <target>,
708   //                                                 i32 <numArgs>,
709   //                                                 [Args...],
710   //                                                 [live variables...])
711   CallingConv::ID CC = I->getCallingConv();
712   bool IsAnyRegCC = CC == CallingConv::AnyReg;
713   bool HasDef = !I->getType()->isVoidTy();
714   Value *Callee = I->getOperand(PatchPointOpers::TargetPos);
715
716   // Get the real number of arguments participating in the call <numArgs>
717   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)) &&
718          "Expected a constant integer.");
719   const auto *NumArgsVal =
720       cast<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos));
721   unsigned NumArgs = NumArgsVal->getZExtValue();
722
723   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
724   // This includes all meta-operands up to but not including CC.
725   unsigned NumMetaOpers = PatchPointOpers::CCPos;
726   assert(I->getNumArgOperands() >= NumMetaOpers + NumArgs &&
727          "Not enough arguments provided to the patchpoint intrinsic");
728
729   // For AnyRegCC the arguments are lowered later on manually.
730   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
731   CallLoweringInfo CLI;
732   CLI.setIsPatchPoint();
733   if (!lowerCallOperands(I, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, CLI))
734     return false;
735
736   assert(CLI.Call && "No call instruction specified.");
737
738   SmallVector<MachineOperand, 32> Ops;
739
740   // Add an explicit result reg if we use the anyreg calling convention.
741   if (IsAnyRegCC && HasDef) {
742     assert(CLI.NumResultRegs == 0 && "Unexpected result register.");
743     CLI.ResultReg = createResultReg(TLI.getRegClassFor(MVT::i64));
744     CLI.NumResultRegs = 1;
745     Ops.push_back(MachineOperand::CreateReg(CLI.ResultReg, /*IsDef=*/true));
746   }
747
748   // Add the <id> and <numBytes> constants.
749   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) &&
750          "Expected a constant integer.");
751   const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos));
752   Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue()));
753
754   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) &&
755          "Expected a constant integer.");
756   const auto *NumBytes =
757       cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos));
758   Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue()));
759
760   // Assume that the callee is a constant address or null pointer.
761   // FIXME: handle function symbols in the future.
762   uint64_t CalleeAddr;
763   if (const auto *C = dyn_cast<IntToPtrInst>(Callee))
764     CalleeAddr = cast<ConstantInt>(C->getOperand(0))->getZExtValue();
765   else if (const auto *C = dyn_cast<ConstantExpr>(Callee)) {
766     if (C->getOpcode() == Instruction::IntToPtr)
767       CalleeAddr = cast<ConstantInt>(C->getOperand(0))->getZExtValue();
768     else
769       llvm_unreachable("Unsupported ConstantExpr.");
770   } else if (isa<ConstantPointerNull>(Callee))
771     CalleeAddr = 0;
772   else
773     llvm_unreachable("Unsupported callee address.");
774
775   Ops.push_back(MachineOperand::CreateImm(CalleeAddr));
776
777   // Adjust <numArgs> to account for any arguments that have been passed on
778   // the stack instead.
779   unsigned NumCallRegArgs = IsAnyRegCC ? NumArgs : CLI.OutRegs.size();
780   Ops.push_back(MachineOperand::CreateImm(NumCallRegArgs));
781
782   // Add the calling convention
783   Ops.push_back(MachineOperand::CreateImm((unsigned)CC));
784
785   // Add the arguments we omitted previously. The register allocator should
786   // place these in any free register.
787   if (IsAnyRegCC) {
788     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) {
789       unsigned Reg = getRegForValue(I->getArgOperand(i));
790       if (!Reg)
791         return false;
792       Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false));
793     }
794   }
795
796   // Push the arguments from the call instruction.
797   for (auto Reg : CLI.OutRegs)
798     Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false));
799
800   // Push live variables for the stack map.
801   if (!addStackMapLiveVars(Ops, I, NumMetaOpers + NumArgs))
802     return false;
803
804   // Push the register mask info.
805   Ops.push_back(MachineOperand::CreateRegMask(
806       TRI.getCallPreservedMask(*FuncInfo.MF, CC)));
807
808   // Add scratch registers as implicit def and early clobber.
809   const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC);
810   for (unsigned i = 0; ScratchRegs[i]; ++i)
811     Ops.push_back(MachineOperand::CreateReg(
812         ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false,
813         /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true));
814
815   // Add implicit defs (return values).
816   for (auto Reg : CLI.InRegs)
817     Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/true,
818                                             /*IsImpl=*/true));
819
820   // Insert the patchpoint instruction before the call generated by the target.
821   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, CLI.Call, DbgLoc,
822                                     TII.get(TargetOpcode::PATCHPOINT));
823
824   for (auto &MO : Ops)
825     MIB.addOperand(MO);
826
827   MIB->setPhysRegsDeadExcept(CLI.InRegs, TRI);
828
829   // Delete the original call instruction.
830   CLI.Call->eraseFromParent();
831
832   // Inform the Frame Information that we have a patchpoint in this function.
833   FuncInfo.MF->getFrameInfo()->setHasPatchPoint();
834
835   if (CLI.NumResultRegs)
836     updateValueMap(I, CLI.ResultReg, CLI.NumResultRegs);
837   return true;
838 }
839
840 /// Returns an AttributeSet representing the attributes applied to the return
841 /// value of the given call.
842 static AttributeSet getReturnAttrs(FastISel::CallLoweringInfo &CLI) {
843   SmallVector<Attribute::AttrKind, 2> Attrs;
844   if (CLI.RetSExt)
845     Attrs.push_back(Attribute::SExt);
846   if (CLI.RetZExt)
847     Attrs.push_back(Attribute::ZExt);
848   if (CLI.IsInReg)
849     Attrs.push_back(Attribute::InReg);
850
851   return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex,
852                            Attrs);
853 }
854
855 bool FastISel::lowerCallTo(const CallInst *CI, const char *SymName,
856                            unsigned NumArgs) {
857   ImmutableCallSite CS(CI);
858
859   PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
860   FunctionType *FTy = cast<FunctionType>(PT->getElementType());
861   Type *RetTy = FTy->getReturnType();
862
863   ArgListTy Args;
864   Args.reserve(NumArgs);
865
866   // Populate the argument list.
867   // Attributes for args start at offset 1, after the return attribute.
868   for (unsigned ArgI = 0; ArgI != NumArgs; ++ArgI) {
869     Value *V = CI->getOperand(ArgI);
870
871     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
872
873     ArgListEntry Entry;
874     Entry.Val = V;
875     Entry.Ty = V->getType();
876     Entry.setAttributes(&CS, ArgI + 1);
877     Args.push_back(Entry);
878   }
879
880   CallLoweringInfo CLI;
881   CLI.setCallee(RetTy, FTy, SymName, std::move(Args), CS, NumArgs);
882
883   return lowerCallTo(CLI);
884 }
885
886 bool FastISel::lowerCallTo(CallLoweringInfo &CLI) {
887   // Handle the incoming return values from the call.
888   CLI.clearIns();
889   SmallVector<EVT, 4> RetTys;
890   ComputeValueVTs(TLI, CLI.RetTy, RetTys);
891
892   SmallVector<ISD::OutputArg, 4> Outs;
893   GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, TLI);
894
895   bool CanLowerReturn = TLI.CanLowerReturn(
896       CLI.CallConv, *FuncInfo.MF, CLI.IsVarArg, Outs, CLI.RetTy->getContext());
897
898   // FIXME: sret demotion isn't supported yet - bail out.
