1 //===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements basic block placement transformations using the CFG
11 // structure and branch probability estimates.
13 // The pass strives to preserve the structure of the CFG (that is, retain
14 // a topological ordering of basic blocks) in the absence of a *strong* signal
15 // to the contrary from probabilities. However, within the CFG structure, it
16 // attempts to choose an ordering which favors placing more likely sequences of
17 // blocks adjacent to each other.
19 // The algorithm works from the inner-most loop within a function outward, and
20 // at each stage walks through the basic blocks, trying to coalesce them into
21 // sequential chains where allowed by the CFG (or demanded by heavy
22 // probabilities). Finally, it walks the blocks in topological order, and the
23 // first time it reaches a chain of basic blocks, it schedules them in the
26 //===----------------------------------------------------------------------===//
28 #include "llvm/CodeGen/Passes.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/CodeGen/MachineBasicBlock.h"
34 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
35 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
36 #include "llvm/CodeGen/MachineDominators.h"
37 #include "llvm/CodeGen/MachineFunction.h"
38 #include "llvm/CodeGen/MachineFunctionPass.h"
39 #include "llvm/CodeGen/MachineLoopInfo.h"
40 #include "llvm/CodeGen/MachineModuleInfo.h"
41 #include "llvm/Support/Allocator.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Target/TargetInstrInfo.h"
46 #include "llvm/Target/TargetLowering.h"
47 #include "llvm/Target/TargetSubtargetInfo.h"
51 #define DEBUG_TYPE "block-placement"
53 STATISTIC(NumCondBranches, "Number of conditional branches");
54 STATISTIC(NumUncondBranches, "Number of unconditional branches");
55 STATISTIC(CondBranchTakenFreq,
56 "Potential frequency of taking conditional branches");
57 STATISTIC(UncondBranchTakenFreq,
58 "Potential frequency of taking unconditional branches");
60 static cl::opt<unsigned> AlignAllBlock("align-all-blocks",
61 cl::desc("Force the alignment of all "
62 "blocks in the function."),
63 cl::init(0), cl::Hidden);
65 // FIXME: Find a good default for this flag and remove the flag.
66 static cl::opt<unsigned> ExitBlockBias(
67 "block-placement-exit-block-bias",
68 cl::desc("Block frequency percentage a loop exit block needs "
69 "over the original exit to be considered the new exit."),
70 cl::init(0), cl::Hidden);
72 static cl::opt<bool> OutlineOptionalBranches(
73 "outline-optional-branches",
74 cl::desc("Put completely optional branches, i.e. branches with a common "
75 "post dominator, out of line."),
76 cl::init(false), cl::Hidden);
78 static cl::opt<unsigned> OutlineOptionalThreshold(
79 "outline-optional-threshold",
80 cl::desc("Don't outline optional branches that are a single block with an "
81 "instruction count below this threshold"),
82 cl::init(4), cl::Hidden);
84 static cl::opt<unsigned> LoopToColdBlockRatio(
85 "loop-to-cold-block-ratio",
86 cl::desc("Outline loop blocks from loop chain if (frequency of loop) / "
87 "(frequency of block) is greater than this ratio"),
88 cl::init(5), cl::Hidden);
91 PreciseRotationCost("precise-rotation-cost",
92 cl::desc("Model the cost of loop rotation more "
93 "precisely by using profile data."),
94 cl::init(false), cl::Hidden);
96 static cl::opt<unsigned> MisfetchCost(
98 cl::desc("Cost that models the probablistic risk of an instruction "
99 "misfetch due to a jump comparing to falling through, whose cost "
101 cl::init(1), cl::Hidden);
103 static cl::opt<unsigned> JumpInstCost("jump-inst-cost",
104 cl::desc("Cost of jump instructions."),
105 cl::init(1), cl::Hidden);
109 /// \brief Type for our function-wide basic block -> block chain mapping.
110 typedef DenseMap<MachineBasicBlock *, BlockChain *> BlockToChainMapType;
114 /// \brief A chain of blocks which will be laid out contiguously.
116 /// This is the datastructure representing a chain of consecutive blocks that
117 /// are profitable to layout together in order to maximize fallthrough
118 /// probabilities and code locality. We also can use a block chain to represent
119 /// a sequence of basic blocks which have some external (correctness)
120 /// requirement for sequential layout.
122 /// Chains can be built around a single basic block and can be merged to grow
123 /// them. They participate in a block-to-chain mapping, which is updated
124 /// automatically as chains are merged together.
126 /// \brief The sequence of blocks belonging to this chain.
128 /// This is the sequence of blocks for a particular chain. These will be laid
129 /// out in-order within the function.
130 SmallVector<MachineBasicBlock *, 4> Blocks;
132 /// \brief A handle to the function-wide basic block to block chain mapping.
134 /// This is retained in each block chain to simplify the computation of child
135 /// block chains for SCC-formation and iteration. We store the edges to child
136 /// basic blocks, and map them back to their associated chains using this
138 BlockToChainMapType &BlockToChain;
141 /// \brief Construct a new BlockChain.
143 /// This builds a new block chain representing a single basic block in the
144 /// function. It also registers itself as the chain that block participates
145 /// in with the BlockToChain mapping.
146 BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB)
147 : Blocks(1, BB), BlockToChain(BlockToChain), LoopPredecessors(0) {
148 assert(BB && "Cannot create a chain with a null basic block");
149 BlockToChain[BB] = this;
152 /// \brief Iterator over blocks within the chain.
153 typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator;
155 /// \brief Beginning of blocks within the chain.
156 iterator begin() { return Blocks.begin(); }
158 /// \brief End of blocks within the chain.
159 iterator end() { return Blocks.end(); }
161 /// \brief Merge a block chain into this one.
163 /// This routine merges a block chain into this one. It takes care of forming
164 /// a contiguous sequence of basic blocks, updating the edge list, and
165 /// updating the block -> chain mapping. It does not free or tear down the
166 /// old chain, but the old chain's block list is no longer valid.
167 void merge(MachineBasicBlock *BB, BlockChain *Chain) {
169 assert(!Blocks.empty());
171 // Fast path in case we don't have a chain already.
173 assert(!BlockToChain[BB]);
174 Blocks.push_back(BB);
175 BlockToChain[BB] = this;
179 assert(BB == *Chain->begin());
180 assert(Chain->begin() != Chain->end());
182 // Update the incoming blocks to point to this chain, and add them to the
184 for (MachineBasicBlock *ChainBB : *Chain) {
185 Blocks.push_back(ChainBB);
186 assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain");
187 BlockToChain[ChainBB] = this;
192 /// \brief Dump the blocks in this chain.
193 LLVM_DUMP_METHOD void dump() {
194 for (MachineBasicBlock *MBB : *this)
199 /// \brief Count of predecessors within the loop currently being processed.
