a86e26cc3624ad137c87a4d93e02fba2e78a644f
[oota-llvm.git] / lib / Bitcode / Writer / BitcodeWriter.cpp
1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "ValueEnumerator.h"
16 #include "llvm/ADT/Triple.h"
17 #include "llvm/Bitcode/BitstreamWriter.h"
18 #include "llvm/Bitcode/LLVMBitCodes.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/DebugInfoMetadata.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/InlineAsm.h"
23 #include "llvm/IR/Instructions.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/IR/Operator.h"
26 #include "llvm/IR/UseListOrder.h"
27 #include "llvm/IR/ValueSymbolTable.h"
28 #include "llvm/Support/CommandLine.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/MathExtras.h"
31 #include "llvm/Support/Program.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include <cctype>
34 #include <map>
35 using namespace llvm;
36
37 /// These are manifest constants used by the bitcode writer. They do not need to
38 /// be kept in sync with the reader, but need to be consistent within this file.
39 enum {
40   // VALUE_SYMTAB_BLOCK abbrev id's.
41   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
42   VST_ENTRY_7_ABBREV,
43   VST_ENTRY_6_ABBREV,
44   VST_BBENTRY_6_ABBREV,
45
46   // CONSTANTS_BLOCK abbrev id's.
47   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
48   CONSTANTS_INTEGER_ABBREV,
49   CONSTANTS_CE_CAST_Abbrev,
50   CONSTANTS_NULL_Abbrev,
51
52   // FUNCTION_BLOCK abbrev id's.
53   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
54   FUNCTION_INST_BINOP_ABBREV,
55   FUNCTION_INST_BINOP_FLAGS_ABBREV,
56   FUNCTION_INST_CAST_ABBREV,
57   FUNCTION_INST_RET_VOID_ABBREV,
58   FUNCTION_INST_RET_VAL_ABBREV,
59   FUNCTION_INST_UNREACHABLE_ABBREV
60 };
61
62 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
63   switch (Opcode) {
64   default: llvm_unreachable("Unknown cast instruction!");
65   case Instruction::Trunc   : return bitc::CAST_TRUNC;
66   case Instruction::ZExt    : return bitc::CAST_ZEXT;
67   case Instruction::SExt    : return bitc::CAST_SEXT;
68   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
69   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
70   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
71   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
72   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
73   case Instruction::FPExt   : return bitc::CAST_FPEXT;
74   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
75   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
76   case Instruction::BitCast : return bitc::CAST_BITCAST;
77   case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
78   }
79 }
80
81 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
82   switch (Opcode) {
83   default: llvm_unreachable("Unknown binary instruction!");
84   case Instruction::Add:
85   case Instruction::FAdd: return bitc::BINOP_ADD;
86   case Instruction::Sub:
87   case Instruction::FSub: return bitc::BINOP_SUB;
88   case Instruction::Mul:
89   case Instruction::FMul: return bitc::BINOP_MUL;
90   case Instruction::UDiv: return bitc::BINOP_UDIV;
91   case Instruction::FDiv:
92   case Instruction::SDiv: return bitc::BINOP_SDIV;
93   case Instruction::URem: return bitc::BINOP_UREM;
94   case Instruction::FRem:
95   case Instruction::SRem: return bitc::BINOP_SREM;
96   case Instruction::Shl:  return bitc::BINOP_SHL;
97   case Instruction::LShr: return bitc::BINOP_LSHR;
98   case Instruction::AShr: return bitc::BINOP_ASHR;
99   case Instruction::And:  return bitc::BINOP_AND;
100   case Instruction::Or:   return bitc::BINOP_OR;
101   case Instruction::Xor:  return bitc::BINOP_XOR;
102   }
103 }
104
105 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
106   switch (Op) {
107   default: llvm_unreachable("Unknown RMW operation!");
108   case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
109   case AtomicRMWInst::Add: return bitc::RMW_ADD;
110   case AtomicRMWInst::Sub: return bitc::RMW_SUB;
111   case AtomicRMWInst::And: return bitc::RMW_AND;
112   case AtomicRMWInst::Nand: return bitc::RMW_NAND;
113   case AtomicRMWInst::Or: return bitc::RMW_OR;
114   case AtomicRMWInst::Xor: return bitc::RMW_XOR;
115   case AtomicRMWInst::Max: return bitc::RMW_MAX;
116   case AtomicRMWInst::Min: return bitc::RMW_MIN;
117   case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
118   case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
119   }
120 }
121
122 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) {
123   switch (Ordering) {
124   case NotAtomic: return bitc::ORDERING_NOTATOMIC;
125   case Unordered: return bitc::ORDERING_UNORDERED;
126   case Monotonic: return bitc::ORDERING_MONOTONIC;
127   case Acquire: return bitc::ORDERING_ACQUIRE;
128   case Release: return bitc::ORDERING_RELEASE;
129   case AcquireRelease: return bitc::ORDERING_ACQREL;
130   case SequentiallyConsistent: return bitc::ORDERING_SEQCST;
131   }
132   llvm_unreachable("Invalid ordering");
133 }
134
135 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) {
136   switch (SynchScope) {
137   case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD;
138   case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD;
139   }
140   llvm_unreachable("Invalid synch scope");
141 }
142
143 static void WriteStringRecord(unsigned Code, StringRef Str,
144                               unsigned AbbrevToUse, BitstreamWriter &Stream) {
145   SmallVector<unsigned, 64> Vals;
146
147   // Code: [strchar x N]
148   for (unsigned i = 0, e = Str.size(); i != e; ++i) {
149     if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
150       AbbrevToUse = 0;
151     Vals.push_back(Str[i]);
152   }
153
154   // Emit the finished record.
155   Stream.EmitRecord(Code, Vals, AbbrevToUse);
156 }
157
158 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
159   switch (Kind) {
160   case Attribute::Alignment:
161     return bitc::ATTR_KIND_ALIGNMENT;
162   case Attribute::AlwaysInline:
163     return bitc::ATTR_KIND_ALWAYS_INLINE;
164   case Attribute::Builtin:
165     return bitc::ATTR_KIND_BUILTIN;
166   case Attribute::ByVal:
167     return bitc::ATTR_KIND_BY_VAL;
168   case Attribute::InAlloca:
169     return bitc::ATTR_KIND_IN_ALLOCA;
170   case Attribute::Cold:
171     return bitc::ATTR_KIND_COLD;
172   case Attribute::InlineHint:
173     return bitc::ATTR_KIND_INLINE_HINT;
174   case Attribute::InReg:
175     return bitc::ATTR_KIND_IN_REG;
176   case Attribute::JumpTable:
177     return bitc::ATTR_KIND_JUMP_TABLE;
178   case Attribute::MinSize:
179     return bitc::ATTR_KIND_MIN_SIZE;
180   case Attribute::Naked:
181     return bitc::ATTR_KIND_NAKED;
182   case Attribute::Nest:
183     return bitc::ATTR_KIND_NEST;
184   case Attribute::NoAlias:
185     return bitc::ATTR_KIND_NO_ALIAS;
186   case Attribute::NoBuiltin:
187     return bitc::ATTR_KIND_NO_BUILTIN;
188   case Attribute::NoCapture:
189     return bitc::ATTR_KIND_NO_CAPTURE;
190   case Attribute::NoDuplicate:
191     return bitc::ATTR_KIND_NO_DUPLICATE;
192   case Attribute::NoImplicitFloat:
193     return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
194   case Attribute::NoInline:
195     return bitc::ATTR_KIND_NO_INLINE;
196   case Attribute::NonLazyBind:
197     return bitc::ATTR_KIND_NON_LAZY_BIND;
198   case Attribute::NonNull:
199     return bitc::ATTR_KIND_NON_NULL;
200   case Attribute::Dereferenceable:
201     return bitc::ATTR_KIND_DEREFERENCEABLE;
202   case Attribute::NoRedZone:
203     return bitc::ATTR_KIND_NO_RED_ZONE;
204   case Attribute::NoReturn:
205     return bitc::ATTR_KIND_NO_RETURN;
206   case Attribute::NoUnwind:
207     return bitc::ATTR_KIND_NO_UNWIND;
208   case Attribute::OptimizeForSize:
209     return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
210   case Attribute::OptimizeNone:
211     return bitc::ATTR_KIND_OPTIMIZE_NONE;
212   case Attribute::ReadNone:
213     return bitc::ATTR_KIND_READ_NONE;
214   case Attribute::ReadOnly:
215     return bitc::ATTR_KIND_READ_ONLY;
216   case Attribute::Returned:
217     return bitc::ATTR_KIND_RETURNED;
218   case Attribute::ReturnsTwice:
219     return bitc::ATTR_KIND_RETURNS_TWICE;
220   case Attribute::SExt:
221     return bitc::ATTR_KIND_S_EXT;
222   case Attribute::StackAlignment:
223     return bitc::ATTR_KIND_STACK_ALIGNMENT;
224   case Attribute::StackProtect:
225     return bitc::ATTR_KIND_STACK_PROTECT;
226   case Attribute::StackProtectReq:
227     return bitc::ATTR_KIND_STACK_PROTECT_REQ;
228   case Attribute::StackProtectStrong:
229     return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
230   case Attribute::StructRet:
231     return bitc::ATTR_KIND_STRUCT_RET;
232   case Attribute::SanitizeAddress:
233     return bitc::ATTR_KIND_SANITIZE_ADDRESS;
234   case Attribute::SanitizeThread:
235     return bitc::ATTR_KIND_SANITIZE_THREAD;
236   case Attribute::SanitizeMemory:
237     return bitc::ATTR_KIND_SANITIZE_MEMORY;
238   case Attribute::UWTable:
239     return bitc::ATTR_KIND_UW_TABLE;
240   case Attribute::ZExt:
241     return bitc::ATTR_KIND_Z_EXT;
242   case Attribute::EndAttrKinds:
243     llvm_unreachable("Can not encode end-attribute kinds marker.");
244   case Attribute::None:
245     llvm_unreachable("Can not encode none-attribute.");
246   }
247
248   llvm_unreachable("Trying to encode unknown attribute");
249 }
250
251 static void WriteAttributeGroupTable(const ValueEnumerator &VE,
252                                      BitstreamWriter &Stream) {
253   const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups();
254   if (AttrGrps.empty()) return;
255
256   Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
257
258   SmallVector<uint64_t, 64> Record;
259   for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) {
260     AttributeSet AS = AttrGrps[i];
261     for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) {
262       AttributeSet A = AS.getSlotAttributes(i);
263
264       Record.push_back(VE.getAttributeGroupID(A));
265       Record.push_back(AS.getSlotIndex(i));
266
267       for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0);
268            I != E; ++I) {
269         Attribute Attr = *I;
270         if (Attr.isEnumAttribute()) {
271           Record.push_back(0);
272           Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
273         } else if (Attr.isIntAttribute()) {
274           Record.push_back(1);
275           Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
276           Record.push_back(Attr.getValueAsInt());
277         } else {
278           StringRef Kind = Attr.getKindAsString();
279           StringRef Val = Attr.getValueAsString();
280
281           Record.push_back(Val.empty() ? 3 : 4);
282           Record.append(Kind.begin(), Kind.end());
283           Record.push_back(0);
284           if (!Val.empty()) {
285             Record.append(Val.begin(), Val.end());
286             Record.push_back(0);
287           }
288         }
289       }
290
291       Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
292       Record.clear();
293     }
294   }
295
296   Stream.ExitBlock();
297 }
298
299 static void WriteAttributeTable(const ValueEnumerator &VE,
300                                 BitstreamWriter &Stream) {
301   const std::vector<AttributeSet> &Attrs = VE.getAttributes();
302   if (Attrs.empty()) return;
303
304   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
305
306   SmallVector<uint64_t, 64> Record;
307   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
308     const AttributeSet &A = Attrs[i];
309     for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i)
310       Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i)));
311
312     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
313     Record.clear();
314   }
315
316   Stream.ExitBlock();
317 }
318
319 /// WriteTypeTable - Write out the type table for a module.