899   if (!CanLowerReturn)
900     return false;
901
902   for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
903     EVT VT = RetTys[I];
904     MVT RegisterVT = TLI.getRegisterType(CLI.RetTy->getContext(), VT);
905     unsigned NumRegs = TLI.getNumRegisters(CLI.RetTy->getContext(), VT);
906     for (unsigned i = 0; i != NumRegs; ++i) {
907       ISD::InputArg MyFlags;
908       MyFlags.VT = RegisterVT;
909       MyFlags.ArgVT = VT;
910       MyFlags.Used = CLI.IsReturnValueUsed;
911       if (CLI.RetSExt)
912         MyFlags.Flags.setSExt();
913       if (CLI.RetZExt)
914         MyFlags.Flags.setZExt();
915       if (CLI.IsInReg)
916         MyFlags.Flags.setInReg();
917       CLI.Ins.push_back(MyFlags);
918     }
919   }
920
921   // Handle all of the outgoing arguments.
922   CLI.clearOuts();
923   for (auto &Arg : CLI.getArgs()) {
924     Type *FinalType = Arg.Ty;
925     if (Arg.IsByVal)
926       FinalType = cast<PointerType>(Arg.Ty)->getElementType();
927     bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
928         FinalType, CLI.CallConv, CLI.IsVarArg);
929
930     ISD::ArgFlagsTy Flags;
931     if (Arg.IsZExt)
932       Flags.setZExt();
933     if (Arg.IsSExt)
934       Flags.setSExt();
935     if (Arg.IsInReg)
936       Flags.setInReg();
937     if (Arg.IsSRet)
938       Flags.setSRet();
939     if (Arg.IsByVal)
940       Flags.setByVal();
941     if (Arg.IsInAlloca) {
942       Flags.setInAlloca();
943       // Set the byval flag for CCAssignFn callbacks that don't know about
944       // inalloca. This way we can know how many bytes we should've allocated
945       // and how many bytes a callee cleanup function will pop.  If we port
946       // inalloca to more targets, we'll have to add custom inalloca handling in
947       // the various CC lowering callbacks.
948       Flags.setByVal();
949     }
950     if (Arg.IsByVal || Arg.IsInAlloca) {
951       PointerType *Ty = cast<PointerType>(Arg.Ty);
952       Type *ElementTy = Ty->getElementType();
953       unsigned FrameSize = DL.getTypeAllocSize(ElementTy);
954       // For ByVal, alignment should come from FE. BE will guess if this info is
955       // not there, but there are cases it cannot get right.
956       unsigned FrameAlign = Arg.Alignment;
957       if (!FrameAlign)
958         FrameAlign = TLI.getByValTypeAlignment(ElementTy);
959       Flags.setByValSize(FrameSize);
960       Flags.setByValAlign(FrameAlign);
961     }
962     if (Arg.IsNest)
963       Flags.setNest();
964     if (NeedsRegBlock)
965       Flags.setInConsecutiveRegs();
966     unsigned OriginalAlignment = DL.getABITypeAlignment(Arg.Ty);
967     Flags.setOrigAlign(OriginalAlignment);
968
969     CLI.OutVals.push_back(Arg.Val);
970     CLI.OutFlags.push_back(Flags);
971   }
972
973   if (!fastLowerCall(CLI))
974     return false;
975
976   // Set all unused physreg defs as dead.
977   assert(CLI.Call && "No call instruction specified.");
978   CLI.Call->setPhysRegsDeadExcept(CLI.InRegs, TRI);
979
980   if (CLI.NumResultRegs && CLI.CS)
981     updateValueMap(CLI.CS->getInstruction(), CLI.ResultReg, CLI.NumResultRegs);
982
983   return true;
984 }
985
986 bool FastISel::lowerCall(const CallInst *CI) {
987   ImmutableCallSite CS(CI);
988
989   PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
990   FunctionType *FuncTy = cast<FunctionType>(PT->getElementType());
991   Type *RetTy = FuncTy->getReturnType();
992
993   ArgListTy Args;
994   ArgListEntry Entry;
995   Args.reserve(CS.arg_size());
996
997   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
998        i != e; ++i) {
999     Value *V = *i;
1000
1001     // Skip empty types
1002     if (V->getType()->isEmptyTy())
1003       continue;
1004
1005     Entry.Val = V;
1006     Entry.Ty = V->getType();
1007
1008     // Skip the first return-type Attribute to get to params.
1009     Entry.setAttributes(&CS, i - CS.arg_begin() + 1);
1010     Args.push_back(Entry);
1011   }
1012
1013   // Check if target-independent constraints permit a tail call here.
1014   // Target-dependent constraints are checked within fastLowerCall.
1015   bool IsTailCall = CI->isTailCall();
1016   if (IsTailCall && !isInTailCallPosition(CS, TM))
1017     IsTailCall = false;
1018
1019   CallLoweringInfo CLI;
1020   CLI.setCallee(RetTy, FuncTy, CI->getCalledValue(), std::move(Args), CS)
1021       .setTailCall(IsTailCall);
1022
1023   return lowerCallTo(CLI);
1024 }
1025
1026 bool FastISel::selectCall(const User *I) {
1027   const CallInst *Call = cast<CallInst>(I);
1028
1029   // Handle simple inline asms.
1030   if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledValue())) {
1031     // If the inline asm has side effects, then make sure that no local value
1032     // lives across by flushing the local value map.
1033     if (IA->hasSideEffects())
1034       flushLocalValueMap();
1035
1036     // Don't attempt to handle constraints.
1037     if (!IA->getConstraintString().empty())
1038       return false;
1039
1040     unsigned ExtraInfo = 0;
1041     if (IA->hasSideEffects())
1042       ExtraInfo |= InlineAsm::Extra_HasSideEffects;
1043     if (IA->isAlignStack())
1044       ExtraInfo |= InlineAsm::Extra_IsAlignStack;
1045
1046     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1047             TII.get(TargetOpcode::INLINEASM))
1048         .addExternalSymbol(IA->getAsmString().c_str())
1049         .addImm(ExtraInfo);
1050     return true;
1051   }
1052
1053   MachineModuleInfo &MMI = FuncInfo.MF->getMMI();
1054   ComputeUsesVAFloatArgument(*Call, &MMI);
1055
1056   // Handle intrinsic function calls.
1057   if (const auto *II = dyn_cast<IntrinsicInst>(Call))
1058     return selectIntrinsicCall(II);
1059
1060   // Usually, it does not make sense to initialize a value,
1061   // make an unrelated function call and use the value, because
1062   // it tends to be spilled on the stack. So, we move the pointer
1063   // to the last local value to the beginning of the block, so that
1064   // all the values which have already been materialized,
1065   // appear after the call. It also makes sense to skip intrinsics
1066   // since they tend to be inlined.
1067   flushLocalValueMap();
1068
1069   return lowerCall(Call);
1070 }
1071
1072 bool FastISel::selectIntrinsicCall(const IntrinsicInst *II) {
1073   switch (II->getIntrinsicID()) {
1074   default:
1075     break;
1076   // At -O0 we don't care about the lifetime intrinsics.
1077   case Intrinsic::lifetime_start:
1078   case Intrinsic::lifetime_end:
1079   // The donothing intrinsic does, well, nothing.