201 /// This count is updated at each loop we process to represent the number of
202 /// in-loop predecessors of this chain.
203 unsigned LoopPredecessors;
208 class MachineBlockPlacement : public MachineFunctionPass {
209 /// \brief A typedef for a block filter set.
210 typedef SmallPtrSet<MachineBasicBlock *, 16> BlockFilterSet;
212 /// \brief A handle to the branch probability pass.
213 const MachineBranchProbabilityInfo *MBPI;
215 /// \brief A handle to the function-wide block frequency pass.
216 const MachineBlockFrequencyInfo *MBFI;
218 /// \brief A handle to the loop info.
219 const MachineLoopInfo *MLI;
221 /// \brief A handle to the target's instruction info.
222 const TargetInstrInfo *TII;
224 /// \brief A handle to the target's lowering info.
225 const TargetLoweringBase *TLI;
227 /// \brief A handle to the post dominator tree.
228 MachineDominatorTree *MDT;
230 /// \brief A set of blocks that are unavoidably execute, i.e. they dominate
231 /// all terminators of the MachineFunction.
232 SmallPtrSet<MachineBasicBlock *, 4> UnavoidableBlocks;
234 /// \brief Allocator and owner of BlockChain structures.
236 /// We build BlockChains lazily while processing the loop structure of
237 /// a function. To reduce malloc traffic, we allocate them using this
238 /// slab-like allocator, and destroy them after the pass completes. An
239 /// important guarantee is that this allocator produces stable pointers to
241 SpecificBumpPtrAllocator<BlockChain> ChainAllocator;
243 /// \brief Function wide BasicBlock to BlockChain mapping.
245 /// This mapping allows efficiently moving from any given basic block to the
246 /// BlockChain it participates in, if any. We use it to, among other things,
247 /// allow implicitly defining edges between chains as the existing edges
248 /// between basic blocks.
249 DenseMap<MachineBasicBlock *, BlockChain *> BlockToChain;
251 void markChainSuccessors(BlockChain &Chain, MachineBasicBlock *LoopHeaderBB,
252 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
253 const BlockFilterSet *BlockFilter = nullptr);
254 MachineBasicBlock *selectBestSuccessor(MachineBasicBlock *BB,
256 const BlockFilterSet *BlockFilter);
258 selectBestCandidateBlock(BlockChain &Chain,
259 SmallVectorImpl<MachineBasicBlock *> &WorkList,
260 const BlockFilterSet *BlockFilter);
262 getFirstUnplacedBlock(MachineFunction &F, const BlockChain &PlacedChain,
263 MachineFunction::iterator &PrevUnplacedBlockIt,
264 const BlockFilterSet *BlockFilter);
265 void buildChain(MachineBasicBlock *BB, BlockChain &Chain,
266 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
267 const BlockFilterSet *BlockFilter = nullptr);
268 MachineBasicBlock *findBestLoopTop(MachineLoop &L,
269 const BlockFilterSet &LoopBlockSet);
270 MachineBasicBlock *findBestLoopExit(MachineFunction &F, MachineLoop &L,
271 const BlockFilterSet &LoopBlockSet);
272 BlockFilterSet collectLoopBlockSet(MachineFunction &F, MachineLoop &L);
273 void buildLoopChains(MachineFunction &F, MachineLoop &L);
274 void rotateLoop(BlockChain &LoopChain, MachineBasicBlock *ExitingBB,
275 const BlockFilterSet &LoopBlockSet);
276 void rotateLoopWithProfile(BlockChain &LoopChain, MachineLoop &L,
277 const BlockFilterSet &LoopBlockSet);
278 void buildCFGChains(MachineFunction &F);
281 static char ID; // Pass identification, replacement for typeid
282 MachineBlockPlacement() : MachineFunctionPass(ID) {
283 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
286 bool runOnMachineFunction(MachineFunction &F) override;
288 void getAnalysisUsage(AnalysisUsage &AU) const override {
289 AU.addRequired<MachineBranchProbabilityInfo>();
290 AU.addRequired<MachineBlockFrequencyInfo>();
291 AU.addRequired<MachineDominatorTree>();
292 AU.addRequired<MachineLoopInfo>();
293 MachineFunctionPass::getAnalysisUsage(AU);
298 char MachineBlockPlacement::ID = 0;
299 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID;
300 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement",
301 "Branch Probability Basic Block Placement", false, false)
302 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
303 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
304 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
305 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
306 INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement",
307 "Branch Probability Basic Block Placement", false, false)
310 /// \brief Helper to print the name of a MBB.
312 /// Only used by debug logging.
313 static std::string getBlockName(MachineBasicBlock *BB) {
315 raw_string_ostream OS(Result);
316 OS << "BB#" << BB->getNumber();
317 OS << " (derived from LLVM BB '" << BB->getName() << "')";
322 /// \brief Helper to print the number of a MBB.
324 /// Only used by debug logging.
325 static std::string getBlockNum(MachineBasicBlock *BB) {
327 raw_string_ostream OS(Result);
328 OS << "BB#" << BB->getNumber();
334 /// \brief Mark a chain's successors as having one fewer preds.
336 /// When a chain is being merged into the "placed" chain, this routine will
337 /// quickly walk the successors of each block in the chain and mark them as
338 /// having one fewer active predecessor. It also adds any successors of this
339 /// chain which reach the zero-predecessor state to the worklist passed in.
340 void MachineBlockPlacement::markChainSuccessors(
341 BlockChain &Chain, MachineBasicBlock *LoopHeaderBB,
342 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
343 const BlockFilterSet *BlockFilter) {
344 // Walk all the blocks in this chain, marking their successors as having
345 // a predecessor placed.
346 for (MachineBasicBlock *MBB : Chain) {
347 // Add any successors for which this is the only un-placed in-loop
348 // predecessor to the worklist as a viable candidate for CFG-neutral
349 // placement. No subsequent placement of this block will violate the CFG
350 // shape, so we get to use heuristics to choose a favorable placement.
351 for (MachineBasicBlock *Succ : MBB->successors()) {
352 if (BlockFilter && !BlockFilter->count(Succ))
354 BlockChain &SuccChain = *BlockToChain[Succ];
355 // Disregard edges within a fixed chain, or edges to the loop header.
356 if (&Chain == &SuccChain || Succ == LoopHeaderBB)
359 // This is a cross-chain edge that is within the loop, so decrement the
360 // loop predecessor count of the destination chain.
361 if (SuccChain.LoopPredecessors > 0 && --SuccChain.LoopPredecessors == 0)
362 BlockWorkList.push_back(*SuccChain.begin());
367 /// \brief Select the best successor for a block.
369 /// This looks across all successors of a particular block and attempts to
370 /// select the "best" one to be the layout successor. It only considers direct
371 /// successors which also pass the block filter. It will attempt to avoid
372 /// breaking CFG structure, but cave and break such structures in the case of
373 /// very hot successor edges.
