5844124d85655141e62c35e36a45d0ee69684b5b
[oota-llvm.git] / lib / CodeGen / CodeGenPrepare.cpp
1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass munges the code in the input function to better prepare it for
11 // SelectionDAG-based code generation. This works around limitations in it's
12 // basic-block-at-a-time approach. It should eventually be removed.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "llvm/CodeGen/Passes.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/TargetLibraryInfo.h"
22 #include "llvm/Analysis/TargetTransformInfo.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/IR/CallSite.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/GetElementPtrTypeIterator.h"
31 #include "llvm/IR/IRBuilder.h"
32 #include "llvm/IR/InlineAsm.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/MDBuilder.h"
36 #include "llvm/IR/PatternMatch.h"
37 #include "llvm/IR/Statepoint.h"
38 #include "llvm/IR/ValueHandle.h"
39 #include "llvm/IR/ValueMap.h"
40 #include "llvm/Pass.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include "llvm/Target/TargetLowering.h"
45 #include "llvm/Target/TargetSubtargetInfo.h"
46 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
47 #include "llvm/Transforms/Utils/BuildLibCalls.h"
48 #include "llvm/Transforms/Utils/BypassSlowDivision.h"
49 #include "llvm/Transforms/Utils/Local.h"
50 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
51 using namespace llvm;
52 using namespace llvm::PatternMatch;
53
54 #define DEBUG_TYPE "codegenprepare"
55
56 STATISTIC(NumBlocksElim, "Number of blocks eliminated");
57 STATISTIC(NumPHIsElim,   "Number of trivial PHIs eliminated");
58 STATISTIC(NumGEPsElim,   "Number of GEPs converted to casts");
59 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
60                       "sunken Cmps");
61 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
62                        "of sunken Casts");
63 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
64                           "computations were sunk");
65 STATISTIC(NumExtsMoved,  "Number of [s|z]ext instructions combined with loads");
66 STATISTIC(NumExtUses,    "Number of uses of [s|z]ext instructions optimized");
67 STATISTIC(NumAndsAdded,
68           "Number of and mask instructions added to form ext loads");
69 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized");
70 STATISTIC(NumRetsDup,    "Number of return instructions duplicated");
71 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
72 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
73 STATISTIC(NumAndCmpsMoved, "Number of and/cmp's pushed into branches");
74 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed");
75
76 static cl::opt<bool> DisableBranchOpts(
77   "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
78   cl::desc("Disable branch optimizations in CodeGenPrepare"));
79
80 static cl::opt<bool>
81     DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false),
82                   cl::desc("Disable GC optimizations in CodeGenPrepare"));
83
84 static cl::opt<bool> DisableSelectToBranch(
85   "disable-cgp-select2branch", cl::Hidden, cl::init(false),
86   cl::desc("Disable select to branch conversion."));
87
88 static cl::opt<bool> AddrSinkUsingGEPs(
89   "addr-sink-using-gep", cl::Hidden, cl::init(false),
90   cl::desc("Address sinking in CGP using GEPs."));
91
92 static cl::opt<bool> EnableAndCmpSinking(
93    "enable-andcmp-sinking", cl::Hidden, cl::init(true),
94    cl::desc("Enable sinkinig and/cmp into branches."));
95
96 static cl::opt<bool> DisableStoreExtract(
97     "disable-cgp-store-extract", cl::Hidden, cl::init(false),
98     cl::desc("Disable store(extract) optimizations in CodeGenPrepare"));
99
100 static cl::opt<bool> StressStoreExtract(
101     "stress-cgp-store-extract", cl::Hidden, cl::init(false),
102     cl::desc("Stress test store(extract) optimizations in CodeGenPrepare"));
103
104 static cl::opt<bool> DisableExtLdPromotion(
105     "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
106     cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in "
107              "CodeGenPrepare"));
108
109 static cl::opt<bool> StressExtLdPromotion(
110     "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
111     cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) "
112              "optimization in CodeGenPrepare"));
113
114 namespace {
115 typedef SmallPtrSet<Instruction *, 16> SetOfInstrs;
116 typedef PointerIntPair<Type *, 1, bool> TypeIsSExt;
117 typedef DenseMap<Instruction *, TypeIsSExt> InstrToOrigTy;
118 class TypePromotionTransaction;
119
120   class CodeGenPrepare : public FunctionPass {
121     const TargetMachine *TM;
122     const TargetLowering *TLI;
123     const TargetTransformInfo *TTI;
124     const TargetLibraryInfo *TLInfo;
125
126     /// As we scan instructions optimizing them, this is the next instruction
127     /// to optimize. Transforms that can invalidate this should update it.
128     BasicBlock::iterator CurInstIterator;
129
130     /// Keeps track of non-local addresses that have been sunk into a block.
131     /// This allows us to avoid inserting duplicate code for blocks with
132     /// multiple load/stores of the same address.
133     ValueMap<Value*, Value*> SunkAddrs;
134
135     /// Keeps track of all instructions inserted for the current function.
136     SetOfInstrs InsertedInsts;
137     /// Keeps track of the type of the related instruction before their
138     /// promotion for the current function.
139     InstrToOrigTy PromotedInsts;
140
141     /// True if CFG is modified in any way.
142     bool ModifiedDT;
143
144     /// True if optimizing for size.
145     bool OptSize;
146
147     /// DataLayout for the Function being processed.
148     const DataLayout *DL;
149
150   public:
151     static char ID; // Pass identification, replacement for typeid
152     explicit CodeGenPrepare(const TargetMachine *TM = nullptr)
153         : FunctionPass(ID), TM(TM), TLI(nullptr), TTI(nullptr), DL(nullptr) {
154         initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
155       }
156     bool runOnFunction(Function &F) override;
157
158     const char *getPassName() const override { return "CodeGen Prepare"; }
159
160     void getAnalysisUsage(AnalysisUsage &AU) const override {
161       AU.addPreserved<DominatorTreeWrapperPass>();
162       AU.addRequired<TargetLibraryInfoWrapperPass>();
163       AU.addRequired<TargetTransformInfoWrapperPass>();
164     }
165
166   private:
167     bool eliminateFallThrough(Function &F);
168     bool eliminateMostlyEmptyBlocks(Function &F);
169     bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
170     void eliminateMostlyEmptyBlock(BasicBlock *BB);
171     bool optimizeBlock(BasicBlock &BB, bool& ModifiedDT);
172     bool optimizeInst(Instruction *I, bool& ModifiedDT);
173     bool optimizeMemoryInst(Instruction *I, Value *Addr,
174                             Type *AccessTy, unsigned AS);
175     bool optimizeInlineAsmInst(CallInst *CS);
176     bool optimizeCallInst(CallInst *CI, bool& ModifiedDT);
177     bool moveExtToFormExtLoad(Instruction *&I);
178     bool optimizeExtUses(Instruction *I);
179     bool optimizeLoadExt(LoadInst *I);
180     bool optimizeSelectInst(SelectInst *SI);
181     bool optimizeShuffleVectorInst(ShuffleVectorInst *SI);
182     bool optimizeSwitchInst(SwitchInst *CI);
183     bool optimizeExtractElementInst(Instruction *Inst);
184     bool dupRetToEnableTailCallOpts(BasicBlock *BB);
185     bool placeDbgValues(Function &F);
186     bool sinkAndCmp(Function &F);
187     bool extLdPromotion(TypePromotionTransaction &TPT, LoadInst *&LI,
188                         Instruction *&Inst,
189                         const SmallVectorImpl<Instruction *> &Exts,
190                         unsigned CreatedInstCost);
191     bool splitBranchCondition(Function &F);
192     bool simplifyOffsetableRelocate(Instruction &I);
193     void stripInvariantGroupMetadata(Instruction &I);
194   };
195 }
196
197 char CodeGenPrepare::ID = 0;
198 INITIALIZE_TM_PASS(CodeGenPrepare, "codegenprepare",
199                    "Optimize for code generation", false, false)
200
201 FunctionPass *llvm::createCodeGenPreparePass(const TargetMachine *TM) {
202   return new CodeGenPrepare(TM);
203 }
204
205 bool CodeGenPrepare::runOnFunction(Function &F) {
206   if (skipOptnoneFunction(F))
207     return false;
208
209   DL = &F.getParent()->getDataLayout();
210
211   bool EverMadeChange = false;
212   // Clear per function information.
213   InsertedInsts.clear();
214   PromotedInsts.clear();
215
216   ModifiedDT = false;
217   if (TM)
218     TLI = TM->getSubtargetImpl(F)->getTargetLowering();
219   TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
220   TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
221   OptSize = F.optForSize();
222
223   /// This optimization identifies DIV instructions that can be
224   /// profitably bypassed and carried out with a shorter, faster divide.
225   if (!OptSize && TLI && TLI->isSlowDivBypassed()) {
226     const DenseMap<unsigned int, unsigned int> &BypassWidths =
227        TLI->getBypassSlowDivWidths();
228     for (Function::iterator I = F.begin(); I != F.end(); I++)
229       EverMadeChange |= bypassSlowDivision(F, I, BypassWidths);
230   }
231
232   // Eliminate blocks that contain only PHI nodes and an
233   // unconditional branch.
234   EverMadeChange |= eliminateMostlyEmptyBlocks(F);
235
236   // llvm.dbg.value is far away from the value then iSel may not be able
237   // handle it properly. iSel will drop llvm.dbg.value if it can not
238   // find a node corresponding to the value.
239   EverMadeChange |= placeDbgValues(F);
240
241   // If there is a mask, compare against zero, and branch that can be combined
242   // into a single target instruction, push the mask and compare into branch
243   // users. Do this before OptimizeBlock -> OptimizeInst ->
244   // OptimizeCmpExpression, which perturbs the pattern being searched for.
245   if (!DisableBranchOpts) {
246     EverMadeChange |= sinkAndCmp(F);
247     EverMadeChange |= splitBranchCondition(F);
248   }
249
250   bool MadeChange = true;
251   while (MadeChange) {
252     MadeChange = false;
253     for (Function::iterator I = F.begin(); I != F.end(); ) {
254       BasicBlock *BB = &*I++;
255       bool ModifiedDTOnIteration = false;
256       MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration);
257
258       // Restart BB iteration if the dominator tree of the Function was changed
259       if (ModifiedDTOnIteration)
260         break;
261     }
262     EverMadeChange |= MadeChange;
263   }
264
265   SunkAddrs.clear();
266
267   if (!DisableBranchOpts) {
268     MadeChange = false;
269     SmallPtrSet<BasicBlock*, 8> WorkList;
270     for (BasicBlock &BB : F) {
271       SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB));
272       MadeChange |= ConstantFoldTerminator(&BB, true);
273       if (!MadeChange) continue;
274
275       for (SmallVectorImpl<BasicBlock*>::iterator
276              II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
277         if (pred_begin(*II) == pred_end(*II))
278           WorkList.insert(*II);
279     }
280
281     // Delete the dead blocks and any of their dead successors.
282     MadeChange |= !WorkList.empty();
283     while (!WorkList.empty()) {
284       BasicBlock *BB = *WorkList.begin();
285       WorkList.erase(BB);
286       SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB));
287
288       DeleteDeadBlock(BB);
289
290       for (SmallVectorImpl<BasicBlock*>::iterator
291              II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
292         if (pred_begin(*II) == pred_end(*II))
293           WorkList.insert(*II);
294     }
295
296     // Merge pairs of basic blocks with unconditional branches, connected by
297     // a single edge.
298     if (EverMadeChange || MadeChange)
299       MadeChange |= eliminateFallThrough(F);
300
301     EverMadeChange |= MadeChange;
302   }
303
304   if (!DisableGCOpts) {
305     SmallVector<Instruction *, 2> Statepoints;
306     for (BasicBlock &BB : F)
307       for (Instruction &I : BB)
308         if (isStatepoint(I))
309           Statepoints.push_back(&I);
310     for (auto &I : Statepoints)
311       EverMadeChange |= simplifyOffsetableRelocate(*I);
312   }
313
314   return EverMadeChange;
315 }
316
317 /// Merge basic blocks which are connected by a single edge, where one of the
318 /// basic blocks has a single successor pointing to the other basic block,
319 /// which has a single predecessor.
320 bool CodeGenPrepare::eliminateFallThrough(Function &F) {
321   bool Changed = false;
322   // Scan all of the blocks in the function, except for the entry block.
323   for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) {
324     BasicBlock *BB = &*I++;
325     // If the destination block has a single pred, then this is a trivial
326     // edge, just collapse it.
327     BasicBlock *SinglePred = BB->getSinglePredecessor();
328
329     // Don't merge if BB's address is taken.
330     if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue;
331
332     BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator());
333     if (Term && !Term->isConditional()) {
334       Changed = true;
335       DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n");
336       // Remember if SinglePred was the entry block of the function.
337       // If so, we will need to move BB back to the entry position.
338       bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
339       MergeBasicBlockIntoOnlyPred(BB, nullptr);
340
341       if (isEntry && BB != &BB->getParent()->getEntryBlock())
342         BB->moveBefore(&BB->getParent()->getEntryBlock());
343
344       // We have erased a block. Update the iterator.
345       I = BB->getIterator();
346     }
347   }
348   return Changed;
349 }
350
351 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an
352 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split
353 /// edges in ways that are non-optimal for isel. Start by eliminating these
354 /// blocks so we can split them the way we want them.
355 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) {
356   bool MadeChange = false;
357   // Note that this intentionally skips the entry block.
358   for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) {
359     BasicBlock *BB = &*I++;
360
361     // If this block doesn't end with an uncond branch, ignore it.
362     BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
363     if (!BI || !BI->isUnconditional())
364       continue;
365
366     // If the instruction before the branch (skipping debug info) isn't a phi
367     // node, then other stuff is happening here.
368     BasicBlock::iterator BBI = BI->getIterator();
369     if (BBI != BB->begin()) {
370       --BBI;
371       while (isa<DbgInfoIntrinsic>(BBI)) {
372         if (BBI == BB->begin())
373           break;
374         --BBI;
375       }
376       if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
377         continue;
378     }
379
380     // Do not break infinite loops.
381     BasicBlock *DestBB = BI->getSuccessor(0);
382     if (DestBB == BB)
383       continue;
384
385     if (!canMergeBlocks(BB, DestBB))
386       continue;
387
388     eliminateMostlyEmptyBlock(BB);
389     MadeChange = true;
390   }
391   return MadeChange;
392 }
393
394 /// Return true if we can merge BB into DestBB if there is a single
395 /// unconditional branch between them, and BB contains no other non-phi
396 /// instructions.
397 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB,
398                                     const BasicBlock *DestBB) const {
399   // We only want to eliminate blocks whose phi nodes are used by phi nodes in
400   // the successor.  If there are more complex condition (e.g. preheaders),
401   // don't mess around with them.
402   BasicBlock::const_iterator BBI = BB->begin();
403   while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
404     for (const User *U : PN->users()) {
405       const Instruction *UI = cast<Instruction>(U);
406       if (UI->getParent() != DestBB || !isa<PHINode>(UI))
407         return false;
408       // If User is inside DestBB block and it is a PHINode then check
409       // incoming value. If incoming value is not from BB then this is
410       // a complex condition (e.g. preheaders) we want to avoid here.
411       if (UI->getParent() == DestBB) {
412         if (const PHINode *UPN = dyn_cast<PHINode>(UI))
413           for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
414             Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
415             if (Insn && Insn->getParent() == BB &&
416                 Insn->getParent() != UPN->getIncomingBlock(I))
417               return false;
418           }
419       }
420     }
421   }
422
423   // If BB and DestBB contain any common predecessors, then the phi nodes in BB
424   // and DestBB may have conflicting incoming values for the block.  If so, we
425   // can't merge the block.
426   const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
427   if (!DestBBPN) return true;  // no conflict.
428
429   // Collect the preds of BB.
430   SmallPtrSet<const BasicBlock*, 16> BBPreds;
431   if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
432     // It is faster to get preds from a PHI than with pred_iterator.
433     for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
434       BBPreds.insert(BBPN->getIncomingBlock(i));
435   } else {
436     BBPreds.insert(pred_begin(BB), pred_end(BB));
437   }
438
439   // Walk the preds of DestBB.
440   for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
441     BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
442     if (BBPreds.count(Pred)) {   // Common predecessor?
443       BBI = DestBB->begin();
444       while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
445         const Value *V1 = PN->getIncomingValueForBlock(Pred);
446         const Value *V2 = PN->getIncomingValueForBlock(BB);
447
448         // If V2 is a phi node in BB, look up what the mapped value will be.
449         if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
450           if (V2PN->getParent() == BB)
451             V2 = V2PN->getIncomingValueForBlock(Pred);
452
453         // If there is a conflict, bail out.
454         if (V1 != V2) return false;
455       }
456     }
457   }
458
459   return true;
460 }
461
462
463 /// Eliminate a basic block that has only phi's and an unconditional branch in
464 /// it.
465 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) {
466   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
467   BasicBlock *DestBB = BI->getSuccessor(0);
468
469   DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB);
470
471   // If the destination block has a single pred, then this is a trivial edge,
472   // just collapse it.
473   if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
474     if (SinglePred != DestBB) {
475       // Remember if SinglePred was the entry block of the function.  If so, we
476       // will need to move BB back to the entry position.
477       bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
478       MergeBasicBlockIntoOnlyPred(DestBB, nullptr);
479
480       if (isEntry && BB != &BB->getParent()->getEntryBlock())
481         BB->moveBefore(&BB->getParent()->getEntryBlock());
482
483       DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
484       return;
485     }
486   }
487
488   // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB
489   // to handle the new incoming edges it is about to have.
490   PHINode *PN;
491   for (BasicBlock::iterator BBI = DestBB->begin();
492        (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
493     // Remove the incoming value for BB, and remember it.
494     Value *InVal = PN->removeIncomingValue(BB, false);
495
496     // Two options: either the InVal is a phi node defined in BB or it is some
497     // value that dominates BB.
498     PHINode *InValPhi = dyn_cast<PHINode>(InVal);
499     if (InValPhi && InValPhi->getParent() == BB) {
500       // Add all of the input values of the input PHI as inputs of this phi.
501       for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
502         PN->addIncoming(InValPhi->getIncomingValue(i),
503                         InValPhi->getIncomingBlock(i));
504     } else {
505       // Otherwise, add one instance of the dominating value for each edge that
506       // we will be adding.
507       if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
508         for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
509           PN->addIncoming(InVal, BBPN->getIncomingBlock(i));
510       } else {
511         for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
512           PN->addIncoming(InVal, *PI);
513       }
514     }
515   }
516
517   // The PHIs are now updated, change everything that refers to BB to use
518   // DestBB and remove BB.
519   BB->replaceAllUsesWith(DestBB);
520   BB->eraseFromParent();
521   ++NumBlocksElim;
522
523   DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
524 }
525
526 // Computes a map of base pointer relocation instructions to corresponding
527 // derived pointer relocation instructions given a vector of all relocate calls
528 static void computeBaseDerivedRelocateMap(
529     const SmallVectorImpl<User *> &AllRelocateCalls,
530     DenseMap<IntrinsicInst *, SmallVector<IntrinsicInst *, 2>> &
531         RelocateInstMap) {
532   // Collect information in two maps: one primarily for locating the base object
533   // while filling the second map; the second map is the final structure holding
534   // a mapping between Base and corresponding Derived relocate calls
535   DenseMap<std::pair<unsigned, unsigned>, IntrinsicInst *> RelocateIdxMap;
536   for (auto &U : AllRelocateCalls) {
537     GCRelocateOperands ThisRelocate(U);
538     IntrinsicInst *I = cast<IntrinsicInst>(U);
539     auto K = std::make_pair(ThisRelocate.getBasePtrIndex(),
540                             ThisRelocate.getDerivedPtrIndex());
541     RelocateIdxMap.insert(std::make_pair(K, I));
542   }
543   for (auto &Item : RelocateIdxMap) {
544     std::pair<unsigned, unsigned> Key = Item.first;
545     if (Key.first == Key.second)
546       // Base relocation: nothing to insert
547       continue;
548
549     IntrinsicInst *I = Item.second;
550     auto BaseKey = std::make_pair(Key.first, Key.first);
551
552     // We're iterating over RelocateIdxMap so we cannot modify it.
553     auto MaybeBase = RelocateIdxMap.find(BaseKey);
554     if (MaybeBase == RelocateIdxMap.end())
555       // TODO: We might want to insert a new base object relocate and gep off
556       // that, if there are enough derived object relocates.
557       continue;
558
559     RelocateInstMap[MaybeBase->second].push_back(I);
560   }
561 }
562
563 // Accepts a GEP and extracts the operands into a vector provided they're all
564 // small integer constants
565 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP,
566                                           SmallVectorImpl<Value *> &OffsetV) {
567   for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
568     // Only accept small constant integer operands
569     auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i));
570     if (!Op || Op->getZExtValue() > 20)
571       return false;
572   }
573
574   for (unsigned i = 1; i < GEP->getNumOperands(); i++)
575     OffsetV.push_back(GEP->getOperand(i));
576   return true;
577 }
578
579 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to
580 // replace, computes a replacement, and affects it.
581 static bool
582 simplifyRelocatesOffABase(IntrinsicInst *RelocatedBase,
583                           const SmallVectorImpl<IntrinsicInst *> &Targets) {
584   bool MadeChange = false;
585   for (auto &ToReplace : Targets) {
586     GCRelocateOperands MasterRelocate(RelocatedBase);
587     GCRelocateOperands ThisRelocate(ToReplace);
588
589     assert(ThisRelocate.getBasePtrIndex() == MasterRelocate.getBasePtrIndex() &&
590            "Not relocating a derived object of the original base object");
591     if (ThisRelocate.getBasePtrIndex() == ThisRelocate.getDerivedPtrIndex()) {
592       // A duplicate relocate call. TODO: coalesce duplicates.
593       continue;
594     }
595
596     if (RelocatedBase->getParent() != ToReplace->getParent()) {
597       // Base and derived relocates are in different basic blocks.
598       // In this case transform is only valid when base dominates derived
599       // relocate. However it would be too expensive to check dominance
600       // for each such relocate, so we skip the whole transformation.
601       continue;
602     }
603
604     Value *Base = ThisRelocate.getBasePtr();
605     auto Derived = dyn_cast<GetElementPtrInst>(ThisRelocate.getDerivedPtr());
606     if (!Derived || Derived->getPointerOperand() != Base)
607       continue;
608
609     SmallVector<Value *, 2> OffsetV;
610     if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV))
611       continue;
612
613     // Create a Builder and replace the target callsite with a gep
614     assert(RelocatedBase->getNextNode() && "Should always have one since it's not a terminator");
615
616     // Insert after RelocatedBase
617     IRBuilder<> Builder(RelocatedBase->getNextNode());
618     Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
619
620     // If gc_relocate does not match the actual type, cast it to the right type.
621     // In theory, there must be a bitcast after gc_relocate if the type does not
622     // match, and we should reuse it to get the derived pointer. But it could be
623     // cases like this:
624     // bb1:
625     //  ...
626     //  %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
627     //  br label %merge
628     //
629     // bb2:
630     //  ...
631     //  %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
632     //  br label %merge
633     //
634     // merge:
635     //  %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ]
636     //  %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)*
637     //
638     // In this case, we can not find the bitcast any more. So we insert a new bitcast
639     // no matter there is already one or not. In this way, we can handle all cases, and
640     // the extra bitcast should be optimized away in later passes.
641     Value *ActualRelocatedBase = RelocatedBase;
642     if (RelocatedBase->getType() != Base->getType()) {
643       ActualRelocatedBase =
644           Builder.CreateBitCast(RelocatedBase, Base->getType());
645     }
646     Value *Replacement = Builder.CreateGEP(
647         Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV));
648     Replacement->takeName(ToReplace);
649     // If the newly generated derived pointer's type does not match the original derived
650     // pointer's type, cast the new derived pointer to match it. Same reasoning as above.
651     Value *ActualReplacement = Replacement;
652     if (Replacement->getType() != ToReplace->getType()) {
653       ActualReplacement =
654           Builder.CreateBitCast(Replacement, ToReplace->getType());
655     }
656     ToReplace->replaceAllUsesWith(ActualReplacement);
657     ToReplace->eraseFromParent();
658
659     MadeChange = true;
660   }
661   return MadeChange;
662 }
663
664 // Turns this:
665 //
666 // %base = ...
667 // %ptr = gep %base + 15
668 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
669 // %base' = relocate(%tok, i32 4, i32 4)
670 // %ptr' = relocate(%tok, i32 4, i32 5)
671 // %val = load %ptr'
672 //
673 // into this:
674 //
675 // %base = ...
676 // %ptr = gep %base + 15
677 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
678 // %base' = gc.relocate(%tok, i32 4, i32 4)
679 // %ptr' = gep %base' + 15
680 // %val = load %ptr'
681 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) {
682   bool MadeChange = false;
683   SmallVector<User *, 2> AllRelocateCalls;
684
685   for (auto *U : I.users())
686     if (isGCRelocate(dyn_cast<Instruction>(U)))
687       // Collect all the relocate calls associated with a statepoint
688       AllRelocateCalls.push_back(U);
689
690   // We need atleast one base pointer relocation + one derived pointer
691   // relocation to mangle
692   if (AllRelocateCalls.size() < 2)
693     return false;
694
695   // RelocateInstMap is a mapping from the base relocate instruction to the
696   // corresponding derived relocate instructions
697   DenseMap<IntrinsicInst *, SmallVector<IntrinsicInst *, 2>> RelocateInstMap;
698   computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap);
699   if (RelocateInstMap.empty())
700     return false;
701
702   for (auto &Item : RelocateInstMap)
703     // Item.first is the RelocatedBase to offset against
704     // Item.second is the vector of Targets to replace
705     MadeChange = simplifyRelocatesOffABase(Item.first, Item.second);
706   return MadeChange;
707 }
708
709 /// SinkCast - Sink the specified cast instruction into its user blocks
710 static bool SinkCast(CastInst *CI) {
711   BasicBlock *DefBB = CI->getParent();
712
713   /// InsertedCasts - Only insert a cast in each block once.
714   DenseMap<BasicBlock*, CastInst*> InsertedCasts;
715
716   bool MadeChange = false;
717   for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
718        UI != E; ) {
719     Use &TheUse = UI.getUse();
720     Instruction *User = cast<Instruction>(*UI);
721
722     // Figure out which BB this cast is used in.  For PHI's this is the
723     // appropriate predecessor block.