1080   case Intrinsic::donothing:
1081     return true;
1082   case Intrinsic::eh_actions: {
1083     unsigned ResultReg = getRegForValue(UndefValue::get(II->getType()));
1084     if (!ResultReg)
1085       return false;
1086     updateValueMap(II, ResultReg);
1087     return true;
1088   }
1089   case Intrinsic::dbg_declare: {
1090     const DbgDeclareInst *DI = cast<DbgDeclareInst>(II);
1091     DIVariable DIVar(DI->getVariable());
1092     assert((!DIVar || DIVar.isVariable()) &&
1093            "Variable in DbgDeclareInst should be either null or a DIVariable.");
1094     if (!DIVar || !FuncInfo.MF->getMMI().hasDebugInfo()) {
1095       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1096       return true;
1097     }
1098
1099     const Value *Address = DI->getAddress();
1100     if (!Address || isa<UndefValue>(Address)) {
1101       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1102       return true;
1103     }
1104
1105     unsigned Offset = 0;
1106     Optional<MachineOperand> Op;
1107     if (const auto *Arg = dyn_cast<Argument>(Address))
1108       // Some arguments' frame index is recorded during argument lowering.
1109       Offset = FuncInfo.getArgumentFrameIndex(Arg);
1110     if (Offset)
1111       Op = MachineOperand::CreateFI(Offset);
1112     if (!Op)
1113       if (unsigned Reg = lookUpRegForValue(Address))
1114         Op = MachineOperand::CreateReg(Reg, false);
1115
1116     // If we have a VLA that has a "use" in a metadata node that's then used
1117     // here but it has no other uses, then we have a problem. E.g.,
1118     //
1119     //   int foo (const int *x) {
1120     //     char a[*x];
1121     //     return 0;
1122     //   }
1123     //
1124     // If we assign 'a' a vreg and fast isel later on has to use the selection
1125     // DAG isel, it will want to copy the value to the vreg. However, there are
1126     // no uses, which goes counter to what selection DAG isel expects.
1127     if (!Op && !Address->use_empty() && isa<Instruction>(Address) &&
1128         (!isa<AllocaInst>(Address) ||
1129          !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address))))
1130       Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address),
1131                                      false);
1132
1133     if (Op) {
1134       if (Op->isReg()) {
1135         Op->setIsDebug(true);
1136         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1137                 TII.get(TargetOpcode::DBG_VALUE), false, Op->getReg(), 0,
1138                 DI->getVariable(), DI->getExpression());
1139       } else
1140         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1141                 TII.get(TargetOpcode::DBG_VALUE))
1142             .addOperand(*Op)
1143             .addImm(0)
1144             .addMetadata(DI->getVariable())
1145             .addMetadata(DI->getExpression());
1146     } else {
1147       // We can't yet handle anything else here because it would require
1148       // generating code, thus altering codegen because of debug info.
1149       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1150     }
1151     return true;
1152   }
1153   case Intrinsic::dbg_value: {
1154     // This form of DBG_VALUE is target-independent.
1155     const DbgValueInst *DI = cast<DbgValueInst>(II);
1156     const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
1157     const Value *V = DI->getValue();
1158     if (!V) {
1159       // Currently the optimizer can produce this; insert an undef to
1160       // help debugging.  Probably the optimizer should not do this.
1161       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1162           .addReg(0U)
1163           .addImm(DI->getOffset())
1164           .addMetadata(DI->getVariable())
1165           .addMetadata(DI->getExpression());
1166     } else if (const auto *CI = dyn_cast<ConstantInt>(V)) {
1167       if (CI->getBitWidth() > 64)
1168         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1169             .addCImm(CI)
1170             .addImm(DI->getOffset())
1171             .addMetadata(DI->getVariable())
1172             .addMetadata(DI->getExpression());
1173       else
1174         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1175             .addImm(CI->getZExtValue())
1176             .addImm(DI->getOffset())
1177             .addMetadata(DI->getVariable())
1178             .addMetadata(DI->getExpression());
1179     } else if (const auto *CF = dyn_cast<ConstantFP>(V)) {
1180       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1181           .addFPImm(CF)
1182           .addImm(DI->getOffset())
1183           .addMetadata(DI->getVariable())
1184           .addMetadata(DI->getExpression());
1185     } else if (unsigned Reg = lookUpRegForValue(V)) {
1186       // FIXME: This does not handle register-indirect values at offset 0.
1187       bool IsIndirect = DI->getOffset() != 0;
1188       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, IsIndirect, Reg,
1189               DI->getOffset(), DI->getVariable(), DI->getExpression());
1190     } else {
1191       // We can't yet handle anything else here because it would require
1192       // generating code, thus altering codegen because of debug info.
1193       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1194     }
1195     return true;
1196   }
1197   case Intrinsic::objectsize: {
1198     ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1));
1199     unsigned long long Res = CI->isZero() ? -1ULL : 0;
1200     Constant *ResCI = ConstantInt::get(II->getType(), Res);
1201     unsigned ResultReg = getRegForValue(ResCI);
1202     if (!ResultReg)
1203       return false;
1204     updateValueMap(II, ResultReg);
1205     return true;
1206   }
1207   case Intrinsic::expect: {
1208     unsigned ResultReg = getRegForValue(II->getArgOperand(0));
1209     if (!ResultReg)
1210       return false;
1211     updateValueMap(II, ResultReg);
1212     return true;
1213   }
1214   case Intrinsic::experimental_stackmap:
1215     return selectStackmap(II);
1216   case Intrinsic::experimental_patchpoint_void:
1217   case Intrinsic::experimental_patchpoint_i64:
1218     return selectPatchpoint(II);
1219   }
1220
1221   return fastLowerIntrinsicCall(II);
1222 }
1223
1224 bool FastISel::selectCast(const User *I, unsigned Opcode) {
1225   EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
1226   EVT DstVT = TLI.getValueType(I->getType());
1227
1228   if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other ||
1229       !DstVT.isSimple())
1230     // Unhandled type. Halt "fast" selection and bail.
1231     return false;
1232
1233   // Check if the destination type is legal.
1234   if (!TLI.isTypeLegal(DstVT))
1235     return false;
1236
1237   // Check if the source operand is legal.
1238   if (!TLI.isTypeLegal(SrcVT))
1239     return false;
1240
1241   unsigned InputReg = getRegForValue(I->getOperand(0));
1242   if (!InputReg)
1243     // Unhandled operand.  Halt "fast" selection and bail.
1244     return false;
1245
1246   bool InputRegIsKill = hasTrivialKill(I->getOperand(0));
1247
1248   unsigned ResultReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
1249                                   Opcode, InputReg, InputRegIsKill);
1250   if (!ResultReg)
1251     return false;
1252
1253   updateValueMap(I, ResultReg);
1254   return true;
1255 }
1256
1257 bool FastISel::selectBitCast(const User *I) {
1258   // If the bitcast doesn't change the type, just use the operand value.
1259   if (I->getType() == I->getOperand(0)->getType()) {
1260     unsigned Reg = getRegForValue(I->getOperand(0));
1261     if (!Reg)
1262       return false;
1263     updateValueMap(I, Reg);
1264     return true;
1265   }
1266
1267   // Bitcasts of other values become reg-reg copies or BITCAST operators.
1268   EVT SrcEVT = TLI.getValueType(I->getOperand(0)->getType());
1269   EVT DstEVT = TLI.getValueType(I->getType());
1270   if (SrcEVT == MVT::Other || DstEVT == MVT::Other ||
1271       !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT))
1272     // Unhandled type. Halt "fast" selection and bail.