320 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
321   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
322
323   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
324   SmallVector<uint64_t, 64> TypeVals;
325
326   uint64_t NumBits = Log2_32_Ceil(VE.getTypes().size()+1);
327
328   // Abbrev for TYPE_CODE_POINTER.
329   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
330   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
331   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
332   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
333   unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
334
335   // Abbrev for TYPE_CODE_FUNCTION.
336   Abbv = new BitCodeAbbrev();
337   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
338   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
339   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
340   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
341
342   unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
343
344   // Abbrev for TYPE_CODE_STRUCT_ANON.
345   Abbv = new BitCodeAbbrev();
346   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
347   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
348   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
349   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
350
351   unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv);
352
353   // Abbrev for TYPE_CODE_STRUCT_NAME.
354   Abbv = new BitCodeAbbrev();
355   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
356   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
357   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
358   unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv);
359
360   // Abbrev for TYPE_CODE_STRUCT_NAMED.
361   Abbv = new BitCodeAbbrev();
362   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
363   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
364   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
365   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
366
367   unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv);
368
369   // Abbrev for TYPE_CODE_ARRAY.
370   Abbv = new BitCodeAbbrev();
371   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
372   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
373   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
374
375   unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
376
377   // Emit an entry count so the reader can reserve space.
378   TypeVals.push_back(TypeList.size());
379   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
380   TypeVals.clear();
381
382   // Loop over all of the types, emitting each in turn.
383   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
384     Type *T = TypeList[i];
385     int AbbrevToUse = 0;
386     unsigned Code = 0;
387
388     switch (T->getTypeID()) {
389     case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;      break;
390     case Type::HalfTyID:      Code = bitc::TYPE_CODE_HALF;      break;
391     case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;     break;
392     case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE;    break;
393     case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80;  break;
394     case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128;     break;
395     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
396     case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;     break;
397     case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA;  break;
398     case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX;   break;
399     case Type::IntegerTyID:
400       // INTEGER: [width]
401       Code = bitc::TYPE_CODE_INTEGER;
402       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
403       break;
404     case Type::PointerTyID: {
405       PointerType *PTy = cast<PointerType>(T);
406       // POINTER: [pointee type, address space]
407       Code = bitc::TYPE_CODE_POINTER;
408       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
409       unsigned AddressSpace = PTy->getAddressSpace();
410       TypeVals.push_back(AddressSpace);
411       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
412       break;
413     }
414     case Type::FunctionTyID: {
415       FunctionType *FT = cast<FunctionType>(T);
416       // FUNCTION: [isvararg, retty, paramty x N]
417       Code = bitc::TYPE_CODE_FUNCTION;
418       TypeVals.push_back(FT->isVarArg());
419       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
420       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
421         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
422       AbbrevToUse = FunctionAbbrev;
423       break;
424     }
425     case Type::StructTyID: {
426       StructType *ST = cast<StructType>(T);
427       // STRUCT: [ispacked, eltty x N]
428       TypeVals.push_back(ST->isPacked());
429       // Output all of the element types.
430       for (StructType::element_iterator I = ST->element_begin(),
431            E = ST->element_end(); I != E; ++I)
432         TypeVals.push_back(VE.getTypeID(*I));
433
434       if (ST->isLiteral()) {
435         Code = bitc::TYPE_CODE_STRUCT_ANON;
436         AbbrevToUse = StructAnonAbbrev;
437       } else {
438         if (ST->isOpaque()) {
439           Code = bitc::TYPE_CODE_OPAQUE;
440         } else {
441           Code = bitc::TYPE_CODE_STRUCT_NAMED;
442           AbbrevToUse = StructNamedAbbrev;
443         }
444
445         // Emit the name if it is present.
446         if (!ST->getName().empty())
447           WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
448                             StructNameAbbrev, Stream);
449       }
450       break;
451     }
452     case Type::ArrayTyID: {
453       ArrayType *AT = cast<ArrayType>(T);
454       // ARRAY: [numelts, eltty]
455       Code = bitc::TYPE_CODE_ARRAY;
456       TypeVals.push_back(AT->getNumElements());
457       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
458       AbbrevToUse = ArrayAbbrev;
459       break;
460     }
461     case Type::VectorTyID: {
462       VectorType *VT = cast<VectorType>(T);
463       // VECTOR [numelts, eltty]
464       Code = bitc::TYPE_CODE_VECTOR;
465       TypeVals.push_back(VT->getNumElements());
466       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
467       break;
468     }
469     }
470
471     // Emit the finished record.
472     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
473     TypeVals.clear();
474   }
475
476   Stream.ExitBlock();
477 }
478
479 static unsigned getEncodedLinkage(const GlobalValue &GV) {
480   switch (GV.getLinkage()) {
481   case GlobalValue::ExternalLinkage:
482     return 0;
483   case GlobalValue::WeakAnyLinkage:
484     return 16;
485   case GlobalValue::AppendingLinkage:
486     return 2;
487   case GlobalValue::InternalLinkage:
488     return 3;
489   case GlobalValue::LinkOnceAnyLinkage:
490     return 18;
491   case GlobalValue::ExternalWeakLinkage:
492     return 7;
493   case GlobalValue::CommonLinkage:
494     return 8;
495   case GlobalValue::PrivateLinkage:
496     return 9;
497   case GlobalValue::WeakODRLinkage:
498     return 17;
499   case GlobalValue::LinkOnceODRLinkage:
500     return 19;
501   case GlobalValue::AvailableExternallyLinkage:
502     return 12;
503   }
504   llvm_unreachable("Invalid linkage");
505 }
506
507 static unsigned getEncodedVisibility(const GlobalValue &GV) {
508   switch (GV.getVisibility()) {
509   case GlobalValue::DefaultVisibility:   return 0;
510   case GlobalValue::HiddenVisibility:    return 1;
511   case GlobalValue::ProtectedVisibility: return 2;
512   }
513   llvm_unreachable("Invalid visibility");
514 }
515
516 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
517   switch (GV.getDLLStorageClass()) {
518   case GlobalValue::DefaultStorageClass:   return 0;
519   case GlobalValue::DLLImportStorageClass: return 1;
520   case GlobalValue::DLLExportStorageClass: return 2;
521   }
522   llvm_unreachable("Invalid DLL storage class");
523 }
524
525 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
526   switch (GV.getThreadLocalMode()) {
527     case GlobalVariable::NotThreadLocal:         return 0;
528     case GlobalVariable::GeneralDynamicTLSModel: return 1;
529     case GlobalVariable::LocalDynamicTLSModel:   return 2;
530     case GlobalVariable::InitialExecTLSModel:    return 3;
531     case GlobalVariable::LocalExecTLSModel:      return 4;
532   }
533   llvm_unreachable("Invalid TLS model");
534 }
535
536 static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
537   switch (C.getSelectionKind()) {
538   case Comdat::Any:
539     return bitc::COMDAT_SELECTION_KIND_ANY;
540   case Comdat::ExactMatch:
541     return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
542   case Comdat::Largest:
543     return bitc::COMDAT_SELECTION_KIND_LARGEST;
544   case Comdat::NoDuplicates:
545     return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
546   case Comdat::SameSize:
547     return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
548   }
549   llvm_unreachable("Invalid selection kind");
550 }
551
552 static void writeComdats(const ValueEnumerator &VE, BitstreamWriter &Stream) {
553   SmallVector<uint16_t, 64> Vals;
554   for (const Comdat *C : VE.getComdats()) {
555     // COMDAT: [selection_kind, name]
556     Vals.push_back(getEncodedComdatSelectionKind(*C));
557     size_t Size = C->getName().size();
558     assert(isUInt<16>(Size));
559     Vals.push_back(Size);
560     for (char Chr : C->getName())
561       Vals.push_back((unsigned char)Chr);
562     Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
563     Vals.clear();
564   }
565 }
566
567 // Emit top-level description of module, including target triple, inline asm,
568 // descriptors for global variables, and function prototype info.
569 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
570                             BitstreamWriter &Stream) {
571   // Emit various pieces of data attached to a module.
572   if (!M->getTargetTriple().empty())
573     WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
574                       0/*TODO*/, Stream);
575   const std::string &DL = M->getDataLayoutStr();
576   if (!DL.empty())
577     WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream);
578   if (!M->getModuleInlineAsm().empty())
579     WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
580                       0/*TODO*/, Stream);
581
582   // Emit information about sections and GC, computing how many there are. Also
583   // compute the maximum alignment value.
584   std::map<std::string, unsigned> SectionMap;
585   std::map<std::string, unsigned> GCMap;
586   unsigned MaxAlignment = 0;
587   unsigned MaxGlobalType = 0;
588   for (const GlobalValue &GV : M->globals()) {
589     MaxAlignment = std::max(MaxAlignment, GV.getAlignment());
590     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getType()));
591     if (GV.hasSection()) {
592       // Give section names unique ID's.
593       unsigned &Entry = SectionMap[GV.getSection()];
594       if (!Entry) {
595         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
596                           0/*TODO*/, Stream);
597         Entry = SectionMap.size();
598       }
599     }
600   }
601   for (const Function &F : *M) {
602     MaxAlignment = std::max(MaxAlignment, F.getAlignment());
603     if (F.hasSection()) {
604       // Give section names unique ID's.