375 /// \returns The best successor block found, or null if none are viable.
377 MachineBlockPlacement::selectBestSuccessor(MachineBasicBlock *BB,
379 const BlockFilterSet *BlockFilter) {
380 const BranchProbability HotProb(4, 5); // 80%
382 MachineBasicBlock *BestSucc = nullptr;
383 auto BestProb = BranchProbability::getZero();
385 // Adjust edge probabilities by excluding edges pointing to blocks that is
386 // either not in BlockFilter or is already in the current chain. Consider the
395 // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after
396 // A->C is chosen as a fall-through, D won't be selected as a successor of C
397 // due to CFG constraint (the probability of C->D is not greater than
398 // HotProb). If we exclude E that is not in BlockFilter when calculating the
399 // probability of C->D, D will be selected and we will get A C D B as the
400 // layout of this loop.
401 auto AdjustedSumProb = BranchProbability::getOne();
402 SmallVector<MachineBasicBlock *, 4> Successors;
403 for (MachineBasicBlock *Succ : BB->successors()) {
404 bool SkipSucc = false;
405 if (BlockFilter && !BlockFilter->count(Succ)) {
408 BlockChain *SuccChain = BlockToChain[Succ];
409 if (SuccChain == &Chain) {
410 DEBUG(dbgs() << " " << getBlockName(Succ)
411 << " -> Already merged!\n");
413 } else if (Succ != *SuccChain->begin()) {
414 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> Mid chain!\n");
419 AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ);
421 Successors.push_back(Succ);
424 DEBUG(dbgs() << "Attempting merge from: " << getBlockName(BB) << "\n");
425 for (MachineBasicBlock *Succ : Successors) {
426 BranchProbability SuccProb(
427 MBPI->getEdgeProbability(BB, Succ).getNumerator(),
428 AdjustedSumProb.getNumerator());
430 // If we outline optional branches, look whether Succ is unavoidable, i.e.
431 // dominates all terminators of the MachineFunction. If it does, other
432 // successors must be optional. Don't do this for cold branches.
433 if (OutlineOptionalBranches && SuccProb > HotProb.getCompl() &&
434 UnavoidableBlocks.count(Succ) > 0) {
435 auto HasShortOptionalBranch = [&]() {
436 for (MachineBasicBlock *Pred : Succ->predecessors()) {
437 // Check whether there is an unplaced optional branch.
438 if (Pred == Succ || (BlockFilter && !BlockFilter->count(Pred)) ||
439 BlockToChain[Pred] == &Chain)
441 // Check whether the optional branch has exactly one BB.
442 if (Pred->pred_size() > 1 || *Pred->pred_begin() != BB)
444 // Check whether the optional branch is small.
445 if (Pred->size() < OutlineOptionalThreshold)
450 if (!HasShortOptionalBranch())
454 // Only consider successors which are either "hot", or wouldn't violate
455 // any CFG constraints.
456 BlockChain &SuccChain = *BlockToChain[Succ];
457 if (SuccChain.LoopPredecessors != 0) {
458 if (SuccProb < HotProb) {
459 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb
460 << " (prob) (CFG conflict)\n");
464 // Make sure that a hot successor doesn't have a globally more
465 // important predecessor.
466 auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ);
467 BlockFrequency CandidateEdgeFreq =
468 MBFI->getBlockFreq(BB) * RealSuccProb * HotProb.getCompl();
469 bool BadCFGConflict = false;
470 for (MachineBasicBlock *Pred : Succ->predecessors()) {
471 if (Pred == Succ || (BlockFilter && !BlockFilter->count(Pred)) ||
472 BlockToChain[Pred] == &Chain)
474 BlockFrequency PredEdgeFreq =
475 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ);
476 if (PredEdgeFreq >= CandidateEdgeFreq) {
477 BadCFGConflict = true;
481 if (BadCFGConflict) {
482 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb
483 << " (prob) (non-cold CFG conflict)\n");
488 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb
490 << (SuccChain.LoopPredecessors != 0 ? " (CFG break)" : "")
492 if (BestSucc && BestProb >= SuccProb)
500 /// \brief Select the best block from a worklist.
502 /// This looks through the provided worklist as a list of candidate basic
503 /// blocks and select the most profitable one to place. The definition of
504 /// profitable only really makes sense in the context of a loop. This returns
505 /// the most frequently visited block in the worklist, which in the case of
506 /// a loop, is the one most desirable to be physically close to the rest of the
507 /// loop body in order to improve icache behavior.
509 /// \returns The best block found, or null if none are viable.
510 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock(
511 BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList,
512 const BlockFilterSet *BlockFilter) {
513 // Once we need to walk the worklist looking for a candidate, cleanup the
514 // worklist of already placed entries.
515 // FIXME: If this shows up on profiles, it could be folded (at the cost of
516 // some code complexity) into the loop below.
517 WorkList.erase(std::remove_if(WorkList.begin(), WorkList.end(),
518 [&](MachineBasicBlock *BB) {
519 return BlockToChain.lookup(BB) == &Chain;
523 MachineBasicBlock *BestBlock = nullptr;
524 BlockFrequency BestFreq;
525 for (MachineBasicBlock *MBB : WorkList) {
526 BlockChain &SuccChain = *BlockToChain[MBB];
527 if (&SuccChain == &Chain) {
528 DEBUG(dbgs() << " " << getBlockName(MBB) << " -> Already merged!\n");
531 assert(SuccChain.LoopPredecessors == 0 && "Found CFG-violating block");
533 BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB);
534 DEBUG(dbgs() << " " << getBlockName(MBB) << " -> ";
535 MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n");
536 if (BestBlock && BestFreq >= CandidateFreq)
539 BestFreq = CandidateFreq;
544 /// \brief Retrieve the first unplaced basic block.
546 /// This routine is called when we are unable to use the CFG to walk through
547 /// all of the basic blocks and form a chain due to unnatural loops in the CFG.
548 /// We walk through the function's blocks in order, starting from the
549 /// LastUnplacedBlockIt. We update this iterator on each call to avoid
550 /// re-scanning the entire sequence on repeated calls to this routine.
551 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock(
552 MachineFunction &F, const BlockChain &PlacedChain,
553 MachineFunction::iterator &PrevUnplacedBlockIt,
554 const BlockFilterSet *BlockFilter) {
555 for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F.end(); I != E;
557 if (BlockFilter && !BlockFilter->count(&*I))
559 if (BlockToChain[&*I] != &PlacedChain) {
560 PrevUnplacedBlockIt = I;
561 // Now select the head of the chain to which the unplaced block belongs
562 // as the block to place. This will force the entire chain to be placed,
563 // and satisfies the requirements of merging chains.