724     BasicBlock *UserBB = User->getParent();
725     if (PHINode *PN = dyn_cast<PHINode>(User)) {
726       UserBB = PN->getIncomingBlock(TheUse);
727     }
728
729     // Preincrement use iterator so we don't invalidate it.
730     ++UI;
731
732     // If the block selected to receive the cast is an EH pad that does not
733     // allow non-PHI instructions before the terminator, we can't sink the
734     // cast.
735     if (UserBB->getTerminator()->isEHPad())
736       continue;
737
738     // If this user is in the same block as the cast, don't change the cast.
739     if (UserBB == DefBB) continue;
740
741     // If we have already inserted a cast into this block, use it.
742     CastInst *&InsertedCast = InsertedCasts[UserBB];
743
744     if (!InsertedCast) {
745       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
746       assert(InsertPt != UserBB->end());
747       InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0),
748                                       CI->getType(), "", &*InsertPt);
749     }
750
751     // Replace a use of the cast with a use of the new cast.
752     TheUse = InsertedCast;
753     MadeChange = true;
754     ++NumCastUses;
755   }
756
757   // If we removed all uses, nuke the cast.
758   if (CI->use_empty()) {
759     CI->eraseFromParent();
760     MadeChange = true;
761   }
762
763   return MadeChange;
764 }
765
766 /// If the specified cast instruction is a noop copy (e.g. it's casting from
767 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to
768 /// reduce the number of virtual registers that must be created and coalesced.
769 ///
770 /// Return true if any changes are made.
771 ///
772 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI,
773                                        const DataLayout &DL) {
774   // If this is a noop copy,
775   EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType());
776   EVT DstVT = TLI.getValueType(DL, CI->getType());
777
778   // This is an fp<->int conversion?
779   if (SrcVT.isInteger() != DstVT.isInteger())
780     return false;
781
782   // If this is an extension, it will be a zero or sign extension, which
783   // isn't a noop.
784   if (SrcVT.bitsLT(DstVT)) return false;
785
786   // If these values will be promoted, find out what they will be promoted
787   // to.  This helps us consider truncates on PPC as noop copies when they
788   // are.
789   if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
790       TargetLowering::TypePromoteInteger)
791     SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
792   if (TLI.getTypeAction(CI->getContext(), DstVT) ==
793       TargetLowering::TypePromoteInteger)
794     DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
795
796   // If, after promotion, these are the same types, this is a noop copy.
797   if (SrcVT != DstVT)
798     return false;
799
800   return SinkCast(CI);
801 }
802
803 /// Try to combine CI into a call to the llvm.uadd.with.overflow intrinsic if
804 /// possible.
805 ///
806 /// Return true if any changes were made.
807 static bool CombineUAddWithOverflow(CmpInst *CI) {
808   Value *A, *B;
809   Instruction *AddI;
810   if (!match(CI,
811              m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI))))
812     return false;
813
814   Type *Ty = AddI->getType();
815   if (!isa<IntegerType>(Ty))
816     return false;
817
818   // We don't want to move around uses of condition values this late, so we we
819   // check if it is legal to create the call to the intrinsic in the basic
820   // block containing the icmp:
821
822   if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse())
823     return false;
824
825 #ifndef NDEBUG
826   // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption
827   // for now:
828   if (AddI->hasOneUse())
829     assert(*AddI->user_begin() == CI && "expected!");
830 #endif
831
832   Module *M = CI->getModule();
833   Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty);
834
835   auto *InsertPt = AddI->hasOneUse() ? CI : AddI;
836
837   auto *UAddWithOverflow =
838       CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt);
839   auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt);
840   auto *Overflow =
841       ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt);
842
843   CI->replaceAllUsesWith(Overflow);
844   AddI->replaceAllUsesWith(UAdd);
845   CI->eraseFromParent();
846   AddI->eraseFromParent();
847   return true;
848 }
849
850 /// Sink the given CmpInst into user blocks to reduce the number of virtual
851 /// registers that must be created and coalesced. This is a clear win except on
852 /// targets with multiple condition code registers (PowerPC), where it might
853 /// lose; some adjustment may be wanted there.
854 ///
855 /// Return true if any changes are made.
856 static bool SinkCmpExpression(CmpInst *CI) {
857   BasicBlock *DefBB = CI->getParent();
858
859   /// Only insert a cmp in each block once.
860   DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
861
862   bool MadeChange = false;
863   for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
864        UI != E; ) {
865     Use &TheUse = UI.getUse();
866     Instruction *User = cast<Instruction>(*UI);
867
868     // Preincrement use iterator so we don't invalidate it.
869     ++UI;
870
871     // Don't bother for PHI nodes.
872     if (isa<PHINode>(User))
873       continue;
874
875     // Figure out which BB this cmp is used in.
876     BasicBlock *UserBB = User->getParent();
877
878     // If this user is in the same block as the cmp, don't change the cmp.
879     if (UserBB == DefBB) continue;
880
881     // If we have already inserted a cmp into this block, use it.
882     CmpInst *&InsertedCmp = InsertedCmps[UserBB];
883
884     if (!InsertedCmp) {
885       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
886       assert(InsertPt != UserBB->end());
887       InsertedCmp =
888           CmpInst::Create(CI->getOpcode(), CI->getPredicate(),
889                           CI->getOperand(0), CI->getOperand(1), "", &*InsertPt);
890     }
891
892     // Replace a use of the cmp with a use of the new cmp.
893     TheUse = InsertedCmp;
894     MadeChange = true;
895     ++NumCmpUses;
896   }
897
898   // If we removed all uses, nuke the cmp.
899   if (CI->use_empty()) {
900     CI->eraseFromParent();
901     MadeChange = true;
902   }
903
904   return MadeChange;
905 }
906
907 static bool OptimizeCmpExpression(CmpInst *CI) {
908   if (SinkCmpExpression(CI))
909     return true;
910
911   if (CombineUAddWithOverflow(CI))
912     return true;
913
914   return false;
915 }
916
917 /// Check if the candidates could be combined with a shift instruction, which
918 /// includes:
919 /// 1. Truncate instruction
920 /// 2. And instruction and the imm is a mask of the low bits:
921 /// imm & (imm+1) == 0
922 static bool isExtractBitsCandidateUse(Instruction *User) {
923   if (!isa<TruncInst>(User)) {
924     if (User->getOpcode() != Instruction::And ||
925         !isa<ConstantInt>(User->getOperand(1)))
926       return false;
927
928     const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue();
929
930     if ((Cimm & (Cimm + 1)).getBoolValue())
931       return false;
932   }
933   return true;
934 }
935
936 /// Sink both shift and truncate instruction to the use of truncate's BB.
937 static bool
938 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI,
939                      DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts,
940                      const TargetLowering &TLI, const DataLayout &DL) {
941   BasicBlock *UserBB = User->getParent();
942   DenseMap<BasicBlock *, CastInst *> InsertedTruncs;
943   TruncInst *TruncI = dyn_cast<TruncInst>(User);
944   bool MadeChange = false;
945
946   for (Value::user_iterator TruncUI = TruncI->user_begin(),
947                             TruncE = TruncI->user_end();
948        TruncUI != TruncE;) {
949
950     Use &TruncTheUse = TruncUI.getUse();
951     Instruction *TruncUser = cast<Instruction>(*TruncUI);
952     // Preincrement use iterator so we don't invalidate it.
953
954     ++TruncUI;
955
956     int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode());
957     if (!ISDOpcode)
958       continue;
959
960     // If the use is actually a legal node, there will not be an
961     // implicit truncate.
962     // FIXME: always querying the result type is just an
963     // approximation; some nodes' legality is determined by the
964     // operand or other means. There's no good way to find out though.
965     if (TLI.isOperationLegalOrCustom(
966             ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true)))
967       continue;
968
969     // Don't bother for PHI nodes.
970     if (isa<PHINode>(TruncUser))
971       continue;
972
973     BasicBlock *TruncUserBB = TruncUser->getParent();
974
975     if (UserBB == TruncUserBB)
976       continue;
977
978     BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB];
979     CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB];
980
981     if (!InsertedShift && !InsertedTrunc) {
982       BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt();
983       assert(InsertPt != TruncUserBB->end());
984       // Sink the shift
985       if (ShiftI->getOpcode() == Instruction::AShr)
986         InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
987                                                    "", &*InsertPt);
988       else
989         InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
990                                                    "", &*InsertPt);
991
992       // Sink the trunc
993       BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt();
994       TruncInsertPt++;
995       assert(TruncInsertPt != TruncUserBB->end());
996
997       InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift,
998                                        TruncI->getType(), "", &*TruncInsertPt);
999
1000       MadeChange = true;
1001
1002       TruncTheUse = InsertedTrunc;
1003     }
1004   }
1005   return MadeChange;
1006 }
1007
1008 /// Sink the shift *right* instruction into user blocks if the uses could
1009 /// potentially be combined with this shift instruction and generate BitExtract
1010 /// instruction. It will only be applied if the architecture supports BitExtract
1011 /// instruction. Here is an example:
1012 /// BB1:
1013 ///   %x.extract.shift = lshr i64 %arg1, 32
1014 /// BB2:
1015 ///   %x.extract.trunc = trunc i64 %x.extract.shift to i16
1016 /// ==>
1017 ///
1018 /// BB2:
1019 ///   %x.extract.shift.1 = lshr i64 %arg1, 32
1020 ///   %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16
1021 ///
1022 /// CodeGen will recoginze the pattern in BB2 and generate BitExtract
1023 /// instruction.
1024 /// Return true if any changes are made.
1025 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI,
1026                                 const TargetLowering &TLI,
1027                                 const DataLayout &DL) {
1028   BasicBlock *DefBB = ShiftI->getParent();
1029
1030   /// Only insert instructions in each block once.
1031   DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts;
1032
1033   bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType()));
1034
1035   bool MadeChange = false;
1036   for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end();
1037        UI != E;) {
1038     Use &TheUse = UI.getUse();
1039     Instruction *User = cast<Instruction>(*UI);
1040     // Preincrement use iterator so we don't invalidate it.
1041     ++UI;
1042
1043     // Don't bother for PHI nodes.
1044     if (isa<PHINode>(User))
1045       continue;
1046
1047     if (!isExtractBitsCandidateUse(User))
1048       continue;
1049
1050     BasicBlock *UserBB = User->getParent();
1051
1052     if (UserBB == DefBB) {
1053       // If the shift and truncate instruction are in the same BB. The use of
1054       // the truncate(TruncUse) may still introduce another truncate if not
1055       // legal. In this case, we would like to sink both shift and truncate
1056       // instruction to the BB of TruncUse.
1057       // for example:
1058       // BB1:
1059       // i64 shift.result = lshr i64 opnd, imm
1060       // trunc.result = trunc shift.result to i16
1061       //
1062       // BB2:
1063       //   ----> We will have an implicit truncate here if the architecture does
1064       //   not have i16 compare.
1065       // cmp i16 trunc.result, opnd2
1066       //
1067       if (isa<TruncInst>(User) && shiftIsLegal
1068           // If the type of the truncate is legal, no trucate will be
1069           // introduced in other basic blocks.
1070           &&
1071           (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType()))))
1072         MadeChange =
1073             SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL);
1074
1075       continue;
1076     }
1077     // If we have already inserted a shift into this block, use it.
1078     BinaryOperator *&InsertedShift = InsertedShifts[UserBB];
1079
1080     if (!InsertedShift) {
1081       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1082       assert(InsertPt != UserBB->end());
1083
1084       if (ShiftI->getOpcode() == Instruction::AShr)
1085         InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1086                                                    "", &*InsertPt);
1087       else
1088         InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1089                                                    "", &*InsertPt);
1090
1091       MadeChange = true;
1092     }
1093
1094     // Replace a use of the shift with a use of the new shift.
1095     TheUse = InsertedShift;
1096   }
1097
1098   // If we removed all uses, nuke the shift.
1099   if (ShiftI->use_empty())
1100     ShiftI->eraseFromParent();
1101
1102   return MadeChange;
1103 }
1104
1105 // Translate a masked load intrinsic like
1106 // <16 x i32 > @llvm.masked.load( <16 x i32>* %addr, i32 align,
1107 //                               <16 x i1> %mask, <16 x i32> %passthru)
1108 // to a chain of basic blocks, with loading element one-by-one if
1109 // the appropriate mask bit is set
1110 // 
1111 //  %1 = bitcast i8* %addr to i32*
1112 //  %2 = extractelement <16 x i1> %mask, i32 0
1113 //  %3 = icmp eq i1 %2, true
1114 //  br i1 %3, label %cond.load, label %else
1115 //
1116 //cond.load:                                        ; preds = %0
1117 //  %4 = getelementptr i32* %1, i32 0
1118 //  %5 = load i32* %4
1119 //  %6 = insertelement <16 x i32> undef, i32 %5, i32 0
1120 //  br label %else
1121 //
1122 //else:                                             ; preds = %0, %cond.load
1123 //  %res.phi.else = phi <16 x i32> [ %6, %cond.load ], [ undef, %0 ]
1124 //  %7 = extractelement <16 x i1> %mask, i32 1
1125 //  %8 = icmp eq i1 %7, true
1126 //  br i1 %8, label %cond.load1, label %else2
1127 //
1128 //cond.load1:                                       ; preds = %else
1129 //  %9 = getelementptr i32* %1, i32 1
1130 //  %10 = load i32* %9
1131 //  %11 = insertelement <16 x i32> %res.phi.else, i32 %10, i32 1
1132 //  br label %else2
1133 //
1134 //else2:                                            ; preds = %else, %cond.load1
1135 //  %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ]
1136 //  %12 = extractelement <16 x i1> %mask, i32 2
1137 //  %13 = icmp eq i1 %12, true
1138 //  br i1 %13, label %cond.load4, label %else5
1139 //
1140 static void ScalarizeMaskedLoad(CallInst *CI) {
1141   Value *Ptr  = CI->getArgOperand(0);
1142   Value *Alignment = CI->getArgOperand(1);
1143   Value *Mask = CI->getArgOperand(2);
1144   Value *Src0 = CI->getArgOperand(3);
1145
1146   unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue();
1147   VectorType *VecType = dyn_cast<VectorType>(CI->getType());
1148   assert(VecType && "Unexpected return type of masked load intrinsic");
1149
1150   Type *EltTy = CI->getType()->getVectorElementType();
1151
1152   IRBuilder<> Builder(CI->getContext());
1153   Instruction *InsertPt = CI;
1154   BasicBlock *IfBlock = CI->getParent();
1155   BasicBlock *CondBlock = nullptr;
1156   BasicBlock *PrevIfBlock = CI->getParent();
1157
1158   Builder.SetInsertPoint(InsertPt);
1159   Builder.SetCurrentDebugLocation(CI->getDebugLoc());
1160
1161   // Short-cut if the mask is all-true.
1162   bool IsAllOnesMask = isa<Constant>(Mask) &&
1163     cast<Constant>(Mask)->isAllOnesValue();
1164
1165   if (IsAllOnesMask) {
1166     Value *NewI = Builder.CreateAlignedLoad(Ptr, AlignVal);
1167     CI->replaceAllUsesWith(NewI);
1168     CI->eraseFromParent();
1169     return;
1170   }
1171
1172   // Adjust alignment for the scalar instruction.
1173   AlignVal = std::min(AlignVal, VecType->getScalarSizeInBits()/8);
1174   // Bitcast %addr fron i8* to EltTy*
1175   Type *NewPtrType =
1176     EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace());
1177   Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType);
1178   unsigned VectorWidth = VecType->getNumElements();
1179
1180   Value *UndefVal = UndefValue::get(VecType);
1181
1182   // The result vector
1183   Value *VResult = UndefVal;
1184
1185   if (isa<ConstantVector>(Mask)) {
1186     for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) {
1187       if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue())
1188           continue;
1189       Value *Gep =
1190           Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx));
1191       LoadInst* Load = Builder.CreateAlignedLoad(Gep, AlignVal);
1192       VResult = Builder.CreateInsertElement(VResult, Load,
1193                                             Builder.getInt32(Idx));
1194     }
1195     Value *NewI = Builder.CreateSelect(Mask, VResult, Src0);
1196     CI->replaceAllUsesWith(NewI);
1197     CI->eraseFromParent();
1198     return;
1199   }
1200
1201   PHINode *Phi = nullptr;
1202   Value *PrevPhi = UndefVal;
1203
1204   for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) {
1205
1206     // Fill the "else" block, created in the previous iteration
1207     //
1208     //  %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ]
1209     //  %mask_1 = extractelement <16 x i1> %mask, i32 Idx
1210     //  %to_load = icmp eq i1 %mask_1, true
1211     //  br i1 %to_load, label %cond.load, label %else
1212     //
1213     if (Idx > 0) {
1214       Phi = Builder.CreatePHI(VecType, 2, "res.phi.else");
1215       Phi->addIncoming(VResult, CondBlock);
1216       Phi->addIncoming(PrevPhi, PrevIfBlock);
1217       PrevPhi = Phi;
1218       VResult = Phi;
1219     }
1220
1221     Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx));
1222     Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate,
1223                                     ConstantInt::get(Predicate->getType(), 1));
1224
1225     // Create "cond" block
1226     //
1227     //  %EltAddr = getelementptr i32* %1, i32 0
1228     //  %Elt = load i32* %EltAddr
1229     //  VResult = insertelement <16 x i32> VResult, i32 %Elt, i32 Idx
1230     //
1231     CondBlock = IfBlock->splitBasicBlock(InsertPt->getIterator(), "cond.load");
1232     Builder.SetInsertPoint(InsertPt);
1233
1234     Value *Gep =
1235         Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx));
1236     LoadInst *Load = Builder.CreateAlignedLoad(Gep, AlignVal);
1237     VResult = Builder.CreateInsertElement(VResult, Load, Builder.getInt32(Idx));
1238
1239     // Create "else" block, fill it in the next iteration
1240     BasicBlock *NewIfBlock =
1241         CondBlock->splitBasicBlock(InsertPt->getIterator(), "else");
1242     Builder.SetInsertPoint(InsertPt);
1243     Instruction *OldBr = IfBlock->getTerminator();
1244     BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr);
1245     OldBr->eraseFromParent();
1246     PrevIfBlock = IfBlock;
1247     IfBlock = NewIfBlock;
1248   }
1249
1250   Phi = Builder.CreatePHI(VecType, 2, "res.phi.select");
1251   Phi->addIncoming(VResult, CondBlock);
1252   Phi->addIncoming(PrevPhi, PrevIfBlock);
1253   Value *NewI = Builder.CreateSelect(Mask, Phi, Src0);
1254   CI->replaceAllUsesWith(NewI);
1255   CI->eraseFromParent();
1256 }
1257
1258 // Translate a masked store intrinsic, like
1259 // void @llvm.masked.store(<16 x i32> %src, <16 x i32>* %addr, i32 align,
1260 //                               <16 x i1> %mask)
1261 // to a chain of basic blocks, that stores element one-by-one if
1262 // the appropriate mask bit is set
1263 //
1264 //   %1 = bitcast i8* %addr to i32*
1265 //   %2 = extractelement <16 x i1> %mask, i32 0
1266 //   %3 = icmp eq i1 %2, true
1267 //   br i1 %3, label %cond.store, label %else
1268 //
1269 // cond.store:                                       ; preds = %0
1270 //   %4 = extractelement <16 x i32> %val, i32 0
1271 //   %5 = getelementptr i32* %1, i32 0
1272 //   store i32 %4, i32* %5
1273 //   br label %else
1274 // 
1275 // else:                                             ; preds = %0, %cond.store
1276 //   %6 = extractelement <16 x i1> %mask, i32 1
1277 //   %7 = icmp eq i1 %6, true
1278 //   br i1 %7, label %cond.store1, label %else2
1279 // 
1280 // cond.store1:                                      ; preds = %else
1281 //   %8 = extractelement <16 x i32> %val, i32 1
1282 //   %9 = getelementptr i32* %1, i32 1
1283 //   store i32 %8, i32* %9
1284 //   br label %else2
1285 //   . . .
1286 static void ScalarizeMaskedStore(CallInst *CI) {
1287   Value *Src = CI->getArgOperand(0);
1288   Value *Ptr  = CI->getArgOperand(1);
1289   Value *Alignment = CI->getArgOperand(2);
1290   Value *Mask = CI->getArgOperand(3);
1291
1292   unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue();
1293   VectorType *VecType = dyn_cast<VectorType>(Src->getType());
1294   assert(VecType && "Unexpected data type in masked store intrinsic");
1295
1296   Type *EltTy = VecType->getElementType();
1297
1298   IRBuilder<> Builder(CI->getContext());
1299   Instruction *InsertPt = CI;
1300   BasicBlock *IfBlock = CI->getParent();
1301   Builder.SetInsertPoint(InsertPt);
1302   Builder.SetCurrentDebugLocation(CI->getDebugLoc());
1303
1304   // Short-cut if the mask is all-true.
1305   bool IsAllOnesMask = isa<Constant>(Mask) &&
1306     cast<Constant>(Mask)->isAllOnesValue();
1307
1308   if (IsAllOnesMask) {
1309     Builder.CreateAlignedStore(Src, Ptr, AlignVal);
1310     CI->eraseFromParent();
1311     return;
1312   }
1313
1314   // Adjust alignment for the scalar instruction.
1315   AlignVal = std::max(AlignVal, VecType->getScalarSizeInBits()/8);
1316   // Bitcast %addr fron i8* to EltTy*
1317   Type *NewPtrType =
1318     EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace());
1319   Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType);
1320   unsigned VectorWidth = VecType->getNumElements();
1321
1322   if (isa<ConstantVector>(Mask)) {
1323     for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) {
1324       if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue())
1325           continue;
1326       Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx));
1327       Value *Gep =
1328           Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx));
1329       Builder.CreateAlignedStore(OneElt, Gep, AlignVal);
1330     }
1331     CI->eraseFromParent();
1332     return;
1333   }
1334
1335   for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) {
1336
1337     // Fill the "else" block, created in the previous iteration
1338     //
1339     //  %mask_1 = extractelement <16 x i1> %mask, i32 Idx
1340     //  %to_store = icmp eq i1 %mask_1, true
1341     //  br i1 %to_store, label %cond.store, label %else
1342     //
1343     Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx));
1344     Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate,
1345                                     ConstantInt::get(Predicate->getType(), 1));
1346
1347     // Create "cond" block
1348     //
1349     //  %OneElt = extractelement <16 x i32> %Src, i32 Idx
1350     //  %EltAddr = getelementptr i32* %1, i32 0
1351     //  %store i32 %OneElt, i32* %EltAddr
1352     //
1353     BasicBlock *CondBlock =
1354         IfBlock->splitBasicBlock(InsertPt->getIterator(), "cond.store");
1355     Builder.SetInsertPoint(InsertPt);
1356
1357     Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx));
1358     Value *Gep =
1359         Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx));
1360     Builder.CreateAlignedStore(OneElt, Gep, AlignVal);
1361
1362     // Create "else" block, fill it in the next iteration
1363     BasicBlock *NewIfBlock =
1364         CondBlock->splitBasicBlock(InsertPt->getIterator(), "else");
1365     Builder.SetInsertPoint(InsertPt);
1366     Instruction *OldBr = IfBlock->getTerminator();
1367     BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr);
1368     OldBr->eraseFromParent();
1369     IfBlock = NewIfBlock;
1370   }
1371   CI->eraseFromParent();
1372 }
1373
1374 // Translate a masked gather intrinsic like
1375 // <16 x i32 > @llvm.masked.gather.v16i32( <16 x i32*> %Ptrs, i32 4,
1376 //                               <16 x i1> %Mask, <16 x i32> %Src)
1377 // to a chain of basic blocks, with loading element one-by-one if
1378 // the appropriate mask bit is set
1379 // 
1380 // % Ptrs = getelementptr i32, i32* %base, <16 x i64> %ind
1381 // % Mask0 = extractelement <16 x i1> %Mask, i32 0
1382 // % ToLoad0 = icmp eq i1 % Mask0, true
1383 // br i1 % ToLoad0, label %cond.load, label %else
1384 // 
1385 // cond.load:
1386 // % Ptr0 = extractelement <16 x i32*> %Ptrs, i32 0
1387 // % Load0 = load i32, i32* % Ptr0, align 4
1388 // % Res0 = insertelement <16 x i32> undef, i32 % Load0, i32 0
1389 // br label %else
1390 // 
1391 // else:
1392 // %res.phi.else = phi <16 x i32>[% Res0, %cond.load], [undef, % 0]
1393 // % Mask1 = extractelement <16 x i1> %Mask, i32 1
1394 // % ToLoad1 = icmp eq i1 % Mask1, true
1395 // br i1 % ToLoad1, label %cond.load1, label %else2
1396 // 
1397 // cond.load1:
1398 // % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1
1399 // % Load1 = load i32, i32* % Ptr1, align 4
1400 // % Res1 = insertelement <16 x i32> %res.phi.else, i32 % Load1, i32 1
1401 // br label %else2
1402 // . . .
1403 // % Result = select <16 x i1> %Mask, <16 x i32> %res.phi.select, <16 x i32> %Src
1404 // ret <16 x i32> %Result
1405 static void ScalarizeMaskedGather(CallInst *CI) {
1406   Value *Ptrs = CI->getArgOperand(0);
1407   Value *Alignment = CI->getArgOperand(1);
1408   Value *Mask = CI->getArgOperand(2);
1409   Value *Src0 = CI->getArgOperand(3);
1410
1411   VectorType *VecType = dyn_cast<VectorType>(CI->getType());
1412
1413   assert(VecType && "Unexpected return type of masked load intrinsic");
1414
1415   IRBuilder<> Builder(CI->getContext());
1416   Instruction *InsertPt = CI;
1417   BasicBlock *IfBlock = CI->getParent();
1418   BasicBlock *CondBlock = nullptr;
1419   BasicBlock *PrevIfBlock = CI->getParent();
1420   Builder.SetInsertPoint(InsertPt);
1421   unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue();
1422
1423   Builder.SetCurrentDebugLocation(CI->getDebugLoc());
1424
1425   Value *UndefVal = UndefValue::get(VecType);
1426
1427   // The result vector
1428   Value *VResult = UndefVal;
1429   unsigned VectorWidth = VecType->getNumElements();
1430
1431   // Shorten the way if the mask is a vector of constants.