605       unsigned &Entry = SectionMap[F.getSection()];
606       if (!Entry) {
607         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
608                           0/*TODO*/, Stream);
609         Entry = SectionMap.size();
610       }
611     }
612     if (F.hasGC()) {
613       // Same for GC names.
614       unsigned &Entry = GCMap[F.getGC()];
615       if (!Entry) {
616         WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(),
617                           0/*TODO*/, Stream);
618         Entry = GCMap.size();
619       }
620     }
621   }
622
623   // Emit abbrev for globals, now that we know # sections and max alignment.
624   unsigned SimpleGVarAbbrev = 0;
625   if (!M->global_empty()) {
626     // Add an abbrev for common globals with no visibility or thread localness.
627     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
628     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
629     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
630                               Log2_32_Ceil(MaxGlobalType+1)));
631     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
632     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
633     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5));      // Linkage.
634     if (MaxAlignment == 0)                                      // Alignment.
635       Abbv->Add(BitCodeAbbrevOp(0));
636     else {
637       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
638       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
639                                Log2_32_Ceil(MaxEncAlignment+1)));
640     }
641     if (SectionMap.empty())                                    // Section.
642       Abbv->Add(BitCodeAbbrevOp(0));
643     else
644       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
645                                Log2_32_Ceil(SectionMap.size()+1)));
646     // Don't bother emitting vis + thread local.
647     SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
648   }
649
650   // Emit the global variable information.
651   SmallVector<unsigned, 64> Vals;
652   for (const GlobalVariable &GV : M->globals()) {
653     unsigned AbbrevToUse = 0;
654
655     // GLOBALVAR: [type, isconst, initid,
656     //             linkage, alignment, section, visibility, threadlocal,
657     //             unnamed_addr, externally_initialized, dllstorageclass,
658     //             comdat]
659     Vals.push_back(VE.getTypeID(GV.getType()));
660     Vals.push_back(GV.isConstant());
661     Vals.push_back(GV.isDeclaration() ? 0 :
662                    (VE.getValueID(GV.getInitializer()) + 1));
663     Vals.push_back(getEncodedLinkage(GV));
664     Vals.push_back(Log2_32(GV.getAlignment())+1);
665     Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0);
666     if (GV.isThreadLocal() ||
667         GV.getVisibility() != GlobalValue::DefaultVisibility ||
668         GV.hasUnnamedAddr() || GV.isExternallyInitialized() ||
669         GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
670         GV.hasComdat()) {
671       Vals.push_back(getEncodedVisibility(GV));
672       Vals.push_back(getEncodedThreadLocalMode(GV));
673       Vals.push_back(GV.hasUnnamedAddr());
674       Vals.push_back(GV.isExternallyInitialized());
675       Vals.push_back(getEncodedDLLStorageClass(GV));
676       Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
677     } else {
678       AbbrevToUse = SimpleGVarAbbrev;
679     }
680
681     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
682     Vals.clear();
683   }
684
685   // Emit the function proto information.
686   for (const Function &F : *M) {
687     // FUNCTION:  [type, callingconv, isproto, linkage, paramattrs, alignment,
688     //             section, visibility, gc, unnamed_addr, prologuedata,
689     //             dllstorageclass, comdat, prefixdata]
690     Vals.push_back(VE.getTypeID(F.getType()));
691     Vals.push_back(F.getCallingConv());
692     Vals.push_back(F.isDeclaration());
693     Vals.push_back(getEncodedLinkage(F));
694     Vals.push_back(VE.getAttributeID(F.getAttributes()));
695     Vals.push_back(Log2_32(F.getAlignment())+1);
696     Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0);
697     Vals.push_back(getEncodedVisibility(F));
698     Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
699     Vals.push_back(F.hasUnnamedAddr());
700     Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
701                                        : 0);
702     Vals.push_back(getEncodedDLLStorageClass(F));
703     Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
704     Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
705                                      : 0);
706
707     unsigned AbbrevToUse = 0;
708     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
709     Vals.clear();
710   }
711
712   // Emit the alias information.
713   for (const GlobalAlias &A : M->aliases()) {
714     // ALIAS: [alias type, aliasee val#, linkage, visibility]
715     Vals.push_back(VE.getTypeID(A.getType()));
716     Vals.push_back(VE.getValueID(A.getAliasee()));
717     Vals.push_back(getEncodedLinkage(A));
718     Vals.push_back(getEncodedVisibility(A));
719     Vals.push_back(getEncodedDLLStorageClass(A));
720     Vals.push_back(getEncodedThreadLocalMode(A));
721     Vals.push_back(A.hasUnnamedAddr());
722     unsigned AbbrevToUse = 0;
723     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
724     Vals.clear();
725   }
726 }
727
728 static uint64_t GetOptimizationFlags(const Value *V) {
729   uint64_t Flags = 0;
730
731   if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
732     if (OBO->hasNoSignedWrap())
733       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
734     if (OBO->hasNoUnsignedWrap())
735       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
736   } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
737     if (PEO->isExact())
738       Flags |= 1 << bitc::PEO_EXACT;
739   } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
740     if (FPMO->hasUnsafeAlgebra())
741       Flags |= FastMathFlags::UnsafeAlgebra;
742     if (FPMO->hasNoNaNs())
743       Flags |= FastMathFlags::NoNaNs;
744     if (FPMO->hasNoInfs())
745       Flags |= FastMathFlags::NoInfs;
746     if (FPMO->hasNoSignedZeros())
747       Flags |= FastMathFlags::NoSignedZeros;
748     if (FPMO->hasAllowReciprocal())
749       Flags |= FastMathFlags::AllowReciprocal;
750   }
751
752   return Flags;
753 }
754
755 static void WriteValueAsMetadata(const ValueAsMetadata *MD,
756                                  const ValueEnumerator &VE,
757                                  BitstreamWriter &Stream,
758                                  SmallVectorImpl<uint64_t> &Record) {
759   // Mimic an MDNode with a value as one operand.
760   Value *V = MD->getValue();
761   Record.push_back(VE.getTypeID(V->getType()));
762   Record.push_back(VE.getValueID(V));
763   Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
764   Record.clear();
765 }
766
767 static void WriteMDTuple(const MDTuple *N, const ValueEnumerator &VE,
768                          BitstreamWriter &Stream,
769                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
770   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
771     Metadata *MD = N->getOperand(i);
772     assert(!(MD && isa<LocalAsMetadata>(MD)) &&
773            "Unexpected function-local metadata");
774     Record.push_back(VE.getMetadataOrNullID(MD));
775   }
776   Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
777                                     : bitc::METADATA_NODE,
778                     Record, Abbrev);
779   Record.clear();
780 }
781
782 static void WriteMDLocation(const MDLocation *N, const ValueEnumerator &VE,
783                             BitstreamWriter &Stream,
784                             SmallVectorImpl<uint64_t> &Record,
785                             unsigned Abbrev) {
786   Record.push_back(N->isDistinct());
787   Record.push_back(N->getLine());
788   Record.push_back(N->getColumn());
789   Record.push_back(VE.getMetadataID(N->getScope()));
790   Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
791
792   Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
793   Record.clear();
794 }
795
796 static void WriteGenericDebugNode(const GenericDebugNode *N,
797                                   const ValueEnumerator &VE,
798                                   BitstreamWriter &Stream,
799                                   SmallVectorImpl<uint64_t> &Record,
800                                   unsigned Abbrev) {
801   Record.push_back(N->isDistinct());
802   Record.push_back(N->getTag());
803   Record.push_back(0); // Per-tag version field; unused for now.
804
805   for (auto &I : N->operands())
806     Record.push_back(VE.getMetadataOrNullID(I));
807
808   Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev);
809   Record.clear();
810 }
811
812 static uint64_t rotateSign(int64_t I) {
813   uint64_t U = I;
814   return I < 0 ? ~(U << 1) : U << 1;
815 }
816
817 static void WriteMDSubrange(const MDSubrange *N, const ValueEnumerator &,
818                             BitstreamWriter &Stream,
819                             SmallVectorImpl<uint64_t> &Record,
820                             unsigned Abbrev) {
821   Record.push_back(N->isDistinct());
822   Record.push_back(N->getCount());
823   Record.push_back(rotateSign(N->getLo()));
824
825   Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
826   Record.clear();
827 }
828
829 static void WriteMDEnumerator(const MDEnumerator *N, const ValueEnumerator &VE,
830                               BitstreamWriter &Stream,
831                               SmallVectorImpl<uint64_t> &Record,
832                               unsigned Abbrev) {
833   Record.push_back(N->isDistinct());
834   Record.push_back(rotateSign(N->getValue()));
835   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
836
837   Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
838   Record.clear();
839 }
840
841 static void WriteMDBasicType(const MDBasicType *N, const ValueEnumerator &VE,
842                              BitstreamWriter &Stream,
843                              SmallVectorImpl<uint64_t> &Record,
844                              unsigned Abbrev) {
845   Record.push_back(N->isDistinct());
846   Record.push_back(N->getTag());
847   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
848   Record.push_back(N->getSizeInBits());
849   Record.push_back(N->getAlignInBits());
850   Record.push_back(N->getEncoding());
851
852   Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
853   Record.clear();
854 }
855
856 static void WriteMDDerivedType(const MDDerivedType *N,
857                                const ValueEnumerator &VE,
858                                BitstreamWriter &Stream,
859                                SmallVectorImpl<uint64_t> &Record,
860                                unsigned Abbrev) {
861   Record.push_back(N->isDistinct());
862   Record.push_back(N->getTag());
863   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
864   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
865   Record.push_back(N->getLine());
866   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
867   Record.push_back(VE.getMetadataID(N->getBaseType()));
868   Record.push_back(N->getSizeInBits());
869   Record.push_back(N->getAlignInBits());
870   Record.push_back(N->getOffsetInBits());
871   Record.push_back(N->getFlags());
872   Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
873
874   Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
875   Record.clear();
876 }
877
878 static void WriteMDCompositeType(const MDCompositeType *N,
879                                  const ValueEnumerator &VE,
880                                  BitstreamWriter &Stream,
881                                  SmallVectorImpl<uint64_t> &Record,
882                                  unsigned Abbrev) {
883   Record.push_back(N->isDistinct());
884   Record.push_back(N->getTag());
885   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
886   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
887   Record.push_back(N->getLine());
888   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
889   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
890   Record.push_back(N->getSizeInBits());
891   Record.push_back(N->getAlignInBits());
892   Record.push_back(N->getOffsetInBits());
893   Record.push_back(N->getFlags());
894   Record.push_back(VE.getMetadataOrNullID(N->getElements()));
895   Record.push_back(N->getRuntimeLang());
896   Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
897   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams()));
898   Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
899
900   Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
901   Record.clear();
902 }
903
904 static void WriteMDSubroutineType(const MDSubroutineType *N,
905                                   const ValueEnumerator &VE,
906                                   BitstreamWriter &Stream,
907                                   SmallVectorImpl<uint64_t> &Record,
908                                   unsigned Abbrev) {
909   Record.push_back(N->isDistinct());
910   Record.push_back(N->getFlags());
911   Record.push_back(VE.getMetadataOrNullID(N->getTypeArray()));
912
913   Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
914   Record.clear();
915 }
916
917 static void WriteMDFile(const MDFile *N, const ValueEnumerator &VE,
918                         BitstreamWriter &Stream,
919                         SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
920   Record.push_back(N->isDistinct());
921   Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
922   Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
923
924   Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
925   Record.clear();
926 }
927
928 static void WriteMDCompileUnit(const MDCompileUnit *N,
929                                const ValueEnumerator &VE,
930                                BitstreamWriter &Stream,