564 return *BlockToChain[&*I]->begin();
570 void MachineBlockPlacement::buildChain(
571 MachineBasicBlock *BB, BlockChain &Chain,
572 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
573 const BlockFilterSet *BlockFilter) {
575 assert(BlockToChain[BB] == &Chain);
576 MachineFunction &F = *BB->getParent();
577 MachineFunction::iterator PrevUnplacedBlockIt = F.begin();
579 MachineBasicBlock *LoopHeaderBB = BB;
580 markChainSuccessors(Chain, LoopHeaderBB, BlockWorkList, BlockFilter);
581 BB = *std::prev(Chain.end());
584 assert(BlockToChain[BB] == &Chain);
585 assert(*std::prev(Chain.end()) == BB);
587 // Look for the best viable successor if there is one to place immediately
589 MachineBasicBlock *BestSucc = selectBestSuccessor(BB, Chain, BlockFilter);
591 // If an immediate successor isn't available, look for the best viable
592 // block among those we've identified as not violating the loop's CFG at
593 // this point. This won't be a fallthrough, but it will increase locality.
595 BestSucc = selectBestCandidateBlock(Chain, BlockWorkList, BlockFilter);
599 getFirstUnplacedBlock(F, Chain, PrevUnplacedBlockIt, BlockFilter);
603 DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
604 "layout successor until the CFG reduces\n");
607 // Place this block, updating the datastructures to reflect its placement.
608 BlockChain &SuccChain = *BlockToChain[BestSucc];
609 // Zero out LoopPredecessors for the successor we're about to merge in case
610 // we selected a successor that didn't fit naturally into the CFG.
611 SuccChain.LoopPredecessors = 0;
612 DEBUG(dbgs() << "Merging from " << getBlockNum(BB) << " to "
613 << getBlockNum(BestSucc) << "\n");
614 markChainSuccessors(SuccChain, LoopHeaderBB, BlockWorkList, BlockFilter);
615 Chain.merge(BestSucc, &SuccChain);
616 BB = *std::prev(Chain.end());
619 DEBUG(dbgs() << "Finished forming chain for header block "
620 << getBlockNum(*Chain.begin()) << "\n");
623 /// \brief Find the best loop top block for layout.
625 /// Look for a block which is strictly better than the loop header for laying
626 /// out at the top of the loop. This looks for one and only one pattern:
627 /// a latch block with no conditional exit. This block will cause a conditional
628 /// jump around it or will be the bottom of the loop if we lay it out in place,
629 /// but if it it doesn't end up at the bottom of the loop for any reason,
630 /// rotation alone won't fix it. Because such a block will always result in an
631 /// unconditional jump (for the backedge) rotating it in front of the loop
632 /// header is always profitable.
634 MachineBlockPlacement::findBestLoopTop(MachineLoop &L,
635 const BlockFilterSet &LoopBlockSet) {
636 // Check that the header hasn't been fused with a preheader block due to
637 // crazy branches. If it has, we need to start with the header at the top to
638 // prevent pulling the preheader into the loop body.
639 BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
640 if (!LoopBlockSet.count(*HeaderChain.begin()))
641 return L.getHeader();
643 DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(L.getHeader())
646 BlockFrequency BestPredFreq;
647 MachineBasicBlock *BestPred = nullptr;
648 for (MachineBasicBlock *Pred : L.getHeader()->predecessors()) {
649 if (!LoopBlockSet.count(Pred))
651 DEBUG(dbgs() << " header pred: " << getBlockName(Pred) << ", "
652 << Pred->succ_size() << " successors, ";
653 MBFI->printBlockFreq(dbgs(), Pred) << " freq\n");
654 if (Pred->succ_size() > 1)
657 BlockFrequency PredFreq = MBFI->getBlockFreq(Pred);
658 if (!BestPred || PredFreq > BestPredFreq ||
659 (!(PredFreq < BestPredFreq) &&
660 Pred->isLayoutSuccessor(L.getHeader()))) {
662 BestPredFreq = PredFreq;
666 // If no direct predecessor is fine, just use the loop header.
668 return L.getHeader();
670 // Walk backwards through any straight line of predecessors.
671 while (BestPred->pred_size() == 1 &&
672 (*BestPred->pred_begin())->succ_size() == 1 &&
673 *BestPred->pred_begin() != L.getHeader())
674 BestPred = *BestPred->pred_begin();
676 DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n");
680 /// \brief Find the best loop exiting block for layout.
682 /// This routine implements the logic to analyze the loop looking for the best
683 /// block to layout at the top of the loop. Typically this is done to maximize
684 /// fallthrough opportunities.
686 MachineBlockPlacement::findBestLoopExit(MachineFunction &F, MachineLoop &L,
687 const BlockFilterSet &LoopBlockSet) {
688 // We don't want to layout the loop linearly in all cases. If the loop header
689 // is just a normal basic block in the loop, we want to look for what block
690 // within the loop is the best one to layout at the top. However, if the loop
691 // header has be pre-merged into a chain due to predecessors not having
692 // analyzable branches, *and* the predecessor it is merged with is *not* part
693 // of the loop, rotating the header into the middle of the loop will create
694 // a non-contiguous range of blocks which is Very Bad. So start with the
695 // header and only rotate if safe.
696 BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
697 if (!LoopBlockSet.count(*HeaderChain.begin()))
700 BlockFrequency BestExitEdgeFreq;
701 unsigned BestExitLoopDepth = 0;
702 MachineBasicBlock *ExitingBB = nullptr;
703 // If there are exits to outer loops, loop rotation can severely limit
704 // fallthrough opportunites unless it selects such an exit. Keep a set of
705 // blocks where rotating to exit with that block will reach an outer loop.
706 SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop;
708 DEBUG(dbgs() << "Finding best loop exit for: " << getBlockName(L.getHeader())
710 for (MachineBasicBlock *MBB : L.getBlocks()) {
711 BlockChain &Chain = *BlockToChain[MBB];
712 // Ensure that this block is at the end of a chain; otherwise it could be
713 // mid-way through an inner loop or a successor of an unanalyzable branch.
714 if (MBB != *std::prev(Chain.end()))
717 // Now walk the successors. We need to establish whether this has a viable
718 // exiting successor and whether it has a viable non-exiting successor.
719 // We store the old exiting state and restore it if a viable looping
720 // successor isn't found.
721 MachineBasicBlock *OldExitingBB = ExitingBB;
722 BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq;
723 bool HasLoopingSucc = false;
724 for (MachineBasicBlock *Succ : MBB->successors()) {
729 BlockChain &SuccChain = *BlockToChain[Succ];
730 // Don't split chains, either this chain or the successor's chain.