1273     return false;
1274
1275   MVT SrcVT = SrcEVT.getSimpleVT();
1276   MVT DstVT = DstEVT.getSimpleVT();
1277   unsigned Op0 = getRegForValue(I->getOperand(0));
1278   if (!Op0) // Unhandled operand. Halt "fast" selection and bail.
1279     return false;
1280   bool Op0IsKill = hasTrivialKill(I->getOperand(0));
1281
1282   // First, try to perform the bitcast by inserting a reg-reg copy.
1283   unsigned ResultReg = 0;
1284   if (SrcVT == DstVT) {
1285     const TargetRegisterClass *SrcClass = TLI.getRegClassFor(SrcVT);
1286     const TargetRegisterClass *DstClass = TLI.getRegClassFor(DstVT);
1287     // Don't attempt a cross-class copy. It will likely fail.
1288     if (SrcClass == DstClass) {
1289       ResultReg = createResultReg(DstClass);
1290       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1291               TII.get(TargetOpcode::COPY), ResultReg).addReg(Op0);
1292     }
1293   }
1294
1295   // If the reg-reg copy failed, select a BITCAST opcode.
1296   if (!ResultReg)
1297     ResultReg = fastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0, Op0IsKill);
1298
1299   if (!ResultReg)
1300     return false;
1301
1302   updateValueMap(I, ResultReg);
1303   return true;
1304 }
1305
1306 bool FastISel::selectInstruction(const Instruction *I) {
1307   // Just before the terminator instruction, insert instructions to
1308   // feed PHI nodes in successor blocks.
1309   if (isa<TerminatorInst>(I))
1310     if (!handlePHINodesInSuccessorBlocks(I->getParent()))
1311       return false;
1312
1313   DbgLoc = I->getDebugLoc();
1314
1315   SavedInsertPt = FuncInfo.InsertPt;
1316
1317   if (const auto *Call = dyn_cast<CallInst>(I)) {
1318     const Function *F = Call->getCalledFunction();
1319     LibFunc::Func Func;
1320
1321     // As a special case, don't handle calls to builtin library functions that
1322     // may be translated directly to target instructions.
1323     if (F && !F->hasLocalLinkage() && F->hasName() &&
1324         LibInfo->getLibFunc(F->getName(), Func) &&
1325         LibInfo->hasOptimizedCodeGen(Func))
1326       return false;
1327
1328     // Don't handle Intrinsic::trap if a trap funciton is specified.
1329     if (F && F->getIntrinsicID() == Intrinsic::trap &&
1330         !TM.Options.getTrapFunctionName().empty())
1331       return false;
1332   }
1333
1334   // First, try doing target-independent selection.
1335   if (!SkipTargetIndependentISel) {
1336     if (selectOperator(I, I->getOpcode())) {
1337       ++NumFastIselSuccessIndependent;
1338       DbgLoc = DebugLoc();
1339       return true;
1340     }
1341     // Remove dead code.
1342     recomputeInsertPt();
1343     if (SavedInsertPt != FuncInfo.InsertPt)
1344       removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
1345     SavedInsertPt = FuncInfo.InsertPt;
1346   }
1347   // Next, try calling the target to attempt to handle the instruction.
1348   if (fastSelectInstruction(I)) {
1349     ++NumFastIselSuccessTarget;
1350     DbgLoc = DebugLoc();
1351     return true;
1352   }
1353   // Remove dead code.
1354   recomputeInsertPt();
1355   if (SavedInsertPt != FuncInfo.InsertPt)
1356     removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
1357
1358   DbgLoc = DebugLoc();
1359   // Undo phi node updates, because they will be added again by SelectionDAG.
1360   if (isa<TerminatorInst>(I))
1361     FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
1362   return false;
1363 }
1364
1365 /// Emit an unconditional branch to the given block, unless it is the immediate
1366 /// (fall-through) successor, and update the CFG.
1367 void FastISel::fastEmitBranch(MachineBasicBlock *MSucc, DebugLoc DbgLoc) {
1368   if (FuncInfo.MBB->getBasicBlock()->size() > 1 &&
1369       FuncInfo.MBB->isLayoutSuccessor(MSucc)) {
1370     // For more accurate line information if this is the only instruction
1371     // in the block then emit it, otherwise we have the unconditional
1372     // fall-through case, which needs no instructions.
1373   } else {
1374     // The unconditional branch case.
1375     TII.InsertBranch(*FuncInfo.MBB, MSucc, nullptr,
1376                      SmallVector<MachineOperand, 0>(), DbgLoc);
1377   }
1378   uint32_t BranchWeight = 0;
1379   if (FuncInfo.BPI)
1380     BranchWeight = FuncInfo.BPI->getEdgeWeight(FuncInfo.MBB->getBasicBlock(),
1381                                                MSucc->getBasicBlock());
1382   FuncInfo.MBB->addSuccessor(MSucc, BranchWeight);
1383 }
1384
1385 /// Emit an FNeg operation.
1386 bool FastISel::selectFNeg(const User *I) {
1387   unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I));
1388   if (!OpReg)
1389     return false;
1390   bool OpRegIsKill = hasTrivialKill(I);
1391
1392   // If the target has ISD::FNEG, use it.
1393   EVT VT = TLI.getValueType(I->getType());
1394   unsigned ResultReg = fastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), ISD::FNEG,
1395                                   OpReg, OpRegIsKill);
1396   if (ResultReg) {
1397     updateValueMap(I, ResultReg);
1398     return true;
1399   }
1400
1401   // Bitcast the value to integer, twiddle the sign bit with xor,
1402   // and then bitcast it back to floating-point.
1403   if (VT.getSizeInBits() > 64)
1404     return false;
1405   EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits());
1406   if (!TLI.isTypeLegal(IntVT))
1407     return false;
1408
1409   unsigned IntReg = fastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(),
1410                                ISD::BITCAST, OpReg, OpRegIsKill);
1411   if (!IntReg)
1412     return false;
1413
1414   unsigned IntResultReg = fastEmit_ri_(
1415       IntVT.getSimpleVT(), ISD::XOR, IntReg, /*IsKill=*/true,
1416       UINT64_C(1) << (VT.getSizeInBits() - 1), IntVT.getSimpleVT());
1417   if (!IntResultReg)
1418     return false;
1419
1420   ResultReg = fastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), ISD::BITCAST,
1421                          IntResultReg, /*IsKill=*/true);
1422   if (!ResultReg)
1423     return false;
1424
1425   updateValueMap(I, ResultReg);
1426   return true;
1427 }
1428
1429 bool FastISel::selectExtractValue(const User *U) {
1430   const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U);
1431   if (!EVI)
1432     return false;
1433
1434   // Make sure we only try to handle extracts with a legal result.  But also
1435   // allow i1 because it's easy.
1436   EVT RealVT = TLI.getValueType(EVI->getType(), /*AllowUnknown=*/true);
1437   if (!RealVT.isSimple())
1438     return false;
1439   MVT VT = RealVT.getSimpleVT();
1440   if (!TLI.isTypeLegal(VT) && VT != MVT::i1)
1441     return false;
1442
1443   const Value *Op0 = EVI->getOperand(0);
1444   Type *AggTy = Op0->getType();
1445
1446   // Get the base result register.
