845bbfb8d36366365ae7f0496a3b779ac57ceaec
[oota-llvm.git] / lib / Bitcode / Writer / BitcodeWriter.cpp
1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "ValueEnumerator.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/Triple.h"
18 #include "llvm/Bitcode/BitstreamWriter.h"
19 #include "llvm/Bitcode/LLVMBitCodes.h"
20 #include "llvm/IR/CallSite.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DebugInfoMetadata.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/InlineAsm.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/IR/IntrinsicInst.h"
28 #include "llvm/IR/Module.h"
29 #include "llvm/IR/Operator.h"
30 #include "llvm/IR/UseListOrder.h"
31 #include "llvm/IR/ValueSymbolTable.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/MathExtras.h"
35 #include "llvm/Support/Program.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include <cctype>
38 #include <map>
39 using namespace llvm;
40
41 /// These are manifest constants used by the bitcode writer. They do not need to
42 /// be kept in sync with the reader, but need to be consistent within this file.
43 enum {
44   // VALUE_SYMTAB_BLOCK abbrev id's.
45   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
46   VST_ENTRY_7_ABBREV,
47   VST_ENTRY_6_ABBREV,
48   VST_BBENTRY_6_ABBREV,
49
50   // CONSTANTS_BLOCK abbrev id's.
51   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
52   CONSTANTS_INTEGER_ABBREV,
53   CONSTANTS_CE_CAST_Abbrev,
54   CONSTANTS_NULL_Abbrev,
55
56   // FUNCTION_BLOCK abbrev id's.
57   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
58   FUNCTION_INST_BINOP_ABBREV,
59   FUNCTION_INST_BINOP_FLAGS_ABBREV,
60   FUNCTION_INST_CAST_ABBREV,
61   FUNCTION_INST_RET_VOID_ABBREV,
62   FUNCTION_INST_RET_VAL_ABBREV,
63   FUNCTION_INST_UNREACHABLE_ABBREV,
64   FUNCTION_INST_GEP_ABBREV,
65 };
66
67 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
68   switch (Opcode) {
69   default: llvm_unreachable("Unknown cast instruction!");
70   case Instruction::Trunc   : return bitc::CAST_TRUNC;
71   case Instruction::ZExt    : return bitc::CAST_ZEXT;
72   case Instruction::SExt    : return bitc::CAST_SEXT;
73   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
74   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
75   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
76   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
77   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
78   case Instruction::FPExt   : return bitc::CAST_FPEXT;
79   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
80   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
81   case Instruction::BitCast : return bitc::CAST_BITCAST;
82   case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
83   }
84 }
85
86 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
87   switch (Opcode) {
88   default: llvm_unreachable("Unknown binary instruction!");
89   case Instruction::Add:
90   case Instruction::FAdd: return bitc::BINOP_ADD;
91   case Instruction::Sub:
92   case Instruction::FSub: return bitc::BINOP_SUB;
93   case Instruction::Mul:
94   case Instruction::FMul: return bitc::BINOP_MUL;
95   case Instruction::UDiv: return bitc::BINOP_UDIV;
96   case Instruction::FDiv:
97   case Instruction::SDiv: return bitc::BINOP_SDIV;
98   case Instruction::URem: return bitc::BINOP_UREM;
99   case Instruction::FRem:
100   case Instruction::SRem: return bitc::BINOP_SREM;
101   case Instruction::Shl:  return bitc::BINOP_SHL;
102   case Instruction::LShr: return bitc::BINOP_LSHR;
103   case Instruction::AShr: return bitc::BINOP_ASHR;
104   case Instruction::And:  return bitc::BINOP_AND;
105   case Instruction::Or:   return bitc::BINOP_OR;
106   case Instruction::Xor:  return bitc::BINOP_XOR;
107   }
108 }
109
110 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
111   switch (Op) {
112   default: llvm_unreachable("Unknown RMW operation!");
113   case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
114   case AtomicRMWInst::Add: return bitc::RMW_ADD;
115   case AtomicRMWInst::Sub: return bitc::RMW_SUB;
116   case AtomicRMWInst::And: return bitc::RMW_AND;
117   case AtomicRMWInst::Nand: return bitc::RMW_NAND;
118   case AtomicRMWInst::Or: return bitc::RMW_OR;
119   case AtomicRMWInst::Xor: return bitc::RMW_XOR;
120   case AtomicRMWInst::Max: return bitc::RMW_MAX;
121   case AtomicRMWInst::Min: return bitc::RMW_MIN;
122   case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
123   case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