931                                SmallVectorImpl<uint64_t> &Record,
932                                unsigned Abbrev) {
933   Record.push_back(N->isDistinct());
934   Record.push_back(N->getSourceLanguage());
935   Record.push_back(VE.getMetadataID(N->getFile()));
936   Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
937   Record.push_back(N->isOptimized());
938   Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
939   Record.push_back(N->getRuntimeVersion());
940   Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
941   Record.push_back(N->getEmissionKind());
942   Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes()));
943   Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes()));
944   Record.push_back(VE.getMetadataOrNullID(N->getSubprograms()));
945   Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables()));
946   Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities()));
947
948   Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
949   Record.clear();
950 }
951
952 static void WriteMDSubprogram(const MDSubprogram *N,
953                                const ValueEnumerator &VE,
954                                BitstreamWriter &Stream,
955                                SmallVectorImpl<uint64_t> &Record,
956                                unsigned Abbrev) {
957   Record.push_back(N->isDistinct());
958   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
959   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
960   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
961   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
962   Record.push_back(N->getLine());
963   Record.push_back(VE.getMetadataOrNullID(N->getType()));
964   Record.push_back(N->isLocalToUnit());
965   Record.push_back(N->isDefinition());
966   Record.push_back(N->getScopeLine());
967   Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
968   Record.push_back(N->getVirtuality());
969   Record.push_back(N->getVirtualIndex());
970   Record.push_back(N->getFlags());
971   Record.push_back(N->isOptimized());
972   Record.push_back(VE.getMetadataOrNullID(N->getFunction()));
973   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams()));
974   Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
975   Record.push_back(VE.getMetadataOrNullID(N->getVariables()));
976
977   Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
978   Record.clear();
979 }
980
981 static void WriteMDLexicalBlock(const MDLexicalBlock *N,
982                                const ValueEnumerator &VE,
983                                BitstreamWriter &Stream,
984                                SmallVectorImpl<uint64_t> &Record,
985                                unsigned Abbrev) {
986   Record.push_back(N->isDistinct());
987   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
988   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
989   Record.push_back(N->getLine());
990   Record.push_back(N->getColumn());
991
992   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
993   Record.clear();
994 }
995
996 static void WriteMDLexicalBlockFile(const MDLexicalBlockFile *N,
997                                     const ValueEnumerator &VE,
998                                     BitstreamWriter &Stream,
999                                     SmallVectorImpl<uint64_t> &Record,
1000                                     unsigned Abbrev) {
1001   Record.push_back(N->isDistinct());
1002   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1003   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1004   Record.push_back(N->getDiscriminator());
1005
1006   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
1007   Record.clear();
1008 }
1009
1010 static void WriteMDNamespace(const MDNamespace *N, const ValueEnumerator &VE,
1011                              BitstreamWriter &Stream,
1012                              SmallVectorImpl<uint64_t> &Record,
1013                              unsigned Abbrev) {
1014   Record.push_back(N->isDistinct());
1015   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1016   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1017   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1018   Record.push_back(N->getLine());
1019
1020   Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
1021   Record.clear();
1022 }
1023
1024 static void WriteMDTemplateTypeParameter(const MDTemplateTypeParameter *N,
1025                                          const ValueEnumerator &VE,
1026                                          BitstreamWriter &Stream,
1027                                          SmallVectorImpl<uint64_t> &Record,
1028                                          unsigned Abbrev) {
1029   Record.push_back(N->isDistinct());
1030   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1031   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1032   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1033
1034   Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
1035   Record.clear();
1036 }
1037
1038 static void WriteMDTemplateValueParameter(const MDTemplateValueParameter *N,
1039                                           const ValueEnumerator &VE,
1040                                           BitstreamWriter &Stream,
1041                                           SmallVectorImpl<uint64_t> &Record,
1042                                           unsigned Abbrev) {
1043   Record.push_back(N->isDistinct());
1044   Record.push_back(N->getTag());
1045   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1046   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1047   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1048   Record.push_back(VE.getMetadataOrNullID(N->getValue()));
1049
1050   Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
1051   Record.clear();
1052 }
1053
1054 static void WriteMDGlobalVariable(const MDGlobalVariable *N,
1055                                   const ValueEnumerator &VE,
1056                                   BitstreamWriter &Stream,
1057                                   SmallVectorImpl<uint64_t> &Record,
1058                                   unsigned Abbrev) {
1059   Record.push_back(N->isDistinct());
1060   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1061   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1062   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1063   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1064   Record.push_back(N->getLine());
1065   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1066   Record.push_back(N->isLocalToUnit());
1067   Record.push_back(N->isDefinition());
1068   Record.push_back(VE.getMetadataOrNullID(N->getVariable()));
1069   Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
1070
1071   Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
1072   Record.clear();
1073 }
1074
1075 static void WriteMDLocalVariable(const MDLocalVariable *,
1076                                  const ValueEnumerator &, BitstreamWriter &,
1077                                  SmallVectorImpl<uint64_t> &, unsigned) {
1078   llvm_unreachable("write not implemented");
1079 }
1080 static void WriteMDExpression(const MDExpression *, const ValueEnumerator &,
1081                               BitstreamWriter &, SmallVectorImpl<uint64_t> &,
1082                               unsigned) {
1083   llvm_unreachable("write not implemented");
1084 }
1085 static void WriteMDObjCProperty(const MDObjCProperty *, const ValueEnumerator &,
1086                                 BitstreamWriter &, SmallVectorImpl<uint64_t> &,
1087                                 unsigned) {
1088   llvm_unreachable("write not implemented");
1089 }
1090 static void WriteMDImportedEntity(const MDImportedEntity *,
1091                                   const ValueEnumerator &, BitstreamWriter &,
1092                                   SmallVectorImpl<uint64_t> &, unsigned) {
1093   llvm_unreachable("write not implemented");
1094 }
1095
1096 static void WriteModuleMetadata(const Module *M,
1097                                 const ValueEnumerator &VE,
1098                                 BitstreamWriter &Stream) {
1099   const auto &MDs = VE.getMDs();
1100   if (MDs.empty() && M->named_metadata_empty())
1101     return;
1102
1103   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
1104
1105   unsigned MDSAbbrev = 0;
1106   if (VE.hasMDString()) {
1107     // Abbrev for METADATA_STRING.
1108     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1109     Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
1110     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1111     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1112     MDSAbbrev = Stream.EmitAbbrev(Abbv);
1113   }
1114
1115   // Initialize MDNode abbreviations.
1116 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
1117 #include "llvm/IR/Metadata.def"
1118
1119   if (VE.hasMDLocation()) {
1120     // Abbrev for METADATA_LOCATION.
1121     //
1122     // Assume the column is usually under 128, and always output the inlined-at
1123     // location (it's never more expensive than building an array size 1).
1124     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1125     Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
1126     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1127     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1128     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1129     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1130     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1131     MDLocationAbbrev = Stream.EmitAbbrev(Abbv);
1132   }
1133
1134   if (VE.hasGenericDebugNode()) {
1135     // Abbrev for METADATA_GENERIC_DEBUG.
1136     //
1137     // Assume the column is usually under 128, and always output the inlined-at
1138     // location (it's never more expensive than building an array size 1).
1139     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1140     Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
1141     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1142     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1143     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1144     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1145     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1146     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1147     GenericDebugNodeAbbrev = Stream.EmitAbbrev(Abbv);
1148   }
1149
1150   unsigned NameAbbrev = 0;
1151   if (!M->named_metadata_empty()) {
1152     // Abbrev for METADATA_NAME.
1153     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1154     Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
1155     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1156     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1157     NameAbbrev = Stream.EmitAbbrev(Abbv);
1158   }
1159
1160   SmallVector<uint64_t, 64> Record;
1161   for (const Metadata *MD : MDs) {
1162     if (const MDNode *N = dyn_cast<MDNode>(MD)) {
1163       switch (N->getMetadataID()) {
1164       default:
1165         llvm_unreachable("Invalid MDNode subclass");
1166 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
1167   case Metadata::CLASS##Kind:                                                  \
1168     Write##CLASS(cast<CLASS>(N), VE, Stream, Record, CLASS##Abbrev);           \
1169     continue;
1170 #include "llvm/IR/Metadata.def"
1171       }
1172     }
1173     if (const auto *MDC = dyn_cast<ConstantAsMetadata>(MD)) {
1174       WriteValueAsMetadata(MDC, VE, Stream, Record);
1175       continue;
1176     }
1177     const MDString *MDS = cast<MDString>(MD);
1178     // Code: [strchar x N]
1179     Record.append(MDS->bytes_begin(), MDS->bytes_end());
1180
1181     // Emit the finished record.
1182     Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
1183     Record.clear();
1184   }
1185
1186   // Write named metadata.
1187   for (const NamedMDNode &NMD : M->named_metadata()) {
1188     // Write name.
1189     StringRef Str = NMD.getName();
1190     Record.append(Str.bytes_begin(), Str.bytes_end());
1191     Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev);
1192     Record.clear();
1193
1194     // Write named metadata operands.
1195     for (const MDNode *N : NMD.operands())
1196       Record.push_back(VE.getMetadataID(N));
1197     Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
1198     Record.clear();
1199   }
1200
1201   Stream.ExitBlock();
1202 }
1203
1204 static void WriteFunctionLocalMetadata(const Function &F,
1205                                        const ValueEnumerator &VE,
1206                                        BitstreamWriter &Stream) {
1207   bool StartedMetadataBlock = false;
1208   SmallVector<uint64_t, 64> Record;
1209   const SmallVectorImpl<const LocalAsMetadata *> &MDs =
1210       VE.getFunctionLocalMDs();
1211   for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
1212     assert(MDs[i] && "Expected valid function-local metadata");
1213     if (!StartedMetadataBlock) {
1214       Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
1215       StartedMetadataBlock = true;
1216     }
1217     WriteValueAsMetadata(MDs[i], VE, Stream, Record);
1218   }
1219
1220   if (StartedMetadataBlock)
1221     Stream.ExitBlock();
1222 }
1223
1224 static void WriteMetadataAttachment(const Function &F,
1225                                     const ValueEnumerator &VE,
1226                                     BitstreamWriter &Stream) {
1227   Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
1228
1229   SmallVector<uint64_t, 64> Record;
1230
1231   // Write metadata attachments
1232   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
1233   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1234
1235   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1236     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1237          I != E; ++I) {
1238       MDs.clear();
1239       I->getAllMetadataOtherThanDebugLoc(MDs);
1240
1241       // If no metadata, ignore instruction.