1447   unsigned ResultReg;
1448   DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(Op0);
1449   if (I != FuncInfo.ValueMap.end())
1450     ResultReg = I->second;
1451   else if (isa<Instruction>(Op0))
1452     ResultReg = FuncInfo.InitializeRegForValue(Op0);
1453   else
1454     return false; // fast-isel can't handle aggregate constants at the moment
1455
1456   // Get the actual result register, which is an offset from the base register.
1457   unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices());
1458
1459   SmallVector<EVT, 4> AggValueVTs;
1460   ComputeValueVTs(TLI, AggTy, AggValueVTs);
1461
1462   for (unsigned i = 0; i < VTIndex; i++)
1463     ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]);
1464
1465   updateValueMap(EVI, ResultReg);
1466   return true;
1467 }
1468
1469 bool FastISel::selectOperator(const User *I, unsigned Opcode) {
1470   switch (Opcode) {
1471   case Instruction::Add:
1472     return selectBinaryOp(I, ISD::ADD);
1473   case Instruction::FAdd:
1474     return selectBinaryOp(I, ISD::FADD);
1475   case Instruction::Sub:
1476     return selectBinaryOp(I, ISD::SUB);
1477   case Instruction::FSub:
1478     // FNeg is currently represented in LLVM IR as a special case of FSub.
1479     if (BinaryOperator::isFNeg(I))
1480       return selectFNeg(I);
1481     return selectBinaryOp(I, ISD::FSUB);
1482   case Instruction::Mul:
1483     return selectBinaryOp(I, ISD::MUL);
1484   case Instruction::FMul:
1485     return selectBinaryOp(I, ISD::FMUL);
1486   case Instruction::SDiv:
1487     return selectBinaryOp(I, ISD::SDIV);
1488   case Instruction::UDiv:
1489     return selectBinaryOp(I, ISD::UDIV);
1490   case Instruction::FDiv:
1491     return selectBinaryOp(I, ISD::FDIV);
1492   case Instruction::SRem:
1493     return selectBinaryOp(I, ISD::SREM);
1494   case Instruction::URem:
1495     return selectBinaryOp(I, ISD::UREM);
1496   case Instruction::FRem:
1497     return selectBinaryOp(I, ISD::FREM);
1498   case Instruction::Shl:
1499     return selectBinaryOp(I, ISD::SHL);
1500   case Instruction::LShr:
1501     return selectBinaryOp(I, ISD::SRL);
1502   case Instruction::AShr:
1503     return selectBinaryOp(I, ISD::SRA);
1504   case Instruction::And:
1505     return selectBinaryOp(I, ISD::AND);
1506   case Instruction::Or:
1507     return selectBinaryOp(I, ISD::OR);
1508   case Instruction::Xor:
1509     return selectBinaryOp(I, ISD::XOR);
1510
1511   case Instruction::GetElementPtr:
1512     return selectGetElementPtr(I);
1513
1514   case Instruction::Br: {
1515     const BranchInst *BI = cast<BranchInst>(I);
1516
1517     if (BI->isUnconditional()) {
1518       const BasicBlock *LLVMSucc = BI->getSuccessor(0);
1519       MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc];
1520       fastEmitBranch(MSucc, BI->getDebugLoc());
1521       return true;
1522     }
1523
1524     // Conditional branches are not handed yet.
1525     // Halt "fast" selection and bail.
1526     return false;
1527   }
1528
1529   case Instruction::Unreachable:
1530     if (TM.Options.TrapUnreachable)
1531       return fastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0;
1532     else
1533       return true;
1534
1535   case Instruction::Alloca:
1536     // FunctionLowering has the static-sized case covered.
1537     if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I)))
1538       return true;
1539
1540     // Dynamic-sized alloca is not handled yet.
1541     return false;
1542
1543   case Instruction::Call:
1544     return selectCall(I);
1545
1546   case Instruction::BitCast:
1547     return selectBitCast(I);
1548
1549   case Instruction::FPToSI:
1550     return selectCast(I, ISD::FP_TO_SINT);
1551   case Instruction::ZExt:
1552     return selectCast(I, ISD::ZERO_EXTEND);
1553   case Instruction::SExt:
1554     return selectCast(I, ISD::SIGN_EXTEND);
1555   case Instruction::Trunc:
1556     return selectCast(I, ISD::TRUNCATE);
1557   case Instruction::SIToFP:
1558     return selectCast(I, ISD::SINT_TO_FP);
1559
1560   case Instruction::IntToPtr: // Deliberate fall-through.
1561   case Instruction::PtrToInt: {
1562     EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
1563     EVT DstVT = TLI.getValueType(I->getType());
1564     if (DstVT.bitsGT(SrcVT))
1565       return selectCast(I, ISD::ZERO_EXTEND);
1566     if (DstVT.bitsLT(SrcVT))
1567       return selectCast(I, ISD::TRUNCATE);
1568     unsigned Reg = getRegForValue(I->getOperand(0));
1569     if (!Reg)
1570       return false;
1571     updateValueMap(I, Reg);
1572     return true;
1573   }
1574
1575   case Instruction::ExtractValue:
1576     return selectExtractValue(I);
1577
1578   case Instruction::PHI:
1579     llvm_unreachable("FastISel shouldn't visit PHI nodes!");
1580
1581   default:
1582     // Unhandled instruction. Halt "fast" selection and bail.
1583     return false;
1584   }
1585 }
1586
1587 FastISel::FastISel(FunctionLoweringInfo &FuncInfo,
1588                    const TargetLibraryInfo *LibInfo,
1589                    bool SkipTargetIndependentISel)
1590     : FuncInfo(FuncInfo), MF(FuncInfo.MF), MRI(FuncInfo.MF->getRegInfo()),
1591       MFI(*FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()),
1592       TM(FuncInfo.MF->getTarget()), DL(*TM.getDataLayout()),
1593       TII(*MF->getSubtarget().getInstrInfo()),
1594       TLI(*MF->getSubtarget().getTargetLowering()),
1595       TRI(*MF->getSubtarget().getRegisterInfo()), LibInfo(LibInfo),
1596       SkipTargetIndependentISel(SkipTargetIndependentISel) {}
1597
1598 FastISel::~FastISel() {}
1599
1600 bool FastISel::fastLowerArguments() { return false; }
1601
1602 bool FastISel::fastLowerCall(CallLoweringInfo & /*CLI*/) { return false; }
1603
1604 bool FastISel::fastLowerIntrinsicCall(const IntrinsicInst * /*II*/) {
1605   return false;
1606 }
1607
1608 unsigned FastISel::fastEmit_(MVT, MVT, unsigned) { return 0; }
1609
1610 unsigned FastISel::fastEmit_r(MVT, MVT, unsigned, unsigned /*Op0*/,
1611                               bool /*Op0IsKill*/) {
1612   return 0;
1613 }
1614
1615 unsigned FastISel::fastEmit_rr(MVT, MVT, unsigned, unsigned /*Op0*/,
1616                                bool /*Op0IsKill*/, unsigned /*Op1*/,
1617                                bool /*Op1IsKill*/) {
1618   return 0;
1619 }
1620
1621 unsigned FastISel::fastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) {
1622   return 0;
1623 }
1624
1625 unsigned FastISel::fastEmit_f(MVT, MVT, unsigned,
1626                               const ConstantFP * /*FPImm*/) {
1627   return 0;
1628 }
1629
1630 unsigned FastISel::fastEmit_ri(MVT, MVT, unsigned, unsigned /*Op0*/,
1631                                bool /*Op0IsKill*/, uint64_t /*Imm*/) {
1632   return 0;
1633 }
1634
1635 unsigned FastISel::fastEmit_rf(MVT, MVT, unsigned, unsigned /*Op0*/,
1636                                bool /*Op0IsKill*/,
1637                                const ConstantFP * /*FPImm*/) {
1638   return 0;
1639 }
1640
1641 unsigned FastISel::fastEmit_rri(MVT, MVT, unsigned, unsigned /*Op0*/,
1642                                 bool /*Op0IsKill*/, unsigned /*Op1*/,
1643                                 bool /*Op1IsKill*/, uint64_t /*Imm*/) {
1644   return 0;
1645 }
1646
1647 /// This method is a wrapper of fastEmit_ri. It first tries to emit an
1648 /// instruction with an immediate operand using fastEmit_ri.