1432   bool IsConstMask = isa<ConstantVector>(Mask);
1433
1434   if (IsConstMask) {
1435     for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) {
1436       if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue())
1437         continue;
1438       Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx),
1439                                                 "Ptr" + Twine(Idx));
1440       LoadInst *Load = Builder.CreateAlignedLoad(Ptr, AlignVal,
1441                                                  "Load" + Twine(Idx));
1442       VResult = Builder.CreateInsertElement(VResult, Load,
1443                                             Builder.getInt32(Idx),
1444                                             "Res" + Twine(Idx));
1445     }
1446     Value *NewI = Builder.CreateSelect(Mask, VResult, Src0);
1447     CI->replaceAllUsesWith(NewI);
1448     CI->eraseFromParent();
1449     return;
1450   }
1451
1452   PHINode *Phi = nullptr;
1453   Value *PrevPhi = UndefVal;
1454
1455   for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) {
1456
1457     // Fill the "else" block, created in the previous iteration
1458     //
1459     //  %Mask1 = extractelement <16 x i1> %Mask, i32 1
1460     //  %ToLoad1 = icmp eq i1 %Mask1, true
1461     //  br i1 %ToLoad1, label %cond.load, label %else
1462     //
1463     if (Idx > 0) {
1464       Phi = Builder.CreatePHI(VecType, 2, "res.phi.else");
1465       Phi->addIncoming(VResult, CondBlock);
1466       Phi->addIncoming(PrevPhi, PrevIfBlock);
1467       PrevPhi = Phi;
1468       VResult = Phi;
1469     }
1470
1471     Value *Predicate = Builder.CreateExtractElement(Mask,
1472                                                     Builder.getInt32(Idx),
1473                                                     "Mask" + Twine(Idx));
1474     Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate,
1475                                     ConstantInt::get(Predicate->getType(), 1),
1476                                     "ToLoad" + Twine(Idx));
1477
1478     // Create "cond" block
1479     //
1480     //  %EltAddr = getelementptr i32* %1, i32 0
1481     //  %Elt = load i32* %EltAddr
1482     //  VResult = insertelement <16 x i32> VResult, i32 %Elt, i32 Idx
1483     //
1484     CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.load");
1485     Builder.SetInsertPoint(InsertPt);
1486
1487     Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx),
1488                                               "Ptr" + Twine(Idx));
1489     LoadInst *Load = Builder.CreateAlignedLoad(Ptr, AlignVal,
1490                                                "Load" + Twine(Idx));
1491     VResult = Builder.CreateInsertElement(VResult, Load, Builder.getInt32(Idx),
1492                                           "Res" + Twine(Idx));
1493
1494     // Create "else" block, fill it in the next iteration
1495     BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else");
1496     Builder.SetInsertPoint(InsertPt);
1497     Instruction *OldBr = IfBlock->getTerminator();
1498     BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr);
1499     OldBr->eraseFromParent();
1500     PrevIfBlock = IfBlock;
1501     IfBlock = NewIfBlock;
1502   }
1503
1504   Phi = Builder.CreatePHI(VecType, 2, "res.phi.select");
1505   Phi->addIncoming(VResult, CondBlock);
1506   Phi->addIncoming(PrevPhi, PrevIfBlock);
1507   Value *NewI = Builder.CreateSelect(Mask, Phi, Src0);
1508   CI->replaceAllUsesWith(NewI);
1509   CI->eraseFromParent();
1510 }
1511
1512 // Translate a masked scatter intrinsic, like
1513 // void @llvm.masked.scatter.v16i32(<16 x i32> %Src, <16 x i32*>* %Ptrs, i32 4,
1514 //                                  <16 x i1> %Mask)
1515 // to a chain of basic blocks, that stores element one-by-one if
1516 // the appropriate mask bit is set.
1517 //
1518 // % Ptrs = getelementptr i32, i32* %ptr, <16 x i64> %ind
1519 // % Mask0 = extractelement <16 x i1> % Mask, i32 0
1520 // % ToStore0 = icmp eq i1 % Mask0, true
1521 // br i1 %ToStore0, label %cond.store, label %else
1522 //
1523 // cond.store:
1524 // % Elt0 = extractelement <16 x i32> %Src, i32 0
1525 // % Ptr0 = extractelement <16 x i32*> %Ptrs, i32 0
1526 // store i32 %Elt0, i32* % Ptr0, align 4
1527 // br label %else
1528 // 
1529 // else:
1530 // % Mask1 = extractelement <16 x i1> % Mask, i32 1
1531 // % ToStore1 = icmp eq i1 % Mask1, true
1532 // br i1 % ToStore1, label %cond.store1, label %else2
1533 //
1534 // cond.store1:
1535 // % Elt1 = extractelement <16 x i32> %Src, i32 1
1536 // % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1
1537 // store i32 % Elt1, i32* % Ptr1, align 4
1538 // br label %else2
1539 //   . . .
1540 static void ScalarizeMaskedScatter(CallInst *CI) {
1541   Value *Src = CI->getArgOperand(0);
1542   Value *Ptrs = CI->getArgOperand(1);
1543   Value *Alignment = CI->getArgOperand(2);
1544   Value *Mask = CI->getArgOperand(3);
1545
1546   assert(isa<VectorType>(Src->getType()) &&
1547          "Unexpected data type in masked scatter intrinsic");
1548   assert(isa<VectorType>(Ptrs->getType()) &&
1549          isa<PointerType>(Ptrs->getType()->getVectorElementType()) &&
1550          "Vector of pointers is expected in masked scatter intrinsic");
1551
1552   IRBuilder<> Builder(CI->getContext());
1553   Instruction *InsertPt = CI;
1554   BasicBlock *IfBlock = CI->getParent();
1555   Builder.SetInsertPoint(InsertPt);
1556   Builder.SetCurrentDebugLocation(CI->getDebugLoc());
1557
1558   unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue();
1559   unsigned VectorWidth = Src->getType()->getVectorNumElements();
1560
1561   // Shorten the way if the mask is a vector of constants.
1562   bool IsConstMask = isa<ConstantVector>(Mask);
1563
1564   if (IsConstMask) {
1565     for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) {
1566       if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue())
1567         continue;
1568       Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx),
1569                                                    "Elt" + Twine(Idx));
1570       Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx),
1571                                                 "Ptr" + Twine(Idx));
1572       Builder.CreateAlignedStore(OneElt, Ptr, AlignVal);
1573     }
1574     CI->eraseFromParent();
1575     return;
1576   }
1577   for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) {
1578     // Fill the "else" block, created in the previous iteration
1579     //
1580     //  % Mask1 = extractelement <16 x i1> % Mask, i32 Idx
1581     //  % ToStore = icmp eq i1 % Mask1, true
1582     //  br i1 % ToStore, label %cond.store, label %else
1583     //
1584     Value *Predicate = Builder.CreateExtractElement(Mask,
1585                                                     Builder.getInt32(Idx),
1586                                                     "Mask" + Twine(Idx));
1587     Value *Cmp =
1588        Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate,
1589                           ConstantInt::get(Predicate->getType(), 1),
1590                           "ToStore" + Twine(Idx));
1591
1592     // Create "cond" block
1593     //
1594     //  % Elt1 = extractelement <16 x i32> %Src, i32 1
1595     //  % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1
1596     //  %store i32 % Elt1, i32* % Ptr1
1597     //
1598     BasicBlock *CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store");
1599     Builder.SetInsertPoint(InsertPt);
1600
1601     Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx),
1602                                                  "Elt" + Twine(Idx));
1603     Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx),
1604                                               "Ptr" + Twine(Idx));
1605     Builder.CreateAlignedStore(OneElt, Ptr, AlignVal);
1606
1607     // Create "else" block, fill it in the next iteration
1608     BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else");
1609     Builder.SetInsertPoint(InsertPt);
1610     Instruction *OldBr = IfBlock->getTerminator();
1611     BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr);
1612     OldBr->eraseFromParent();
1613     IfBlock = NewIfBlock;
1614   }
1615   CI->eraseFromParent();
1616 }
1617
1618 /// If counting leading or trailing zeros is an expensive operation and a zero
1619 /// input is defined, add a check for zero to avoid calling the intrinsic.
1620 ///
1621 /// We want to transform:
1622 ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 false)
1623 ///
1624 /// into:
1625 ///   entry:
1626 ///     %cmpz = icmp eq i64 %A, 0
1627 ///     br i1 %cmpz, label %cond.end, label %cond.false
1628 ///   cond.false:
1629 ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 true)
1630 ///     br label %cond.end
1631 ///   cond.end:
1632 ///     %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ]
1633 ///
1634 /// If the transform is performed, return true and set ModifiedDT to true.
1635 static bool despeculateCountZeros(IntrinsicInst *CountZeros,
1636                                   const TargetLowering *TLI,
1637                                   const DataLayout *DL,
1638                                   bool &ModifiedDT) {
1639   if (!TLI || !DL)
1640     return false;
1641
1642   // If a zero input is undefined, it doesn't make sense to despeculate that.
1643   if (match(CountZeros->getOperand(1), m_One()))
1644     return false;
1645
1646   // If it's cheap to speculate, there's nothing to do.
1647   auto IntrinsicID = CountZeros->getIntrinsicID();
1648   if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) ||
1649       (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz()))
1650     return false;
1651
1652   // Only handle legal scalar cases. Anything else requires too much work.
1653   Type *Ty = CountZeros->getType();
1654   unsigned SizeInBits = Ty->getPrimitiveSizeInBits();
1655   if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSize())
1656     return false;
1657
1658   // The intrinsic will be sunk behind a compare against zero and branch.
1659   BasicBlock *StartBlock = CountZeros->getParent();
1660   BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false");
1661
1662   // Create another block after the count zero intrinsic. A PHI will be added
1663   // in this block to select the result of the intrinsic or the bit-width
1664   // constant if the input to the intrinsic is zero.
1665   BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros));
1666   BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end");
1667
1668   // Set up a builder to create a compare, conditional branch, and PHI.
1669   IRBuilder<> Builder(CountZeros->getContext());
1670   Builder.SetInsertPoint(StartBlock->getTerminator());
1671   Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc());
1672
1673   // Replace the unconditional branch that was created by the first split with
1674   // a compare against zero and a conditional branch.
1675   Value *Zero = Constant::getNullValue(Ty);
1676   Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz");
1677   Builder.CreateCondBr(Cmp, EndBlock, CallBlock);
1678   StartBlock->getTerminator()->eraseFromParent();
1679
1680   // Create a PHI in the end block to select either the output of the intrinsic
1681   // or the bit width of the operand.
1682   Builder.SetInsertPoint(&EndBlock->front());
1683   PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz");
1684   CountZeros->replaceAllUsesWith(PN);
1685   Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits));
1686   PN->addIncoming(BitWidth, StartBlock);
1687   PN->addIncoming(CountZeros, CallBlock);
1688
1689   // We are explicitly handling the zero case, so we can set the intrinsic's
1690   // undefined zero argument to 'true'. This will also prevent reprocessing the
1691   // intrinsic; we only despeculate when a zero input is defined.
1692   CountZeros->setArgOperand(1, Builder.getTrue());
1693   ModifiedDT = true;
1694   return true;
1695 }
1696
1697 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool& ModifiedDT) {
1698   BasicBlock *BB = CI->getParent();
1699
1700   // Lower inline assembly if we can.
1701   // If we found an inline asm expession, and if the target knows how to
1702   // lower it to normal LLVM code, do so now.
1703   if (TLI && isa<InlineAsm>(CI->getCalledValue())) {
1704     if (TLI->ExpandInlineAsm(CI)) {
1705       // Avoid invalidating the iterator.
1706       CurInstIterator = BB->begin();
1707       // Avoid processing instructions out of order, which could cause
1708       // reuse before a value is defined.
1709       SunkAddrs.clear();
1710       return true;
1711     }
1712     // Sink address computing for memory operands into the block.
1713     if (optimizeInlineAsmInst(CI))
1714       return true;
1715   }
1716
1717   // Align the pointer arguments to this call if the target thinks it's a good
1718   // idea
1719   unsigned MinSize, PrefAlign;
1720   if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) {
1721     for (auto &Arg : CI->arg_operands()) {
1722       // We want to align both objects whose address is used directly and
1723       // objects whose address is used in casts and GEPs, though it only makes
1724       // sense for GEPs if the offset is a multiple of the desired alignment and
1725       // if size - offset meets the size threshold.
1726       if (!Arg->getType()->isPointerTy())
1727         continue;
1728       APInt Offset(DL->getPointerSizeInBits(
1729                        cast<PointerType>(Arg->getType())->getAddressSpace()),
1730                    0);
1731       Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset);
1732       uint64_t Offset2 = Offset.getLimitedValue();
1733       if ((Offset2 & (PrefAlign-1)) != 0)
1734         continue;
1735       AllocaInst *AI;
1736       if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign &&
1737           DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2)
1738         AI->setAlignment(PrefAlign);
1739       // Global variables can only be aligned if they are defined in this
1740       // object (i.e. they are uniquely initialized in this object), and
1741       // over-aligning global variables that have an explicit section is
1742       // forbidden.
1743       GlobalVariable *GV;
1744       if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->hasUniqueInitializer() &&
1745           !GV->hasSection() && GV->getAlignment() < PrefAlign &&
1746           DL->getTypeAllocSize(GV->getType()->getElementType()) >=
1747               MinSize + Offset2)
1748         GV->setAlignment(PrefAlign);
1749     }
1750     // If this is a memcpy (or similar) then we may be able to improve the
1751     // alignment
1752     if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) {
1753       unsigned Align = getKnownAlignment(MI->getDest(), *DL);
1754       if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI))
1755         Align = std::min(Align, getKnownAlignment(MTI->getSource(), *DL));
1756       if (Align > MI->getAlignment())
1757         MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), Align));
1758     }
1759   }
1760
1761   IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
1762   if (II) {
1763     switch (II->getIntrinsicID()) {
1764     default: break;
1765     case Intrinsic::objectsize: {
1766       // Lower all uses of llvm.objectsize.*
1767       bool Min = (cast<ConstantInt>(II->getArgOperand(1))->getZExtValue() == 1);
1768       Type *ReturnTy = CI->getType();
1769       Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL);
1770
1771       // Substituting this can cause recursive simplifications, which can
1772       // invalidate our iterator.  Use a WeakVH to hold onto it in case this
1773       // happens.
1774       WeakVH IterHandle(&*CurInstIterator);
1775
1776       replaceAndRecursivelySimplify(CI, RetVal,
1777                                     TLInfo, nullptr);
1778
1779       // If the iterator instruction was recursively deleted, start over at the
1780       // start of the block.
1781       if (IterHandle != CurInstIterator.getNodePtrUnchecked()) {
1782         CurInstIterator = BB->begin();
1783         SunkAddrs.clear();
1784       }
1785       return true;
1786     }
1787     case Intrinsic::masked_load: {
1788       // Scalarize unsupported vector masked load
1789       if (!TTI->isLegalMaskedLoad(CI->getType())) {
1790         ScalarizeMaskedLoad(CI);
1791         ModifiedDT = true;
1792         return true;
1793       }
1794       return false;
1795     }
1796     case Intrinsic::masked_store: {
1797       if (!TTI->isLegalMaskedStore(CI->getArgOperand(0)->getType())) {
1798         ScalarizeMaskedStore(CI);
1799         ModifiedDT = true;
1800         return true;
1801       }
1802       return false;
1803     }
1804     case Intrinsic::masked_gather: {
1805       if (!TTI->isLegalMaskedGather(CI->getType())) {
1806         ScalarizeMaskedGather(CI);
1807         ModifiedDT = true;
1808         return true;
1809       }
1810       return false;
1811     }
1812     case Intrinsic::masked_scatter: {
1813       if (!TTI->isLegalMaskedScatter(CI->getArgOperand(0)->getType())) {
1814         ScalarizeMaskedScatter(CI);
1815         ModifiedDT = true;
1816         return true;
1817       }
1818       return false;
1819     }
1820     case Intrinsic::aarch64_stlxr:
1821     case Intrinsic::aarch64_stxr: {
1822       ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0));
1823       if (!ExtVal || !ExtVal->hasOneUse() ||
1824           ExtVal->getParent() == CI->getParent())
1825         return false;
1826       // Sink a zext feeding stlxr/stxr before it, so it can be folded into it.
1827       ExtVal->moveBefore(CI);
1828       // Mark this instruction as "inserted by CGP", so that other
1829       // optimizations don't touch it.
1830       InsertedInsts.insert(ExtVal);
1831       return true;
1832     }
1833     case Intrinsic::invariant_group_barrier:
1834       II->replaceAllUsesWith(II->getArgOperand(0));
1835       II->eraseFromParent();
1836       return true;
1837
1838     case Intrinsic::cttz:
1839     case Intrinsic::ctlz:
1840       // If counting zeros is expensive, try to avoid it.
1841       return despeculateCountZeros(II, TLI, DL, ModifiedDT);
1842     }
1843
1844     if (TLI) {
1845       // Unknown address space.
1846       // TODO: Target hook to pick which address space the intrinsic cares
1847       // about?
1848       unsigned AddrSpace = ~0u;
1849       SmallVector<Value*, 2> PtrOps;
1850       Type *AccessTy;
1851       if (TLI->GetAddrModeArguments(II, PtrOps, AccessTy, AddrSpace))
1852         while (!PtrOps.empty())
1853           if (optimizeMemoryInst(II, PtrOps.pop_back_val(), AccessTy, AddrSpace))
1854             return true;
1855     }
1856   }
1857
1858   // From here on out we're working with named functions.
1859   if (!CI->getCalledFunction()) return false;
1860
1861   // Lower all default uses of _chk calls.  This is very similar
1862   // to what InstCombineCalls does, but here we are only lowering calls
1863   // to fortified library functions (e.g. __memcpy_chk) that have the default
1864   // "don't know" as the objectsize.  Anything else should be left alone.
1865   FortifiedLibCallSimplifier Simplifier(TLInfo, true);
1866   if (Value *V = Simplifier.optimizeCall(CI)) {
1867     CI->replaceAllUsesWith(V);
1868     CI->eraseFromParent();
1869     return true;
1870   }
1871   return false;
1872 }
1873
1874 /// Look for opportunities to duplicate return instructions to the predecessor
1875 /// to enable tail call optimizations. The case it is currently looking for is:
1876 /// @code
1877 /// bb0:
1878 ///   %tmp0 = tail call i32 @f0()
1879 ///   br label %return
1880 /// bb1:
1881 ///   %tmp1 = tail call i32 @f1()
1882 ///   br label %return
1883 /// bb2:
1884 ///   %tmp2 = tail call i32 @f2()
1885 ///   br label %return
1886 /// return:
1887 ///   %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
1888 ///   ret i32 %retval
1889 /// @endcode
1890 ///
1891 /// =>
1892 ///
1893 /// @code
1894 /// bb0:
1895 ///   %tmp0 = tail call i32 @f0()
1896 ///   ret i32 %tmp0
1897 /// bb1:
1898 ///   %tmp1 = tail call i32 @f1()
1899 ///   ret i32 %tmp1
1900 /// bb2:
1901 ///   %tmp2 = tail call i32 @f2()
1902 ///   ret i32 %tmp2
1903 /// @endcode
1904 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) {
1905   if (!TLI)
1906     return false;
1907
1908   ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator());
1909   if (!RI)
1910     return false;
1911
1912   PHINode *PN = nullptr;
1913   BitCastInst *BCI = nullptr;
1914   Value *V = RI->getReturnValue();
1915   if (V) {
1916     BCI = dyn_cast<BitCastInst>(V);
1917     if (BCI)
1918       V = BCI->getOperand(0);
1919
1920     PN = dyn_cast<PHINode>(V);
1921     if (!PN)
1922       return false;
1923   }
1924
1925   if (PN && PN->getParent() != BB)
1926     return false;
1927
1928   // It's not safe to eliminate the sign / zero extension of the return value.
1929   // See llvm::isInTailCallPosition().
1930   const Function *F = BB->getParent();
1931   AttributeSet CallerAttrs = F->getAttributes();
1932   if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) ||
1933       CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
1934     return false;
1935
1936   // Make sure there are no instructions between the PHI and return, or that the
1937   // return is the first instruction in the block.
1938   if (PN) {
1939     BasicBlock::iterator BI = BB->begin();
1940     do { ++BI; } while (isa<DbgInfoIntrinsic>(BI));
1941     if (&*BI == BCI)
1942       // Also skip over the bitcast.
1943       ++BI;
1944     if (&*BI != RI)
1945       return false;
1946   } else {
1947     BasicBlock::iterator BI = BB->begin();
1948     while (isa<DbgInfoIntrinsic>(BI)) ++BI;
1949     if (&*BI != RI)
1950       return false;
1951   }
1952
1953   /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
1954   /// call.
1955   SmallVector<CallInst*, 4> TailCalls;
1956   if (PN) {
1957     for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
1958       CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I));
1959       // Make sure the phi value is indeed produced by the tail call.
1960       if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) &&
1961           TLI->mayBeEmittedAsTailCall(CI))
1962         TailCalls.push_back(CI);
1963     }
1964   } else {
1965     SmallPtrSet<BasicBlock*, 4> VisitedBBs;
1966     for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) {
1967       if (!VisitedBBs.insert(*PI).second)
1968         continue;
1969
1970       BasicBlock::InstListType &InstList = (*PI)->getInstList();
1971       BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin();
1972       BasicBlock::InstListType::reverse_iterator RE = InstList.rend();
1973       do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI));
1974       if (RI == RE)
1975         continue;
1976
1977       CallInst *CI = dyn_cast<CallInst>(&*RI);
1978       if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI))
1979         TailCalls.push_back(CI);
1980     }
1981   }
1982
1983   bool Changed = false;
1984   for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) {
1985     CallInst *CI = TailCalls[i];
1986     CallSite CS(CI);
1987
1988     // Conservatively require the attributes of the call to match those of the
1989     // return. Ignore noalias because it doesn't affect the call sequence.
1990     AttributeSet CalleeAttrs = CS.getAttributes();
1991     if (AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex).
1992           removeAttribute(Attribute::NoAlias) !=
1993         AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex).
1994           removeAttribute(Attribute::NoAlias))
1995       continue;
1996
1997     // Make sure the call instruction is followed by an unconditional branch to
1998     // the return block.
1999     BasicBlock *CallBB = CI->getParent();
2000     BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator());
2001     if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
2002       continue;
2003
2004     // Duplicate the return into CallBB.
2005     (void)FoldReturnIntoUncondBranch(RI, BB, CallBB);
2006     ModifiedDT = Changed = true;
2007     ++NumRetsDup;
2008   }
2009
2010   // If we eliminated all predecessors of the block, delete the block now.
2011   if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
2012     BB->eraseFromParent();
2013
2014   return Changed;
2015 }
2016
2017 //===----------------------------------------------------------------------===//
2018 // Memory Optimization
2019 //===----------------------------------------------------------------------===//
2020
2021 namespace {
2022
2023 /// This is an extended version of TargetLowering::AddrMode
2024 /// which holds actual Value*'s for register values.
2025 struct ExtAddrMode : public TargetLowering::AddrMode {
2026   Value *BaseReg;
2027   Value *ScaledReg;
2028   ExtAddrMode() : BaseReg(nullptr), ScaledReg(nullptr) {}
2029   void print(raw_ostream &OS) const;
2030   void dump() const;
2031
2032   bool operator==(const ExtAddrMode& O) const {
2033     return (BaseReg == O.BaseReg) && (ScaledReg == O.ScaledReg) &&
2034            (BaseGV == O.BaseGV) && (BaseOffs == O.BaseOffs) &&
2035            (HasBaseReg == O.HasBaseReg) && (Scale == O.Scale);
2036   }
2037 };
2038
2039 #ifndef NDEBUG
2040 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
2041   AM.print(OS);
2042   return OS;
2043 }
2044 #endif
2045
2046 void ExtAddrMode::print(raw_ostream &OS) const {
2047   bool NeedPlus = false;
2048   OS << "[";
2049   if (BaseGV) {
2050     OS << (NeedPlus ? " + " : "")
2051        << "GV:";
2052     BaseGV->printAsOperand(OS, /*PrintType=*/false);
2053     NeedPlus = true;
2054   }
2055
2056   if (BaseOffs) {
2057     OS << (NeedPlus ? " + " : "")
2058        << BaseOffs;
2059     NeedPlus = true;
2060   }
2061
2062   if (BaseReg) {
2063     OS << (NeedPlus ? " + " : "")
2064        << "Base:";
2065     BaseReg->printAsOperand(OS, /*PrintType=*/false);
2066     NeedPlus = true;
2067   }
2068   if (Scale) {
2069     OS << (NeedPlus ? " + " : "")
2070        << Scale << "*";
2071     ScaledReg->printAsOperand(OS, /*PrintType=*/false);
2072   }
2073
2074   OS << ']';
2075 }
2076
2077 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2078 void ExtAddrMode::dump() const {
2079   print(dbgs());
2080   dbgs() << '\n';
2081 }
2082 #endif
2083
2084 /// \brief This class provides transaction based operation on the IR.
2085 /// Every change made through this class is recorded in the internal state and
2086 /// can be undone (rollback) until commit is called.
2087 class TypePromotionTransaction {
2088
2089   /// \brief This represents the common interface of the individual transaction.
2090   /// Each class implements the logic for doing one specific modification on
2091   /// the IR via the TypePromotionTransaction.
2092   class TypePromotionAction {
2093   protected:
2094     /// The Instruction modified.
2095     Instruction *Inst;
2096
2097   public:
2098     /// \brief Constructor of the action.
2099     /// The constructor performs the related action on the IR.
2100     TypePromotionAction(Instruction *Inst) : Inst(Inst) {}
2101
2102     virtual ~TypePromotionAction() {}
2103
2104     /// \brief Undo the modification done by this action.
2105     /// When this method is called, the IR must be in the same state as it was
2106     /// before this action was applied.
2107     /// \pre Undoing the action works if and only if the IR is in the exact same
2108     /// state as it was directly after this action was applied.
2109     virtual void undo() = 0;
2110
2111     /// \brief Advocate every change made by this action.
2112     /// When the results on the IR of the action are to be kept, it is important
2113     /// to call this function, otherwise hidden information may be kept forever.
2114     virtual void commit() {
2115       // Nothing to be done, this action is not doing anything.
2116     }
2117   };
2118
2119   /// \brief Utility to remember the position of an instruction.
2120   class InsertionHandler {
2121     /// Position of an instruction.
2122     /// Either an instruction:
2123     /// - Is the first in a basic block: BB is used.
2124     /// - Has a previous instructon: PrevInst is used.