731 if (&Chain == &SuccChain) {
732 DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> "
733 << getBlockName(Succ) << " (chain conflict)\n");
737 auto SuccProb = MBPI->getEdgeProbability(MBB, Succ);
738 if (LoopBlockSet.count(Succ)) {
739 DEBUG(dbgs() << " looping: " << getBlockName(MBB) << " -> "
740 << getBlockName(Succ) << " (" << SuccProb << ")\n");
741 HasLoopingSucc = true;
745 unsigned SuccLoopDepth = 0;
746 if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) {
747 SuccLoopDepth = ExitLoop->getLoopDepth();
748 if (ExitLoop->contains(&L))
749 BlocksExitingToOuterLoop.insert(MBB);
752 BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb;
753 DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> "
754 << getBlockName(Succ) << " [L:" << SuccLoopDepth << "] (";
755 MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n");
756 // Note that we bias this toward an existing layout successor to retain
757 // incoming order in the absence of better information. The exit must have
758 // a frequency higher than the current exit before we consider breaking
760 BranchProbability Bias(100 - ExitBlockBias, 100);
761 if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth ||
762 ExitEdgeFreq > BestExitEdgeFreq ||
763 (MBB->isLayoutSuccessor(Succ) &&
764 !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) {
765 BestExitEdgeFreq = ExitEdgeFreq;
770 if (!HasLoopingSucc) {
771 // Restore the old exiting state, no viable looping successor was found.
772 ExitingBB = OldExitingBB;
773 BestExitEdgeFreq = OldBestExitEdgeFreq;
777 // Without a candidate exiting block or with only a single block in the
778 // loop, just use the loop header to layout the loop.
779 if (!ExitingBB || L.getNumBlocks() == 1)
782 // Also, if we have exit blocks which lead to outer loops but didn't select
783 // one of them as the exiting block we are rotating toward, disable loop
784 // rotation altogether.
785 if (!BlocksExitingToOuterLoop.empty() &&
786 !BlocksExitingToOuterLoop.count(ExitingBB))
789 DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB) << "\n");
793 /// \brief Attempt to rotate an exiting block to the bottom of the loop.
795 /// Once we have built a chain, try to rotate it to line up the hot exit block
796 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary
797 /// branches. For example, if the loop has fallthrough into its header and out
798 /// of its bottom already, don't rotate it.
799 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain,
800 MachineBasicBlock *ExitingBB,
801 const BlockFilterSet &LoopBlockSet) {
805 MachineBasicBlock *Top = *LoopChain.begin();
806 bool ViableTopFallthrough = false;
807 for (MachineBasicBlock *Pred : Top->predecessors()) {
808 BlockChain *PredChain = BlockToChain[Pred];
809 if (!LoopBlockSet.count(Pred) &&
810 (!PredChain || Pred == *std::prev(PredChain->end()))) {
811 ViableTopFallthrough = true;
816 // If the header has viable fallthrough, check whether the current loop
817 // bottom is a viable exiting block. If so, bail out as rotating will
818 // introduce an unnecessary branch.
819 if (ViableTopFallthrough) {
820 MachineBasicBlock *Bottom = *std::prev(LoopChain.end());
821 for (MachineBasicBlock *Succ : Bottom->successors()) {
822 BlockChain *SuccChain = BlockToChain[Succ];
823 if (!LoopBlockSet.count(Succ) &&
824 (!SuccChain || Succ == *SuccChain->begin()))
829 BlockChain::iterator ExitIt =
830 std::find(LoopChain.begin(), LoopChain.end(), ExitingBB);
831 if (ExitIt == LoopChain.end())
834 std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end());
837 /// \brief Attempt to rotate a loop based on profile data to reduce branch cost.
839 /// With profile data, we can determine the cost in terms of missed fall through
840 /// opportunities when rotating a loop chain and select the best rotation.
841 /// Basically, there are three kinds of cost to consider for each rotation:
842 /// 1. The possibly missed fall through edge (if it exists) from BB out of
843 /// the loop to the loop header.
844 /// 2. The possibly missed fall through edges (if they exist) from the loop
845 /// exits to BB out of the loop.
846 /// 3. The missed fall through edge (if it exists) from the last BB to the
847 /// first BB in the loop chain.
848 /// Therefore, the cost for a given rotation is the sum of costs listed above.
849 /// We select the best rotation with the smallest cost.
850 void MachineBlockPlacement::rotateLoopWithProfile(
851 BlockChain &LoopChain, MachineLoop &L, const BlockFilterSet &LoopBlockSet) {
852 auto HeaderBB = L.getHeader();
853 auto HeaderIter = std::find(LoopChain.begin(), LoopChain.end(), HeaderBB);
854 auto RotationPos = LoopChain.end();
856 BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency();
858 // A utility lambda that scales up a block frequency by dividing it by a
859 // branch probability which is the reciprocal of the scale.
860 auto ScaleBlockFrequency = [](BlockFrequency Freq,
861 unsigned Scale) -> BlockFrequency {
864 // Use operator / between BlockFrequency and BranchProbability to implement
865 // saturating multiplication.
866 return Freq / BranchProbability(1, Scale);
869 // Compute the cost of the missed fall-through edge to the loop header if the
870 // chain head is not the loop header. As we only consider natural loops with
871 // single header, this computation can be done only once.
872 BlockFrequency HeaderFallThroughCost(0);
873 for (auto *Pred : HeaderBB->predecessors()) {
874 BlockChain *PredChain = BlockToChain[Pred];
875 if (!LoopBlockSet.count(Pred) &&
876 (!PredChain || Pred == *std::prev(PredChain->end()))) {
878 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, HeaderBB);
879 auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost);
880 // If the predecessor has only an unconditional jump to the header, we
881 // need to consider the cost of this jump.
882 if (Pred->succ_size() == 1)
883 FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost);
884 HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost);
888 // Here we collect all exit blocks in the loop, and for each exit we find out
889 // its hottest exit edge. For each loop rotation, we define the loop exit cost
890 // as the sum of frequencies of exit edges we collect here, excluding the exit
891 // edge from the tail of the loop chain.
892 SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq;
893 for (auto BB : LoopChain) {
894 auto LargestExitEdgeProb = BranchProbability::getZero();
895 for (auto *Succ : BB->successors()) {
896 BlockChain *SuccChain = BlockToChain[Succ];
897 if (!LoopBlockSet.count(Succ) &&
898 (!SuccChain || Succ == *SuccChain->begin())) {
899 auto SuccProb = MBPI->getEdgeProbability(BB, Succ);
900 LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb);
903 if (LargestExitEdgeProb > BranchProbability::getZero()) {
904 auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb;
905 ExitsWithFreq.emplace_back(BB, ExitFreq);
909 // In this loop we iterate every block in the loop chain and calculate the
910 // cost assuming the block is the head of the loop chain. When the loop ends,
911 // we should have found the best candidate as the loop chain's head.
912 for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()),
913 EndIter = LoopChain.end();
914 Iter != EndIter; Iter++, TailIter++) {
915 // TailIter is used to track the tail of the loop chain if the block we are
916 // checking (pointed by Iter) is the head of the chain.
917 if (TailIter == LoopChain.end())
918 TailIter = LoopChain.begin();
920 auto TailBB = *TailIter;
922 // Calculate the cost by putting this BB to the top.