1649 /// If that fails, it materializes the immediate into a register and try
1650 /// fastEmit_rr instead.
1651 unsigned FastISel::fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0,
1652                                 bool Op0IsKill, uint64_t Imm, MVT ImmType) {
1653   // If this is a multiply by a power of two, emit this as a shift left.
1654   if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) {
1655     Opcode = ISD::SHL;
1656     Imm = Log2_64(Imm);
1657   } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) {
1658     // div x, 8 -> srl x, 3
1659     Opcode = ISD::SRL;
1660     Imm = Log2_64(Imm);
1661   }
1662
1663   // Horrible hack (to be removed), check to make sure shift amounts are
1664   // in-range.
1665   if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) &&
1666       Imm >= VT.getSizeInBits())
1667     return 0;
1668
1669   // First check if immediate type is legal. If not, we can't use the ri form.
1670   unsigned ResultReg = fastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm);
1671   if (ResultReg)
1672     return ResultReg;
1673   unsigned MaterialReg = fastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
1674   if (!MaterialReg) {
1675     // This is a bit ugly/slow, but failing here means falling out of
1676     // fast-isel, which would be very slow.
1677     IntegerType *ITy =
1678         IntegerType::get(FuncInfo.Fn->getContext(), VT.getSizeInBits());
1679     MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm));
1680     if (!MaterialReg)
1681       return 0;
1682   }
1683   return fastEmit_rr(VT, VT, Opcode, Op0, Op0IsKill, MaterialReg,
1684                      /*IsKill=*/true);
1685 }
1686
1687 unsigned FastISel::createResultReg(const TargetRegisterClass *RC) {
1688   return MRI.createVirtualRegister(RC);
1689 }
1690
1691 unsigned FastISel::constrainOperandRegClass(const MCInstrDesc &II, unsigned Op,
1692                                             unsigned OpNum) {
1693   if (TargetRegisterInfo::isVirtualRegister(Op)) {
1694     const TargetRegisterClass *RegClass =
1695         TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF);
1696     if (!MRI.constrainRegClass(Op, RegClass)) {
1697       // If it's not legal to COPY between the register classes, something
1698       // has gone very wrong before we got here.
1699       unsigned NewOp = createResultReg(RegClass);
1700       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1701               TII.get(TargetOpcode::COPY), NewOp).addReg(Op);
1702       return NewOp;
1703     }
1704   }
1705   return Op;
1706 }
1707
1708 unsigned FastISel::fastEmitInst_(unsigned MachineInstOpcode,
1709                                  const TargetRegisterClass *RC) {
1710   unsigned ResultReg = createResultReg(RC);
1711   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1712
1713   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg);
1714   return ResultReg;
1715 }
1716
1717 unsigned FastISel::fastEmitInst_r(unsigned MachineInstOpcode,
1718                                   const TargetRegisterClass *RC, unsigned Op0,
1719                                   bool Op0IsKill) {
1720   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1721
1722   unsigned ResultReg = createResultReg(RC);
1723   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1724
1725   if (II.getNumDefs() >= 1)
1726     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1727         .addReg(Op0, getKillRegState(Op0IsKill));
1728   else {
1729     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1730         .addReg(Op0, getKillRegState(Op0IsKill));
1731     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1732             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1733   }
1734
1735   return ResultReg;
1736 }
1737
1738 unsigned FastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
1739                                    const TargetRegisterClass *RC, unsigned Op0,
1740                                    bool Op0IsKill, unsigned Op1,
1741                                    bool Op1IsKill) {
1742   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1743
1744   unsigned ResultReg = createResultReg(RC);
1745   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1746   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
1747
1748   if (II.getNumDefs() >= 1)
1749     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1750         .addReg(Op0, getKillRegState(Op0IsKill))
1751         .addReg(Op1, getKillRegState(Op1IsKill));
1752   else {
1753     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1754         .addReg(Op0, getKillRegState(Op0IsKill))
1755         .addReg(Op1, getKillRegState(Op1IsKill));
1756     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1757             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1758   }
1759   return ResultReg;
1760 }
1761
1762 unsigned FastISel::fastEmitInst_rrr(unsigned MachineInstOpcode,
1763                                     const TargetRegisterClass *RC, unsigned Op0,
1764                                     bool Op0IsKill, unsigned Op1,
1765                                     bool Op1IsKill, unsigned Op2,
1766                                     bool Op2IsKill) {
1767   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1768
1769   unsigned ResultReg = createResultReg(RC);
1770   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1771   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
1772   Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2);
1773
1774   if (II.getNumDefs() >= 1)
1775     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1776         .addReg(Op0, getKillRegState(Op0IsKill))
1777         .addReg(Op1, getKillRegState(Op1IsKill))
1778         .addReg(Op2, getKillRegState(Op2IsKill));
1779   else {
1780     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1781         .addReg(Op0, getKillRegState(Op0IsKill))
1782         .addReg(Op1, getKillRegState(Op1IsKill))
1783         .addReg(Op2, getKillRegState(Op2IsKill));
1784     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1785             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1786   }
1787   return ResultReg;
1788 }
1789
1790 unsigned FastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
1791                                    const TargetRegisterClass *RC, unsigned Op0,
1792                                    bool Op0IsKill, uint64_t Imm) {
1793   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1794
1795   unsigned ResultReg = createResultReg(RC);
1796   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1797
1798   if (II.getNumDefs() >= 1)
1799     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1800         .addReg(Op0, getKillRegState(Op0IsKill))
1801         .addImm(Imm);
1802   else {
1803     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1804         .addReg(Op0, getKillRegState(Op0IsKill))
1805         .addImm(Imm);
1806     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1807             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1808   }
1809   return ResultReg;
1810 }
1811
1812 unsigned FastISel::fastEmitInst_rii(unsigned MachineInstOpcode,
1813                                     const TargetRegisterClass *RC, unsigned Op0,
1814                                     bool Op0IsKill, uint64_t Imm1,
1815                                     uint64_t Imm2) {
1816   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1817
1818   unsigned ResultReg = createResultReg(RC);
1819   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1820
1821   if (II.getNumDefs() >= 1)
1822     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1823         .addReg(Op0, getKillRegState(Op0IsKill))
1824         .addImm(Imm1)
1825         .addImm(Imm2);
1826   else {
1827     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1828         .addReg(Op0, getKillRegState(Op0IsKill))
1829         .addImm(Imm1)
1830         .addImm(Imm2);
1831     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1832             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1833   }
1834   return ResultReg;
1835 }
1836
1837 unsigned FastISel::fastEmitInst_rf(unsigned MachineInstOpcode,
1838                                    const TargetRegisterClass *RC, unsigned Op0,
1839                                    bool Op0IsKill, const ConstantFP *FPImm) {
1840   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1841
1842   unsigned ResultReg = createResultReg(RC);
1843   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1844
1845   if (II.getNumDefs() >= 1)
1846     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1847         .addReg(Op0, getKillRegState(Op0IsKill))
1848         .addFPImm(FPImm);
1849   else {
1850     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1851         .addReg(Op0, getKillRegState(Op0IsKill))
1852         .addFPImm(FPImm);
1853     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1854             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1855   }