2125     union {
2126       Instruction *PrevInst;
2127       BasicBlock *BB;
2128     } Point;
2129     /// Remember whether or not the instruction had a previous instruction.
2130     bool HasPrevInstruction;
2131
2132   public:
2133     /// \brief Record the position of \p Inst.
2134     InsertionHandler(Instruction *Inst) {
2135       BasicBlock::iterator It = Inst->getIterator();
2136       HasPrevInstruction = (It != (Inst->getParent()->begin()));
2137       if (HasPrevInstruction)
2138         Point.PrevInst = &*--It;
2139       else
2140         Point.BB = Inst->getParent();
2141     }
2142
2143     /// \brief Insert \p Inst at the recorded position.
2144     void insert(Instruction *Inst) {
2145       if (HasPrevInstruction) {
2146         if (Inst->getParent())
2147           Inst->removeFromParent();
2148         Inst->insertAfter(Point.PrevInst);
2149       } else {
2150         Instruction *Position = &*Point.BB->getFirstInsertionPt();
2151         if (Inst->getParent())
2152           Inst->moveBefore(Position);
2153         else
2154           Inst->insertBefore(Position);
2155       }
2156     }
2157   };
2158
2159   /// \brief Move an instruction before another.
2160   class InstructionMoveBefore : public TypePromotionAction {
2161     /// Original position of the instruction.
2162     InsertionHandler Position;
2163
2164   public:
2165     /// \brief Move \p Inst before \p Before.
2166     InstructionMoveBefore(Instruction *Inst, Instruction *Before)
2167         : TypePromotionAction(Inst), Position(Inst) {
2168       DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n");
2169       Inst->moveBefore(Before);
2170     }
2171
2172     /// \brief Move the instruction back to its original position.
2173     void undo() override {
2174       DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n");
2175       Position.insert(Inst);
2176     }
2177   };
2178
2179   /// \brief Set the operand of an instruction with a new value.
2180   class OperandSetter : public TypePromotionAction {
2181     /// Original operand of the instruction.
2182     Value *Origin;
2183     /// Index of the modified instruction.
2184     unsigned Idx;
2185
2186   public:
2187     /// \brief Set \p Idx operand of \p Inst with \p NewVal.
2188     OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal)
2189         : TypePromotionAction(Inst), Idx(Idx) {
2190       DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n"
2191                    << "for:" << *Inst << "\n"
2192                    << "with:" << *NewVal << "\n");
2193       Origin = Inst->getOperand(Idx);
2194       Inst->setOperand(Idx, NewVal);
2195     }
2196
2197     /// \brief Restore the original value of the instruction.
2198     void undo() override {
2199       DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n"
2200                    << "for: " << *Inst << "\n"
2201                    << "with: " << *Origin << "\n");
2202       Inst->setOperand(Idx, Origin);
2203     }
2204   };
2205
2206   /// \brief Hide the operands of an instruction.
2207   /// Do as if this instruction was not using any of its operands.
2208   class OperandsHider : public TypePromotionAction {
2209     /// The list of original operands.
2210     SmallVector<Value *, 4> OriginalValues;
2211
2212   public:
2213     /// \brief Remove \p Inst from the uses of the operands of \p Inst.
2214     OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) {
2215       DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n");
2216       unsigned NumOpnds = Inst->getNumOperands();
2217       OriginalValues.reserve(NumOpnds);
2218       for (unsigned It = 0; It < NumOpnds; ++It) {
2219         // Save the current operand.
2220         Value *Val = Inst->getOperand(It);
2221         OriginalValues.push_back(Val);
2222         // Set a dummy one.
2223         // We could use OperandSetter here, but that would imply an overhead
2224         // that we are not willing to pay.
2225         Inst->setOperand(It, UndefValue::get(Val->getType()));
2226       }
2227     }
2228
2229     /// \brief Restore the original list of uses.
2230     void undo() override {
2231       DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n");
2232       for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It)
2233         Inst->setOperand(It, OriginalValues[It]);
2234     }
2235   };
2236
2237   /// \brief Build a truncate instruction.
2238   class TruncBuilder : public TypePromotionAction {
2239     Value *Val;
2240   public:
2241     /// \brief Build a truncate instruction of \p Opnd producing a \p Ty
2242     /// result.
2243     /// trunc Opnd to Ty.
2244     TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) {
2245       IRBuilder<> Builder(Opnd);
2246       Val = Builder.CreateTrunc(Opnd, Ty, "promoted");
2247       DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n");
2248     }
2249
2250     /// \brief Get the built value.
2251     Value *getBuiltValue() { return Val; }
2252
2253     /// \brief Remove the built instruction.
2254     void undo() override {
2255       DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n");
2256       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2257         IVal->eraseFromParent();
2258     }
2259   };
2260
2261   /// \brief Build a sign extension instruction.
2262   class SExtBuilder : public TypePromotionAction {
2263     Value *Val;
2264   public:
2265     /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty
2266     /// result.
2267     /// sext Opnd to Ty.
2268     SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2269         : TypePromotionAction(InsertPt) {
2270       IRBuilder<> Builder(InsertPt);
2271       Val = Builder.CreateSExt(Opnd, Ty, "promoted");
2272       DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n");
2273     }
2274
2275     /// \brief Get the built value.
2276     Value *getBuiltValue() { return Val; }
2277
2278     /// \brief Remove the built instruction.
2279     void undo() override {
2280       DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n");
2281       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2282         IVal->eraseFromParent();
2283     }
2284   };
2285
2286   /// \brief Build a zero extension instruction.
2287   class ZExtBuilder : public TypePromotionAction {
2288     Value *Val;
2289   public:
2290     /// \brief Build a zero extension instruction of \p Opnd producing a \p Ty
2291     /// result.
2292     /// zext Opnd to Ty.
2293     ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2294         : TypePromotionAction(InsertPt) {
2295       IRBuilder<> Builder(InsertPt);
2296       Val = Builder.CreateZExt(Opnd, Ty, "promoted");
2297       DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n");
2298     }
2299
2300     /// \brief Get the built value.
2301     Value *getBuiltValue() { return Val; }
2302
2303     /// \brief Remove the built instruction.
2304     void undo() override {
2305       DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n");
2306       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2307         IVal->eraseFromParent();
2308     }
2309   };
2310
2311   /// \brief Mutate an instruction to another type.
2312   class TypeMutator : public TypePromotionAction {
2313     /// Record the original type.
2314     Type *OrigTy;
2315
2316   public:
2317     /// \brief Mutate the type of \p Inst into \p NewTy.
2318     TypeMutator(Instruction *Inst, Type *NewTy)
2319         : TypePromotionAction(Inst), OrigTy(Inst->getType()) {
2320       DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy
2321                    << "\n");
2322       Inst->mutateType(NewTy);
2323     }
2324
2325     /// \brief Mutate the instruction back to its original type.
2326     void undo() override {
2327       DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy
2328                    << "\n");
2329       Inst->mutateType(OrigTy);
2330     }
2331   };
2332
2333   /// \brief Replace the uses of an instruction by another instruction.
2334   class UsesReplacer : public TypePromotionAction {
2335     /// Helper structure to keep track of the replaced uses.
2336     struct InstructionAndIdx {
2337       /// The instruction using the instruction.
2338       Instruction *Inst;
2339       /// The index where this instruction is used for Inst.
2340       unsigned Idx;
2341       InstructionAndIdx(Instruction *Inst, unsigned Idx)
2342           : Inst(Inst), Idx(Idx) {}
2343     };
2344
2345     /// Keep track of the original uses (pair Instruction, Index).
2346     SmallVector<InstructionAndIdx, 4> OriginalUses;
2347     typedef SmallVectorImpl<InstructionAndIdx>::iterator use_iterator;
2348
2349   public:
2350     /// \brief Replace all the use of \p Inst by \p New.
2351     UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) {
2352       DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New
2353                    << "\n");
2354       // Record the original uses.
2355       for (Use &U : Inst->uses()) {
2356         Instruction *UserI = cast<Instruction>(U.getUser());
2357         OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo()));
2358       }
2359       // Now, we can replace the uses.
2360       Inst->replaceAllUsesWith(New);
2361     }
2362
2363     /// \brief Reassign the original uses of Inst to Inst.
2364     void undo() override {
2365       DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n");
2366       for (use_iterator UseIt = OriginalUses.begin(),
2367                         EndIt = OriginalUses.end();
2368            UseIt != EndIt; ++UseIt) {
2369         UseIt->Inst->setOperand(UseIt->Idx, Inst);
2370       }
2371     }
2372   };
2373
2374   /// \brief Remove an instruction from the IR.
2375   class InstructionRemover : public TypePromotionAction {
2376     /// Original position of the instruction.
2377     InsertionHandler Inserter;
2378     /// Helper structure to hide all the link to the instruction. In other
2379     /// words, this helps to do as if the instruction was removed.
2380     OperandsHider Hider;
2381     /// Keep track of the uses replaced, if any.
2382     UsesReplacer *Replacer;
2383
2384   public:
2385     /// \brief Remove all reference of \p Inst and optinally replace all its
2386     /// uses with New.
2387     /// \pre If !Inst->use_empty(), then New != nullptr
2388     InstructionRemover(Instruction *Inst, Value *New = nullptr)
2389         : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst),
2390           Replacer(nullptr) {
2391       if (New)
2392         Replacer = new UsesReplacer(Inst, New);
2393       DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n");
2394       Inst->removeFromParent();
2395     }
2396
2397     ~InstructionRemover() override { delete Replacer; }
2398
2399     /// \brief Really remove the instruction.
2400     void commit() override { delete Inst; }
2401
2402     /// \brief Resurrect the instruction and reassign it to the proper uses if
2403     /// new value was provided when build this action.
2404     void undo() override {
2405       DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n");
2406       Inserter.insert(Inst);
2407       if (Replacer)
2408         Replacer->undo();
2409       Hider.undo();
2410     }
2411   };
2412
2413 public:
2414   /// Restoration point.
2415   /// The restoration point is a pointer to an action instead of an iterator
2416   /// because the iterator may be invalidated but not the pointer.
2417   typedef const TypePromotionAction *ConstRestorationPt;
2418   /// Advocate every changes made in that transaction.
2419   void commit();
2420   /// Undo all the changes made after the given point.
2421   void rollback(ConstRestorationPt Point);
2422   /// Get the current restoration point.
2423   ConstRestorationPt getRestorationPoint() const;
2424
2425   /// \name API for IR modification with state keeping to support rollback.
2426   /// @{
2427   /// Same as Instruction::setOperand.
2428   void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal);
2429   /// Same as Instruction::eraseFromParent.
2430   void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr);
2431   /// Same as Value::replaceAllUsesWith.
2432   void replaceAllUsesWith(Instruction *Inst, Value *New);
2433   /// Same as Value::mutateType.
2434   void mutateType(Instruction *Inst, Type *NewTy);
2435   /// Same as IRBuilder::createTrunc.
2436   Value *createTrunc(Instruction *Opnd, Type *Ty);
2437   /// Same as IRBuilder::createSExt.
2438   Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty);
2439   /// Same as IRBuilder::createZExt.
2440   Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty);
2441   /// Same as Instruction::moveBefore.
2442   void moveBefore(Instruction *Inst, Instruction *Before);
2443   /// @}
2444
2445 private:
2446   /// The ordered list of actions made so far.
2447   SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions;
2448   typedef SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator CommitPt;
2449 };
2450
2451 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx,
2452                                           Value *NewVal) {
2453   Actions.push_back(
2454       make_unique<TypePromotionTransaction::OperandSetter>(Inst, Idx, NewVal));
2455 }
2456
2457 void TypePromotionTransaction::eraseInstruction(Instruction *Inst,
2458                                                 Value *NewVal) {
2459   Actions.push_back(
2460       make_unique<TypePromotionTransaction::InstructionRemover>(Inst, NewVal));
2461 }
2462
2463 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst,
2464                                                   Value *New) {
2465   Actions.push_back(make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New));
2466 }
2467
2468 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) {
2469   Actions.push_back(make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy));
2470 }
2471
2472 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd,
2473                                              Type *Ty) {
2474   std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty));
2475   Value *Val = Ptr->getBuiltValue();
2476   Actions.push_back(std::move(Ptr));
2477   return Val;
2478 }
2479
2480 Value *TypePromotionTransaction::createSExt(Instruction *Inst,
2481                                             Value *Opnd, Type *Ty) {
2482   std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty));
2483   Value *Val = Ptr->getBuiltValue();
2484   Actions.push_back(std::move(Ptr));
2485   return Val;
2486 }
2487
2488 Value *TypePromotionTransaction::createZExt(Instruction *Inst,
2489                                             Value *Opnd, Type *Ty) {
2490   std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty));
2491   Value *Val = Ptr->getBuiltValue();
2492   Actions.push_back(std::move(Ptr));
2493   return Val;
2494 }
2495
2496 void TypePromotionTransaction::moveBefore(Instruction *Inst,
2497                                           Instruction *Before) {
2498   Actions.push_back(
2499       make_unique<TypePromotionTransaction::InstructionMoveBefore>(Inst, Before));
2500 }
2501
2502 TypePromotionTransaction::ConstRestorationPt
2503 TypePromotionTransaction::getRestorationPoint() const {
2504   return !Actions.empty() ? Actions.back().get() : nullptr;
2505 }
2506
2507 void TypePromotionTransaction::commit() {
2508   for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt;
2509        ++It)
2510     (*It)->commit();
2511   Actions.clear();
2512 }
2513
2514 void TypePromotionTransaction::rollback(
2515     TypePromotionTransaction::ConstRestorationPt Point) {
2516   while (!Actions.empty() && Point != Actions.back().get()) {
2517     std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val();
2518     Curr->undo();
2519   }
2520 }
2521
2522 /// \brief A helper class for matching addressing modes.
2523 ///
2524 /// This encapsulates the logic for matching the target-legal addressing modes.
2525 class AddressingModeMatcher {
2526   SmallVectorImpl<Instruction*> &AddrModeInsts;
2527   const TargetMachine &TM;
2528   const TargetLowering &TLI;
2529   const DataLayout &DL;
2530
2531   /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
2532   /// the memory instruction that we're computing this address for.
2533   Type *AccessTy;
2534   unsigned AddrSpace;
2535   Instruction *MemoryInst;
2536
2537   /// This is the addressing mode that we're building up. This is
2538   /// part of the return value of this addressing mode matching stuff.
2539   ExtAddrMode &AddrMode;
2540
2541   /// The instructions inserted by other CodeGenPrepare optimizations.
2542   const SetOfInstrs &InsertedInsts;
2543   /// A map from the instructions to their type before promotion.
2544   InstrToOrigTy &PromotedInsts;
2545   /// The ongoing transaction where every action should be registered.
2546   TypePromotionTransaction &TPT;
2547
2548   /// This is set to true when we should not do profitability checks.
2549   /// When true, IsProfitableToFoldIntoAddressingMode always returns true.
2550   bool IgnoreProfitability;
2551
2552   AddressingModeMatcher(SmallVectorImpl<Instruction *> &AMI,
2553                         const TargetMachine &TM, Type *AT, unsigned AS,
2554                         Instruction *MI, ExtAddrMode &AM,
2555                         const SetOfInstrs &InsertedInsts,
2556                         InstrToOrigTy &PromotedInsts,
2557                         TypePromotionTransaction &TPT)
2558       : AddrModeInsts(AMI), TM(TM),
2559         TLI(*TM.getSubtargetImpl(*MI->getParent()->getParent())
2560                  ->getTargetLowering()),
2561         DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS),
2562         MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts),
2563         PromotedInsts(PromotedInsts), TPT(TPT) {
2564     IgnoreProfitability = false;
2565   }
2566 public:
2567
2568   /// Find the maximal addressing mode that a load/store of V can fold,
2569   /// give an access type of AccessTy.  This returns a list of involved
2570   /// instructions in AddrModeInsts.
2571   /// \p InsertedInsts The instructions inserted by other CodeGenPrepare
2572   /// optimizations.
2573   /// \p PromotedInsts maps the instructions to their type before promotion.
2574   /// \p The ongoing transaction where every action should be registered.
2575   static ExtAddrMode Match(Value *V, Type *AccessTy, unsigned AS,
2576                            Instruction *MemoryInst,
2577                            SmallVectorImpl<Instruction*> &AddrModeInsts,
2578                            const TargetMachine &TM,
2579                            const SetOfInstrs &InsertedInsts,
2580                            InstrToOrigTy &PromotedInsts,
2581                            TypePromotionTransaction &TPT) {
2582     ExtAddrMode Result;
2583
2584     bool Success = AddressingModeMatcher(AddrModeInsts, TM, AccessTy, AS,
2585                                          MemoryInst, Result, InsertedInsts,
2586                                          PromotedInsts, TPT).matchAddr(V, 0);
2587     (void)Success; assert(Success && "Couldn't select *anything*?");
2588     return Result;
2589   }
2590 private:
2591   bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
2592   bool matchAddr(Value *V, unsigned Depth);
2593   bool matchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth,
2594                           bool *MovedAway = nullptr);
2595   bool isProfitableToFoldIntoAddressingMode(Instruction *I,
2596                                             ExtAddrMode &AMBefore,
2597                                             ExtAddrMode &AMAfter);
2598   bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
2599   bool isPromotionProfitable(unsigned NewCost, unsigned OldCost,
2600                              Value *PromotedOperand) const;
2601 };
2602
2603 /// Try adding ScaleReg*Scale to the current addressing mode.
2604 /// Return true and update AddrMode if this addr mode is legal for the target,
2605 /// false if not.
2606 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale,
2607                                              unsigned Depth) {
2608   // If Scale is 1, then this is the same as adding ScaleReg to the addressing
2609   // mode.  Just process that directly.
2610   if (Scale == 1)
2611     return matchAddr(ScaleReg, Depth);
2612
2613   // If the scale is 0, it takes nothing to add this.
2614   if (Scale == 0)
2615     return true;
2616
2617   // If we already have a scale of this value, we can add to it, otherwise, we
2618   // need an available scale field.
2619   if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
2620     return false;
2621
2622   ExtAddrMode TestAddrMode = AddrMode;
2623
2624   // Add scale to turn X*4+X*3 -> X*7.  This could also do things like
2625   // [A+B + A*7] -> [B+A*8].
2626   TestAddrMode.Scale += Scale;
2627   TestAddrMode.ScaledReg = ScaleReg;
2628
2629   // If the new address isn't legal, bail out.
2630   if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace))
2631     return false;
2632
2633   // It was legal, so commit it.
2634   AddrMode = TestAddrMode;
2635
2636   // Okay, we decided that we can add ScaleReg+Scale to AddrMode.  Check now
2637   // to see if ScaleReg is actually X+C.  If so, we can turn this into adding
2638   // X*Scale + C*Scale to addr mode.
2639   ConstantInt *CI = nullptr; Value *AddLHS = nullptr;
2640   if (isa<Instruction>(ScaleReg) &&  // not a constant expr.
2641       match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) {
2642     TestAddrMode.ScaledReg = AddLHS;
2643     TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale;
2644
2645     // If this addressing mode is legal, commit it and remember that we folded
2646     // this instruction.
2647     if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) {
2648       AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
2649       AddrMode = TestAddrMode;
2650       return true;
2651     }
2652   }
2653
2654   // Otherwise, not (x+c)*scale, just return what we have.
2655   return true;
2656 }
2657
2658 /// This is a little filter, which returns true if an addressing computation
2659 /// involving I might be folded into a load/store accessing it.
2660 /// This doesn't need to be perfect, but needs to accept at least
2661 /// the set of instructions that MatchOperationAddr can.
2662 static bool MightBeFoldableInst(Instruction *I) {
2663   switch (I->getOpcode()) {
2664   case Instruction::BitCast:
2665   case Instruction::AddrSpaceCast:
2666     // Don't touch identity bitcasts.
2667     if (I->getType() == I->getOperand(0)->getType())
2668       return false;
2669     return I->getType()->isPointerTy() || I->getType()->isIntegerTy();
2670   case Instruction::PtrToInt:
2671     // PtrToInt is always a noop, as we know that the int type is pointer sized.
2672     return true;
2673   case Instruction::IntToPtr:
2674     // We know the input is intptr_t, so this is foldable.
2675     return true;
2676   case Instruction::Add:
2677     return true;
2678   case Instruction::Mul:
2679   case Instruction::Shl:
2680     // Can only handle X*C and X << C.
2681     return isa<ConstantInt>(I->getOperand(1));
2682   case Instruction::GetElementPtr:
2683     return true;
2684   default:
2685     return false;
2686   }
2687 }
2688
2689 /// \brief Check whether or not \p Val is a legal instruction for \p TLI.
2690 /// \note \p Val is assumed to be the product of some type promotion.
2691 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed
2692 /// to be legal, as the non-promoted value would have had the same state.
2693 static bool isPromotedInstructionLegal(const TargetLowering &TLI,
2694                                        const DataLayout &DL, Value *Val) {
2695   Instruction *PromotedInst = dyn_cast<Instruction>(Val);
2696   if (!PromotedInst)
2697     return false;
2698   int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode());
2699   // If the ISDOpcode is undefined, it was undefined before the promotion.
2700   if (!ISDOpcode)
2701     return true;
2702   // Otherwise, check if the promoted instruction is legal or not.
2703   return TLI.isOperationLegalOrCustom(
2704       ISDOpcode, TLI.getValueType(DL, PromotedInst->getType()));
2705 }
2706
2707 /// \brief Hepler class to perform type promotion.
2708 class TypePromotionHelper {
2709   /// \brief Utility function to check whether or not a sign or zero extension
2710   /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by
2711   /// either using the operands of \p Inst or promoting \p Inst.
2712   /// The type of the extension is defined by \p IsSExt.
2713   /// In other words, check if:
2714   /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType.
2715   /// #1 Promotion applies:
2716   /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...).
2717   /// #2 Operand reuses:
2718   /// ext opnd1 to ConsideredExtType.
2719   /// \p PromotedInsts maps the instructions to their type before promotion.
2720   static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType,
2721                             const InstrToOrigTy &PromotedInsts, bool IsSExt);
2722
2723   /// \brief Utility function to determine if \p OpIdx should be promoted when
2724   /// promoting \p Inst.
2725   static bool shouldExtOperand(const Instruction *Inst, int OpIdx) {
2726     return !(isa<SelectInst>(Inst) && OpIdx == 0);
2727   }
2728
2729   /// \brief Utility function to promote the operand of \p Ext when this
2730   /// operand is a promotable trunc or sext or zext.
2731   /// \p PromotedInsts maps the instructions to their type before promotion.
2732   /// \p CreatedInstsCost[out] contains the cost of all instructions
2733   /// created to promote the operand of Ext.
2734   /// Newly added extensions are inserted in \p Exts.
2735   /// Newly added truncates are inserted in \p Truncs.
2736   /// Should never be called directly.
2737   /// \return The promoted value which is used instead of Ext.
2738   static Value *promoteOperandForTruncAndAnyExt(
2739       Instruction *Ext, TypePromotionTransaction &TPT,
2740       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
2741       SmallVectorImpl<Instruction *> *Exts,
2742       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI);
2743
2744   /// \brief Utility function to promote the operand of \p Ext when this
2745   /// operand is promotable and is not a supported trunc or sext.
2746   /// \p PromotedInsts maps the instructions to their type before promotion.
2747   /// \p CreatedInstsCost[out] contains the cost of all the instructions
2748   /// created to promote the operand of Ext.
2749   /// Newly added extensions are inserted in \p Exts.
2750   /// Newly added truncates are inserted in \p Truncs.
2751   /// Should never be called directly.
2752   /// \return The promoted value which is used instead of Ext.
2753   static Value *promoteOperandForOther(Instruction *Ext,
2754                                        TypePromotionTransaction &TPT,
2755                                        InstrToOrigTy &PromotedInsts,
2756                                        unsigned &CreatedInstsCost,
2757                                        SmallVectorImpl<Instruction *> *Exts,
2758                                        SmallVectorImpl<Instruction *> *Truncs,
2759                                        const TargetLowering &TLI, bool IsSExt);
2760
2761   /// \see promoteOperandForOther.
2762   static Value *signExtendOperandForOther(
2763       Instruction *Ext, TypePromotionTransaction &TPT,
2764       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
2765       SmallVectorImpl<Instruction *> *Exts,
2766       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
2767     return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
2768                                   Exts, Truncs, TLI, true);
2769   }
2770
2771   /// \see promoteOperandForOther.
2772   static Value *zeroExtendOperandForOther(
2773       Instruction *Ext, TypePromotionTransaction &TPT,
2774       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
2775       SmallVectorImpl<Instruction *> *Exts,
2776       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
2777     return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
2778                                   Exts, Truncs, TLI, false);
2779   }
2780
2781 public:
2782   /// Type for the utility function that promotes the operand of Ext.
2783   typedef Value *(*Action)(Instruction *Ext, TypePromotionTransaction &TPT,
2784                            InstrToOrigTy &PromotedInsts,
2785                            unsigned &CreatedInstsCost,
2786                            SmallVectorImpl<Instruction *> *Exts,
2787                            SmallVectorImpl<Instruction *> *Truncs,
2788                            const TargetLowering &TLI);
2789   /// \brief Given a sign/zero extend instruction \p Ext, return the approriate
2790   /// action to promote the operand of \p Ext instead of using Ext.
2791   /// \return NULL if no promotable action is possible with the current
2792   /// sign extension.
2793   /// \p InsertedInsts keeps track of all the instructions inserted by the
2794   /// other CodeGenPrepare optimizations. This information is important
2795   /// because we do not want to promote these instructions as CodeGenPrepare
2796   /// will reinsert them later. Thus creating an infinite loop: create/remove.
2797   /// \p PromotedInsts maps the instructions to their type before promotion.
2798   static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts,
2799                           const TargetLowering &TLI,
2800                           const InstrToOrigTy &PromotedInsts);
2801 };
2802
2803 bool TypePromotionHelper::canGetThrough(const Instruction *Inst,
2804                                         Type *ConsideredExtType,
2805                                         const InstrToOrigTy &PromotedInsts,
2806                                         bool IsSExt) {
2807   // The promotion helper does not know how to deal with vector types yet.
2808   // To be able to fix that, we would need to fix the places where we
2809   // statically extend, e.g., constants and such.
2810   if (Inst->getType()->isVectorTy())
2811     return false;
2812
2813   // We can always get through zext.
2814   if (isa<ZExtInst>(Inst))
2815     return true;
2816
2817   // sext(sext) is ok too.