923 BlockFrequency Cost = 0;
925 // If the current BB is the loop header, we need to take into account the
926 // cost of the missed fall through edge from outside of the loop to the
928 if (Iter != HeaderIter)
929 Cost += HeaderFallThroughCost;
931 // Collect the loop exit cost by summing up frequencies of all exit edges
932 // except the one from the chain tail.
933 for (auto &ExitWithFreq : ExitsWithFreq)
934 if (TailBB != ExitWithFreq.first)
935 Cost += ExitWithFreq.second;
937 // The cost of breaking the once fall-through edge from the tail to the top
938 // of the loop chain. Here we need to consider three cases:
939 // 1. If the tail node has only one successor, then we will get an
940 // additional jmp instruction. So the cost here is (MisfetchCost +
941 // JumpInstCost) * tail node frequency.
942 // 2. If the tail node has two successors, then we may still get an
943 // additional jmp instruction if the layout successor after the loop
944 // chain is not its CFG successor. Note that the more frequently executed
945 // jmp instruction will be put ahead of the other one. Assume the
946 // frequency of those two branches are x and y, where x is the frequency
947 // of the edge to the chain head, then the cost will be
948 // (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency.
949 // 3. If the tail node has more than two successors (this rarely happens),
950 // we won't consider any additional cost.
951 if (TailBB->isSuccessor(*Iter)) {
952 auto TailBBFreq = MBFI->getBlockFreq(TailBB);
953 if (TailBB->succ_size() == 1)
954 Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(),
955 MisfetchCost + JumpInstCost);
956 else if (TailBB->succ_size() == 2) {
957 auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter);
958 auto TailToHeadFreq = TailBBFreq * TailToHeadProb;
959 auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2)
960 ? TailBBFreq * TailToHeadProb.getCompl()
962 Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) +
963 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost);
967 DEBUG(dbgs() << "The cost of loop rotation by making " << getBlockNum(*Iter)
968 << " to the top: " << Cost.getFrequency() << "\n");
970 if (Cost < SmallestRotationCost) {
971 SmallestRotationCost = Cost;
976 if (RotationPos != LoopChain.end()) {
977 DEBUG(dbgs() << "Rotate loop by making " << getBlockNum(*RotationPos)
979 std::rotate(LoopChain.begin(), RotationPos, LoopChain.end());
983 /// \brief Collect blocks in the given loop that are to be placed.
985 /// When profile data is available, exclude cold blocks from the returned set;
986 /// otherwise, collect all blocks in the loop.
987 MachineBlockPlacement::BlockFilterSet
988 MachineBlockPlacement::collectLoopBlockSet(MachineFunction &F, MachineLoop &L) {
989 BlockFilterSet LoopBlockSet;
991 // Filter cold blocks off from LoopBlockSet when profile data is available.
992 // Collect the sum of frequencies of incoming edges to the loop header from
993 // outside. If we treat the loop as a super block, this is the frequency of
994 // the loop. Then for each block in the loop, we calculate the ratio between
995 // its frequency and the frequency of the loop block. When it is too small,
996 // don't add it to the loop chain. If there are outer loops, then this block
997 // will be merged into the first outer loop chain for which this block is not
998 // cold anymore. This needs precise profile data and we only do this when
999 // profile data is available.
1000 if (F.getFunction()->getEntryCount()) {
1001 BlockFrequency LoopFreq(0);
1002 for (auto LoopPred : L.getHeader()->predecessors())
1003 if (!L.contains(LoopPred))
1004 LoopFreq += MBFI->getBlockFreq(LoopPred) *
1005 MBPI->getEdgeProbability(LoopPred, L.getHeader());
1007 for (MachineBasicBlock *LoopBB : L.getBlocks()) {
1008 auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency();
1009 if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio)
1011 LoopBlockSet.insert(LoopBB);
1014 LoopBlockSet.insert(L.block_begin(), L.block_end());
1016 return LoopBlockSet;
1019 /// \brief Forms basic block chains from the natural loop structures.
1021 /// These chains are designed to preserve the existing *structure* of the code
1022 /// as much as possible. We can then stitch the chains together in a way which
1023 /// both preserves the topological structure and minimizes taken conditional
1025 void MachineBlockPlacement::buildLoopChains(MachineFunction &F,
1027 // First recurse through any nested loops, building chains for those inner
1029 for (MachineLoop *InnerLoop : L)
1030 buildLoopChains(F, *InnerLoop);
1032 SmallVector<MachineBasicBlock *, 16> BlockWorkList;
1033 BlockFilterSet LoopBlockSet = collectLoopBlockSet(F, L);
1035 // Check if we have profile data for this function. If yes, we will rotate
1036 // this loop by modeling costs more precisely which requires the profile data
1037 // for better layout.
1038 bool RotateLoopWithProfile =
1039 PreciseRotationCost && F.getFunction()->getEntryCount();
1041 // First check to see if there is an obviously preferable top block for the
1042 // loop. This will default to the header, but may end up as one of the
1043 // predecessors to the header if there is one which will result in strictly
1044 // fewer branches in the loop body.
1045 // When we use profile data to rotate the loop, this is unnecessary.
1046 MachineBasicBlock *LoopTop =
1047 RotateLoopWithProfile ? L.getHeader() : findBestLoopTop(L, LoopBlockSet);
1049 // If we selected just the header for the loop top, look for a potentially
1050 // profitable exit block in the event that rotating the loop can eliminate
1051 // branches by placing an exit edge at the bottom.
1052 MachineBasicBlock *ExitingBB = nullptr;
1053 if (!RotateLoopWithProfile && LoopTop == L.getHeader())
1054 ExitingBB = findBestLoopExit(F, L, LoopBlockSet);
1056 BlockChain &LoopChain = *BlockToChain[LoopTop];
1058 // FIXME: This is a really lame way of walking the chains in the loop: we
1059 // walk the blocks, and use a set to prevent visiting a particular chain
1061 SmallPtrSet<BlockChain *, 4> UpdatedPreds;
1062 assert(LoopChain.LoopPredecessors == 0);
1063 UpdatedPreds.insert(&LoopChain);
1065 for (MachineBasicBlock *LoopBB : LoopBlockSet) {
1066 BlockChain &Chain = *BlockToChain[LoopBB];
1067 if (!UpdatedPreds.insert(&Chain).second)
1070 assert(Chain.LoopPredecessors == 0);
1071 for (MachineBasicBlock *ChainBB : Chain) {
1072 assert(BlockToChain[ChainBB] == &Chain);
1073 for (MachineBasicBlock *Pred : ChainBB->predecessors()) {
1074 if (BlockToChain[Pred] == &Chain || !LoopBlockSet.count(Pred))
1076 ++Chain.LoopPredecessors;
1080 if (Chain.LoopPredecessors == 0)
1081 BlockWorkList.push_back(*Chain.begin());
1084 buildChain(LoopTop, LoopChain, BlockWorkList, &LoopBlockSet);
1086 if (RotateLoopWithProfile)
1087 rotateLoopWithProfile(LoopChain, L, LoopBlockSet);
1089 rotateLoop(LoopChain, ExitingBB, LoopBlockSet);
1092 // Crash at the end so we get all of the debugging output first.