124   }
125 }
126
127 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) {
128   switch (Ordering) {
129   case NotAtomic: return bitc::ORDERING_NOTATOMIC;
130   case Unordered: return bitc::ORDERING_UNORDERED;
131   case Monotonic: return bitc::ORDERING_MONOTONIC;
132   case Acquire: return bitc::ORDERING_ACQUIRE;
133   case Release: return bitc::ORDERING_RELEASE;
134   case AcquireRelease: return bitc::ORDERING_ACQREL;
135   case SequentiallyConsistent: return bitc::ORDERING_SEQCST;
136   }
137   llvm_unreachable("Invalid ordering");
138 }
139
140 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) {
141   switch (SynchScope) {
142   case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD;
143   case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD;
144   }
145   llvm_unreachable("Invalid synch scope");
146 }
147
148 static void WriteStringRecord(unsigned Code, StringRef Str,
149                               unsigned AbbrevToUse, BitstreamWriter &Stream) {
150   SmallVector<unsigned, 64> Vals;
151
152   // Code: [strchar x N]
153   for (unsigned i = 0, e = Str.size(); i != e; ++i) {
154     if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
155       AbbrevToUse = 0;
156     Vals.push_back(Str[i]);
157   }
158
159   // Emit the finished record.
160   Stream.EmitRecord(Code, Vals, AbbrevToUse);
161 }
162
163 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
164   switch (Kind) {
165   case Attribute::Alignment:
166     return bitc::ATTR_KIND_ALIGNMENT;
167   case Attribute::AlwaysInline:
168     return bitc::ATTR_KIND_ALWAYS_INLINE;
169   case Attribute::ArgMemOnly:
170     return bitc::ATTR_KIND_ARGMEMONLY;
171   case Attribute::Builtin:
172     return bitc::ATTR_KIND_BUILTIN;
173   case Attribute::ByVal:
174     return bitc::ATTR_KIND_BY_VAL;
175   case Attribute::Convergent:
176     return bitc::ATTR_KIND_CONVERGENT;
177   case Attribute::InAlloca:
178     return bitc::ATTR_KIND_IN_ALLOCA;
179   case Attribute::Cold:
180     return bitc::ATTR_KIND_COLD;
181   case Attribute::InlineHint:
182     return bitc::ATTR_KIND_INLINE_HINT;
183   case Attribute::InReg:
184     return bitc::ATTR_KIND_IN_REG;
185   case Attribute::JumpTable:
186     return bitc::ATTR_KIND_JUMP_TABLE;
187   case Attribute::MinSize:
188     return bitc::ATTR_KIND_MIN_SIZE;
189   case Attribute::Naked:
190     return bitc::ATTR_KIND_NAKED;
191   case Attribute::Nest:
192     return bitc::ATTR_KIND_NEST;
193   case Attribute::NoAlias:
194     return bitc::ATTR_KIND_NO_ALIAS;
195   case Attribute::NoBuiltin:
196     return bitc::ATTR_KIND_NO_BUILTIN;
197   case Attribute::NoCapture:
198     return bitc::ATTR_KIND_NO_CAPTURE;
199   case Attribute::NoDuplicate:
200     return bitc::ATTR_KIND_NO_DUPLICATE;
201   case Attribute::NoImplicitFloat:
202     return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
203   case Attribute::NoInline:
204     return bitc::ATTR_KIND_NO_INLINE;
205   case Attribute::NoRecurse:
206     return bitc::ATTR_KIND_NO_RECURSE;
207   case Attribute::NonLazyBind:
208     return bitc::ATTR_KIND_NON_LAZY_BIND;
209   case Attribute::NonNull:
210     return bitc::ATTR_KIND_NON_NULL;
211   case Attribute::Dereferenceable:
212     return bitc::ATTR_KIND_DEREFERENCEABLE;
213   case Attribute::DereferenceableOrNull:
214     return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
215   case Attribute::NoRedZone:
216     return bitc::ATTR_KIND_NO_RED_ZONE;
217   case Attribute::NoReturn:
218     return bitc::ATTR_KIND_NO_RETURN;
219   case Attribute::NoUnwind:
220     return bitc::ATTR_KIND_NO_UNWIND;
221   case Attribute::OptimizeForSize:
222     return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
223   case Attribute::OptimizeNone:
224     return bitc::ATTR_KIND_OPTIMIZE_NONE;
225   case Attribute::ReadNone:
226     return bitc::ATTR_KIND_READ_NONE;
227   case Attribute::ReadOnly:
228     return bitc::ATTR_KIND_READ_ONLY;
229   case Attribute::Returned:
230     return bitc::ATTR_KIND_RETURNED;
231   case Attribute::ReturnsTwice:
232     return bitc::ATTR_KIND_RETURNS_TWICE;
233   case Attribute::SExt:
234     return bitc::ATTR_KIND_S_EXT;
235   case Attribute::StackAlignment:
236     return bitc::ATTR_KIND_STACK_ALIGNMENT;
237   case Attribute::StackProtect:
238     return bitc::ATTR_KIND_STACK_PROTECT;
239   case Attribute::StackProtectReq:
240     return bitc::ATTR_KIND_STACK_PROTECT_REQ;
241   case Attribute::StackProtectStrong:
242     return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
243   case Attribute::SafeStack:
244     return bitc::ATTR_KIND_SAFESTACK;
245   case Attribute::StructRet:
246     return bitc::ATTR_KIND_STRUCT_RET;
247   case Attribute::SanitizeAddress:
248     return bitc::ATTR_KIND_SANITIZE_ADDRESS;
249   case Attribute::SanitizeThread:
250     return bitc::ATTR_KIND_SANITIZE_THREAD;
251   case Attribute::SanitizeMemory:
252     return bitc::ATTR_KIND_SANITIZE_MEMORY;
253   case Attribute::UWTable:
254     return bitc::ATTR_KIND_UW_TABLE;
255   case Attribute::ZExt:
256     return bitc::ATTR_KIND_Z_EXT;
257   case Attribute::EndAttrKinds:
258     llvm_unreachable("Can not encode end-attribute kinds marker.");
259   case Attribute::None:
260     llvm_unreachable("Can not encode none-attribute.");
261   }
262
263   llvm_unreachable("Trying to encode unknown attribute");
264 }
265
266 static void WriteAttributeGroupTable(const ValueEnumerator &VE,
267                                      BitstreamWriter &Stream) {
268   const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups();
269   if (AttrGrps.empty()) return;
270
271   Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
272
273   SmallVector<uint64_t, 64> Record;
274   for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) {
275     AttributeSet AS = AttrGrps[i];
276     for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) {
277       AttributeSet A = AS.getSlotAttributes(i);
278
279       Record.push_back(VE.getAttributeGroupID(A));
280       Record.push_back(AS.getSlotIndex(i));
281
282       for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0);
283            I != E; ++I) {
284         Attribute Attr = *I;
285         if (Attr.isEnumAttribute()) {
286           Record.push_back(0);
287           Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
288         } else if (Attr.isIntAttribute()) {
289           Record.push_back(1);
290           Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
291           Record.push_back(Attr.getValueAsInt());
292         } else {
293           StringRef Kind = Attr.getKindAsString();
294           StringRef Val = Attr.getValueAsString();
295
296           Record.push_back(Val.empty() ? 3 : 4);
297           Record.append(Kind.begin(), Kind.end());
298           Record.push_back(0);
299           if (!Val.empty()) {
300             Record.append(Val.begin(), Val.end());
301             Record.push_back(0);
302           }
303         }
304       }
305
306       Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
307       Record.clear();
308     }
309   }
310
311   Stream.ExitBlock();
312 }
313
314 static void WriteAttributeTable(const ValueEnumerator &VE,
315                                 BitstreamWriter &Stream) {
316   const std::vector<AttributeSet> &Attrs = VE.getAttributes();
317   if (Attrs.empty()) return;
318
319   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
320
321   SmallVector<uint64_t, 64> Record;
322   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
323     const AttributeSet &A = Attrs[i];
324     for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i)
325       Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i)));
326
327     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
328     Record.clear();
329   }
330
331   Stream.ExitBlock();
332 }
333
334 /// WriteTypeTable - Write out the type table for a module.
335 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
336   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
337
338   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
339   SmallVector<uint64_t, 64> TypeVals;
340
341   uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies();
342
343   // Abbrev for TYPE_CODE_POINTER.
344   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
345   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
346   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
347   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
348   unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
349
350   // Abbrev for TYPE_CODE_FUNCTION.
351   Abbv = new BitCodeAbbrev();
352   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
353   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
354   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
355   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
356
357   unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
358
359   // Abbrev for TYPE_CODE_STRUCT_ANON.