2818   if (IsSExt && isa<SExtInst>(Inst))
2819     return true;
2820
2821   // We can get through binary operator, if it is legal. In other words, the
2822   // binary operator must have a nuw or nsw flag.
2823   const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst);
2824   if (BinOp && isa<OverflowingBinaryOperator>(BinOp) &&
2825       ((!IsSExt && BinOp->hasNoUnsignedWrap()) ||
2826        (IsSExt && BinOp->hasNoSignedWrap())))
2827     return true;
2828
2829   // Check if we can do the following simplification.
2830   // ext(trunc(opnd)) --> ext(opnd)
2831   if (!isa<TruncInst>(Inst))
2832     return false;
2833
2834   Value *OpndVal = Inst->getOperand(0);
2835   // Check if we can use this operand in the extension.
2836   // If the type is larger than the result type of the extension, we cannot.
2837   if (!OpndVal->getType()->isIntegerTy() ||
2838       OpndVal->getType()->getIntegerBitWidth() >
2839           ConsideredExtType->getIntegerBitWidth())
2840     return false;
2841
2842   // If the operand of the truncate is not an instruction, we will not have
2843   // any information on the dropped bits.
2844   // (Actually we could for constant but it is not worth the extra logic).
2845   Instruction *Opnd = dyn_cast<Instruction>(OpndVal);
2846   if (!Opnd)
2847     return false;
2848
2849   // Check if the source of the type is narrow enough.
2850   // I.e., check that trunc just drops extended bits of the same kind of
2851   // the extension.
2852   // #1 get the type of the operand and check the kind of the extended bits.
2853   const Type *OpndType;
2854   InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd);
2855   if (It != PromotedInsts.end() && It->second.getInt() == IsSExt)
2856     OpndType = It->second.getPointer();
2857   else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd)))
2858     OpndType = Opnd->getOperand(0)->getType();
2859   else
2860     return false;
2861
2862   // #2 check that the truncate just drops extended bits.
2863   return Inst->getType()->getIntegerBitWidth() >=
2864          OpndType->getIntegerBitWidth();
2865 }
2866
2867 TypePromotionHelper::Action TypePromotionHelper::getAction(
2868     Instruction *Ext, const SetOfInstrs &InsertedInsts,
2869     const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) {
2870   assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
2871          "Unexpected instruction type");
2872   Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0));
2873   Type *ExtTy = Ext->getType();
2874   bool IsSExt = isa<SExtInst>(Ext);
2875   // If the operand of the extension is not an instruction, we cannot
2876   // get through.
2877   // If it, check we can get through.
2878   if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt))
2879     return nullptr;
2880
2881   // Do not promote if the operand has been added by codegenprepare.
2882   // Otherwise, it means we are undoing an optimization that is likely to be
2883   // redone, thus causing potential infinite loop.
2884   if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd))
2885     return nullptr;
2886
2887   // SExt or Trunc instructions.
2888   // Return the related handler.
2889   if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) ||
2890       isa<ZExtInst>(ExtOpnd))
2891     return promoteOperandForTruncAndAnyExt;
2892
2893   // Regular instruction.
2894   // Abort early if we will have to insert non-free instructions.
2895   if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType()))
2896     return nullptr;
2897   return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther;
2898 }
2899
2900 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt(
2901     llvm::Instruction *SExt, TypePromotionTransaction &TPT,
2902     InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
2903     SmallVectorImpl<Instruction *> *Exts,
2904     SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
2905   // By construction, the operand of SExt is an instruction. Otherwise we cannot
2906   // get through it and this method should not be called.
2907   Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
2908   Value *ExtVal = SExt;
2909   bool HasMergedNonFreeExt = false;
2910   if (isa<ZExtInst>(SExtOpnd)) {
2911     // Replace s|zext(zext(opnd))
2912     // => zext(opnd).
2913     HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd);
2914     Value *ZExt =
2915         TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType());
2916     TPT.replaceAllUsesWith(SExt, ZExt);
2917     TPT.eraseInstruction(SExt);
2918     ExtVal = ZExt;
2919   } else {
2920     // Replace z|sext(trunc(opnd)) or sext(sext(opnd))
2921     // => z|sext(opnd).
2922     TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0));
2923   }
2924   CreatedInstsCost = 0;
2925
2926   // Remove dead code.
2927   if (SExtOpnd->use_empty())
2928     TPT.eraseInstruction(SExtOpnd);
2929
2930   // Check if the extension is still needed.
2931   Instruction *ExtInst = dyn_cast<Instruction>(ExtVal);
2932   if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) {
2933     if (ExtInst) {
2934       if (Exts)
2935         Exts->push_back(ExtInst);
2936       CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt;
2937     }
2938     return ExtVal;
2939   }
2940
2941   // At this point we have: ext ty opnd to ty.
2942   // Reassign the uses of ExtInst to the opnd and remove ExtInst.
2943   Value *NextVal = ExtInst->getOperand(0);
2944   TPT.eraseInstruction(ExtInst, NextVal);
2945   return NextVal;
2946 }
2947
2948 Value *TypePromotionHelper::promoteOperandForOther(
2949     Instruction *Ext, TypePromotionTransaction &TPT,
2950     InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
2951     SmallVectorImpl<Instruction *> *Exts,
2952     SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI,
2953     bool IsSExt) {
2954   // By construction, the operand of Ext is an instruction. Otherwise we cannot
2955   // get through it and this method should not be called.
2956   Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0));
2957   CreatedInstsCost = 0;
2958   if (!ExtOpnd->hasOneUse()) {
2959     // ExtOpnd will be promoted.
2960     // All its uses, but Ext, will need to use a truncated value of the
2961     // promoted version.
2962     // Create the truncate now.
2963     Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType());
2964     if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) {
2965       ITrunc->removeFromParent();
2966       // Insert it just after the definition.
2967       ITrunc->insertAfter(ExtOpnd);
2968       if (Truncs)
2969         Truncs->push_back(ITrunc);
2970     }
2971
2972     TPT.replaceAllUsesWith(ExtOpnd, Trunc);
2973     // Restore the operand of Ext (which has been replaced by the previous call
2974     // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
2975     TPT.setOperand(Ext, 0, ExtOpnd);
2976   }
2977
2978   // Get through the Instruction:
2979   // 1. Update its type.
2980   // 2. Replace the uses of Ext by Inst.
2981   // 3. Extend each operand that needs to be extended.
2982
2983   // Remember the original type of the instruction before promotion.
2984   // This is useful to know that the high bits are sign extended bits.
2985   PromotedInsts.insert(std::pair<Instruction *, TypeIsSExt>(
2986       ExtOpnd, TypeIsSExt(ExtOpnd->getType(), IsSExt)));
2987   // Step #1.
2988   TPT.mutateType(ExtOpnd, Ext->getType());
2989   // Step #2.
2990   TPT.replaceAllUsesWith(Ext, ExtOpnd);
2991   // Step #3.
2992   Instruction *ExtForOpnd = Ext;
2993
2994   DEBUG(dbgs() << "Propagate Ext to operands\n");
2995   for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx;
2996        ++OpIdx) {
2997     DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n');
2998     if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() ||
2999         !shouldExtOperand(ExtOpnd, OpIdx)) {
3000       DEBUG(dbgs() << "No need to propagate\n");
3001       continue;
3002     }
3003     // Check if we can statically extend the operand.
3004     Value *Opnd = ExtOpnd->getOperand(OpIdx);
3005     if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) {
3006       DEBUG(dbgs() << "Statically extend\n");
3007       unsigned BitWidth = Ext->getType()->getIntegerBitWidth();
3008       APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth)
3009                             : Cst->getValue().zext(BitWidth);
3010       TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal));
3011       continue;
3012     }
3013     // UndefValue are typed, so we have to statically sign extend them.
3014     if (isa<UndefValue>(Opnd)) {
3015       DEBUG(dbgs() << "Statically extend\n");
3016       TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType()));
3017       continue;
3018     }
3019
3020     // Otherwise we have to explicity sign extend the operand.
3021     // Check if Ext was reused to extend an operand.
3022     if (!ExtForOpnd) {
3023       // If yes, create a new one.
3024       DEBUG(dbgs() << "More operands to ext\n");
3025       Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType())
3026         : TPT.createZExt(Ext, Opnd, Ext->getType());
3027       if (!isa<Instruction>(ValForExtOpnd)) {
3028         TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd);
3029         continue;
3030       }
3031       ExtForOpnd = cast<Instruction>(ValForExtOpnd);
3032     }
3033     if (Exts)
3034       Exts->push_back(ExtForOpnd);
3035     TPT.setOperand(ExtForOpnd, 0, Opnd);
3036
3037     // Move the sign extension before the insertion point.
3038     TPT.moveBefore(ExtForOpnd, ExtOpnd);
3039     TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd);
3040     CreatedInstsCost += !TLI.isExtFree(ExtForOpnd);
3041     // If more sext are required, new instructions will have to be created.
3042     ExtForOpnd = nullptr;
3043   }
3044   if (ExtForOpnd == Ext) {
3045     DEBUG(dbgs() << "Extension is useless now\n");
3046     TPT.eraseInstruction(Ext);
3047   }
3048   return ExtOpnd;
3049 }
3050
3051 /// Check whether or not promoting an instruction to a wider type is profitable.
3052 /// \p NewCost gives the cost of extension instructions created by the
3053 /// promotion.
3054 /// \p OldCost gives the cost of extension instructions before the promotion
3055 /// plus the number of instructions that have been
3056 /// matched in the addressing mode the promotion.
3057 /// \p PromotedOperand is the value that has been promoted.
3058 /// \return True if the promotion is profitable, false otherwise.
3059 bool AddressingModeMatcher::isPromotionProfitable(
3060     unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const {
3061   DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost << '\n');
3062   // The cost of the new extensions is greater than the cost of the
3063   // old extension plus what we folded.
3064   // This is not profitable.
3065   if (NewCost > OldCost)
3066     return false;
3067   if (NewCost < OldCost)
3068     return true;
3069   // The promotion is neutral but it may help folding the sign extension in
3070   // loads for instance.
3071   // Check that we did not create an illegal instruction.
3072   return isPromotedInstructionLegal(TLI, DL, PromotedOperand);
3073 }
3074
3075 /// Given an instruction or constant expr, see if we can fold the operation
3076 /// into the addressing mode. If so, update the addressing mode and return
3077 /// true, otherwise return false without modifying AddrMode.
3078 /// If \p MovedAway is not NULL, it contains the information of whether or
3079 /// not AddrInst has to be folded into the addressing mode on success.
3080 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing
3081 /// because it has been moved away.
3082 /// Thus AddrInst must not be added in the matched instructions.
3083 /// This state can happen when AddrInst is a sext, since it may be moved away.
3084 /// Therefore, AddrInst may not be valid when MovedAway is true and it must
3085 /// not be referenced anymore.
3086 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode,
3087                                                unsigned Depth,
3088                                                bool *MovedAway) {
3089   // Avoid exponential behavior on extremely deep expression trees.
3090   if (Depth >= 5) return false;
3091
3092   // By default, all matched instructions stay in place.
3093   if (MovedAway)
3094     *MovedAway = false;
3095
3096   switch (Opcode) {
3097   case Instruction::PtrToInt:
3098     // PtrToInt is always a noop, as we know that the int type is pointer sized.
3099     return matchAddr(AddrInst->getOperand(0), Depth);
3100   case Instruction::IntToPtr: {
3101     auto AS = AddrInst->getType()->getPointerAddressSpace();
3102     auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
3103     // This inttoptr is a no-op if the integer type is pointer sized.
3104     if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy)
3105       return matchAddr(AddrInst->getOperand(0), Depth);
3106     return false;
3107   }
3108   case Instruction::BitCast:
3109     // BitCast is always a noop, and we can handle it as long as it is
3110     // int->int or pointer->pointer (we don't want int<->fp or something).
3111     if ((AddrInst->getOperand(0)->getType()->isPointerTy() ||
3112          AddrInst->getOperand(0)->getType()->isIntegerTy()) &&
3113         // Don't touch identity bitcasts.  These were probably put here by LSR,
3114         // and we don't want to mess around with them.  Assume it knows what it
3115         // is doing.
3116         AddrInst->getOperand(0)->getType() != AddrInst->getType())
3117       return matchAddr(AddrInst->getOperand(0), Depth);
3118     return false;
3119   case Instruction::AddrSpaceCast: {
3120     unsigned SrcAS
3121       = AddrInst->getOperand(0)->getType()->getPointerAddressSpace();
3122     unsigned DestAS = AddrInst->getType()->getPointerAddressSpace();
3123     if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3124       return matchAddr(AddrInst->getOperand(0), Depth);
3125     return false;
3126   }
3127   case Instruction::Add: {
3128     // Check to see if we can merge in the RHS then the LHS.  If so, we win.
3129     ExtAddrMode BackupAddrMode = AddrMode;
3130     unsigned OldSize = AddrModeInsts.size();
3131     // Start a transaction at this point.
3132     // The LHS may match but not the RHS.
3133     // Therefore, we need a higher level restoration point to undo partially
3134     // matched operation.
3135     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
3136         TPT.getRestorationPoint();
3137
3138     if (matchAddr(AddrInst->getOperand(1), Depth+1) &&
3139         matchAddr(AddrInst->getOperand(0), Depth+1))
3140       return true;
3141
3142     // Restore the old addr mode info.
3143     AddrMode = BackupAddrMode;
3144     AddrModeInsts.resize(OldSize);
3145     TPT.rollback(LastKnownGood);
3146
3147     // Otherwise this was over-aggressive.  Try merging in the LHS then the RHS.
3148     if (matchAddr(AddrInst->getOperand(0), Depth+1) &&
3149         matchAddr(AddrInst->getOperand(1), Depth+1))
3150       return true;
3151
3152     // Otherwise we definitely can't merge the ADD in.
3153     AddrMode = BackupAddrMode;
3154     AddrModeInsts.resize(OldSize);
3155     TPT.rollback(LastKnownGood);
3156     break;
3157   }
3158   //case Instruction::Or:
3159   // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
3160   //break;
3161   case Instruction::Mul:
3162   case Instruction::Shl: {
3163     // Can only handle X*C and X << C.
3164     ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
3165     if (!RHS)
3166       return false;
3167     int64_t Scale = RHS->getSExtValue();
3168     if (Opcode == Instruction::Shl)
3169       Scale = 1LL << Scale;
3170
3171     return matchScaledValue(AddrInst->getOperand(0), Scale, Depth);
3172   }
3173   case Instruction::GetElementPtr: {
3174     // Scan the GEP.  We check it if it contains constant offsets and at most
3175     // one variable offset.
3176     int VariableOperand = -1;
3177     unsigned VariableScale = 0;
3178
3179     int64_t ConstantOffset = 0;
3180     gep_type_iterator GTI = gep_type_begin(AddrInst);
3181     for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
3182       if (StructType *STy = dyn_cast<StructType>(*GTI)) {
3183         const StructLayout *SL = DL.getStructLayout(STy);
3184         unsigned Idx =
3185           cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
3186         ConstantOffset += SL->getElementOffset(Idx);
3187       } else {
3188         uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType());
3189         if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
3190           ConstantOffset += CI->getSExtValue()*TypeSize;
3191         } else if (TypeSize) {  // Scales of zero don't do anything.
3192           // We only allow one variable index at the moment.
3193           if (VariableOperand != -1)
3194             return false;
3195
3196           // Remember the variable index.
3197           VariableOperand = i;
3198           VariableScale = TypeSize;
3199         }
3200       }
3201     }
3202
3203     // A common case is for the GEP to only do a constant offset.  In this case,
3204     // just add it to the disp field and check validity.
3205     if (VariableOperand == -1) {
3206       AddrMode.BaseOffs += ConstantOffset;
3207       if (ConstantOffset == 0 ||
3208           TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) {
3209         // Check to see if we can fold the base pointer in too.
3210         if (matchAddr(AddrInst->getOperand(0), Depth+1))
3211           return true;
3212       }
3213       AddrMode.BaseOffs -= ConstantOffset;
3214       return false;
3215     }
3216
3217     // Save the valid addressing mode in case we can't match.
3218     ExtAddrMode BackupAddrMode = AddrMode;
3219     unsigned OldSize = AddrModeInsts.size();
3220
3221     // See if the scale and offset amount is valid for this target.
3222     AddrMode.BaseOffs += ConstantOffset;
3223
3224     // Match the base operand of the GEP.
3225     if (!matchAddr(AddrInst->getOperand(0), Depth+1)) {
3226       // If it couldn't be matched, just stuff the value in a register.
3227       if (AddrMode.HasBaseReg) {
3228         AddrMode = BackupAddrMode;
3229         AddrModeInsts.resize(OldSize);
3230         return false;
3231       }
3232       AddrMode.HasBaseReg = true;
3233       AddrMode.BaseReg = AddrInst->getOperand(0);
3234     }
3235
3236     // Match the remaining variable portion of the GEP.
3237     if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
3238                           Depth)) {
3239       // If it couldn't be matched, try stuffing the base into a register
3240       // instead of matching it, and retrying the match of the scale.
3241       AddrMode = BackupAddrMode;
3242       AddrModeInsts.resize(OldSize);
3243       if (AddrMode.HasBaseReg)
3244         return false;
3245       AddrMode.HasBaseReg = true;
3246       AddrMode.BaseReg = AddrInst->getOperand(0);
3247       AddrMode.BaseOffs += ConstantOffset;
3248       if (!matchScaledValue(AddrInst->getOperand(VariableOperand),
3249                             VariableScale, Depth)) {
3250         // If even that didn't work, bail.
3251         AddrMode = BackupAddrMode;
3252         AddrModeInsts.resize(OldSize);
3253         return false;
3254       }
3255     }
3256
3257     return true;
3258   }
3259   case Instruction::SExt:
3260   case Instruction::ZExt: {
3261     Instruction *Ext = dyn_cast<Instruction>(AddrInst);
3262     if (!Ext)
3263       return false;
3264
3265     // Try to move this ext out of the way of the addressing mode.
3266     // Ask for a method for doing so.
3267     TypePromotionHelper::Action TPH =
3268         TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts);
3269     if (!TPH)
3270       return false;
3271
3272     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
3273         TPT.getRestorationPoint();
3274     unsigned CreatedInstsCost = 0;
3275     unsigned ExtCost = !TLI.isExtFree(Ext);
3276     Value *PromotedOperand =
3277         TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI);
3278     // SExt has been moved away.
3279     // Thus either it will be rematched later in the recursive calls or it is
3280     // gone. Anyway, we must not fold it into the addressing mode at this point.
3281     // E.g.,
3282     // op = add opnd, 1
3283     // idx = ext op
3284     // addr = gep base, idx
3285     // is now:
3286     // promotedOpnd = ext opnd            <- no match here
3287     // op = promoted_add promotedOpnd, 1  <- match (later in recursive calls)
3288     // addr = gep base, op                <- match
3289     if (MovedAway)
3290       *MovedAway = true;
3291
3292     assert(PromotedOperand &&
3293            "TypePromotionHelper should have filtered out those cases");
3294
3295     ExtAddrMode BackupAddrMode = AddrMode;
3296     unsigned OldSize = AddrModeInsts.size();
3297
3298     if (!matchAddr(PromotedOperand, Depth) ||
3299         // The total of the new cost is equal to the cost of the created
3300         // instructions.
3301         // The total of the old cost is equal to the cost of the extension plus
3302         // what we have saved in the addressing mode.
3303         !isPromotionProfitable(CreatedInstsCost,
3304                                ExtCost + (AddrModeInsts.size() - OldSize),
3305                                PromotedOperand)) {
3306       AddrMode = BackupAddrMode;
3307       AddrModeInsts.resize(OldSize);
3308       DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
3309       TPT.rollback(LastKnownGood);
3310       return false;
3311     }
3312     return true;
3313   }
3314   }
3315   return false;
3316 }
3317
3318 /// If we can, try to add the value of 'Addr' into the current addressing mode.
3319 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode
3320 /// unmodified. This assumes that Addr is either a pointer type or intptr_t
3321 /// for the target.
3322 ///
3323 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) {
3324   // Start a transaction at this point that we will rollback if the matching
3325   // fails.
3326   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
3327       TPT.getRestorationPoint();
3328   if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
3329     // Fold in immediates if legal for the target.
3330     AddrMode.BaseOffs += CI->getSExtValue();
3331     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
3332       return true;
3333     AddrMode.BaseOffs -= CI->getSExtValue();
3334   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
3335     // If this is a global variable, try to fold it into the addressing mode.
3336     if (!AddrMode.BaseGV) {
3337       AddrMode.BaseGV = GV;
3338       if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
3339         return true;
3340       AddrMode.BaseGV = nullptr;
3341     }
3342   } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
3343     ExtAddrMode BackupAddrMode = AddrMode;
3344     unsigned OldSize = AddrModeInsts.size();
3345
3346     // Check to see if it is possible to fold this operation.
3347     bool MovedAway = false;
3348     if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) {
3349       // This instruction may have been moved away. If so, there is nothing
3350       // to check here.
3351       if (MovedAway)
3352         return true;
3353       // Okay, it's possible to fold this.  Check to see if it is actually
3354       // *profitable* to do so.  We use a simple cost model to avoid increasing
3355       // register pressure too much.
3356       if (I->hasOneUse() ||
3357           isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
3358         AddrModeInsts.push_back(I);
3359         return true;
3360       }
3361
3362       // It isn't profitable to do this, roll back.
3363       //cerr << "NOT FOLDING: " << *I;
3364       AddrMode = BackupAddrMode;
3365       AddrModeInsts.resize(OldSize);
3366       TPT.rollback(LastKnownGood);
3367     }
3368   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
3369     if (matchOperationAddr(CE, CE->getOpcode(), Depth))
3370       return true;
3371     TPT.rollback(LastKnownGood);
3372   } else if (isa<ConstantPointerNull>(Addr)) {
3373     // Null pointer gets folded without affecting the addressing mode.
3374     return true;
3375   }
3376
3377   // Worse case, the target should support [reg] addressing modes. :)
3378   if (!AddrMode.HasBaseReg) {
3379     AddrMode.HasBaseReg = true;
3380     AddrMode.BaseReg = Addr;
3381     // Still check for legality in case the target supports [imm] but not [i+r].
3382     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
3383       return true;
3384     AddrMode.HasBaseReg = false;
3385     AddrMode.BaseReg = nullptr;
3386   }
3387
3388   // If the base register is already taken, see if we can do [r+r].
3389   if (AddrMode.Scale == 0) {
3390     AddrMode.Scale = 1;
3391     AddrMode.ScaledReg = Addr;
3392     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
3393       return true;
3394     AddrMode.Scale = 0;
3395     AddrMode.ScaledReg = nullptr;
3396   }
3397   // Couldn't match.
3398   TPT.rollback(LastKnownGood);
3399   return false;
3400 }
3401
3402 /// Check to see if all uses of OpVal by the specified inline asm call are due
3403 /// to memory operands. If so, return true, otherwise return false.
3404 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
3405                                     const TargetMachine &TM) {
3406   const Function *F = CI->getParent()->getParent();
3407   const TargetLowering *TLI = TM.getSubtargetImpl(*F)->getTargetLowering();
3408   const TargetRegisterInfo *TRI = TM.getSubtargetImpl(*F)->getRegisterInfo();
3409   TargetLowering::AsmOperandInfoVector TargetConstraints =
3410       TLI->ParseConstraints(F->getParent()->getDataLayout(), TRI,
3411                             ImmutableCallSite(CI));
3412   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
3413     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
3414
3415     // Compute the constraint code and ConstraintType to use.
3416     TLI->ComputeConstraintToUse(OpInfo, SDValue());
3417
3418     // If this asm operand is our Value*, and if it isn't an indirect memory
3419     // operand, we can't fold it!
3420     if (OpInfo.CallOperandVal == OpVal &&
3421         (OpInfo.ConstraintType != TargetLowering::C_Memory ||
3422          !OpInfo.isIndirect))
3423       return false;
3424   }
3425
3426   return true;
3427 }
3428
3429 /// Recursively walk all the uses of I until we find a memory use.
3430 /// If we find an obviously non-foldable instruction, return true.
3431 /// Add the ultimately found memory instructions to MemoryUses.
3432 static bool FindAllMemoryUses(
3433     Instruction *I,
3434     SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses,
3435     SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetMachine &TM) {
3436   // If we already considered this instruction, we're done.
3437   if (!ConsideredInsts.insert(I).second)
3438     return false;
3439
3440   // If this is an obviously unfoldable instruction, bail out.
3441   if (!MightBeFoldableInst(I))
3442     return true;
3443
3444   // Loop over all the uses, recursively processing them.
3445   for (Use &U : I->uses()) {
3446     Instruction *UserI = cast<Instruction>(U.getUser());
3447
3448     if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) {
3449       MemoryUses.push_back(std::make_pair(LI, U.getOperandNo()));
3450       continue;
3451     }
3452
3453     if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) {
3454       unsigned opNo = U.getOperandNo();
3455       if (opNo == 0) return true; // Storing addr, not into addr.
3456       MemoryUses.push_back(std::make_pair(SI, opNo));
3457       continue;
3458     }
3459
3460     if (CallInst *CI = dyn_cast<CallInst>(UserI)) {
3461       InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue());
3462       if (!IA) return true;
3463
3464       // If this is a memory operand, we're cool, otherwise bail out.
3465       if (!IsOperandAMemoryOperand(CI, IA, I, TM))
3466         return true;
3467       continue;
3468     }
3469
3470     if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TM))
3471       return true;
3472   }
3473
3474   return false;
3475 }
3476
3477 /// Return true if Val is already known to be live at the use site that we're
3478 /// folding it into. If so, there is no cost to include it in the addressing
3479 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the
3480 /// instruction already.
3481 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
3482                                                    Value *KnownLive2) {
3483   // If Val is either of the known-live values, we know it is live!
3484   if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2)
3485     return true;
3486
3487   // All values other than instructions and arguments (e.g. constants) are live.
3488   if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
3489
3490   // If Val is a constant sized alloca in the entry block, it is live, this is
3491   // true because it is just a reference to the stack/frame pointer, which is
3492   // live for the whole function.
3493   if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
3494     if (AI->isStaticAlloca())
3495       return true;
3496
3497   // Check to see if this value is already used in the memory instruction's
3498   // block.  If so, it's already live into the block at the very least, so we
3499   // can reasonably fold it.