1093 bool BadLoop = false;
1094 if (LoopChain.LoopPredecessors) {
1096 dbgs() << "Loop chain contains a block without its preds placed!\n"
1097 << " Loop header: " << getBlockName(*L.block_begin()) << "\n"
1098 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n";
1100 for (MachineBasicBlock *ChainBB : LoopChain) {
1101 dbgs() << " ... " << getBlockName(ChainBB) << "\n";
1102 if (!LoopBlockSet.erase(ChainBB)) {
1103 // We don't mark the loop as bad here because there are real situations
1104 // where this can occur. For example, with an unanalyzable fallthrough
1105 // from a loop block to a non-loop block or vice versa.
1106 dbgs() << "Loop chain contains a block not contained by the loop!\n"
1107 << " Loop header: " << getBlockName(*L.block_begin()) << "\n"
1108 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
1109 << " Bad block: " << getBlockName(ChainBB) << "\n";
1113 if (!LoopBlockSet.empty()) {
1115 for (MachineBasicBlock *LoopBB : LoopBlockSet)
1116 dbgs() << "Loop contains blocks never placed into a chain!\n"
1117 << " Loop header: " << getBlockName(*L.block_begin()) << "\n"
1118 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
1119 << " Bad block: " << getBlockName(LoopBB) << "\n";
1121 assert(!BadLoop && "Detected problems with the placement of this loop.");
1125 void MachineBlockPlacement::buildCFGChains(MachineFunction &F) {
1126 // Ensure that every BB in the function has an associated chain to simplify
1127 // the assumptions of the remaining algorithm.
1128 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
1129 for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
1130 MachineBasicBlock *BB = &*FI;
1132 new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB);
1133 // Also, merge any blocks which we cannot reason about and must preserve
1134 // the exact fallthrough behavior for.
1137 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
1138 if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough())
1141 MachineFunction::iterator NextFI = std::next(FI);
1142 MachineBasicBlock *NextBB = &*NextFI;
1143 // Ensure that the layout successor is a viable block, as we know that
1144 // fallthrough is a possibility.
1145 assert(NextFI != FE && "Can't fallthrough past the last block.");
1146 DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: "
1147 << getBlockName(BB) << " -> " << getBlockName(NextBB)
1149 Chain->merge(NextBB, nullptr);
1155 if (OutlineOptionalBranches) {
1156 // Find the nearest common dominator of all of F's terminators.
1157 MachineBasicBlock *Terminator = nullptr;
1158 for (MachineBasicBlock &MBB : F) {
1159 if (MBB.succ_size() == 0) {
1160 if (Terminator == nullptr)
1163 Terminator = MDT->findNearestCommonDominator(Terminator, &MBB);
1167 // MBBs dominating this common dominator are unavoidable.
1168 UnavoidableBlocks.clear();
1169 for (MachineBasicBlock &MBB : F) {
1170 if (MDT->dominates(&MBB, Terminator)) {
1171 UnavoidableBlocks.insert(&MBB);
1176 // Build any loop-based chains.
1177 for (MachineLoop *L : *MLI)
1178 buildLoopChains(F, *L);
1180 SmallVector<MachineBasicBlock *, 16> BlockWorkList;
1182 SmallPtrSet<BlockChain *, 4> UpdatedPreds;
1183 for (MachineBasicBlock &MBB : F) {
1184 BlockChain &Chain = *BlockToChain[&MBB];
1185 if (!UpdatedPreds.insert(&Chain).second)
1188 assert(Chain.LoopPredecessors == 0);
1189 for (MachineBasicBlock *ChainBB : Chain) {
1190 assert(BlockToChain[ChainBB] == &Chain);
1191 for (MachineBasicBlock *Pred : ChainBB->predecessors()) {
1192 if (BlockToChain[Pred] == &Chain)
1194 ++Chain.LoopPredecessors;
1198 if (Chain.LoopPredecessors == 0)
1199 BlockWorkList.push_back(*Chain.begin());
1202 BlockChain &FunctionChain = *BlockToChain[&F.front()];
1203 buildChain(&F.front(), FunctionChain, BlockWorkList);
1206 typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType;
1209 // Crash at the end so we get all of the debugging output first.
1210 bool BadFunc = false;
1211 FunctionBlockSetType FunctionBlockSet;
1212 for (MachineBasicBlock &MBB : F)
1213 FunctionBlockSet.insert(&MBB);
1215 for (MachineBasicBlock *ChainBB : FunctionChain)
1216 if (!FunctionBlockSet.erase(ChainBB)) {
1218 dbgs() << "Function chain contains a block not in the function!\n"
1219 << " Bad block: " << getBlockName(ChainBB) << "\n";
1222 if (!FunctionBlockSet.empty()) {
1224 for (MachineBasicBlock *RemainingBB : FunctionBlockSet)
1225 dbgs() << "Function contains blocks never placed into a chain!\n"
1226 << " Bad block: " << getBlockName(RemainingBB) << "\n";
1228 assert(!BadFunc && "Detected problems with the block placement.");
1231 // Splice the blocks into place.
1232 MachineFunction::iterator InsertPos = F.begin();
1233 for (MachineBasicBlock *ChainBB : FunctionChain) {
1234 DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain "
1236 << getBlockName(ChainBB) << "\n");
1237 if (InsertPos != MachineFunction::iterator(ChainBB))
1238 F.splice(InsertPos, ChainBB);
1242 // Update the terminator of the previous block.
1243 if (ChainBB == *FunctionChain.begin())
1245 MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB));
1247 // FIXME: It would be awesome of updateTerminator would just return rather
1248 // than assert when the branch cannot be analyzed in order to remove this
1251 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
1252 if (!TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) {
1253 // The "PrevBB" is not yet updated to reflect current code layout, so,
1254 // o. it may fall-through to a block without explict "goto" instruction
1255 // before layout, and no longer fall-through it after layout; or
1256 // o. just opposite.
1258 // AnalyzeBranch() may return erroneous value for FBB when these two
1259 // situations take place. For the first scenario FBB is mistakenly set
1260 // NULL; for the 2nd scenario, the FBB, which is expected to be NULL,
1261 // is mistakenly pointing to "*BI".
1263 bool needUpdateBr = true;
1264 if (!Cond.empty() && (!FBB || FBB == ChainBB)) {
1265 PrevBB->updateTerminator();
1266 needUpdateBr = false;
1268 TBB = FBB = nullptr;
1269 if (TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) {
1270 // FIXME: This should never take place.