1242       if (MDs.empty()) continue;
1243
1244       Record.push_back(VE.getInstructionID(I));
1245
1246       for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
1247         Record.push_back(MDs[i].first);
1248         Record.push_back(VE.getMetadataID(MDs[i].second));
1249       }
1250       Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
1251       Record.clear();
1252     }
1253
1254   Stream.ExitBlock();
1255 }
1256
1257 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) {
1258   SmallVector<uint64_t, 64> Record;
1259
1260   // Write metadata kinds
1261   // METADATA_KIND - [n x [id, name]]
1262   SmallVector<StringRef, 8> Names;
1263   M->getMDKindNames(Names);
1264
1265   if (Names.empty()) return;
1266
1267   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
1268
1269   for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
1270     Record.push_back(MDKindID);
1271     StringRef KName = Names[MDKindID];
1272     Record.append(KName.begin(), KName.end());
1273
1274     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
1275     Record.clear();
1276   }
1277
1278   Stream.ExitBlock();
1279 }
1280
1281 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
1282   if ((int64_t)V >= 0)
1283     Vals.push_back(V << 1);
1284   else
1285     Vals.push_back((-V << 1) | 1);
1286 }
1287
1288 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
1289                            const ValueEnumerator &VE,
1290                            BitstreamWriter &Stream, bool isGlobal) {
1291   if (FirstVal == LastVal) return;
1292
1293   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
1294
1295   unsigned AggregateAbbrev = 0;
1296   unsigned String8Abbrev = 0;
1297   unsigned CString7Abbrev = 0;
1298   unsigned CString6Abbrev = 0;
1299   // If this is a constant pool for the module, emit module-specific abbrevs.
1300   if (isGlobal) {
1301     // Abbrev for CST_CODE_AGGREGATE.
1302     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1303     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
1304     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1305     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
1306     AggregateAbbrev = Stream.EmitAbbrev(Abbv);
1307
1308     // Abbrev for CST_CODE_STRING.
1309     Abbv = new BitCodeAbbrev();
1310     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
1311     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1312     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1313     String8Abbrev = Stream.EmitAbbrev(Abbv);
1314     // Abbrev for CST_CODE_CSTRING.
1315     Abbv = new BitCodeAbbrev();
1316     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
1317     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1318     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1319     CString7Abbrev = Stream.EmitAbbrev(Abbv);
1320     // Abbrev for CST_CODE_CSTRING.
1321     Abbv = new BitCodeAbbrev();
1322     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
1323     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1324     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1325     CString6Abbrev = Stream.EmitAbbrev(Abbv);
1326   }
1327
1328   SmallVector<uint64_t, 64> Record;
1329
1330   const ValueEnumerator::ValueList &Vals = VE.getValues();
1331   Type *LastTy = nullptr;
1332   for (unsigned i = FirstVal; i != LastVal; ++i) {
1333     const Value *V = Vals[i].first;
1334     // If we need to switch types, do so now.
1335     if (V->getType() != LastTy) {
1336       LastTy = V->getType();
1337       Record.push_back(VE.getTypeID(LastTy));
1338       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
1339                         CONSTANTS_SETTYPE_ABBREV);
1340       Record.clear();
1341     }
1342
1343     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
1344       Record.push_back(unsigned(IA->hasSideEffects()) |
1345                        unsigned(IA->isAlignStack()) << 1 |
1346                        unsigned(IA->getDialect()&1) << 2);
1347
1348       // Add the asm string.
1349       const std::string &AsmStr = IA->getAsmString();
1350       Record.push_back(AsmStr.size());
1351       for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
1352         Record.push_back(AsmStr[i]);
1353
1354       // Add the constraint string.
1355       const std::string &ConstraintStr = IA->getConstraintString();
1356       Record.push_back(ConstraintStr.size());
1357       for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
1358         Record.push_back(ConstraintStr[i]);
1359       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
1360       Record.clear();
1361       continue;
1362     }
1363     const Constant *C = cast<Constant>(V);
1364     unsigned Code = -1U;
1365     unsigned AbbrevToUse = 0;
1366     if (C->isNullValue()) {
1367       Code = bitc::CST_CODE_NULL;
1368     } else if (isa<UndefValue>(C)) {
1369       Code = bitc::CST_CODE_UNDEF;
1370     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
1371       if (IV->getBitWidth() <= 64) {
1372         uint64_t V = IV->getSExtValue();
1373         emitSignedInt64(Record, V);
1374         Code = bitc::CST_CODE_INTEGER;
1375         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
1376       } else {                             // Wide integers, > 64 bits in size.
1377         // We have an arbitrary precision integer value to write whose
1378         // bit width is > 64. However, in canonical unsigned integer
1379         // format it is likely that the high bits are going to be zero.
1380         // So, we only write the number of active words.
1381         unsigned NWords = IV->getValue().getActiveWords();
1382         const uint64_t *RawWords = IV->getValue().getRawData();
1383         for (unsigned i = 0; i != NWords; ++i) {
1384           emitSignedInt64(Record, RawWords[i]);
1385         }
1386         Code = bitc::CST_CODE_WIDE_INTEGER;
1387       }
1388     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
1389       Code = bitc::CST_CODE_FLOAT;
1390       Type *Ty = CFP->getType();
1391       if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
1392         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
1393       } else if (Ty->isX86_FP80Ty()) {
1394         // api needed to prevent premature destruction
1395         // bits are not in the same order as a normal i80 APInt, compensate.
1396         APInt api = CFP->getValueAPF().bitcastToAPInt();
1397         const uint64_t *p = api.getRawData();
1398         Record.push_back((p[1] << 48) | (p[0] >> 16));
1399         Record.push_back(p[0] & 0xffffLL);
1400       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
1401         APInt api = CFP->getValueAPF().bitcastToAPInt();
1402         const uint64_t *p = api.getRawData();
1403         Record.push_back(p[0]);
1404         Record.push_back(p[1]);
1405       } else {
1406         assert (0 && "Unknown FP type!");
1407       }
1408     } else if (isa<ConstantDataSequential>(C) &&
1409                cast<ConstantDataSequential>(C)->isString()) {
1410       const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
1411       // Emit constant strings specially.
1412       unsigned NumElts = Str->getNumElements();
1413       // If this is a null-terminated string, use the denser CSTRING encoding.
1414       if (Str->isCString()) {
1415         Code = bitc::CST_CODE_CSTRING;
1416         --NumElts;  // Don't encode the null, which isn't allowed by char6.
1417       } else {
1418         Code = bitc::CST_CODE_STRING;
1419         AbbrevToUse = String8Abbrev;
1420       }
1421       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
1422       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
1423       for (unsigned i = 0; i != NumElts; ++i) {
1424         unsigned char V = Str->getElementAsInteger(i);
1425         Record.push_back(V);
1426         isCStr7 &= (V & 128) == 0;
1427         if (isCStrChar6)
1428           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
1429       }
1430
1431       if (isCStrChar6)
1432         AbbrevToUse = CString6Abbrev;
1433       else if (isCStr7)
1434         AbbrevToUse = CString7Abbrev;
1435     } else if (const ConstantDataSequential *CDS =
1436                   dyn_cast<ConstantDataSequential>(C)) {
1437       Code = bitc::CST_CODE_DATA;
1438       Type *EltTy = CDS->getType()->getElementType();
1439       if (isa<IntegerType>(EltTy)) {
1440         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
1441           Record.push_back(CDS->getElementAsInteger(i));
1442       } else if (EltTy->isFloatTy()) {
1443         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1444           union { float F; uint32_t I; };
1445           F = CDS->getElementAsFloat(i);
1446           Record.push_back(I);
1447         }
1448       } else {
1449         assert(EltTy->isDoubleTy() && "Unknown ConstantData element type");
1450         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1451           union { double F; uint64_t I; };
1452           F = CDS->getElementAsDouble(i);
1453           Record.push_back(I);
1454         }
1455       }
1456     } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
1457                isa<ConstantVector>(C)) {
1458       Code = bitc::CST_CODE_AGGREGATE;
1459       for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
1460         Record.push_back(VE.getValueID(C->getOperand(i)));
1461       AbbrevToUse = AggregateAbbrev;
1462     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1463       switch (CE->getOpcode()) {
1464       default:
1465         if (Instruction::isCast(CE->getOpcode())) {
1466           Code = bitc::CST_CODE_CE_CAST;
1467           Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
1468           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1469           Record.push_back(VE.getValueID(C->getOperand(0)));
1470           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
1471         } else {
1472           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
1473           Code = bitc::CST_CODE_CE_BINOP;
1474           Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
1475           Record.push_back(VE.getValueID(C->getOperand(0)));
1476           Record.push_back(VE.getValueID(C->getOperand(1)));
1477           uint64_t Flags = GetOptimizationFlags(CE);
1478           if (Flags != 0)
1479             Record.push_back(Flags);
1480         }
1481         break;
1482       case Instruction::GetElementPtr:
1483         Code = bitc::CST_CODE_CE_GEP;
1484         if (cast<GEPOperator>(C)->isInBounds())
1485           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
1486         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
1487           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
1488           Record.push_back(VE.getValueID(C->getOperand(i)));
1489         }
1490         break;
1491       case Instruction::Select:
1492         Code = bitc::CST_CODE_CE_SELECT;
1493         Record.push_back(VE.getValueID(C->getOperand(0)));
1494         Record.push_back(VE.getValueID(C->getOperand(1)));
1495         Record.push_back(VE.getValueID(C->getOperand(2)));
1496         break;
1497       case Instruction::ExtractElement:
1498         Code = bitc::CST_CODE_CE_EXTRACTELT;
1499         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1500         Record.push_back(VE.getValueID(C->getOperand(0)));
1501         Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
1502         Record.push_back(VE.getValueID(C->getOperand(1)));
1503         break;
1504       case Instruction::InsertElement:
1505         Code = bitc::CST_CODE_CE_INSERTELT;
1506         Record.push_back(VE.getValueID(C->getOperand(0)));
1507         Record.push_back(VE.getValueID(C->getOperand(1)));
1508         Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
1509         Record.push_back(VE.getValueID(C->getOperand(2)));
1510         break;
1511       case Instruction::ShuffleVector:
1512         // If the return type and argument types are the same, this is a
1513         // standard shufflevector instruction.  If the types are different,
1514         // then the shuffle is widening or truncating the input vectors, and
1515         // the argument type must also be encoded.