3500   return Val->isUsedInBasicBlock(MemoryInst->getParent());
3501 }
3502
3503 /// It is possible for the addressing mode of the machine to fold the specified
3504 /// instruction into a load or store that ultimately uses it.
3505 /// However, the specified instruction has multiple uses.
3506 /// Given this, it may actually increase register pressure to fold it
3507 /// into the load. For example, consider this code:
3508 ///
3509 ///     X = ...
3510 ///     Y = X+1
3511 ///     use(Y)   -> nonload/store
3512 ///     Z = Y+1
3513 ///     load Z
3514 ///
3515 /// In this case, Y has multiple uses, and can be folded into the load of Z
3516 /// (yielding load [X+2]).  However, doing this will cause both "X" and "X+1" to
3517 /// be live at the use(Y) line.  If we don't fold Y into load Z, we use one
3518 /// fewer register.  Since Y can't be folded into "use(Y)" we don't increase the
3519 /// number of computations either.
3520 ///
3521 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic.  If
3522 /// X was live across 'load Z' for other reasons, we actually *would* want to
3523 /// fold the addressing mode in the Z case.  This would make Y die earlier.
3524 bool AddressingModeMatcher::
3525 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
3526                                      ExtAddrMode &AMAfter) {
3527   if (IgnoreProfitability) return true;
3528
3529   // AMBefore is the addressing mode before this instruction was folded into it,
3530   // and AMAfter is the addressing mode after the instruction was folded.  Get
3531   // the set of registers referenced by AMAfter and subtract out those
3532   // referenced by AMBefore: this is the set of values which folding in this
3533   // address extends the lifetime of.
3534   //
3535   // Note that there are only two potential values being referenced here,
3536   // BaseReg and ScaleReg (global addresses are always available, as are any
3537   // folded immediates).
3538   Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
3539
3540   // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
3541   // lifetime wasn't extended by adding this instruction.
3542   if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
3543     BaseReg = nullptr;
3544   if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
3545     ScaledReg = nullptr;
3546
3547   // If folding this instruction (and it's subexprs) didn't extend any live
3548   // ranges, we're ok with it.
3549   if (!BaseReg && !ScaledReg)
3550     return true;
3551
3552   // If all uses of this instruction are ultimately load/store/inlineasm's,
3553   // check to see if their addressing modes will include this instruction.  If
3554   // so, we can fold it into all uses, so it doesn't matter if it has multiple
3555   // uses.
3556   SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
3557   SmallPtrSet<Instruction*, 16> ConsideredInsts;
3558   if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TM))
3559     return false;  // Has a non-memory, non-foldable use!
3560
3561   // Now that we know that all uses of this instruction are part of a chain of
3562   // computation involving only operations that could theoretically be folded
3563   // into a memory use, loop over each of these uses and see if they could
3564   // *actually* fold the instruction.
3565   SmallVector<Instruction*, 32> MatchedAddrModeInsts;
3566   for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
3567     Instruction *User = MemoryUses[i].first;
3568     unsigned OpNo = MemoryUses[i].second;
3569
3570     // Get the access type of this use.  If the use isn't a pointer, we don't
3571     // know what it accesses.
3572     Value *Address = User->getOperand(OpNo);
3573     PointerType *AddrTy = dyn_cast<PointerType>(Address->getType());
3574     if (!AddrTy)
3575       return false;
3576     Type *AddressAccessTy = AddrTy->getElementType();
3577     unsigned AS = AddrTy->getAddressSpace();
3578
3579     // Do a match against the root of this address, ignoring profitability. This
3580     // will tell us if the addressing mode for the memory operation will
3581     // *actually* cover the shared instruction.
3582     ExtAddrMode Result;
3583     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
3584         TPT.getRestorationPoint();
3585     AddressingModeMatcher Matcher(MatchedAddrModeInsts, TM, AddressAccessTy, AS,
3586                                   MemoryInst, Result, InsertedInsts,
3587                                   PromotedInsts, TPT);
3588     Matcher.IgnoreProfitability = true;
3589     bool Success = Matcher.matchAddr(Address, 0);
3590     (void)Success; assert(Success && "Couldn't select *anything*?");
3591
3592     // The match was to check the profitability, the changes made are not
3593     // part of the original matcher. Therefore, they should be dropped
3594     // otherwise the original matcher will not present the right state.
3595     TPT.rollback(LastKnownGood);
3596
3597     // If the match didn't cover I, then it won't be shared by it.
3598     if (std::find(MatchedAddrModeInsts.begin(), MatchedAddrModeInsts.end(),
3599                   I) == MatchedAddrModeInsts.end())
3600       return false;
3601
3602     MatchedAddrModeInsts.clear();
3603   }
3604
3605   return true;
3606 }
3607
3608 } // end anonymous namespace
3609
3610 /// Return true if the specified values are defined in a
3611 /// different basic block than BB.
3612 static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
3613   if (Instruction *I = dyn_cast<Instruction>(V))
3614     return I->getParent() != BB;
3615   return false;
3616 }
3617
3618 /// Load and Store Instructions often have addressing modes that can do
3619 /// significant amounts of computation. As such, instruction selection will try
3620 /// to get the load or store to do as much computation as possible for the
3621 /// program. The problem is that isel can only see within a single block. As
3622 /// such, we sink as much legal addressing mode work into the block as possible.
3623 ///
3624 /// This method is used to optimize both load/store and inline asms with memory
3625 /// operands.
3626 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
3627                                         Type *AccessTy, unsigned AddrSpace) {
3628   Value *Repl = Addr;
3629
3630   // Try to collapse single-value PHI nodes.  This is necessary to undo
3631   // unprofitable PRE transformations.
3632   SmallVector<Value*, 8> worklist;
3633   SmallPtrSet<Value*, 16> Visited;
3634   worklist.push_back(Addr);
3635
3636   // Use a worklist to iteratively look through PHI nodes, and ensure that
3637   // the addressing mode obtained from the non-PHI roots of the graph
3638   // are equivalent.
3639   Value *Consensus = nullptr;
3640   unsigned NumUsesConsensus = 0;
3641   bool IsNumUsesConsensusValid = false;
3642   SmallVector<Instruction*, 16> AddrModeInsts;
3643   ExtAddrMode AddrMode;
3644   TypePromotionTransaction TPT;
3645   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
3646       TPT.getRestorationPoint();
3647   while (!worklist.empty()) {
3648     Value *V = worklist.back();
3649     worklist.pop_back();
3650
3651     // Break use-def graph loops.
3652     if (!Visited.insert(V).second) {
3653       Consensus = nullptr;
3654       break;
3655     }
3656
3657     // For a PHI node, push all of its incoming values.
3658     if (PHINode *P = dyn_cast<PHINode>(V)) {
3659       for (Value *IncValue : P->incoming_values())
3660         worklist.push_back(IncValue);
3661       continue;
3662     }
3663
3664     // For non-PHIs, determine the addressing mode being computed.
3665     SmallVector<Instruction*, 16> NewAddrModeInsts;
3666     ExtAddrMode NewAddrMode = AddressingModeMatcher::Match(
3667       V, AccessTy, AddrSpace, MemoryInst, NewAddrModeInsts, *TM,
3668       InsertedInsts, PromotedInsts, TPT);
3669
3670     // This check is broken into two cases with very similar code to avoid using
3671     // getNumUses() as much as possible. Some values have a lot of uses, so
3672     // calling getNumUses() unconditionally caused a significant compile-time
3673     // regression.
3674     if (!Consensus) {
3675       Consensus = V;
3676       AddrMode = NewAddrMode;
3677       AddrModeInsts = NewAddrModeInsts;
3678       continue;
3679     } else if (NewAddrMode == AddrMode) {
3680       if (!IsNumUsesConsensusValid) {
3681         NumUsesConsensus = Consensus->getNumUses();
3682         IsNumUsesConsensusValid = true;
3683       }
3684
3685       // Ensure that the obtained addressing mode is equivalent to that obtained
3686       // for all other roots of the PHI traversal.  Also, when choosing one
3687       // such root as representative, select the one with the most uses in order
3688       // to keep the cost modeling heuristics in AddressingModeMatcher
3689       // applicable.
3690       unsigned NumUses = V->getNumUses();
3691       if (NumUses > NumUsesConsensus) {
3692         Consensus = V;
3693         NumUsesConsensus = NumUses;
3694         AddrModeInsts = NewAddrModeInsts;
3695       }
3696       continue;
3697     }
3698
3699     Consensus = nullptr;
3700     break;
3701   }
3702
3703   // If the addressing mode couldn't be determined, or if multiple different
3704   // ones were determined, bail out now.
3705   if (!Consensus) {
3706     TPT.rollback(LastKnownGood);
3707     return false;
3708   }
3709   TPT.commit();
3710
3711   // Check to see if any of the instructions supersumed by this addr mode are
3712   // non-local to I's BB.
3713   bool AnyNonLocal = false;
3714   for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) {
3715     if (IsNonLocalValue(AddrModeInsts[i], MemoryInst->getParent())) {
3716       AnyNonLocal = true;
3717       break;
3718     }
3719   }
3720
3721   // If all the instructions matched are already in this BB, don't do anything.
3722   if (!AnyNonLocal) {
3723     DEBUG(dbgs() << "CGP: Found      local addrmode: " << AddrMode << "\n");
3724     return false;
3725   }
3726
3727   // Insert this computation right after this user.  Since our caller is
3728   // scanning from the top of the BB to the bottom, reuse of the expr are
3729   // guaranteed to happen later.
3730   IRBuilder<> Builder(MemoryInst);
3731
3732   // Now that we determined the addressing expression we want to use and know
3733   // that we have to sink it into this block.  Check to see if we have already
3734   // done this for some other load/store instr in this block.  If so, reuse the
3735   // computation.
3736   Value *&SunkAddr = SunkAddrs[Addr];
3737   if (SunkAddr) {
3738     DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for "
3739                  << *MemoryInst << "\n");
3740     if (SunkAddr->getType() != Addr->getType())
3741       SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType());
3742   } else if (AddrSinkUsingGEPs ||
3743              (!AddrSinkUsingGEPs.getNumOccurrences() && TM &&
3744               TM->getSubtargetImpl(*MemoryInst->getParent()->getParent())
3745                   ->useAA())) {
3746     // By default, we use the GEP-based method when AA is used later. This
3747     // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities.
3748     DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
3749                  << *MemoryInst << "\n");
3750     Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
3751     Value *ResultPtr = nullptr, *ResultIndex = nullptr;
3752
3753     // First, find the pointer.
3754     if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) {
3755       ResultPtr = AddrMode.BaseReg;
3756       AddrMode.BaseReg = nullptr;
3757     }
3758
3759     if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) {
3760       // We can't add more than one pointer together, nor can we scale a
3761       // pointer (both of which seem meaningless).
3762       if (ResultPtr || AddrMode.Scale != 1)
3763         return false;
3764
3765       ResultPtr = AddrMode.ScaledReg;
3766       AddrMode.Scale = 0;
3767     }
3768
3769     if (AddrMode.BaseGV) {
3770       if (ResultPtr)
3771         return false;
3772
3773       ResultPtr = AddrMode.BaseGV;
3774     }
3775
3776     // If the real base value actually came from an inttoptr, then the matcher
3777     // will look through it and provide only the integer value. In that case,
3778     // use it here.
3779     if (!ResultPtr && AddrMode.BaseReg) {
3780       ResultPtr =
3781         Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), "sunkaddr");
3782       AddrMode.BaseReg = nullptr;
3783     } else if (!ResultPtr && AddrMode.Scale == 1) {
3784       ResultPtr =
3785         Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), "sunkaddr");
3786       AddrMode.Scale = 0;
3787     }
3788
3789     if (!ResultPtr &&
3790         !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) {
3791       SunkAddr = Constant::getNullValue(Addr->getType());
3792     } else if (!ResultPtr) {
3793       return false;
3794     } else {
3795       Type *I8PtrTy =
3796           Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace());
3797       Type *I8Ty = Builder.getInt8Ty();
3798
3799       // Start with the base register. Do this first so that subsequent address
3800       // matching finds it last, which will prevent it from trying to match it
3801       // as the scaled value in case it happens to be a mul. That would be
3802       // problematic if we've sunk a different mul for the scale, because then
3803       // we'd end up sinking both muls.
3804       if (AddrMode.BaseReg) {
3805         Value *V = AddrMode.BaseReg;
3806         if (V->getType() != IntPtrTy)
3807           V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
3808
3809         ResultIndex = V;
3810       }
3811
3812       // Add the scale value.
3813       if (AddrMode.Scale) {
3814         Value *V = AddrMode.ScaledReg;
3815         if (V->getType() == IntPtrTy) {
3816           // done.
3817         } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
3818                    cast<IntegerType>(V->getType())->getBitWidth()) {
3819           V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
3820         } else {
3821           // It is only safe to sign extend the BaseReg if we know that the math
3822           // required to create it did not overflow before we extend it. Since
3823           // the original IR value was tossed in favor of a constant back when
3824           // the AddrMode was created we need to bail out gracefully if widths
3825           // do not match instead of extending it.
3826           Instruction *I = dyn_cast_or_null<Instruction>(ResultIndex);
3827           if (I && (ResultIndex != AddrMode.BaseReg))
3828             I->eraseFromParent();
3829           return false;
3830         }
3831
3832         if (AddrMode.Scale != 1)
3833           V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
3834                                 "sunkaddr");
3835         if (ResultIndex)
3836           ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr");
3837         else
3838           ResultIndex = V;
3839       }
3840
3841       // Add in the Base Offset if present.
3842       if (AddrMode.BaseOffs) {
3843         Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
3844         if (ResultIndex) {
3845           // We need to add this separately from the scale above to help with
3846           // SDAG consecutive load/store merging.
3847           if (ResultPtr->getType() != I8PtrTy)
3848             ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy);
3849           ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
3850         }
3851
3852         ResultIndex = V;
3853       }
3854
3855       if (!ResultIndex) {
3856         SunkAddr = ResultPtr;
3857       } else {
3858         if (ResultPtr->getType() != I8PtrTy)
3859           ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy);
3860         SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
3861       }
3862
3863       if (SunkAddr->getType() != Addr->getType())
3864         SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType());
3865     }
3866   } else {
3867     DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
3868                  << *MemoryInst << "\n");
3869     Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
3870     Value *Result = nullptr;
3871
3872     // Start with the base register. Do this first so that subsequent address
3873     // matching finds it last, which will prevent it from trying to match it
3874     // as the scaled value in case it happens to be a mul. That would be
3875     // problematic if we've sunk a different mul for the scale, because then
3876     // we'd end up sinking both muls.
3877     if (AddrMode.BaseReg) {
3878       Value *V = AddrMode.BaseReg;
3879       if (V->getType()->isPointerTy())
3880         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
3881       if (V->getType() != IntPtrTy)
3882         V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
3883       Result = V;
3884     }
3885
3886     // Add the scale value.
3887     if (AddrMode.Scale) {
3888       Value *V = AddrMode.ScaledReg;
3889       if (V->getType() == IntPtrTy) {
3890         // done.
3891       } else if (V->getType()->isPointerTy()) {
3892         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
3893       } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
3894                  cast<IntegerType>(V->getType())->getBitWidth()) {
3895         V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
3896       } else {
3897         // It is only safe to sign extend the BaseReg if we know that the math
3898         // required to create it did not overflow before we extend it. Since
3899         // the original IR value was tossed in favor of a constant back when
3900         // the AddrMode was created we need to bail out gracefully if widths
3901         // do not match instead of extending it.
3902         Instruction *I = dyn_cast_or_null<Instruction>(Result);
3903         if (I && (Result != AddrMode.BaseReg))
3904           I->eraseFromParent();
3905         return false;
3906       }
3907       if (AddrMode.Scale != 1)
3908         V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
3909                               "sunkaddr");
3910       if (Result)
3911         Result = Builder.CreateAdd(Result, V, "sunkaddr");
3912       else
3913         Result = V;
3914     }
3915
3916     // Add in the BaseGV if present.
3917     if (AddrMode.BaseGV) {
3918       Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr");
3919       if (Result)
3920         Result = Builder.CreateAdd(Result, V, "sunkaddr");
3921       else
3922         Result = V;
3923     }
3924
3925     // Add in the Base Offset if present.
3926     if (AddrMode.BaseOffs) {
3927       Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
3928       if (Result)
3929         Result = Builder.CreateAdd(Result, V, "sunkaddr");
3930       else
3931         Result = V;
3932     }
3933
3934     if (!Result)
3935       SunkAddr = Constant::getNullValue(Addr->getType());
3936     else
3937       SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
3938   }
3939
3940   MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
3941
3942   // If we have no uses, recursively delete the value and all dead instructions
3943   // using it.
3944   if (Repl->use_empty()) {
3945     // This can cause recursive deletion, which can invalidate our iterator.
3946     // Use a WeakVH to hold onto it in case this happens.
3947     WeakVH IterHandle(&*CurInstIterator);
3948     BasicBlock *BB = CurInstIterator->getParent();
3949
3950     RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo);
3951
3952     if (IterHandle != CurInstIterator.getNodePtrUnchecked()) {
3953       // If the iterator instruction was recursively deleted, start over at the
3954       // start of the block.
3955       CurInstIterator = BB->begin();
3956       SunkAddrs.clear();
3957     }
3958   }
3959   ++NumMemoryInsts;
3960   return true;
3961 }
3962
3963 /// If there are any memory operands, use OptimizeMemoryInst to sink their
3964 /// address computing into the block when possible / profitable.
3965 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) {
3966   bool MadeChange = false;
3967
3968   const TargetRegisterInfo *TRI =
3969       TM->getSubtargetImpl(*CS->getParent()->getParent())->getRegisterInfo();
3970   TargetLowering::AsmOperandInfoVector TargetConstraints =
3971       TLI->ParseConstraints(*DL, TRI, CS);
3972   unsigned ArgNo = 0;
3973   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
3974     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
3975
3976     // Compute the constraint code and ConstraintType to use.
3977     TLI->ComputeConstraintToUse(OpInfo, SDValue());
3978
3979     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
3980         OpInfo.isIndirect) {
3981       Value *OpVal = CS->getArgOperand(ArgNo++);
3982       MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u);
3983     } else if (OpInfo.Type == InlineAsm::isInput)
3984       ArgNo++;
3985   }
3986
3987   return MadeChange;
3988 }
3989
3990 /// \brief Check if all the uses of \p Inst are equivalent (or free) zero or
3991 /// sign extensions.
3992 static bool hasSameExtUse(Instruction *Inst, const TargetLowering &TLI) {
3993   assert(!Inst->use_empty() && "Input must have at least one use");
3994   const Instruction *FirstUser = cast<Instruction>(*Inst->user_begin());
3995   bool IsSExt = isa<SExtInst>(FirstUser);
3996   Type *ExtTy = FirstUser->getType();
3997   for (const User *U : Inst->users()) {
3998     const Instruction *UI = cast<Instruction>(U);
3999     if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI)))
4000       return false;
4001     Type *CurTy = UI->getType();
4002     // Same input and output types: Same instruction after CSE.
4003     if (CurTy == ExtTy)
4004       continue;
4005
4006     // If IsSExt is true, we are in this situation:
4007     // a = Inst
4008     // b = sext ty1 a to ty2
4009     // c = sext ty1 a to ty3
4010     // Assuming ty2 is shorter than ty3, this could be turned into:
4011     // a = Inst
4012     // b = sext ty1 a to ty2
4013     // c = sext ty2 b to ty3
4014     // However, the last sext is not free.
4015     if (IsSExt)
4016       return false;
4017
4018     // This is a ZExt, maybe this is free to extend from one type to another.
4019     // In that case, we would not account for a different use.
4020     Type *NarrowTy;
4021     Type *LargeTy;
4022     if (ExtTy->getScalarType()->getIntegerBitWidth() >
4023         CurTy->getScalarType()->getIntegerBitWidth()) {
4024       NarrowTy = CurTy;
4025       LargeTy = ExtTy;
4026     } else {
4027       NarrowTy = ExtTy;
4028       LargeTy = CurTy;
4029     }
4030
4031     if (!TLI.isZExtFree(NarrowTy, LargeTy))
4032       return false;
4033   }
4034   // All uses are the same or can be derived from one another for free.
4035   return true;
4036 }
4037
4038 /// \brief Try to form ExtLd by promoting \p Exts until they reach a
4039 /// load instruction.
4040 /// If an ext(load) can be formed, it is returned via \p LI for the load
4041 /// and \p Inst for the extension.
4042 /// Otherwise LI == nullptr and Inst == nullptr.
4043 /// When some promotion happened, \p TPT contains the proper state to
4044 /// revert them.
4045 ///
4046 /// \return true when promoting was necessary to expose the ext(load)
4047 /// opportunity, false otherwise.
4048 ///
4049 /// Example:
4050 /// \code
4051 /// %ld = load i32* %addr
4052 /// %add = add nuw i32 %ld, 4
4053 /// %zext = zext i32 %add to i64
4054 /// \endcode
4055 /// =>
4056 /// \code
4057 /// %ld = load i32* %addr
4058 /// %zext = zext i32 %ld to i64
4059 /// %add = add nuw i64 %zext, 4
4060 /// \encode
4061 /// Thanks to the promotion, we can match zext(load i32*) to i64.
4062 bool CodeGenPrepare::extLdPromotion(TypePromotionTransaction &TPT,
4063                                     LoadInst *&LI, Instruction *&Inst,
4064                                     const SmallVectorImpl<Instruction *> &Exts,
4065                                     unsigned CreatedInstsCost = 0) {
4066   // Iterate over all the extensions to see if one form an ext(load).
4067   for (auto I : Exts) {
4068     // Check if we directly have ext(load).
4069     if ((LI = dyn_cast<LoadInst>(I->getOperand(0)))) {
4070       Inst = I;
4071       // No promotion happened here.
4072       return false;
4073     }
4074     // Check whether or not we want to do any promotion.
4075     if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion)
4076       continue;
4077     // Get the action to perform the promotion.
4078     TypePromotionHelper::Action TPH = TypePromotionHelper::getAction(
4079         I, InsertedInsts, *TLI, PromotedInsts);
4080     // Check if we can promote.
4081     if (!TPH)
4082       continue;
4083     // Save the current state.
4084     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4085         TPT.getRestorationPoint();
4086     SmallVector<Instruction *, 4> NewExts;
4087     unsigned NewCreatedInstsCost = 0;
4088     unsigned ExtCost = !TLI->isExtFree(I);
4089     // Promote.
4090     Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost,
4091                              &NewExts, nullptr, *TLI);
4092     assert(PromotedVal &&
4093            "TypePromotionHelper should have filtered out those cases");
4094
4095     // We would be able to merge only one extension in a load.
4096     // Therefore, if we have more than 1 new extension we heuristically
4097     // cut this search path, because it means we degrade the code quality.
4098     // With exactly 2, the transformation is neutral, because we will merge
4099     // one extension but leave one. However, we optimistically keep going,
4100     // because the new extension may be removed too.
4101     long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost;
4102     TotalCreatedInstsCost -= ExtCost;
4103     if (!StressExtLdPromotion &&
4104         (TotalCreatedInstsCost > 1 ||
4105          !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) {
4106       // The promotion is not profitable, rollback to the previous state.
4107       TPT.rollback(LastKnownGood);
4108       continue;
4109     }
4110     // The promotion is profitable.
4111     // Check if it exposes an ext(load).
4112     (void)extLdPromotion(TPT, LI, Inst, NewExts, TotalCreatedInstsCost);
4113     if (LI && (StressExtLdPromotion || NewCreatedInstsCost <= ExtCost ||
4114                // If we have created a new extension, i.e., now we have two
4115                // extensions. We must make sure one of them is merged with
4116                // the load, otherwise we may degrade the code quality.
4117                (LI->hasOneUse() || hasSameExtUse(LI, *TLI))))
4118       // Promotion happened.
4119       return true;
4120     // If this does not help to expose an ext(load) then, rollback.
4121     TPT.rollback(LastKnownGood);
4122   }
4123   // None of the extension can form an ext(load).
4124   LI = nullptr;
4125   Inst = nullptr;
4126   return false;
4127 }
4128
4129 /// Move a zext or sext fed by a load into the same basic block as the load,
4130 /// unless conditions are unfavorable. This allows SelectionDAG to fold the
4131 /// extend into the load.
4132 /// \p I[in/out] the extension may be modified during the process if some
4133 /// promotions apply.
4134 ///
4135 bool CodeGenPrepare::moveExtToFormExtLoad(Instruction *&I) {
4136   // Try to promote a chain of computation if it allows to form
4137   // an extended load.
4138   TypePromotionTransaction TPT;
4139   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4140     TPT.getRestorationPoint();
4141   SmallVector<Instruction *, 1> Exts;
4142   Exts.push_back(I);
4143   // Look for a load being extended.
4144   LoadInst *LI = nullptr;
4145   Instruction *OldExt = I;
4146   bool HasPromoted = extLdPromotion(TPT, LI, I, Exts);
4147   if (!LI || !I) {
4148     assert(!HasPromoted && !LI && "If we did not match any load instruction "
4149                                   "the code must remain the same");
4150     I = OldExt;
4151     return false;
4152   }
4153
4154   // If they're already in the same block, there's nothing to do.
4155   // Make the cheap checks first if we did not promote.
4156   // If we promoted, we need to check if it is indeed profitable.
4157   if (!HasPromoted && LI->getParent() == I->getParent())
4158     return false;
4159
4160   EVT VT = TLI->getValueType(*DL, I->getType());
4161   EVT LoadVT = TLI->getValueType(*DL, LI->getType());
4162
4163   // If the load has other users and the truncate is not free, this probably
4164   // isn't worthwhile.
4165   if (!LI->hasOneUse() && TLI &&
4166       (TLI->isTypeLegal(LoadVT) || !TLI->isTypeLegal(VT)) &&
4167       !TLI->isTruncateFree(I->getType(), LI->getType())) {
4168     I = OldExt;
4169     TPT.rollback(LastKnownGood);
4170     return false;
4171   }
4172
4173   // Check whether the target supports casts folded into loads.
4174   unsigned LType;
4175   if (isa<ZExtInst>(I))
4176     LType = ISD::ZEXTLOAD;
4177   else {
4178     assert(isa<SExtInst>(I) && "Unexpected ext type!");
4179     LType = ISD::SEXTLOAD;
4180   }
4181   if (TLI && !TLI->isLoadExtLegal(LType, VT, LoadVT)) {
4182     I = OldExt;
4183     TPT.rollback(LastKnownGood);
4184     return false;
4185   }
4186
4187   // Move the extend into the same block as the load, so that SelectionDAG
4188   // can fold it.