360   Abbv = new BitCodeAbbrev();
361   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
362   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
363   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
364   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
365
366   unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv);
367
368   // Abbrev for TYPE_CODE_STRUCT_NAME.
369   Abbv = new BitCodeAbbrev();
370   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
371   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
372   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
373   unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv);
374
375   // Abbrev for TYPE_CODE_STRUCT_NAMED.
376   Abbv = new BitCodeAbbrev();
377   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
378   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
379   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
380   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
381
382   unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv);
383
384   // Abbrev for TYPE_CODE_ARRAY.
385   Abbv = new BitCodeAbbrev();
386   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
387   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
388   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
389
390   unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
391
392   // Emit an entry count so the reader can reserve space.
393   TypeVals.push_back(TypeList.size());
394   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
395   TypeVals.clear();
396
397   // Loop over all of the types, emitting each in turn.
398   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
399     Type *T = TypeList[i];
400     int AbbrevToUse = 0;
401     unsigned Code = 0;
402
403     switch (T->getTypeID()) {
404     case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;      break;
405     case Type::HalfTyID:      Code = bitc::TYPE_CODE_HALF;      break;
406     case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;     break;
407     case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE;    break;
408     case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80;  break;
409     case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128;     break;
410     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
411     case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;     break;
412     case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA;  break;
413     case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX;   break;
414     case Type::TokenTyID:     Code = bitc::TYPE_CODE_TOKEN;     break;
415     case Type::IntegerTyID:
416       // INTEGER: [width]
417       Code = bitc::TYPE_CODE_INTEGER;
418       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
419       break;
420     case Type::PointerTyID: {
421       PointerType *PTy = cast<PointerType>(T);
422       // POINTER: [pointee type, address space]
423       Code = bitc::TYPE_CODE_POINTER;
424       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
425       unsigned AddressSpace = PTy->getAddressSpace();
426       TypeVals.push_back(AddressSpace);
427       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
428       break;
429     }
430     case Type::FunctionTyID: {
431       FunctionType *FT = cast<FunctionType>(T);
432       // FUNCTION: [isvararg, retty, paramty x N]
433       Code = bitc::TYPE_CODE_FUNCTION;
434       TypeVals.push_back(FT->isVarArg());
435       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
436       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
437         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
438       AbbrevToUse = FunctionAbbrev;
439       break;
440     }
441     case Type::StructTyID: {
442       StructType *ST = cast<StructType>(T);
443       // STRUCT: [ispacked, eltty x N]
444       TypeVals.push_back(ST->isPacked());
445       // Output all of the element types.
446       for (StructType::element_iterator I = ST->element_begin(),
447            E = ST->element_end(); I != E; ++I)
448         TypeVals.push_back(VE.getTypeID(*I));
449
450       if (ST->isLiteral()) {
451         Code = bitc::TYPE_CODE_STRUCT_ANON;
452         AbbrevToUse = StructAnonAbbrev;
453       } else {
454         if (ST->isOpaque()) {
455           Code = bitc::TYPE_CODE_OPAQUE;
456         } else {
457           Code = bitc::TYPE_CODE_STRUCT_NAMED;
458           AbbrevToUse = StructNamedAbbrev;
459         }
460
461         // Emit the name if it is present.
462         if (!ST->getName().empty())
463           WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
464                             StructNameAbbrev, Stream);
465       }
466       break;
467     }
468     case Type::ArrayTyID: {
469       ArrayType *AT = cast<ArrayType>(T);
470       // ARRAY: [numelts, eltty]
471       Code = bitc::TYPE_CODE_ARRAY;
472       TypeVals.push_back(AT->getNumElements());
473       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
474       AbbrevToUse = ArrayAbbrev;
475       break;
476     }
477     case Type::VectorTyID: {
478       VectorType *VT = cast<VectorType>(T);
479       // VECTOR [numelts, eltty]
480       Code = bitc::TYPE_CODE_VECTOR;
481       TypeVals.push_back(VT->getNumElements());
482       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
483       break;
484     }
485     }
486
487     // Emit the finished record.