1856   return ResultReg;
1857 }
1858
1859 unsigned FastISel::fastEmitInst_rri(unsigned MachineInstOpcode,
1860                                     const TargetRegisterClass *RC, unsigned Op0,
1861                                     bool Op0IsKill, unsigned Op1,
1862                                     bool Op1IsKill, uint64_t Imm) {
1863   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1864
1865   unsigned ResultReg = createResultReg(RC);
1866   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1867   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
1868
1869   if (II.getNumDefs() >= 1)
1870     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1871         .addReg(Op0, getKillRegState(Op0IsKill))
1872         .addReg(Op1, getKillRegState(Op1IsKill))
1873         .addImm(Imm);
1874   else {
1875     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1876         .addReg(Op0, getKillRegState(Op0IsKill))
1877         .addReg(Op1, getKillRegState(Op1IsKill))
1878         .addImm(Imm);
1879     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1880             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1881   }
1882   return ResultReg;
1883 }
1884
1885 unsigned FastISel::fastEmitInst_rrii(unsigned MachineInstOpcode,
1886                                      const TargetRegisterClass *RC,
1887                                      unsigned Op0, bool Op0IsKill, unsigned Op1,
1888                                      bool Op1IsKill, uint64_t Imm1,
1889                                      uint64_t Imm2) {
1890   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1891
1892   unsigned ResultReg = createResultReg(RC);
1893   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1894   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
1895
1896   if (II.getNumDefs() >= 1)
1897     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1898         .addReg(Op0, getKillRegState(Op0IsKill))
1899         .addReg(Op1, getKillRegState(Op1IsKill))
1900         .addImm(Imm1)
1901         .addImm(Imm2);
1902   else {
1903     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1904         .addReg(Op0, getKillRegState(Op0IsKill))
1905         .addReg(Op1, getKillRegState(Op1IsKill))
1906         .addImm(Imm1)
1907         .addImm(Imm2);
1908     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1909             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1910   }
1911   return ResultReg;
1912 }
1913
1914 unsigned FastISel::fastEmitInst_i(unsigned MachineInstOpcode,
1915                                   const TargetRegisterClass *RC, uint64_t Imm) {
1916   unsigned ResultReg = createResultReg(RC);
1917   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1918
1919   if (II.getNumDefs() >= 1)
1920     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1921         .addImm(Imm);
1922   else {
1923     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm);
1924     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1925             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1926   }
1927   return ResultReg;
1928 }
1929
1930 unsigned FastISel::fastEmitInst_ii(unsigned MachineInstOpcode,
1931                                    const TargetRegisterClass *RC, uint64_t Imm1,
1932                                    uint64_t Imm2) {
1933   unsigned ResultReg = createResultReg(RC);
1934   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1935
1936   if (II.getNumDefs() >= 1)
1937     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1938         .addImm(Imm1)
1939         .addImm(Imm2);
1940   else {
1941     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm1)
1942         .addImm(Imm2);
1943     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1944             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1945   }
1946   return ResultReg;
1947 }
1948
1949 unsigned FastISel::fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0,
1950                                               bool Op0IsKill, uint32_t Idx) {
1951   unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
1952   assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
1953          "Cannot yet extract from physregs");
1954   const TargetRegisterClass *RC = MRI.getRegClass(Op0);
1955   MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx));
1956   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
1957           ResultReg).addReg(Op0, getKillRegState(Op0IsKill), Idx);
1958   return ResultReg;
1959 }
1960
1961 /// Emit MachineInstrs to compute the value of Op with all but the least
1962 /// significant bit set to zero.
1963 unsigned FastISel::fastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) {
1964   return fastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1);
1965 }
1966
1967 /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks.
1968 /// Emit code to ensure constants are copied into registers when needed.
1969 /// Remember the virtual registers that need to be added to the Machine PHI
1970 /// nodes as input.  We cannot just directly add them, because expansion
1971 /// might result in multiple MBB's for one BB.  As such, the start of the
1972 /// BB might correspond to a different MBB than the end.
1973 bool FastISel::handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
1974   const TerminatorInst *TI = LLVMBB->getTerminator();
1975
1976   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
1977   FuncInfo.OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size();
1978
1979   // Check successor nodes' PHI nodes that expect a constant to be available
1980   // from this block.
1981   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
1982     const BasicBlock *SuccBB = TI->getSuccessor(succ);
1983     if (!isa<PHINode>(SuccBB->begin()))
1984       continue;
1985     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
1986
1987     // If this terminator has multiple identical successors (common for
1988     // switches), only handle each succ once.
1989     if (!SuccsHandled.insert(SuccMBB).second)
1990       continue;
1991
1992     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
1993
1994     // At this point we know that there is a 1-1 correspondence between LLVM PHI
1995     // nodes and Machine PHI nodes, but the incoming operands have not been
1996     // emitted yet.
1997     for (BasicBlock::const_iterator I = SuccBB->begin();
1998          const auto *PN = dyn_cast<PHINode>(I); ++I) {
1999
2000       // Ignore dead phi's.
2001       if (PN->use_empty())
2002         continue;
2003
2004       // Only handle legal types. Two interesting things to note here. First,
2005       // by bailing out early, we may leave behind some dead instructions,
2006       // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
2007       // own moves. Second, this check is necessary because FastISel doesn't
2008       // use CreateRegs to create registers, so it always creates
2009       // exactly one register for each non-void instruction.
2010       EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true);
2011       if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
2012         // Handle integer promotions, though, because they're common and easy.
2013         if (!(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) {
2014           FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
2015           return false;
2016         }
2017       }
2018
2019       const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
2020
2021       // Set the DebugLoc for the copy. Prefer the location of the operand
2022       // if there is one; use the location of the PHI otherwise.
2023       DbgLoc = PN->getDebugLoc();
2024       if (const auto *Inst = dyn_cast<Instruction>(PHIOp))
2025         DbgLoc = Inst->getDebugLoc();
2026
2027       unsigned Reg = getRegForValue(PHIOp);
2028       if (!Reg) {
2029         FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
2030         return false;
2031       }
2032       FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg));
2033       DbgLoc = DebugLoc();
2034     }
2035   }
2036
2037   return true;
2038 }
2039
2040 bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) {
2041   assert(LI->hasOneUse() &&
2042          "tryToFoldLoad expected a LoadInst with a single use");
2043   // We know that the load has a single use, but don't know what it is.  If it
2044   // isn't one of the folded instructions, then we can't succeed here.  Handle
2045   // this by scanning the single-use users of the load until we get to FoldInst.
2046   unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs.
2047
2048   const Instruction *TheUser = LI->user_back();
2049   while (TheUser != FoldInst && // Scan up until we find FoldInst.
2050          // Stay in the right block.
2051          TheUser->getParent() == FoldInst->getParent() &&
2052          --MaxUsers) { // Don't scan too far.
2053     // If there are multiple or no uses of this instruction, then bail out.