1516         if (C->getType() == C->getOperand(0)->getType()) {
1517           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
1518         } else {
1519           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
1520           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1521         }
1522         Record.push_back(VE.getValueID(C->getOperand(0)));
1523         Record.push_back(VE.getValueID(C->getOperand(1)));
1524         Record.push_back(VE.getValueID(C->getOperand(2)));
1525         break;
1526       case Instruction::ICmp:
1527       case Instruction::FCmp:
1528         Code = bitc::CST_CODE_CE_CMP;
1529         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1530         Record.push_back(VE.getValueID(C->getOperand(0)));
1531         Record.push_back(VE.getValueID(C->getOperand(1)));
1532         Record.push_back(CE->getPredicate());
1533         break;
1534       }
1535     } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
1536       Code = bitc::CST_CODE_BLOCKADDRESS;
1537       Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
1538       Record.push_back(VE.getValueID(BA->getFunction()));
1539       Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
1540     } else {
1541 #ifndef NDEBUG
1542       C->dump();
1543 #endif
1544       llvm_unreachable("Unknown constant!");
1545     }
1546     Stream.EmitRecord(Code, Record, AbbrevToUse);
1547     Record.clear();
1548   }
1549
1550   Stream.ExitBlock();
1551 }
1552
1553 static void WriteModuleConstants(const ValueEnumerator &VE,
1554                                  BitstreamWriter &Stream) {
1555   const ValueEnumerator::ValueList &Vals = VE.getValues();
1556
1557   // Find the first constant to emit, which is the first non-globalvalue value.
1558   // We know globalvalues have been emitted by WriteModuleInfo.
1559   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
1560     if (!isa<GlobalValue>(Vals[i].first)) {
1561       WriteConstants(i, Vals.size(), VE, Stream, true);
1562       return;
1563     }
1564   }
1565 }
1566
1567 /// PushValueAndType - The file has to encode both the value and type id for
1568 /// many values, because we need to know what type to create for forward
1569 /// references.  However, most operands are not forward references, so this type
1570 /// field is not needed.
1571 ///
1572 /// This function adds V's value ID to Vals.  If the value ID is higher than the
1573 /// instruction ID, then it is a forward reference, and it also includes the
1574 /// type ID.  The value ID that is written is encoded relative to the InstID.
1575 static bool PushValueAndType(const Value *V, unsigned InstID,
1576                              SmallVectorImpl<unsigned> &Vals,
1577                              ValueEnumerator &VE) {
1578   unsigned ValID = VE.getValueID(V);
1579   // Make encoding relative to the InstID.
1580   Vals.push_back(InstID - ValID);
1581   if (ValID >= InstID) {
1582     Vals.push_back(VE.getTypeID(V->getType()));
1583     return true;
1584   }
1585   return false;
1586 }
1587
1588 /// pushValue - Like PushValueAndType, but where the type of the value is
1589 /// omitted (perhaps it was already encoded in an earlier operand).
1590 static void pushValue(const Value *V, unsigned InstID,
1591                       SmallVectorImpl<unsigned> &Vals,
1592                       ValueEnumerator &VE) {
1593   unsigned ValID = VE.getValueID(V);
1594   Vals.push_back(InstID - ValID);
1595 }
1596
1597 static void pushValueSigned(const Value *V, unsigned InstID,
1598                             SmallVectorImpl<uint64_t> &Vals,
1599                             ValueEnumerator &VE) {
1600   unsigned ValID = VE.getValueID(V);
1601   int64_t diff = ((int32_t)InstID - (int32_t)ValID);
1602   emitSignedInt64(Vals, diff);
1603 }
1604
1605 /// WriteInstruction - Emit an instruction to the specified stream.
1606 static void WriteInstruction(const Instruction &I, unsigned InstID,
1607                              ValueEnumerator &VE, BitstreamWriter &Stream,
1608                              SmallVectorImpl<unsigned> &Vals) {
1609   unsigned Code = 0;
1610   unsigned AbbrevToUse = 0;
1611   VE.setInstructionID(&I);
1612   switch (I.getOpcode()) {
1613   default:
1614     if (Instruction::isCast(I.getOpcode())) {
1615       Code = bitc::FUNC_CODE_INST_CAST;
1616       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1617         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
1618       Vals.push_back(VE.getTypeID(I.getType()));
1619       Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
1620     } else {
1621       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
1622       Code = bitc::FUNC_CODE_INST_BINOP;
1623       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1624         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
1625       pushValue(I.getOperand(1), InstID, Vals, VE);
1626       Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
1627       uint64_t Flags = GetOptimizationFlags(&I);
1628       if (Flags != 0) {
1629         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
1630           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
1631         Vals.push_back(Flags);
1632       }
1633     }
1634     break;
1635
1636   case Instruction::GetElementPtr:
1637     Code = bitc::FUNC_CODE_INST_GEP;
1638     if (cast<GEPOperator>(&I)->isInBounds())
1639       Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP;
1640     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1641       PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1642     break;
1643   case Instruction::ExtractValue: {
1644     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
1645     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1646     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
1647     for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
1648       Vals.push_back(*i);
1649     break;
1650   }
1651   case Instruction::InsertValue: {
1652     Code = bitc::FUNC_CODE_INST_INSERTVAL;
1653     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1654     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1655     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
1656     for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
1657       Vals.push_back(*i);
1658     break;
1659   }
1660   case Instruction::Select:
1661     Code = bitc::FUNC_CODE_INST_VSELECT;
1662     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1663     pushValue(I.getOperand(2), InstID, Vals, VE);
1664     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1665     break;
1666   case Instruction::ExtractElement:
1667     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
1668     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1669     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1670     break;
1671   case Instruction::InsertElement:
1672     Code = bitc::FUNC_CODE_INST_INSERTELT;
1673     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1674     pushValue(I.getOperand(1), InstID, Vals, VE);
1675     PushValueAndType(I.getOperand(2), InstID, Vals, VE);
1676     break;
1677   case Instruction::ShuffleVector:
1678     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
1679     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1680     pushValue(I.getOperand(1), InstID, Vals, VE);
1681     pushValue(I.getOperand(2), InstID, Vals, VE);
1682     break;
1683   case Instruction::ICmp:
1684   case Instruction::FCmp:
1685     // compare returning Int1Ty or vector of Int1Ty
1686     Code = bitc::FUNC_CODE_INST_CMP2;
1687     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1688     pushValue(I.getOperand(1), InstID, Vals, VE);
1689     Vals.push_back(cast<CmpInst>(I).getPredicate());
1690     break;
1691
1692   case Instruction::Ret:
1693     {
1694       Code = bitc::FUNC_CODE_INST_RET;
1695       unsigned NumOperands = I.getNumOperands();
1696       if (NumOperands == 0)
1697         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
1698       else if (NumOperands == 1) {
1699         if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1700           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
1701       } else {
1702         for (unsigned i = 0, e = NumOperands; i != e; ++i)
1703           PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1704       }
1705     }
1706     break;
1707   case Instruction::Br:
1708     {
1709       Code = bitc::FUNC_CODE_INST_BR;
1710       const BranchInst &II = cast<BranchInst>(I);
1711       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
1712       if (II.isConditional()) {
1713         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
1714         pushValue(II.getCondition(), InstID, Vals, VE);
1715       }
1716     }
1717     break;
1718   case Instruction::Switch:
1719     {
1720       Code = bitc::FUNC_CODE_INST_SWITCH;
1721       const SwitchInst &SI = cast<SwitchInst>(I);
1722       Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
1723       pushValue(SI.getCondition(), InstID, Vals, VE);
1724       Vals.push_back(VE.getValueID(SI.getDefaultDest()));
1725       for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
1726            i != e; ++i) {
1727         Vals.push_back(VE.getValueID(i.getCaseValue()));
1728         Vals.push_back(VE.getValueID(i.getCaseSuccessor()));
1729       }
1730     }
1731     break;
1732   case Instruction::IndirectBr:
1733     Code = bitc::FUNC_CODE_INST_INDIRECTBR;
1734     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1735     // Encode the address operand as relative, but not the basic blocks.
1736     pushValue(I.getOperand(0), InstID, Vals, VE);
1737     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
1738       Vals.push_back(VE.getValueID(I.getOperand(i)));
1739     break;
1740
1741   case Instruction::Invoke: {
1742     const InvokeInst *II = cast<InvokeInst>(&I);
1743     const Value *Callee(II->getCalledValue());
1744     PointerType *PTy = cast<PointerType>(Callee->getType());
1745     FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1746     Code = bitc::FUNC_CODE_INST_INVOKE;
1747
1748     Vals.push_back(VE.getAttributeID(II->getAttributes()));
1749     Vals.push_back(II->getCallingConv());
1750     Vals.push_back(VE.getValueID(II->getNormalDest()));
1751     Vals.push_back(VE.getValueID(II->getUnwindDest()));
1752     PushValueAndType(Callee, InstID, Vals, VE);
1753
1754     // Emit value #'s for the fixed parameters.
1755     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1756       pushValue(I.getOperand(i), InstID, Vals, VE);  // fixed param.
1757
1758     // Emit type/value pairs for varargs params.
1759     if (FTy->isVarArg()) {
1760       for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3;
1761            i != e; ++i)
1762         PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
1763     }
1764     break;
1765   }
1766   case Instruction::Resume:
1767     Code = bitc::FUNC_CODE_INST_RESUME;
1768     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1769     break;
1770   case Instruction::Unreachable:
1771     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
1772     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
1773     break;
1774
1775   case Instruction::PHI: {
1776     const PHINode &PN = cast<PHINode>(I);
1777     Code = bitc::FUNC_CODE_INST_PHI;
1778     // With the newer instruction encoding, forward references could give
1779     // negative valued IDs.  This is most common for PHIs, so we use
1780     // signed VBRs.
1781     SmallVector<uint64_t, 128> Vals64;
1782     Vals64.push_back(VE.getTypeID(PN.getType()));
1783     for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1784       pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE);
1785       Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
1786     }
1787     // Emit a Vals64 vector and exit.