4189   TPT.commit();
4190   I->removeFromParent();
4191   I->insertAfter(LI);
4192   ++NumExtsMoved;
4193   return true;
4194 }
4195
4196 bool CodeGenPrepare::optimizeExtUses(Instruction *I) {
4197   BasicBlock *DefBB = I->getParent();
4198
4199   // If the result of a {s|z}ext and its source are both live out, rewrite all
4200   // other uses of the source with result of extension.
4201   Value *Src = I->getOperand(0);
4202   if (Src->hasOneUse())
4203     return false;
4204
4205   // Only do this xform if truncating is free.
4206   if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType()))
4207     return false;
4208
4209   // Only safe to perform the optimization if the source is also defined in
4210   // this block.
4211   if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
4212     return false;
4213
4214   bool DefIsLiveOut = false;
4215   for (User *U : I->users()) {
4216     Instruction *UI = cast<Instruction>(U);
4217
4218     // Figure out which BB this ext is used in.
4219     BasicBlock *UserBB = UI->getParent();
4220     if (UserBB == DefBB) continue;
4221     DefIsLiveOut = true;
4222     break;
4223   }
4224   if (!DefIsLiveOut)
4225     return false;
4226
4227   // Make sure none of the uses are PHI nodes.
4228   for (User *U : Src->users()) {
4229     Instruction *UI = cast<Instruction>(U);
4230     BasicBlock *UserBB = UI->getParent();
4231     if (UserBB == DefBB) continue;
4232     // Be conservative. We don't want this xform to end up introducing
4233     // reloads just before load / store instructions.
4234     if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI))
4235       return false;
4236   }
4237
4238   // InsertedTruncs - Only insert one trunc in each block once.
4239   DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
4240
4241   bool MadeChange = false;
4242   for (Use &U : Src->uses()) {
4243     Instruction *User = cast<Instruction>(U.getUser());
4244
4245     // Figure out which BB this ext is used in.
4246     BasicBlock *UserBB = User->getParent();
4247     if (UserBB == DefBB) continue;
4248
4249     // Both src and def are live in this block. Rewrite the use.
4250     Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
4251
4252     if (!InsertedTrunc) {
4253       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
4254       assert(InsertPt != UserBB->end());
4255       InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt);
4256       InsertedInsts.insert(InsertedTrunc);
4257     }
4258
4259     // Replace a use of the {s|z}ext source with a use of the result.
4260     U = InsertedTrunc;
4261     ++NumExtUses;
4262     MadeChange = true;
4263   }
4264
4265   return MadeChange;
4266 }
4267
4268 // Find loads whose uses only use some of the loaded value's bits.  Add an "and"
4269 // just after the load if the target can fold this into one extload instruction,
4270 // with the hope of eliminating some of the other later "and" instructions using
4271 // the loaded value.  "and"s that are made trivially redundant by the insertion
4272 // of the new "and" are removed by this function, while others (e.g. those whose
4273 // path from the load goes through a phi) are left for isel to potentially
4274 // remove.
4275 //
4276 // For example:
4277 //
4278 // b0:
4279 //   x = load i32
4280 //   ...
4281 // b1:
4282 //   y = and x, 0xff
4283 //   z = use y
4284 //
4285 // becomes:
4286 //
4287 // b0:
4288 //   x = load i32
4289 //   x' = and x, 0xff
4290 //   ...
4291 // b1:
4292 //   z = use x'
4293 //
4294 // whereas:
4295 //
4296 // b0:
4297 //   x1 = load i32
4298 //   ...
4299 // b1:
4300 //   x2 = load i32
4301 //   ...
4302 // b2:
4303 //   x = phi x1, x2
4304 //   y = and x, 0xff
4305 //
4306 // becomes (after a call to optimizeLoadExt for each load):
4307 //
4308 // b0:
4309 //   x1 = load i32
4310 //   x1' = and x1, 0xff
4311 //   ...
4312 // b1:
4313 //   x2 = load i32
4314 //   x2' = and x2, 0xff
4315 //   ...
4316 // b2:
4317 //   x = phi x1', x2'
4318 //   y = and x, 0xff
4319 //
4320
4321 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) {
4322
4323   if (!Load->isSimple() ||
4324       !(Load->getType()->isIntegerTy() || Load->getType()->isPointerTy()))
4325     return false;
4326
4327   // Skip loads we've already transformed or have no reason to transform.
4328   if (Load->hasOneUse()) {
4329     User *LoadUser = *Load->user_begin();
4330     if (cast<Instruction>(LoadUser)->getParent() == Load->getParent() &&
4331         !dyn_cast<PHINode>(LoadUser))
4332       return false;
4333   }
4334
4335   // Look at all uses of Load, looking through phis, to determine how many bits
4336   // of the loaded value are needed.
4337   SmallVector<Instruction *, 8> WorkList;
4338   SmallPtrSet<Instruction *, 16> Visited;
4339   SmallVector<Instruction *, 8> AndsToMaybeRemove;
4340   for (auto *U : Load->users())
4341     WorkList.push_back(cast<Instruction>(U));
4342
4343   EVT LoadResultVT = TLI->getValueType(*DL, Load->getType());
4344   unsigned BitWidth = LoadResultVT.getSizeInBits();
4345   APInt DemandBits(BitWidth, 0);
4346   APInt WidestAndBits(BitWidth, 0);
4347
4348   while (!WorkList.empty()) {
4349     Instruction *I = WorkList.back();
4350     WorkList.pop_back();
4351
4352     // Break use-def graph loops.
4353     if (!Visited.insert(I).second)
4354       continue;
4355
4356     // For a PHI node, push all of its users.
4357     if (auto *Phi = dyn_cast<PHINode>(I)) {
4358       for (auto *U : Phi->users())
4359         WorkList.push_back(cast<Instruction>(U));
4360       continue;
4361     }
4362
4363     switch (I->getOpcode()) {
4364     case llvm::Instruction::And: {
4365       auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1));
4366       if (!AndC)
4367         return false;
4368       APInt AndBits = AndC->getValue();
4369       DemandBits |= AndBits;
4370       // Keep track of the widest and mask we see.
4371       if (AndBits.ugt(WidestAndBits))
4372         WidestAndBits = AndBits;
4373       if (AndBits == WidestAndBits && I->getOperand(0) == Load)
4374         AndsToMaybeRemove.push_back(I);
4375       break;
4376     }
4377
4378     case llvm::Instruction::Shl: {
4379       auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1));
4380       if (!ShlC)
4381         return false;
4382       uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1);
4383       auto ShlDemandBits = APInt::getAllOnesValue(BitWidth).lshr(ShiftAmt);
4384       DemandBits |= ShlDemandBits;
4385       break;
4386     }
4387
4388     case llvm::Instruction::Trunc: {
4389       EVT TruncVT = TLI->getValueType(*DL, I->getType());
4390       unsigned TruncBitWidth = TruncVT.getSizeInBits();
4391       auto TruncBits = APInt::getAllOnesValue(TruncBitWidth).zext(BitWidth);
4392       DemandBits |= TruncBits;
4393       break;
4394     }
4395
4396     default:
4397       return false;
4398     }
4399   }
4400
4401   uint32_t ActiveBits = DemandBits.getActiveBits();
4402   // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the
4403   // target even if isLoadExtLegal says an i1 EXTLOAD is valid.  For example,
4404   // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but
4405   // (and (load x) 1) is not matched as a single instruction, rather as a LDR
4406   // followed by an AND.
4407   // TODO: Look into removing this restriction by fixing backends to either
4408   // return false for isLoadExtLegal for i1 or have them select this pattern to
4409   // a single instruction.
4410   //
4411   // Also avoid hoisting if we didn't see any ands with the exact DemandBits
4412   // mask, since these are the only ands that will be removed by isel.
4413   if (ActiveBits <= 1 || !APIntOps::isMask(ActiveBits, DemandBits) ||
4414       WidestAndBits != DemandBits)
4415     return false;
4416
4417   LLVMContext &Ctx = Load->getType()->getContext();
4418   Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits);
4419   EVT TruncVT = TLI->getValueType(*DL, TruncTy);
4420
4421   // Reject cases that won't be matched as extloads.
4422   if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() ||
4423       !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT))
4424     return false;
4425
4426   IRBuilder<> Builder(Load->getNextNode());
4427   auto *NewAnd = dyn_cast<Instruction>(
4428       Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits)));
4429
4430   // Replace all uses of load with new and (except for the use of load in the
4431   // new and itself).
4432   Load->replaceAllUsesWith(NewAnd);
4433   NewAnd->setOperand(0, Load);
4434
4435   // Remove any and instructions that are now redundant.
4436   for (auto *And : AndsToMaybeRemove)
4437     // Check that the and mask is the same as the one we decided to put on the
4438     // new and.
4439     if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) {
4440       And->replaceAllUsesWith(NewAnd);
4441       if (&*CurInstIterator == And)
4442         CurInstIterator = std::next(And->getIterator());
4443       And->eraseFromParent();
4444       ++NumAndUses;
4445     }
4446
4447   ++NumAndsAdded;
4448   return true;
4449 }
4450
4451 /// Check if V (an operand of a select instruction) is an expensive instruction
4452 /// that is only used once.
4453 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) {
4454   auto *I = dyn_cast<Instruction>(V);
4455   // If it's safe to speculatively execute, then it should not have side
4456   // effects; therefore, it's safe to sink and possibly *not* execute.
4457   return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) &&
4458          TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive;
4459 }
4460
4461 /// Returns true if a SelectInst should be turned into an explicit branch.
4462 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI,
4463                                                 SelectInst *SI) {
4464   // FIXME: This should use the same heuristics as IfConversion to determine
4465   // whether a select is better represented as a branch.  This requires that
4466   // branch probability metadata is preserved for the select, which is not the
4467   // case currently.
4468
4469   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
4470
4471   // If a branch is predictable, an out-of-order CPU can avoid blocking on its
4472   // comparison condition. If the compare has more than one use, there's
4473   // probably another cmov or setcc around, so it's not worth emitting a branch.
4474   if (!Cmp || !Cmp->hasOneUse())
4475     return false;
4476
4477   Value *CmpOp0 = Cmp->getOperand(0);
4478   Value *CmpOp1 = Cmp->getOperand(1);
4479
4480   // Emit "cmov on compare with a memory operand" as a branch to avoid stalls
4481   // on a load from memory. But if the load is used more than once, do not
4482   // change the select to a branch because the load is probably needed
4483   // regardless of whether the branch is taken or not.
4484   if ((isa<LoadInst>(CmpOp0) && CmpOp0->hasOneUse()) ||
4485       (isa<LoadInst>(CmpOp1) && CmpOp1->hasOneUse()))
4486     return true;
4487
4488   // If either operand of the select is expensive and only needed on one side
4489   // of the select, we should form a branch.
4490   if (sinkSelectOperand(TTI, SI->getTrueValue()) ||
4491       sinkSelectOperand(TTI, SI->getFalseValue()))
4492     return true;
4493
4494   return false;
4495 }
4496
4497
4498 /// If we have a SelectInst that will likely profit from branch prediction,
4499 /// turn it into a branch.
4500 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) {
4501   bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
4502
4503   // Can we convert the 'select' to CF ?
4504   if (DisableSelectToBranch || OptSize || !TLI || VectorCond)
4505     return false;
4506
4507   TargetLowering::SelectSupportKind SelectKind;
4508   if (VectorCond)
4509     SelectKind = TargetLowering::VectorMaskSelect;
4510   else if (SI->getType()->isVectorTy())
4511     SelectKind = TargetLowering::ScalarCondVectorVal;
4512   else
4513     SelectKind = TargetLowering::ScalarValSelect;
4514
4515   // Do we have efficient codegen support for this kind of 'selects' ?
4516   if (TLI->isSelectSupported(SelectKind)) {
4517     // We have efficient codegen support for the select instruction.
4518     // Check if it is profitable to keep this 'select'.
4519     if (!TLI->isPredictableSelectExpensive() ||
4520         !isFormingBranchFromSelectProfitable(TTI, SI))
4521       return false;
4522   }
4523
4524   ModifiedDT = true;
4525
4526   // Transform a sequence like this:
4527   //    start:
4528   //       %cmp = cmp uge i32 %a, %b
4529   //       %sel = select i1 %cmp, i32 %c, i32 %d
4530   //
4531   // Into:
4532   //    start:
4533   //       %cmp = cmp uge i32 %a, %b
4534   //       br i1 %cmp, label %select.true, label %select.false
4535   //    select.true:
4536   //       br label %select.end
4537   //    select.false:
4538   //       br label %select.end
4539   //    select.end:
4540   //       %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
4541   //
4542   // In addition, we may sink instructions that produce %c or %d from
4543   // the entry block into the destination(s) of the new branch.
4544   // If the true or false blocks do not contain a sunken instruction, that
4545   // block and its branch may be optimized away. In that case, one side of the
4546   // first branch will point directly to select.end, and the corresponding PHI
4547   // predecessor block will be the start block.
4548
4549   // First, we split the block containing the select into 2 blocks.
4550   BasicBlock *StartBlock = SI->getParent();
4551   BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(SI));
4552   BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
4553
4554   // Delete the unconditional branch that was just created by the split.
4555   StartBlock->getTerminator()->eraseFromParent();
4556
4557   // These are the new basic blocks for the conditional branch.
4558   // At least one will become an actual new basic block.
4559   BasicBlock *TrueBlock = nullptr;
4560   BasicBlock *FalseBlock = nullptr;
4561
4562   // Sink expensive instructions into the conditional blocks to avoid executing
4563   // them speculatively.
4564   if (sinkSelectOperand(TTI, SI->getTrueValue())) {
4565     TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink",
4566                                    EndBlock->getParent(), EndBlock);
4567     auto *TrueBranch = BranchInst::Create(EndBlock, TrueBlock);
4568     auto *TrueInst = cast<Instruction>(SI->getTrueValue());
4569     TrueInst->moveBefore(TrueBranch);
4570   }
4571   if (sinkSelectOperand(TTI, SI->getFalseValue())) {
4572     FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink",
4573                                     EndBlock->getParent(), EndBlock);
4574     auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
4575     auto *FalseInst = cast<Instruction>(SI->getFalseValue());
4576     FalseInst->moveBefore(FalseBranch);
4577   }
4578
4579   // If there was nothing to sink, then arbitrarily choose the 'false' side
4580   // for a new input value to the PHI.
4581   if (TrueBlock == FalseBlock) {
4582     assert(TrueBlock == nullptr &&
4583            "Unexpected basic block transform while optimizing select");
4584
4585     FalseBlock = BasicBlock::Create(SI->getContext(), "select.false",
4586                                     EndBlock->getParent(), EndBlock);
4587     BranchInst::Create(EndBlock, FalseBlock);
4588   }
4589
4590   // Insert the real conditional branch based on the original condition.
4591   // If we did not create a new block for one of the 'true' or 'false' paths
4592   // of the condition, it means that side of the branch goes to the end block
4593   // directly and the path originates from the start block from the point of
4594   // view of the new PHI.
4595   if (TrueBlock == nullptr) {
4596     BranchInst::Create(EndBlock, FalseBlock, SI->getCondition(), SI);
4597     TrueBlock = StartBlock;
4598   } else if (FalseBlock == nullptr) {
4599     BranchInst::Create(TrueBlock, EndBlock, SI->getCondition(), SI);
4600     FalseBlock = StartBlock;
4601   } else {
4602     BranchInst::Create(TrueBlock, FalseBlock, SI->getCondition(), SI);
4603   }
4604
4605   // The select itself is replaced with a PHI Node.
4606   PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front());
4607   PN->takeName(SI);
4608   PN->addIncoming(SI->getTrueValue(), TrueBlock);
4609   PN->addIncoming(SI->getFalseValue(), FalseBlock);
4610
4611   SI->replaceAllUsesWith(PN);
4612   SI->eraseFromParent();
4613
4614   // Instruct OptimizeBlock to skip to the next block.
4615   CurInstIterator = StartBlock->end();
4616   ++NumSelectsExpanded;
4617   return true;
4618 }
4619
4620 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) {
4621   SmallVector<int, 16> Mask(SVI->getShuffleMask());
4622   int SplatElem = -1;
4623   for (unsigned i = 0; i < Mask.size(); ++i) {
4624     if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem)
4625       return false;
4626     SplatElem = Mask[i];
4627   }
4628
4629   return true;
4630 }
4631
4632 /// Some targets have expensive vector shifts if the lanes aren't all the same
4633 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases
4634 /// it's often worth sinking a shufflevector splat down to its use so that
4635 /// codegen can spot all lanes are identical.
4636 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) {
4637   BasicBlock *DefBB = SVI->getParent();
4638
4639   // Only do this xform if variable vector shifts are particularly expensive.
4640   if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType()))
4641     return false;
4642
4643   // We only expect better codegen by sinking a shuffle if we can recognise a
4644   // constant splat.
4645   if (!isBroadcastShuffle(SVI))
4646     return false;
4647
4648   // InsertedShuffles - Only insert a shuffle in each block once.
4649   DenseMap<BasicBlock*, Instruction*> InsertedShuffles;
4650
4651   bool MadeChange = false;
4652   for (User *U : SVI->users()) {
4653     Instruction *UI = cast<Instruction>(U);
4654
4655     // Figure out which BB this ext is used in.
4656     BasicBlock *UserBB = UI->getParent();
4657     if (UserBB == DefBB) continue;
4658
4659     // For now only apply this when the splat is used by a shift instruction.
4660     if (!UI->isShift()) continue;
4661
4662     // Everything checks out, sink the shuffle if the user's block doesn't
4663     // already have a copy.
4664     Instruction *&InsertedShuffle = InsertedShuffles[UserBB];
4665
4666     if (!InsertedShuffle) {
4667       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
4668       assert(InsertPt != UserBB->end());
4669       InsertedShuffle =
4670           new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1),
4671                                 SVI->getOperand(2), "", &*InsertPt);
4672     }
4673
4674     UI->replaceUsesOfWith(SVI, InsertedShuffle);
4675     MadeChange = true;
4676   }
4677
4678   // If we removed all uses, nuke the shuffle.
4679   if (SVI->use_empty()) {
4680     SVI->eraseFromParent();
4681     MadeChange = true;
4682   }
4683
4684   return MadeChange;
4685 }
4686
4687 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) {
4688   if (!TLI || !DL)
4689     return false;
4690
4691   Value *Cond = SI->getCondition();
4692   Type *OldType = Cond->getType();
4693   LLVMContext &Context = Cond->getContext();
4694   MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType));
4695   unsigned RegWidth = RegType.getSizeInBits();
4696
4697   if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth())
4698     return false;
4699
4700   // If the register width is greater than the type width, expand the condition
4701   // of the switch instruction and each case constant to the width of the
4702   // register. By widening the type of the switch condition, subsequent
4703   // comparisons (for case comparisons) will not need to be extended to the
4704   // preferred register width, so we will potentially eliminate N-1 extends,
4705   // where N is the number of cases in the switch.
4706   auto *NewType = Type::getIntNTy(Context, RegWidth);
4707
4708   // Zero-extend the switch condition and case constants unless the switch
4709   // condition is a function argument that is already being sign-extended.
4710   // In that case, we can avoid an unnecessary mask/extension by sign-extending
4711   // everything instead.
4712   Instruction::CastOps ExtType = Instruction::ZExt;
4713   if (auto *Arg = dyn_cast<Argument>(Cond))
4714     if (Arg->hasSExtAttr())
4715       ExtType = Instruction::SExt;
4716
4717   auto *ExtInst = CastInst::Create(ExtType, Cond, NewType);
4718   ExtInst->insertBefore(SI);
4719   SI->setCondition(ExtInst);
4720   for (SwitchInst::CaseIt Case : SI->cases()) {
4721     APInt NarrowConst = Case.getCaseValue()->getValue();
4722     APInt WideConst = (ExtType == Instruction::ZExt) ?
4723                       NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth);
4724     Case.setValue(ConstantInt::get(Context, WideConst));
4725   }
4726
4727   return true;
4728 }
4729
4730 namespace {
4731 /// \brief Helper class to promote a scalar operation to a vector one.
4732 /// This class is used to move downward extractelement transition.
4733 /// E.g.,
4734 /// a = vector_op <2 x i32>
4735 /// b = extractelement <2 x i32> a, i32 0
4736 /// c = scalar_op b
4737 /// store c
4738 ///
4739 /// =>
4740 /// a = vector_op <2 x i32>
4741 /// c = vector_op a (equivalent to scalar_op on the related lane)
4742 /// * d = extractelement <2 x i32> c, i32 0
4743 /// * store d
4744 /// Assuming both extractelement and store can be combine, we get rid of the
4745 /// transition.
4746 class VectorPromoteHelper {
4747   /// DataLayout associated with the current module.
4748   const DataLayout &DL;
4749
4750   /// Used to perform some checks on the legality of vector operations.
4751   const TargetLowering &TLI;
4752
4753   /// Used to estimated the cost of the promoted chain.
4754   const TargetTransformInfo &TTI;
4755
4756   /// The transition being moved downwards.
4757   Instruction *Transition;
4758   /// The sequence of instructions to be promoted.
4759   SmallVector<Instruction *, 4> InstsToBePromoted;
4760   /// Cost of combining a store and an extract.
4761   unsigned StoreExtractCombineCost;
4762   /// Instruction that will be combined with the transition.
4763   Instruction *CombineInst;
4764
4765   /// \brief The instruction that represents the current end of the transition.
4766   /// Since we are faking the promotion until we reach the end of the chain
4767   /// of computation, we need a way to get the current end of the transition.
4768   Instruction *getEndOfTransition() const {
4769     if (InstsToBePromoted.empty())
4770       return Transition;
4771     return InstsToBePromoted.back();
4772   }
4773
4774   /// \brief Return the index of the original value in the transition.
4775   /// E.g., for "extractelement <2 x i32> c, i32 1" the original value,
4776   /// c, is at index 0.
4777   unsigned getTransitionOriginalValueIdx() const {
4778     assert(isa<ExtractElementInst>(Transition) &&
4779            "Other kind of transitions are not supported yet");
4780     return 0;
4781   }
4782
4783   /// \brief Return the index of the index in the transition.
4784   /// E.g., for "extractelement <2 x i32> c, i32 0" the index
4785   /// is at index 1.
4786   unsigned getTransitionIdx() const {
4787     assert(isa<ExtractElementInst>(Transition) &&
4788            "Other kind of transitions are not supported yet");
4789     return 1;
4790   }
4791
4792   /// \brief Get the type of the transition.
4793   /// This is the type of the original value.
4794   /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the
4795   /// transition is <2 x i32>.
4796   Type *getTransitionType() const {
4797     return Transition->getOperand(getTransitionOriginalValueIdx())->getType();
4798   }
4799
4800   /// \brief Promote \p ToBePromoted by moving \p Def downward through.
4801   /// I.e., we have the following sequence:
4802   /// Def = Transition <ty1> a to <ty2>
4803   /// b = ToBePromoted <ty2> Def, ...
4804   /// =>
4805   /// b = ToBePromoted <ty1> a, ...
4806   /// Def = Transition <ty1> ToBePromoted to <ty2>
4807   void promoteImpl(Instruction *ToBePromoted);
4808
4809   /// \brief Check whether or not it is profitable to promote all the
4810   /// instructions enqueued to be promoted.
4811   bool isProfitableToPromote() {
4812     Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx());
4813     unsigned Index = isa<ConstantInt>(ValIdx)
4814                          ? cast<ConstantInt>(ValIdx)->getZExtValue()
4815                          : -1;
4816     Type *PromotedType = getTransitionType();
4817
4818     StoreInst *ST = cast<StoreInst>(CombineInst);
4819     unsigned AS = ST->getPointerAddressSpace();
4820     unsigned Align = ST->getAlignment();
4821     // Check if this store is supported.
4822     if (!TLI.allowsMisalignedMemoryAccesses(
4823             TLI.getValueType(DL, ST->getValueOperand()->getType()), AS,
4824             Align)) {
4825       // If this is not supported, there is no way we can combine
4826       // the extract with the store.
4827       return false;
4828     }
4829
4830     // The scalar chain of computation has to pay for the transition
4831     // scalar to vector.
4832     // The vector chain has to account for the combining cost.
4833     uint64_t ScalarCost =
4834         TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index);
4835     uint64_t VectorCost = StoreExtractCombineCost;
4836     for (const auto &Inst : InstsToBePromoted) {
4837       // Compute the cost.
4838       // By construction, all instructions being promoted are arithmetic ones.
4839       // Moreover, one argument is a constant that can be viewed as a splat
4840       // constant.
4841       Value *Arg0 = Inst->getOperand(0);
4842       bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) ||
4843                             isa<ConstantFP>(Arg0);
4844       TargetTransformInfo::OperandValueKind Arg0OVK =
4845           IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
4846                          : TargetTransformInfo::OK_AnyValue;
4847       TargetTransformInfo::OperandValueKind Arg1OVK =
4848           !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
4849                           : TargetTransformInfo::OK_AnyValue;
4850       ScalarCost += TTI.getArithmeticInstrCost(
4851           Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK);
4852       VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType,
4853                                                Arg0OVK, Arg1OVK);
4854     }
4855     DEBUG(dbgs() << "Estimated cost of computation to be promoted:\nScalar: "
4856                  << ScalarCost << "\nVector: " << VectorCost << '\n');
4857     return ScalarCost > VectorCost;
4858   }
4859
4860   /// \brief Generate a constant vector with \p Val with the same
4861   /// number of elements as the transition.
4862   /// \p UseSplat defines whether or not \p Val should be replicated
4863   /// across the whole vector.
4864   /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>,
4865   /// otherwise we generate a vector with as many undef as possible:
4866   /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only
4867   /// used at the index of the extract.
4868   Value *getConstantVector(Constant *Val, bool UseSplat) const {
4869     unsigned ExtractIdx = UINT_MAX;
4870     if (!UseSplat) {
4871       // If we cannot determine where the constant must be, we have to
4872       // use a splat constant.