488     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
489     TypeVals.clear();
490   }
491
492   Stream.ExitBlock();
493 }
494
495 static unsigned getEncodedLinkage(const GlobalValue &GV) {
496   switch (GV.getLinkage()) {
497   case GlobalValue::ExternalLinkage:
498     return 0;
499   case GlobalValue::WeakAnyLinkage:
500     return 16;
501   case GlobalValue::AppendingLinkage:
502     return 2;
503   case GlobalValue::InternalLinkage:
504     return 3;
505   case GlobalValue::LinkOnceAnyLinkage:
506     return 18;
507   case GlobalValue::ExternalWeakLinkage:
508     return 7;
509   case GlobalValue::CommonLinkage:
510     return 8;
511   case GlobalValue::PrivateLinkage:
512     return 9;
513   case GlobalValue::WeakODRLinkage:
514     return 17;
515   case GlobalValue::LinkOnceODRLinkage:
516     return 19;
517   case GlobalValue::AvailableExternallyLinkage:
518     return 12;
519   }
520   llvm_unreachable("Invalid linkage");
521 }
522
523 static unsigned getEncodedVisibility(const GlobalValue &GV) {
524   switch (GV.getVisibility()) {
525   case GlobalValue::DefaultVisibility:   return 0;
526   case GlobalValue::HiddenVisibility:    return 1;
527   case GlobalValue::ProtectedVisibility: return 2;
528   }
529   llvm_unreachable("Invalid visibility");
530 }
531
532 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
533   switch (GV.getDLLStorageClass()) {
534   case GlobalValue::DefaultStorageClass:   return 0;
535   case GlobalValue::DLLImportStorageClass: return 1;
536   case GlobalValue::DLLExportStorageClass: return 2;
537   }
538   llvm_unreachable("Invalid DLL storage class");
539 }
540
541 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
542   switch (GV.getThreadLocalMode()) {
543     case GlobalVariable::NotThreadLocal:         return 0;
544     case GlobalVariable::GeneralDynamicTLSModel: return 1;
545     case GlobalVariable::LocalDynamicTLSModel:   return 2;
546     case GlobalVariable::InitialExecTLSModel:    return 3;
547     case GlobalVariable::LocalExecTLSModel:      return 4;
548   }
549   llvm_unreachable("Invalid TLS model");
550 }
551
552 static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
553   switch (C.getSelectionKind()) {
554   case Comdat::Any:
555     return bitc::COMDAT_SELECTION_KIND_ANY;
556   case Comdat::ExactMatch:
557     return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
558   case Comdat::Largest:
559     return bitc::COMDAT_SELECTION_KIND_LARGEST;
560   case Comdat::NoDuplicates:
561     return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
562   case Comdat::SameSize:
563     return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
564   }
565   llvm_unreachable("Invalid selection kind");
566 }
567
568 static void writeComdats(const ValueEnumerator &VE, BitstreamWriter &Stream) {
569   SmallVector<uint16_t, 64> Vals;
570   for (const Comdat *C : VE.getComdats()) {
571     // COMDAT: [selection_kind, name]
572     Vals.push_back(getEncodedComdatSelectionKind(*C));
573     size_t Size = C->getName().size();
574     assert(isUInt<16>(Size));
575     Vals.push_back(Size);
576     for (char Chr : C->getName())
577       Vals.push_back((unsigned char)Chr);
578     Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
579     Vals.clear();
580   }
581 }
582
583 /// Write a record that will eventually hold the word offset of the
584 /// module-level VST. For now the offset is 0, which will be backpatched
585 /// after the real VST is written. Returns the bit offset to backpatch.
586 static uint64_t WriteValueSymbolTableForwardDecl(const ValueSymbolTable &VST,
587                                                  BitstreamWriter &Stream) {
588   if (VST.empty())
589     return 0;
590
591   // Write a placeholder value in for the offset of the real VST,
592   // which is written after the function blocks so that it can include
593   // the offset of each function. The placeholder offset will be
594   // updated when the real VST is written.
595   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
596   Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET));
597   // Blocks are 32-bit aligned, so we can use a 32-bit word offset to
598   // hold the real VST offset. Must use fixed instead of VBR as we don't
599   // know how many VBR chunks to reserve ahead of time.
600   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
601   unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(Abbv);
602
603   // Emit the placeholder
604   uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0};
605   Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals);
606
607   // Compute and return the bit offset to the placeholder, which will be
608   // patched when the real VST is written. We can simply subtract the 32-bit
609   // fixed size from the current bit number to get the location to backpatch.
610   return Stream.GetCurrentBitNo() - 32;
611 }
612
613 /// Emit top-level description of module, including target triple, inline asm,
614 /// descriptors for global variables, and function prototype info.