1788     Stream.EmitRecord(Code, Vals64, AbbrevToUse);
1789     Vals64.clear();
1790     return;
1791   }
1792
1793   case Instruction::LandingPad: {
1794     const LandingPadInst &LP = cast<LandingPadInst>(I);
1795     Code = bitc::FUNC_CODE_INST_LANDINGPAD;
1796     Vals.push_back(VE.getTypeID(LP.getType()));
1797     PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE);
1798     Vals.push_back(LP.isCleanup());
1799     Vals.push_back(LP.getNumClauses());
1800     for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
1801       if (LP.isCatch(I))
1802         Vals.push_back(LandingPadInst::Catch);
1803       else
1804         Vals.push_back(LandingPadInst::Filter);
1805       PushValueAndType(LP.getClause(I), InstID, Vals, VE);
1806     }
1807     break;
1808   }
1809
1810   case Instruction::Alloca: {
1811     Code = bitc::FUNC_CODE_INST_ALLOCA;
1812     Vals.push_back(VE.getTypeID(I.getType()));
1813     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1814     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
1815     const AllocaInst &AI = cast<AllocaInst>(I);
1816     unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1;
1817     assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 &&
1818            "not enough bits for maximum alignment");
1819     assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64");
1820     AlignRecord |= AI.isUsedWithInAlloca() << 5;
1821     Vals.push_back(AlignRecord);
1822     break;
1823   }
1824
1825   case Instruction::Load:
1826     if (cast<LoadInst>(I).isAtomic()) {
1827       Code = bitc::FUNC_CODE_INST_LOADATOMIC;
1828       PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1829     } else {
1830       Code = bitc::FUNC_CODE_INST_LOAD;
1831       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
1832         AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
1833     }
1834     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
1835     Vals.push_back(cast<LoadInst>(I).isVolatile());
1836     if (cast<LoadInst>(I).isAtomic()) {
1837       Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering()));
1838       Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope()));
1839     }
1840     break;
1841   case Instruction::Store:
1842     if (cast<StoreInst>(I).isAtomic())
1843       Code = bitc::FUNC_CODE_INST_STOREATOMIC;
1844     else
1845       Code = bitc::FUNC_CODE_INST_STORE;
1846     PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
1847     pushValue(I.getOperand(0), InstID, Vals, VE);         // val.
1848     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
1849     Vals.push_back(cast<StoreInst>(I).isVolatile());
1850     if (cast<StoreInst>(I).isAtomic()) {
1851       Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering()));
1852       Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope()));
1853     }
1854     break;
1855   case Instruction::AtomicCmpXchg:
1856     Code = bitc::FUNC_CODE_INST_CMPXCHG;
1857     PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // ptrty + ptr
1858     pushValue(I.getOperand(1), InstID, Vals, VE);         // cmp.
1859     pushValue(I.getOperand(2), InstID, Vals, VE);         // newval.
1860     Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
1861     Vals.push_back(GetEncodedOrdering(
1862                      cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
1863     Vals.push_back(GetEncodedSynchScope(
1864                      cast<AtomicCmpXchgInst>(I).getSynchScope()));
1865     Vals.push_back(GetEncodedOrdering(
1866                      cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
1867     Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
1868     break;
1869   case Instruction::AtomicRMW:
1870     Code = bitc::FUNC_CODE_INST_ATOMICRMW;
1871     PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // ptrty + ptr
1872     pushValue(I.getOperand(1), InstID, Vals, VE);         // val.
1873     Vals.push_back(GetEncodedRMWOperation(
1874                      cast<AtomicRMWInst>(I).getOperation()));
1875     Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
1876     Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
1877     Vals.push_back(GetEncodedSynchScope(
1878                      cast<AtomicRMWInst>(I).getSynchScope()));
1879     break;
1880   case Instruction::Fence:
1881     Code = bitc::FUNC_CODE_INST_FENCE;
1882     Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering()));
1883     Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope()));
1884     break;
1885   case Instruction::Call: {
1886     const CallInst &CI = cast<CallInst>(I);
1887     PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType());
1888     FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1889
1890     Code = bitc::FUNC_CODE_INST_CALL;
1891
1892     Vals.push_back(VE.getAttributeID(CI.getAttributes()));
1893     Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) |
1894                    unsigned(CI.isMustTailCall()) << 14);
1895     PushValueAndType(CI.getCalledValue(), InstID, Vals, VE);  // Callee
1896
1897     // Emit value #'s for the fixed parameters.
1898     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
1899       // Check for labels (can happen with asm labels).
1900       if (FTy->getParamType(i)->isLabelTy())
1901         Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
1902       else
1903         pushValue(CI.getArgOperand(i), InstID, Vals, VE);  // fixed param.
1904     }
1905
1906     // Emit type/value pairs for varargs params.
1907     if (FTy->isVarArg()) {
1908       for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
1909            i != e; ++i)
1910         PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE);  // varargs
1911     }
1912     break;
1913   }
1914   case Instruction::VAArg:
1915     Code = bitc::FUNC_CODE_INST_VAARG;
1916     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
1917     pushValue(I.getOperand(0), InstID, Vals, VE); // valist.
1918     Vals.push_back(VE.getTypeID(I.getType())); // restype.
1919     break;
1920   }
1921
1922   Stream.EmitRecord(Code, Vals, AbbrevToUse);
1923   Vals.clear();
1924 }
1925
1926 // Emit names for globals/functions etc.
1927 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
1928                                   const ValueEnumerator &VE,
1929                                   BitstreamWriter &Stream) {
1930   if (VST.empty()) return;
1931   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
1932
1933   // FIXME: Set up the abbrev, we know how many values there are!
1934   // FIXME: We know if the type names can use 7-bit ascii.
1935   SmallVector<unsigned, 64> NameVals;
1936
1937   for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
1938        SI != SE; ++SI) {
1939
1940     const ValueName &Name = *SI;
1941
1942     // Figure out the encoding to use for the name.
1943     bool is7Bit = true;
1944     bool isChar6 = true;
1945     for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
1946          C != E; ++C) {
1947       if (isChar6)
1948         isChar6 = BitCodeAbbrevOp::isChar6(*C);
1949       if ((unsigned char)*C & 128) {
1950         is7Bit = false;
1951         break;  // don't bother scanning the rest.
1952       }
1953     }
1954
1955     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
1956
1957     // VST_ENTRY:   [valueid, namechar x N]
1958     // VST_BBENTRY: [bbid, namechar x N]
1959     unsigned Code;
1960     if (isa<BasicBlock>(SI->getValue())) {
1961       Code = bitc::VST_CODE_BBENTRY;
1962       if (isChar6)
1963         AbbrevToUse = VST_BBENTRY_6_ABBREV;
1964     } else {
1965       Code = bitc::VST_CODE_ENTRY;
1966       if (isChar6)
1967         AbbrevToUse = VST_ENTRY_6_ABBREV;
1968       else if (is7Bit)
1969         AbbrevToUse = VST_ENTRY_7_ABBREV;
1970     }
1971
1972     NameVals.push_back(VE.getValueID(SI->getValue()));
1973     for (const char *P = Name.getKeyData(),
1974          *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
1975       NameVals.push_back((unsigned char)*P);
1976
1977     // Emit the finished record.
1978     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
1979     NameVals.clear();
1980   }
1981   Stream.ExitBlock();
1982 }
1983
1984 static void WriteUseList(ValueEnumerator &VE, UseListOrder &&Order,
1985                          BitstreamWriter &Stream) {
1986   assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
1987   unsigned Code;
1988   if (isa<BasicBlock>(Order.V))
1989     Code = bitc::USELIST_CODE_BB;
1990   else
1991     Code = bitc::USELIST_CODE_DEFAULT;
1992
1993   SmallVector<uint64_t, 64> Record;
1994   for (unsigned I : Order.Shuffle)
1995     Record.push_back(I);
1996   Record.push_back(VE.getValueID(Order.V));
1997   Stream.EmitRecord(Code, Record);
1998 }
1999
2000 static void WriteUseListBlock(const Function *F, ValueEnumerator &VE,
2001                               BitstreamWriter &Stream) {
2002   auto hasMore = [&]() {
2003     return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
2004   };
2005   if (!hasMore())
2006     // Nothing to do.
2007     return;
2008
2009   Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
2010   while (hasMore()) {
2011     WriteUseList(VE, std::move(VE.UseListOrders.back()), Stream);
2012     VE.UseListOrders.pop_back();
2013   }
2014   Stream.ExitBlock();
2015 }
2016
2017 /// WriteFunction - Emit a function body to the module stream.
2018 static void WriteFunction(const Function &F, ValueEnumerator &VE,
2019                           BitstreamWriter &Stream) {
2020   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
2021   VE.incorporateFunction(F);
2022
2023   SmallVector<unsigned, 64> Vals;
2024
2025   // Emit the number of basic blocks, so the reader can create them ahead of
2026   // time.
2027   Vals.push_back(VE.getBasicBlocks().size());
2028   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
2029   Vals.clear();
2030
2031   // If there are function-local constants, emit them now.
2032   unsigned CstStart, CstEnd;
2033   VE.getFunctionConstantRange(CstStart, CstEnd);
2034   WriteConstants(CstStart, CstEnd, VE, Stream, false);
2035
2036   // If there is function-local metadata, emit it now.
2037   WriteFunctionLocalMetadata(F, VE, Stream);
2038
2039   // Keep a running idea of what the instruction ID is.
2040   unsigned InstID = CstEnd;
2041
2042   bool NeedsMetadataAttachment = false;
2043
2044   DebugLoc LastDL;
2045
2046   // Finally, emit all the instructions, in order.
2047   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
2048     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
2049          I != E; ++I) {
2050       WriteInstruction(*I, InstID, VE, Stream, Vals);
2051
2052       if (!I->getType()->isVoidTy())
2053         ++InstID;
2054
2055       // If the instruction has metadata, write a metadata attachment later.
2056       NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
2057
2058       // If the instruction has a debug location, emit it.
2059       DebugLoc DL = I->getDebugLoc();
2060       if (DL.isUnknown()) {
2061         // nothing todo.
2062       } else if (DL == LastDL) {
2063         // Just repeat the same debug loc as last time.
2064         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
2065       } else {
2066         MDNode *Scope, *IA;
2067         DL.getScopeAndInlinedAt(Scope, IA, I->getContext());
2068         assert(Scope && "Expected valid scope");
2069
2070         Vals.push_back(DL.getLine());
2071         Vals.push_back(DL.getCol());
2072         Vals.push_back(VE.getMetadataOrNullID(Scope));
2073         Vals.push_back(VE.getMetadataOrNullID(IA));
2074         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
2075         Vals.clear();
2076
2077         LastDL = DL;
2078       }
2079     }
2080
2081   // Emit names for all the instructions etc.
2082   WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
2083
2084   if (NeedsMetadataAttachment)
2085     WriteMetadataAttachment(F, VE, Stream);
2086   if (shouldPreserveBitcodeUseListOrder())
2087     WriteUseListBlock(&F, VE, Stream);
2088   VE.purgeFunction();
2089   Stream.ExitBlock();
2090 }
2091
2092 // Emit blockinfo, which defines the standard abbreviations etc.