4873       Value *ValExtractIdx = Transition->getOperand(getTransitionIdx());
4874       if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx))
4875         ExtractIdx = CstVal->getSExtValue();
4876       else
4877         UseSplat = true;
4878     }
4879
4880     unsigned End = getTransitionType()->getVectorNumElements();
4881     if (UseSplat)
4882       return ConstantVector::getSplat(End, Val);
4883
4884     SmallVector<Constant *, 4> ConstVec;
4885     UndefValue *UndefVal = UndefValue::get(Val->getType());
4886     for (unsigned Idx = 0; Idx != End; ++Idx) {
4887       if (Idx == ExtractIdx)
4888         ConstVec.push_back(Val);
4889       else
4890         ConstVec.push_back(UndefVal);
4891     }
4892     return ConstantVector::get(ConstVec);
4893   }
4894
4895   /// \brief Check if promoting to a vector type an operand at \p OperandIdx
4896   /// in \p Use can trigger undefined behavior.
4897   static bool canCauseUndefinedBehavior(const Instruction *Use,
4898                                         unsigned OperandIdx) {
4899     // This is not safe to introduce undef when the operand is on
4900     // the right hand side of a division-like instruction.
4901     if (OperandIdx != 1)
4902       return false;
4903     switch (Use->getOpcode()) {
4904     default:
4905       return false;
4906     case Instruction::SDiv:
4907     case Instruction::UDiv:
4908     case Instruction::SRem:
4909     case Instruction::URem:
4910       return true;
4911     case Instruction::FDiv:
4912     case Instruction::FRem:
4913       return !Use->hasNoNaNs();
4914     }
4915     llvm_unreachable(nullptr);
4916   }
4917
4918 public:
4919   VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI,
4920                       const TargetTransformInfo &TTI, Instruction *Transition,
4921                       unsigned CombineCost)
4922       : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition),
4923         StoreExtractCombineCost(CombineCost), CombineInst(nullptr) {
4924     assert(Transition && "Do not know how to promote null");
4925   }
4926
4927   /// \brief Check if we can promote \p ToBePromoted to \p Type.
4928   bool canPromote(const Instruction *ToBePromoted) const {
4929     // We could support CastInst too.
4930     return isa<BinaryOperator>(ToBePromoted);
4931   }
4932
4933   /// \brief Check if it is profitable to promote \p ToBePromoted
4934   /// by moving downward the transition through.
4935   bool shouldPromote(const Instruction *ToBePromoted) const {
4936     // Promote only if all the operands can be statically expanded.
4937     // Indeed, we do not want to introduce any new kind of transitions.
4938     for (const Use &U : ToBePromoted->operands()) {
4939       const Value *Val = U.get();
4940       if (Val == getEndOfTransition()) {
4941         // If the use is a division and the transition is on the rhs,
4942         // we cannot promote the operation, otherwise we may create a
4943         // division by zero.
4944         if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()))
4945           return false;
4946         continue;
4947       }
4948       if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) &&
4949           !isa<ConstantFP>(Val))
4950         return false;
4951     }
4952     // Check that the resulting operation is legal.
4953     int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode());
4954     if (!ISDOpcode)
4955       return false;
4956     return StressStoreExtract ||
4957            TLI.isOperationLegalOrCustom(
4958                ISDOpcode, TLI.getValueType(DL, getTransitionType(), true));
4959   }
4960
4961   /// \brief Check whether or not \p Use can be combined
4962   /// with the transition.
4963   /// I.e., is it possible to do Use(Transition) => AnotherUse?
4964   bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); }
4965
4966   /// \brief Record \p ToBePromoted as part of the chain to be promoted.
4967   void enqueueForPromotion(Instruction *ToBePromoted) {
4968     InstsToBePromoted.push_back(ToBePromoted);
4969   }
4970
4971   /// \brief Set the instruction that will be combined with the transition.
4972   void recordCombineInstruction(Instruction *ToBeCombined) {
4973     assert(canCombine(ToBeCombined) && "Unsupported instruction to combine");
4974     CombineInst = ToBeCombined;
4975   }
4976
4977   /// \brief Promote all the instructions enqueued for promotion if it is
4978   /// is profitable.
4979   /// \return True if the promotion happened, false otherwise.
4980   bool promote() {
4981     // Check if there is something to promote.
4982     // Right now, if we do not have anything to combine with,
4983     // we assume the promotion is not profitable.
4984     if (InstsToBePromoted.empty() || !CombineInst)
4985       return false;
4986
4987     // Check cost.
4988     if (!StressStoreExtract && !isProfitableToPromote())
4989       return false;
4990
4991     // Promote.
4992     for (auto &ToBePromoted : InstsToBePromoted)
4993       promoteImpl(ToBePromoted);
4994     InstsToBePromoted.clear();
4995     return true;
4996   }
4997 };
4998 } // End of anonymous namespace.
4999
5000 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) {
5001   // At this point, we know that all the operands of ToBePromoted but Def
5002   // can be statically promoted.
5003   // For Def, we need to use its parameter in ToBePromoted:
5004   // b = ToBePromoted ty1 a
5005   // Def = Transition ty1 b to ty2
5006   // Move the transition down.
5007   // 1. Replace all uses of the promoted operation by the transition.
5008   // = ... b => = ... Def.
5009   assert(ToBePromoted->getType() == Transition->getType() &&
5010          "The type of the result of the transition does not match "
5011          "the final type");
5012   ToBePromoted->replaceAllUsesWith(Transition);
5013   // 2. Update the type of the uses.
5014   // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def.
5015   Type *TransitionTy = getTransitionType();
5016   ToBePromoted->mutateType(TransitionTy);
5017   // 3. Update all the operands of the promoted operation with promoted
5018   // operands.
5019   // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a.
5020   for (Use &U : ToBePromoted->operands()) {
5021     Value *Val = U.get();
5022     Value *NewVal = nullptr;
5023     if (Val == Transition)
5024       NewVal = Transition->getOperand(getTransitionOriginalValueIdx());
5025     else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) ||
5026              isa<ConstantFP>(Val)) {
5027       // Use a splat constant if it is not safe to use undef.
5028       NewVal = getConstantVector(
5029           cast<Constant>(Val),
5030           isa<UndefValue>(Val) ||
5031               canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()));
5032     } else
5033       llvm_unreachable("Did you modified shouldPromote and forgot to update "
5034                        "this?");
5035     ToBePromoted->setOperand(U.getOperandNo(), NewVal);
5036   }
5037   Transition->removeFromParent();
5038   Transition->insertAfter(ToBePromoted);
5039   Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted);
5040 }
5041
5042 /// Some targets can do store(extractelement) with one instruction.
5043 /// Try to push the extractelement towards the stores when the target
5044 /// has this feature and this is profitable.
5045 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) {
5046   unsigned CombineCost = UINT_MAX;
5047   if (DisableStoreExtract || !TLI ||
5048       (!StressStoreExtract &&
5049        !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(),
5050                                        Inst->getOperand(1), CombineCost)))
5051     return false;
5052
5053   // At this point we know that Inst is a vector to scalar transition.
5054   // Try to move it down the def-use chain, until:
5055   // - We can combine the transition with its single use
5056   //   => we got rid of the transition.
5057   // - We escape the current basic block
5058   //   => we would need to check that we are moving it at a cheaper place and
5059   //      we do not do that for now.
5060   BasicBlock *Parent = Inst->getParent();
5061   DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n');
5062   VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost);
5063   // If the transition has more than one use, assume this is not going to be
5064   // beneficial.
5065   while (Inst->hasOneUse()) {
5066     Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin());
5067     DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n');
5068
5069     if (ToBePromoted->getParent() != Parent) {
5070       DEBUG(dbgs() << "Instruction to promote is in a different block ("
5071                    << ToBePromoted->getParent()->getName()
5072                    << ") than the transition (" << Parent->getName() << ").\n");
5073       return false;
5074     }
5075
5076     if (VPH.canCombine(ToBePromoted)) {
5077       DEBUG(dbgs() << "Assume " << *Inst << '\n'
5078                    << "will be combined with: " << *ToBePromoted << '\n');
5079       VPH.recordCombineInstruction(ToBePromoted);
5080       bool Changed = VPH.promote();
5081       NumStoreExtractExposed += Changed;
5082       return Changed;
5083     }
5084
5085     DEBUG(dbgs() << "Try promoting.\n");
5086     if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted))
5087       return false;
5088
5089     DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n");
5090
5091     VPH.enqueueForPromotion(ToBePromoted);
5092     Inst = ToBePromoted;
5093   }
5094   return false;
5095 }
5096
5097 bool CodeGenPrepare::optimizeInst(Instruction *I, bool& ModifiedDT) {
5098   // Bail out if we inserted the instruction to prevent optimizations from
5099   // stepping on each other's toes.
5100   if (InsertedInsts.count(I))
5101     return false;
5102
5103   if (PHINode *P = dyn_cast<PHINode>(I)) {
5104     // It is possible for very late stage optimizations (such as SimplifyCFG)
5105     // to introduce PHI nodes too late to be cleaned up.  If we detect such a
5106     // trivial PHI, go ahead and zap it here.
5107     if (Value *V = SimplifyInstruction(P, *DL, TLInfo, nullptr)) {
5108       P->replaceAllUsesWith(V);
5109       P->eraseFromParent();
5110       ++NumPHIsElim;
5111       return true;
5112     }
5113     return false;
5114   }
5115
5116   if (CastInst *CI = dyn_cast<CastInst>(I)) {
5117     // If the source of the cast is a constant, then this should have
5118     // already been constant folded.  The only reason NOT to constant fold
5119     // it is if something (e.g. LSR) was careful to place the constant
5120     // evaluation in a block other than then one that uses it (e.g. to hoist
5121     // the address of globals out of a loop).  If this is the case, we don't
5122     // want to forward-subst the cast.
5123     if (isa<Constant>(CI->getOperand(0)))
5124       return false;
5125
5126     if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL))
5127       return true;
5128
5129     if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
5130       /// Sink a zext or sext into its user blocks if the target type doesn't
5131       /// fit in one register
5132       if (TLI &&
5133           TLI->getTypeAction(CI->getContext(),
5134                              TLI->getValueType(*DL, CI->getType())) ==
5135               TargetLowering::TypeExpandInteger) {
5136         return SinkCast(CI);
5137       } else {
5138         bool MadeChange = moveExtToFormExtLoad(I);
5139         return MadeChange | optimizeExtUses(I);
5140       }
5141     }
5142     return false;
5143   }
5144
5145   if (CmpInst *CI = dyn_cast<CmpInst>(I))
5146     if (!TLI || !TLI->hasMultipleConditionRegisters())
5147       return OptimizeCmpExpression(CI);
5148
5149   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
5150     stripInvariantGroupMetadata(*LI);
5151     if (TLI) {
5152       bool Modified = optimizeLoadExt(LI);
5153       unsigned AS = LI->getPointerAddressSpace();
5154       Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS);
5155       return Modified;
5156     }
5157     return false;
5158   }
5159
5160   if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
5161     stripInvariantGroupMetadata(*SI);
5162     if (TLI) {
5163       unsigned AS = SI->getPointerAddressSpace();
5164       return optimizeMemoryInst(I, SI->getOperand(1),
5165                                 SI->getOperand(0)->getType(), AS);
5166     }
5167     return false;
5168   }
5169
5170   BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I);
5171
5172   if (BinOp && (BinOp->getOpcode() == Instruction::AShr ||
5173                 BinOp->getOpcode() == Instruction::LShr)) {
5174     ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1));
5175     if (TLI && CI && TLI->hasExtractBitsInsn())
5176       return OptimizeExtractBits(BinOp, CI, *TLI, *DL);
5177
5178     return false;
5179   }
5180
5181   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
5182     if (GEPI->hasAllZeroIndices()) {
5183       /// The GEP operand must be a pointer, so must its result -> BitCast
5184       Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
5185                                         GEPI->getName(), GEPI);
5186       GEPI->replaceAllUsesWith(NC);
5187       GEPI->eraseFromParent();
5188       ++NumGEPsElim;
5189       optimizeInst(NC, ModifiedDT);
5190       return true;
5191     }
5192     return false;
5193   }
5194
5195   if (CallInst *CI = dyn_cast<CallInst>(I))
5196     return optimizeCallInst(CI, ModifiedDT);
5197
5198   if (SelectInst *SI = dyn_cast<SelectInst>(I))
5199     return optimizeSelectInst(SI);
5200
5201   if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I))
5202     return optimizeShuffleVectorInst(SVI);
5203
5204   if (auto *Switch = dyn_cast<SwitchInst>(I))
5205     return optimizeSwitchInst(Switch);
5206
5207   if (isa<ExtractElementInst>(I))
5208     return optimizeExtractElementInst(I);
5209
5210   return false;
5211 }
5212
5213 // In this pass we look for GEP and cast instructions that are used
5214 // across basic blocks and rewrite them to improve basic-block-at-a-time
5215 // selection.
5216 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool& ModifiedDT) {
5217   SunkAddrs.clear();
5218   bool MadeChange = false;
5219
5220   CurInstIterator = BB.begin();
5221   while (CurInstIterator != BB.end()) {
5222     MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT);
5223     if (ModifiedDT)
5224       return true;
5225   }
5226   MadeChange |= dupRetToEnableTailCallOpts(&BB);
5227
5228   return MadeChange;
5229 }
5230
5231 // llvm.dbg.value is far away from the value then iSel may not be able
5232 // handle it properly. iSel will drop llvm.dbg.value if it can not
5233 // find a node corresponding to the value.
5234 bool CodeGenPrepare::placeDbgValues(Function &F) {
5235   bool MadeChange = false;
5236   for (BasicBlock &BB : F) {
5237     Instruction *PrevNonDbgInst = nullptr;
5238     for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
5239       Instruction *Insn = &*BI++;
5240       DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn);
5241       // Leave dbg.values that refer to an alloca alone. These
5242       // instrinsics describe the address of a variable (= the alloca)
5243       // being taken.  They should not be moved next to the alloca
5244       // (and to the beginning of the scope), but rather stay close to
5245       // where said address is used.
5246       if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) {
5247         PrevNonDbgInst = Insn;
5248         continue;
5249       }
5250
5251       Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue());
5252       if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) {
5253         // If VI is a phi in a block with an EHPad terminator, we can't insert
5254         // after it.
5255         if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad())
5256           continue;
5257         DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI);
5258         DVI->removeFromParent();
5259         if (isa<PHINode>(VI))
5260           DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt());
5261         else
5262           DVI->insertAfter(VI);
5263         MadeChange = true;
5264         ++NumDbgValueMoved;
5265       }
5266     }
5267   }
5268   return MadeChange;
5269 }
5270
5271 // If there is a sequence that branches based on comparing a single bit
5272 // against zero that can be combined into a single instruction, and the
5273 // target supports folding these into a single instruction, sink the
5274 // mask and compare into the branch uses. Do this before OptimizeBlock ->
5275 // OptimizeInst -> OptimizeCmpExpression, which perturbs the pattern being
5276 // searched for.
5277 bool CodeGenPrepare::sinkAndCmp(Function &F) {
5278   if (!EnableAndCmpSinking)
5279     return false;
5280   if (!TLI || !TLI->isMaskAndBranchFoldingLegal())
5281     return false;
5282   bool MadeChange = false;
5283   for (Function::iterator I = F.begin(), E = F.end(); I != E; ) {
5284     BasicBlock *BB = &*I++;
5285
5286     // Does this BB end with the following?
5287     //   %andVal = and %val, #single-bit-set
5288     //   %icmpVal = icmp %andResult, 0
5289     //   br i1 %cmpVal label %dest1, label %dest2"
5290     BranchInst *Brcc = dyn_cast<BranchInst>(BB->getTerminator());
5291     if (!Brcc || !Brcc->isConditional())
5292       continue;
5293     ICmpInst *Cmp = dyn_cast<ICmpInst>(Brcc->getOperand(0));
5294     if (!Cmp || Cmp->getParent() != BB)
5295       continue;
5296     ConstantInt *Zero = dyn_cast<ConstantInt>(Cmp->getOperand(1));
5297     if (!Zero || !Zero->isZero())
5298       continue;
5299     Instruction *And = dyn_cast<Instruction>(Cmp->getOperand(0));
5300     if (!And || And->getOpcode() != Instruction::And || And->getParent() != BB)
5301       continue;
5302     ConstantInt* Mask = dyn_cast<ConstantInt>(And->getOperand(1));
5303     if (!Mask || !Mask->getUniqueInteger().isPowerOf2())
5304       continue;
5305     DEBUG(dbgs() << "found and; icmp ?,0; brcc\n"); DEBUG(BB->dump());
5306
5307     // Push the "and; icmp" for any users that are conditional branches.
5308     // Since there can only be one branch use per BB, we don't need to keep
5309     // track of which BBs we insert into.
5310     for (Value::use_iterator UI = Cmp->use_begin(), E = Cmp->use_end();
5311          UI != E; ) {
5312       Use &TheUse = *UI;
5313       // Find brcc use.
5314       BranchInst *BrccUser = dyn_cast<BranchInst>(*UI);
5315       ++UI;
5316       if (!BrccUser || !BrccUser->isConditional())
5317         continue;
5318       BasicBlock *UserBB = BrccUser->getParent();
5319       if (UserBB == BB) continue;
5320       DEBUG(dbgs() << "found Brcc use\n");
5321
5322       // Sink the "and; icmp" to use.
5323       MadeChange = true;
5324       BinaryOperator *NewAnd =
5325         BinaryOperator::CreateAnd(And->getOperand(0), And->getOperand(1), "",
5326                                   BrccUser);
5327       CmpInst *NewCmp =
5328         CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), NewAnd, Zero,
5329                         "", BrccUser);
5330       TheUse = NewCmp;
5331       ++NumAndCmpsMoved;
5332       DEBUG(BrccUser->getParent()->dump());
5333     }
5334   }
5335   return MadeChange;
5336 }
5337
5338 /// \brief Retrieve the probabilities of a conditional branch. Returns true on
5339 /// success, or returns false if no or invalid metadata was found.
5340 static bool extractBranchMetadata(BranchInst *BI,
5341                                   uint64_t &ProbTrue, uint64_t &ProbFalse) {
5342   assert(BI->isConditional() &&
5343          "Looking for probabilities on unconditional branch?");
5344   auto *ProfileData = BI->getMetadata(LLVMContext::MD_prof);
5345   if (!ProfileData || ProfileData->getNumOperands() != 3)
5346     return false;
5347
5348   const auto *CITrue =
5349       mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1));
5350   const auto *CIFalse =
5351       mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2));
5352   if (!CITrue || !CIFalse)
5353     return false;
5354
5355   ProbTrue = CITrue->getValue().getZExtValue();
5356   ProbFalse = CIFalse->getValue().getZExtValue();
5357
5358   return true;
5359 }
5360
5361 /// \brief Scale down both weights to fit into uint32_t.
5362 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
5363   uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
5364   uint32_t Scale = (NewMax / UINT32_MAX) + 1;
5365   NewTrue = NewTrue / Scale;
5366   NewFalse = NewFalse / Scale;
5367 }
5368
5369 /// \brief Some targets prefer to split a conditional branch like:
5370 /// \code
5371 ///   %0 = icmp ne i32 %a, 0
5372 ///   %1 = icmp ne i32 %b, 0
5373 ///   %or.cond = or i1 %0, %1
5374 ///   br i1 %or.cond, label %TrueBB, label %FalseBB
5375 /// \endcode
5376 /// into multiple branch instructions like:
5377 /// \code
5378 ///   bb1:
5379 ///     %0 = icmp ne i32 %a, 0
5380 ///     br i1 %0, label %TrueBB, label %bb2
5381 ///   bb2:
5382 ///     %1 = icmp ne i32 %b, 0
5383 ///     br i1 %1, label %TrueBB, label %FalseBB
5384 /// \endcode
5385 /// This usually allows instruction selection to do even further optimizations
5386 /// and combine the compare with the branch instruction. Currently this is
5387 /// applied for targets which have "cheap" jump instructions.
5388 ///
5389 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG.
5390 ///
5391 bool CodeGenPrepare::splitBranchCondition(Function &F) {
5392   if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive())
5393     return false;
5394
5395   bool MadeChange = false;
5396   for (auto &BB : F) {
5397     // Does this BB end with the following?
5398     //   %cond1 = icmp|fcmp|binary instruction ...
5399     //   %cond2 = icmp|fcmp|binary instruction ...
5400     //   %cond.or = or|and i1 %cond1, cond2
5401     //   br i1 %cond.or label %dest1, label %dest2"
5402     BinaryOperator *LogicOp;
5403     BasicBlock *TBB, *FBB;
5404     if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB)))
5405       continue;
5406
5407     auto *Br1 = cast<BranchInst>(BB.getTerminator());
5408     if (Br1->getMetadata(LLVMContext::MD_unpredictable))
5409       continue;
5410
5411     unsigned Opc;
5412     Value *Cond1, *Cond2;
5413     if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)),
5414                              m_OneUse(m_Value(Cond2)))))
5415       Opc = Instruction::And;
5416     else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)),
5417                                  m_OneUse(m_Value(Cond2)))))
5418       Opc = Instruction::Or;
5419     else
5420       continue;
5421
5422     if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) ||
5423         !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp()))   )
5424       continue;
5425
5426     DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump());
5427
5428     // Create a new BB.
5429     auto *InsertBefore = std::next(Function::iterator(BB))
5430         .getNodePtrUnchecked();
5431     auto TmpBB = BasicBlock::Create(BB.getContext(),
5432                                     BB.getName() + ".cond.split",
5433                                     BB.getParent(), InsertBefore);
5434
5435     // Update original basic block by using the first condition directly by the
5436     // branch instruction and removing the no longer needed and/or instruction.
5437     Br1->setCondition(Cond1);
5438     LogicOp->eraseFromParent();
5439
5440     // Depending on the conditon we have to either replace the true or the false
5441     // successor of the original branch instruction.
5442     if (Opc == Instruction::And)
5443       Br1->setSuccessor(0, TmpBB);
5444     else
5445       Br1->setSuccessor(1, TmpBB);
5446
5447     // Fill in the new basic block.
5448     auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB);
5449     if (auto *I = dyn_cast<Instruction>(Cond2)) {
5450       I->removeFromParent();
5451       I->insertBefore(Br2);
5452     }
5453
5454     // Update PHI nodes in both successors. The original BB needs to be
5455     // replaced in one succesor's PHI nodes, because the branch comes now from
5456     // the newly generated BB (NewBB). In the other successor we need to add one
5457     // incoming edge to the PHI nodes, because both branch instructions target
5458     // now the same successor. Depending on the original branch condition
5459     // (and/or) we have to swap the successors (TrueDest, FalseDest), so that
5460     // we perfrom the correct update for the PHI nodes.
5461     // This doesn't change the successor order of the just created branch
5462     // instruction (or any other instruction).
5463     if (Opc == Instruction::Or)
5464       std::swap(TBB, FBB);
5465
5466     // Replace the old BB with the new BB.
5467     for (auto &I : *TBB) {
5468       PHINode *PN = dyn_cast<PHINode>(&I);
5469       if (!PN)
5470         break;
5471       int i;
5472       while ((i = PN->getBasicBlockIndex(&BB)) >= 0)
5473         PN->setIncomingBlock(i, TmpBB);
5474     }
5475
5476     // Add another incoming edge form the new BB.
5477     for (auto &I : *FBB) {
5478       PHINode *PN = dyn_cast<PHINode>(&I);
5479       if (!PN)
5480         break;
5481       auto *Val = PN->getIncomingValueForBlock(&BB);
5482       PN->addIncoming(Val, TmpBB);
5483     }
5484
5485     // Update the branch weights (from SelectionDAGBuilder::
5486     // FindMergedConditions).
5487     if (Opc == Instruction::Or) {
5488       // Codegen X | Y as:
5489       // BB1:
5490       //   jmp_if_X TBB
5491       //   jmp TmpBB
5492       // TmpBB:
5493       //   jmp_if_Y TBB
5494       //   jmp FBB
5495       //
5496
5497       // We have flexibility in setting Prob for BB1 and Prob for NewBB.
5498       // The requirement is that
5499       //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
5500       //     = TrueProb for orignal BB.
5501       // Assuming the orignal weights are A and B, one choice is to set BB1's
5502       // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
5503       // assumes that
5504       //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
5505       // Another choice is to assume TrueProb for BB1 equals to TrueProb for
5506       // TmpBB, but the math is more complicated.
5507       uint64_t TrueWeight, FalseWeight;
5508       if (extractBranchMetadata(Br1, TrueWeight, FalseWeight)) {
5509         uint64_t NewTrueWeight = TrueWeight;
5510         uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight;
5511         scaleWeights(NewTrueWeight, NewFalseWeight);
5512         Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
5513                          .createBranchWeights(TrueWeight, FalseWeight));
5514
5515         NewTrueWeight = TrueWeight;
5516         NewFalseWeight = 2 * FalseWeight;
5517         scaleWeights(NewTrueWeight, NewFalseWeight);
5518         Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
5519                          .createBranchWeights(TrueWeight, FalseWeight));
5520       }
5521     } else {
5522       // Codegen X & Y as:
5523       // BB1:
5524       //   jmp_if_X TmpBB
5525       //   jmp FBB
5526       // TmpBB:
5527       //   jmp_if_Y TBB
5528       //   jmp FBB
5529       //
5530       //  This requires creation of TmpBB after CurBB.
5531
5532       // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
5533       // The requirement is that
5534       //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
5535       //     = FalseProb for orignal BB.
5536       // Assuming the orignal weights are A and B, one choice is to set BB1's
5537       // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
5538       // assumes that
5539       //   FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
5540       uint64_t TrueWeight, FalseWeight;
5541       if (extractBranchMetadata(Br1, TrueWeight, FalseWeight)) {
5542         uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight;
5543         uint64_t NewFalseWeight = FalseWeight;
5544         scaleWeights(NewTrueWeight, NewFalseWeight);
5545         Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
5546                          .createBranchWeights(TrueWeight, FalseWeight));
5547
5548         NewTrueWeight = 2 * TrueWeight;
5549         NewFalseWeight = FalseWeight;
5550         scaleWeights(NewTrueWeight, NewFalseWeight);
5551         Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
5552                          .createBranchWeights(TrueWeight, FalseWeight));
5553       }
5554     }
5555
5556     // Note: No point in getting fancy here, since the DT info is never
5557     // available to CodeGenPrepare.
5558     ModifiedDT = true;
5559
5560     MadeChange = true;
5561
5562     DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump();
5563           TmpBB->dump());
5564   }
5565   return MadeChange;
5566 }
5567
5568 void CodeGenPrepare::stripInvariantGroupMetadata(Instruction &I) {
5569   if (auto *InvariantMD = I.getMetadata(LLVMContext::MD_invariant_group))
5570     I.dropUnknownNonDebugMetadata(InvariantMD->getMetadataID());
5571 }