2054     if (!TheUser->hasOneUse())
2055       return false;
2056
2057     TheUser = TheUser->user_back();
2058   }
2059
2060   // If we didn't find the fold instruction, then we failed to collapse the
2061   // sequence.
2062   if (TheUser != FoldInst)
2063     return false;
2064
2065   // Don't try to fold volatile loads.  Target has to deal with alignment
2066   // constraints.
2067   if (LI->isVolatile())
2068     return false;
2069
2070   // Figure out which vreg this is going into.  If there is no assigned vreg yet
2071   // then there actually was no reference to it.  Perhaps the load is referenced
2072   // by a dead instruction.
2073   unsigned LoadReg = getRegForValue(LI);
2074   if (!LoadReg)
2075     return false;
2076
2077   // We can't fold if this vreg has no uses or more than one use.  Multiple uses
2078   // may mean that the instruction got lowered to multiple MIs, or the use of
2079   // the loaded value ended up being multiple operands of the result.
2080   if (!MRI.hasOneUse(LoadReg))
2081     return false;
2082
2083   MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg);
2084   MachineInstr *User = RI->getParent();
2085
2086   // Set the insertion point properly.  Folding the load can cause generation of
2087   // other random instructions (like sign extends) for addressing modes; make
2088   // sure they get inserted in a logical place before the new instruction.
2089   FuncInfo.InsertPt = User;
2090   FuncInfo.MBB = User->getParent();
2091
2092   // Ask the target to try folding the load.
2093   return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI);
2094 }
2095
2096 bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) {
2097   // Must be an add.
2098   if (!isa<AddOperator>(Add))
2099     return false;
2100   // Type size needs to match.
2101   if (DL.getTypeSizeInBits(GEP->getType()) !=
2102       DL.getTypeSizeInBits(Add->getType()))
2103     return false;
2104   // Must be in the same basic block.
2105   if (isa<Instruction>(Add) &&
2106       FuncInfo.MBBMap[cast<Instruction>(Add)->getParent()] != FuncInfo.MBB)
2107     return false;
2108   // Must have a constant operand.
2109   return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1));
2110 }
2111
2112 MachineMemOperand *
2113 FastISel::createMachineMemOperandFor(const Instruction *I) const {
2114   const Value *Ptr;
2115   Type *ValTy;
2116   unsigned Alignment;
2117   unsigned Flags;
2118   bool IsVolatile;
2119
2120   if (const auto *LI = dyn_cast<LoadInst>(I)) {
2121     Alignment = LI->getAlignment();
2122     IsVolatile = LI->isVolatile();
2123     Flags = MachineMemOperand::MOLoad;
2124     Ptr = LI->getPointerOperand();
2125     ValTy = LI->getType();
2126   } else if (const auto *SI = dyn_cast<StoreInst>(I)) {
2127     Alignment = SI->getAlignment();
2128     IsVolatile = SI->isVolatile();
2129     Flags = MachineMemOperand::MOStore;
2130     Ptr = SI->getPointerOperand();
2131     ValTy = SI->getValueOperand()->getType();
2132   } else
2133     return nullptr;
2134
2135   bool IsNonTemporal = I->getMetadata(LLVMContext::MD_nontemporal) != nullptr;
2136   bool IsInvariant = I->getMetadata(LLVMContext::MD_invariant_load) != nullptr;
2137   const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range);
2138
2139   AAMDNodes AAInfo;
2140   I->getAAMetadata(AAInfo);
2141
2142   if (Alignment == 0) // Ensure that codegen never sees alignment 0.
2143     Alignment = DL.getABITypeAlignment(ValTy);
2144
2145   unsigned Size = DL.getTypeStoreSize(ValTy);
2146
2147   if (IsVolatile)
2148     Flags |= MachineMemOperand::MOVolatile;
2149   if (IsNonTemporal)
2150     Flags |= MachineMemOperand::MONonTemporal;
2151   if (IsInvariant)
2152     Flags |= MachineMemOperand::MOInvariant;
2153
2154   return FuncInfo.MF->getMachineMemOperand(MachinePointerInfo(Ptr), Flags, Size,
2155                                            Alignment, AAInfo, Ranges);
2156 }
2157
2158 CmpInst::Predicate FastISel::optimizeCmpPredicate(const CmpInst *CI) const {
2159   // If both operands are the same, then try to optimize or fold the cmp.
2160   CmpInst::Predicate Predicate = CI->getPredicate();
2161   if (CI->getOperand(0) != CI->getOperand(1))
2162     return Predicate;
2163
2164   switch (Predicate) {
2165   default: llvm_unreachable("Invalid predicate!");
2166   case CmpInst::FCMP_FALSE: Predicate = CmpInst::FCMP_FALSE; break;
2167   case CmpInst::FCMP_OEQ:   Predicate = CmpInst::FCMP_ORD;   break;
2168   case CmpInst::FCMP_OGT:   Predicate = CmpInst::FCMP_FALSE; break;
2169   case CmpInst::FCMP_OGE:   Predicate = CmpInst::FCMP_ORD;   break;
2170   case CmpInst::FCMP_OLT:   Predicate = CmpInst::FCMP_FALSE; break;
2171   case CmpInst::FCMP_OLE:   Predicate = CmpInst::FCMP_ORD;   break;
2172   case CmpInst::FCMP_ONE:   Predicate = CmpInst::FCMP_FALSE; break;
2173   case CmpInst::FCMP_ORD:   Predicate = CmpInst::FCMP_ORD;   break;
2174   case CmpInst::FCMP_UNO:   Predicate = CmpInst::FCMP_UNO;   break;
2175   case CmpInst::FCMP_UEQ:   Predicate = CmpInst::FCMP_TRUE;  break;
2176   case CmpInst::FCMP_UGT:   Predicate = CmpInst::FCMP_UNO;   break;
2177   case CmpInst::FCMP_UGE:   Predicate = CmpInst::FCMP_TRUE;  break;
2178   case CmpInst::FCMP_ULT:   Predicate = CmpInst::FCMP_UNO;   break;
2179   case CmpInst::FCMP_ULE:   Predicate = CmpInst::FCMP_TRUE;  break;
2180   case CmpInst::FCMP_UNE:   Predicate = CmpInst::FCMP_UNO;   break;
2181   case CmpInst::FCMP_TRUE:  Predicate = CmpInst::FCMP_TRUE;  break;
2182
2183   case CmpInst::ICMP_EQ:    Predicate = CmpInst::FCMP_TRUE;  break;
2184   case CmpInst::ICMP_NE:    Predicate = CmpInst::FCMP_FALSE; break;
2185   case CmpInst::ICMP_UGT:   Predicate = CmpInst::FCMP_FALSE; break;
2186   case CmpInst::ICMP_UGE:   Predicate = CmpInst::FCMP_TRUE;  break;
2187   case CmpInst::ICMP_ULT:   Predicate = CmpInst::FCMP_FALSE; break;
2188   case CmpInst::ICMP_ULE:   Predicate = CmpInst::FCMP_TRUE;  break;
2189   case CmpInst::ICMP_SGT:   Predicate = CmpInst::FCMP_FALSE; break;
2190   case CmpInst::ICMP_SGE:   Predicate = CmpInst::FCMP_TRUE;  break;
2191   case CmpInst::ICMP_SLT:   Predicate = CmpInst::FCMP_FALSE; break;
2192   case CmpInst::ICMP_SLE:   Predicate = CmpInst::FCMP_TRUE;  break;
2193   }
2194
2195   return Predicate;
2196 }