2093 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
2094   // We only want to emit block info records for blocks that have multiple
2095   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
2096   // Other blocks can define their abbrevs inline.
2097   Stream.EnterBlockInfoBlock(2);
2098
2099   { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
2100     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2101     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
2102     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2103     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2104     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2105     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2106                                    Abbv) != VST_ENTRY_8_ABBREV)
2107       llvm_unreachable("Unexpected abbrev ordering!");
2108   }
2109
2110   { // 7-bit fixed width VST_ENTRY strings.
2111     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2112     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
2113     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2114     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2115     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2116     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2117                                    Abbv) != VST_ENTRY_7_ABBREV)
2118       llvm_unreachable("Unexpected abbrev ordering!");
2119   }
2120   { // 6-bit char6 VST_ENTRY strings.
2121     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2122     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
2123     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2124     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2125     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2126     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2127                                    Abbv) != VST_ENTRY_6_ABBREV)
2128       llvm_unreachable("Unexpected abbrev ordering!");
2129   }
2130   { // 6-bit char6 VST_BBENTRY strings.
2131     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2132     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
2133     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2134     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2135     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2136     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2137                                    Abbv) != VST_BBENTRY_6_ABBREV)
2138       llvm_unreachable("Unexpected abbrev ordering!");
2139   }
2140
2141
2142
2143   { // SETTYPE abbrev for CONSTANTS_BLOCK.
2144     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2145     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
2146     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
2147                               Log2_32_Ceil(VE.getTypes().size()+1)));
2148     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
2149                                    Abbv) != CONSTANTS_SETTYPE_ABBREV)
2150       llvm_unreachable("Unexpected abbrev ordering!");
2151   }
2152
2153   { // INTEGER abbrev for CONSTANTS_BLOCK.
2154     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2155     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
2156     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2157     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
2158                                    Abbv) != CONSTANTS_INTEGER_ABBREV)
2159       llvm_unreachable("Unexpected abbrev ordering!");
2160   }
2161
2162   { // CE_CAST abbrev for CONSTANTS_BLOCK.
2163     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2164     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
2165     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
2166     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
2167                               Log2_32_Ceil(VE.getTypes().size()+1)));
2168     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
2169
2170     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
2171                                    Abbv) != CONSTANTS_CE_CAST_Abbrev)
2172       llvm_unreachable("Unexpected abbrev ordering!");
2173   }
2174   { // NULL abbrev for CONSTANTS_BLOCK.
2175     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2176     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
2177     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
2178                                    Abbv) != CONSTANTS_NULL_Abbrev)
2179       llvm_unreachable("Unexpected abbrev ordering!");
2180   }
2181
2182   // FIXME: This should only use space for first class types!
2183
2184   { // INST_LOAD abbrev for FUNCTION_BLOCK.
2185     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2186     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
2187     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
2188     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
2189     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
2190     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2191                                    Abbv) != FUNCTION_INST_LOAD_ABBREV)
2192       llvm_unreachable("Unexpected abbrev ordering!");
2193   }
2194   { // INST_BINOP abbrev for FUNCTION_BLOCK.
2195     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2196     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
2197     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
2198     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
2199     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
2200     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2201                                    Abbv) != FUNCTION_INST_BINOP_ABBREV)
2202       llvm_unreachable("Unexpected abbrev ordering!");
2203   }
2204   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
2205     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2206     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
2207     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
2208     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
2209     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
2210     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
2211     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2212                                    Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
2213       llvm_unreachable("Unexpected abbrev ordering!");
2214   }
2215   { // INST_CAST abbrev for FUNCTION_BLOCK.
2216     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2217     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
2218     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
2219     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
2220                               Log2_32_Ceil(VE.getTypes().size()+1)));
2221     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
2222     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2223                                    Abbv) != FUNCTION_INST_CAST_ABBREV)
2224       llvm_unreachable("Unexpected abbrev ordering!");
2225   }
2226
2227   { // INST_RET abbrev for FUNCTION_BLOCK.
2228     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2229     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
2230     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2231                                    Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
2232       llvm_unreachable("Unexpected abbrev ordering!");
2233   }
2234   { // INST_RET abbrev for FUNCTION_BLOCK.
2235     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2236     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
2237     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
2238     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2239                                    Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
2240       llvm_unreachable("Unexpected abbrev ordering!");
2241   }
2242   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
2243     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2244     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
2245     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2246                                    Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
2247       llvm_unreachable("Unexpected abbrev ordering!");
2248   }
2249
2250   Stream.ExitBlock();
2251 }
2252
2253 /// WriteModule - Emit the specified module to the bitstream.
2254 static void WriteModule(const Module *M, BitstreamWriter &Stream) {
2255   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
2256
2257   SmallVector<unsigned, 1> Vals;
2258   unsigned CurVersion = 1;
2259   Vals.push_back(CurVersion);
2260   Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
2261
2262   // Analyze the module, enumerating globals, functions, etc.
2263   ValueEnumerator VE(*M);
2264
2265   // Emit blockinfo, which defines the standard abbreviations etc.
2266   WriteBlockInfo(VE, Stream);
2267
2268   // Emit information about attribute groups.
2269   WriteAttributeGroupTable(VE, Stream);
2270
2271   // Emit information about parameter attributes.
2272   WriteAttributeTable(VE, Stream);
2273
2274   // Emit information describing all of the types in the module.
2275   WriteTypeTable(VE, Stream);
2276
2277   writeComdats(VE, Stream);
2278
2279   // Emit top-level description of module, including target triple, inline asm,
2280   // descriptors for global variables, and function prototype info.
2281   WriteModuleInfo(M, VE, Stream);
2282
2283   // Emit constants.
2284   WriteModuleConstants(VE, Stream);
2285
2286   // Emit metadata.
2287   WriteModuleMetadata(M, VE, Stream);
2288
2289   // Emit metadata.
2290   WriteModuleMetadataStore(M, Stream);
2291
2292   // Emit names for globals/functions etc.
2293   WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
2294
2295   // Emit module-level use-lists.
2296   if (shouldPreserveBitcodeUseListOrder())
2297     WriteUseListBlock(nullptr, VE, Stream);
2298
2299   // Emit function bodies.
2300   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F)
2301     if (!F->isDeclaration())
2302       WriteFunction(*F, VE, Stream);
2303
2304   Stream.ExitBlock();
2305 }
2306
2307 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
2308 /// header and trailer to make it compatible with the system archiver.  To do
2309 /// this we emit the following header, and then emit a trailer that pads the
2310 /// file out to be a multiple of 16 bytes.
2311 ///
2312 /// struct bc_header {
2313 ///   uint32_t Magic;         // 0x0B17C0DE
2314 ///   uint32_t Version;       // Version, currently always 0.
2315 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
2316 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
2317 ///   uint32_t CPUType;       // CPU specifier.
2318 ///   ... potentially more later ...
2319 /// };
2320 enum {
2321   DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
2322   DarwinBCHeaderSize = 5*4
2323 };
2324
2325 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
2326                                uint32_t &Position) {
2327   Buffer[Position + 0] = (unsigned char) (Value >>  0);
2328   Buffer[Position + 1] = (unsigned char) (Value >>  8);
2329   Buffer[Position + 2] = (unsigned char) (Value >> 16);
2330   Buffer[Position + 3] = (unsigned char) (Value >> 24);
2331   Position += 4;
2332 }
2333
2334 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
2335                                          const Triple &TT) {
2336   unsigned CPUType = ~0U;
2337
2338   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
2339   // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
2340   // number from /usr/include/mach/machine.h.  It is ok to reproduce the
2341   // specific constants here because they are implicitly part of the Darwin ABI.
2342   enum {
2343     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
2344     DARWIN_CPU_TYPE_X86        = 7,
2345     DARWIN_CPU_TYPE_ARM        = 12,
2346     DARWIN_CPU_TYPE_POWERPC    = 18
2347   };
2348
2349   Triple::ArchType Arch = TT.getArch();
2350   if (Arch == Triple::x86_64)
2351     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
2352   else if (Arch == Triple::x86)
2353     CPUType = DARWIN_CPU_TYPE_X86;
2354   else if (Arch == Triple::ppc)
2355     CPUType = DARWIN_CPU_TYPE_POWERPC;
2356   else if (Arch == Triple::ppc64)
2357     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
2358   else if (Arch == Triple::arm || Arch == Triple::thumb)
2359     CPUType = DARWIN_CPU_TYPE_ARM;
2360
2361   // Traditional Bitcode starts after header.
2362   assert(Buffer.size() >= DarwinBCHeaderSize &&
2363          "Expected header size to be reserved");
2364   unsigned BCOffset = DarwinBCHeaderSize;
2365   unsigned BCSize = Buffer.size()-DarwinBCHeaderSize;
2366
2367   // Write the magic and version.
2368   unsigned Position = 0;
2369   WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position);
2370   WriteInt32ToBuffer(0          , Buffer, Position); // Version.
2371   WriteInt32ToBuffer(BCOffset   , Buffer, Position);
2372   WriteInt32ToBuffer(BCSize     , Buffer, Position);
2373   WriteInt32ToBuffer(CPUType    , Buffer, Position);
2374
2375   // If the file is not a multiple of 16 bytes, insert dummy padding.
2376   while (Buffer.size() & 15)
2377     Buffer.push_back(0);
2378 }
2379
2380 /// WriteBitcodeToFile - Write the specified module to the specified output
2381 /// stream.
2382 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
2383   SmallVector<char, 0> Buffer;
2384   Buffer.reserve(256*1024);
2385
2386   // If this is darwin or another generic macho target, reserve space for the
2387   // header.
2388   Triple TT(M->getTargetTriple());
2389   if (TT.isOSDarwin())
2390     Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0);
2391
2392   // Emit the module into the buffer.
2393   {
2394     BitstreamWriter Stream(Buffer);
2395
2396     // Emit the file header.
2397     Stream.Emit((unsigned)'B', 8);
2398     Stream.Emit((unsigned)'C', 8);
2399     Stream.Emit(0x0, 4);
2400     Stream.Emit(0xC, 4);
2401     Stream.Emit(0xE, 4);
2402     Stream.Emit(0xD, 4);
2403
2404     // Emit the module.
2405     WriteModule(M, Stream);
2406   }
2407
2408   if (TT.isOSDarwin())
2409     EmitDarwinBCHeaderAndTrailer(Buffer, TT);
2410
2411   // Write the generated bitstream to "Out".
2412   Out.write((char*)&Buffer.front(), Buffer.size());
2413 }