1271 TBB = FBB = nullptr;
1275 // If PrevBB has a two-way branch, try to re-order the branches
1276 // such that we branch to the successor with higher probability first.
1277 if (TBB && !Cond.empty() && FBB &&
1278 MBPI->getEdgeProbability(PrevBB, FBB) >
1279 MBPI->getEdgeProbability(PrevBB, TBB) &&
1280 !TII->ReverseBranchCondition(Cond)) {
1281 DEBUG(dbgs() << "Reverse order of the two branches: "
1282 << getBlockName(PrevBB) << "\n");
1283 DEBUG(dbgs() << " Edge probability: "
1284 << MBPI->getEdgeProbability(PrevBB, FBB) << " vs "
1285 << MBPI->getEdgeProbability(PrevBB, TBB) << "\n");
1286 DebugLoc dl; // FIXME: this is nowhere
1287 TII->RemoveBranch(*PrevBB);
1288 TII->InsertBranch(*PrevBB, FBB, TBB, Cond, dl);
1289 needUpdateBr = true;
1292 PrevBB->updateTerminator();
1296 // Fixup the last block.
1298 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
1299 if (!TII->AnalyzeBranch(F.back(), TBB, FBB, Cond))
1300 F.back().updateTerminator();
1302 // Walk through the backedges of the function now that we have fully laid out
1303 // the basic blocks and align the destination of each backedge. We don't rely
1304 // exclusively on the loop info here so that we can align backedges in
1305 // unnatural CFGs and backedges that were introduced purely because of the
1306 // loop rotations done during this layout pass.
1307 // FIXME: Use Function::optForSize().
1308 if (F.getFunction()->hasFnAttribute(Attribute::OptimizeForSize))
1310 if (FunctionChain.begin() == FunctionChain.end())
1311 return; // Empty chain.
1313 const BranchProbability ColdProb(1, 5); // 20%
1314 BlockFrequency EntryFreq = MBFI->getBlockFreq(&F.front());
1315 BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb;
1316 for (MachineBasicBlock *ChainBB : FunctionChain) {
1317 if (ChainBB == *FunctionChain.begin())
1320 // Don't align non-looping basic blocks. These are unlikely to execute
1321 // enough times to matter in practice. Note that we'll still handle
1322 // unnatural CFGs inside of a natural outer loop (the common case) and
1324 MachineLoop *L = MLI->getLoopFor(ChainBB);
1328 unsigned Align = TLI->getPrefLoopAlignment(L);
1330 continue; // Don't care about loop alignment.
1332 // If the block is cold relative to the function entry don't waste space
1334 BlockFrequency Freq = MBFI->getBlockFreq(ChainBB);
1335 if (Freq < WeightedEntryFreq)
1338 // If the block is cold relative to its loop header, don't align it
1339 // regardless of what edges into the block exist.
1340 MachineBasicBlock *LoopHeader = L->getHeader();
1341 BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader);
1342 if (Freq < (LoopHeaderFreq * ColdProb))
1345 // Check for the existence of a non-layout predecessor which would benefit
1346 // from aligning this block.
1347 MachineBasicBlock *LayoutPred =
1348 &*std::prev(MachineFunction::iterator(ChainBB));
1350 // Force alignment if all the predecessors are jumps. We already checked
1351 // that the block isn't cold above.
1352 if (!LayoutPred->isSuccessor(ChainBB)) {
1353 ChainBB->setAlignment(Align);
1357 // Align this block if the layout predecessor's edge into this block is
1358 // cold relative to the block. When this is true, other predecessors make up
1359 // all of the hot entries into the block and thus alignment is likely to be
1361 BranchProbability LayoutProb =
1362 MBPI->getEdgeProbability(LayoutPred, ChainBB);
1363 BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb;
1364 if (LayoutEdgeFreq <= (Freq * ColdProb))
1365 ChainBB->setAlignment(Align);
1369 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &F) {
1370 // Check for single-block functions and skip them.
1371 if (std::next(F.begin()) == F.end())
1374 if (skipOptnoneFunction(*F.getFunction()))
1377 MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
1378 MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
1379 MLI = &getAnalysis<MachineLoopInfo>();
1380 TII = F.getSubtarget().getInstrInfo();
1381 TLI = F.getSubtarget().getTargetLowering();
1382 MDT = &getAnalysis<MachineDominatorTree>();
1383 assert(BlockToChain.empty());
1387 BlockToChain.clear();
1388 ChainAllocator.DestroyAll();
1391 // Align all of the blocks in the function to a specific alignment.
1392 for (MachineBasicBlock &MBB : F)
1393 MBB.setAlignment(AlignAllBlock);
1395 // We always return true as we have no way to track whether the final order
1396 // differs from the original order.
1401 /// \brief A pass to compute block placement statistics.
1403 /// A separate pass to compute interesting statistics for evaluating block
1404 /// placement. This is separate from the actual placement pass so that they can
1405 /// be computed in the absence of any placement transformations or when using
1406 /// alternative placement strategies.
1407 class MachineBlockPlacementStats : public MachineFunctionPass {
1408 /// \brief A handle to the branch probability pass.
1409 const MachineBranchProbabilityInfo *MBPI;
1411 /// \brief A handle to the function-wide block frequency pass.
1412 const MachineBlockFrequencyInfo *MBFI;
1415 static char ID; // Pass identification, replacement for typeid
1416 MachineBlockPlacementStats() : MachineFunctionPass(ID) {
1417 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
1420 bool runOnMachineFunction(MachineFunction &F) override;
1422 void getAnalysisUsage(AnalysisUsage &AU) const override {
1423 AU.addRequired<MachineBranchProbabilityInfo>();
1424 AU.addRequired<MachineBlockFrequencyInfo>();
1425 AU.setPreservesAll();
1426 MachineFunctionPass::getAnalysisUsage(AU);
1431 char MachineBlockPlacementStats::ID = 0;
1432 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID;
1433 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats",
1434 "Basic Block Placement Stats", false, false)
1435 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
1436 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
1437 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats",
1438 "Basic Block Placement Stats", false, false)
1440 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) {
1441 // Check for single-block functions and skip them.
1442 if (std::next(F.begin()) == F.end())
1445 MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
1446 MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
1448 for (MachineBasicBlock &MBB : F) {
1449 BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB);
1450 Statistic &NumBranches =
1451 (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches;
1452 Statistic &BranchTakenFreq =
1453 (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq;
1454 for (MachineBasicBlock *Succ : MBB.successors()) {
1455 // Skip if this successor is a fallthrough.
1456 if (MBB.isLayoutSuccessor(Succ))
1459 BlockFrequency EdgeFreq =
1460 BlockFreq * MBPI->getEdgeProbability(&MBB, Succ);
1462 BranchTakenFreq += EdgeFreq.getFrequency();