615 /// Returns the bit offset to backpatch with the location of the real VST.
616 static uint64_t WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
617                                 BitstreamWriter &Stream) {
618   // Emit various pieces of data attached to a module.
619   if (!M->getTargetTriple().empty())
620     WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
621                       0/*TODO*/, Stream);
622   const std::string &DL = M->getDataLayoutStr();
623   if (!DL.empty())
624     WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream);
625   if (!M->getModuleInlineAsm().empty())
626     WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
627                       0/*TODO*/, Stream);
628
629   // Emit information about sections and GC, computing how many there are. Also
630   // compute the maximum alignment value.
631   std::map<std::string, unsigned> SectionMap;
632   std::map<std::string, unsigned> GCMap;
633   unsigned MaxAlignment = 0;
634   unsigned MaxGlobalType = 0;
635   for (const GlobalValue &GV : M->globals()) {
636     MaxAlignment = std::max(MaxAlignment, GV.getAlignment());
637     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType()));
638     if (GV.hasSection()) {
639       // Give section names unique ID's.
640       unsigned &Entry = SectionMap[GV.getSection()];
641       if (!Entry) {
642         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
643                           0/*TODO*/, Stream);
644         Entry = SectionMap.size();
645       }
646     }
647   }
648   for (const Function &F : *M) {
649     MaxAlignment = std::max(MaxAlignment, F.getAlignment());
650     if (F.hasSection()) {
651       // Give section names unique ID's.
652       unsigned &Entry = SectionMap[F.getSection()];
653       if (!Entry) {
654         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
655                           0/*TODO*/, Stream);
656         Entry = SectionMap.size();
657       }
658     }
659     if (F.hasGC()) {
660       // Same for GC names.
661       unsigned &Entry = GCMap[F.getGC()];
662       if (!Entry) {
663         WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(),
664                           0/*TODO*/, Stream);
665         Entry = GCMap.size();
666       }
667     }
668   }
669
670   // Emit abbrev for globals, now that we know # sections and max alignment.
671   unsigned SimpleGVarAbbrev = 0;
672   if (!M->global_empty()) {
673     // Add an abbrev for common globals with no visibility or thread localness.
674     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
675     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
676     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
677                               Log2_32_Ceil(MaxGlobalType+1)));
678     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // AddrSpace << 2
679                                                            //| explicitType << 1
680                                                            //| constant
681     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // Initializer.
682     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
683     if (MaxAlignment == 0)                                 // Alignment.
684       Abbv->Add(BitCodeAbbrevOp(0));
685     else {
686       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
687       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
688                                Log2_32_Ceil(MaxEncAlignment+1)));
689     }
690     if (SectionMap.empty())                                    // Section.
691       Abbv->Add(BitCodeAbbrevOp(0));
692     else
693       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
694                                Log2_32_Ceil(SectionMap.size()+1)));
695     // Don't bother emitting vis + thread local.
696     SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
697   }
698
699   // Emit the global variable information.
700   SmallVector<unsigned, 64> Vals;
701   for (const GlobalVariable &GV : M->globals()) {
702     unsigned AbbrevToUse = 0;
703
704     // GLOBALVAR: [type, isconst, initid,
705     //             linkage, alignment, section, visibility, threadlocal,
706     //             unnamed_addr, externally_initialized, dllstorageclass,
707     //             comdat]
708     Vals.push_back(VE.getTypeID(GV.getValueType()));
709     Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant());
710     Vals.push_back(GV.isDeclaration() ? 0 :
711                    (VE.getValueID(GV.getInitializer()) + 1));
712     Vals.push_back(getEncodedLinkage(GV));
713     Vals.push_back(Log2_32(GV.getAlignment())+1);
714     Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0);
715     if (GV.isThreadLocal() ||
716         GV.getVisibility() != GlobalValue::DefaultVisibility ||
717         GV.hasUnnamedAddr() || GV.isExternallyInitialized() ||
718         GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
719         GV.hasComdat()) {
720       Vals.push_back(getEncodedVisibility(GV));
721       Vals.push_back(getEncodedThreadLocalMode(GV));
722       Vals.push_back(GV.hasUnnamedAddr());
723       Vals.push_back(GV.isExternallyInitialized());
724       Vals.push_back(getEncodedDLLStorageClass(GV));
725       Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
726     } else {
727       AbbrevToUse = SimpleGVarAbbrev;
728     }
729
730     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
731     Vals.clear();
732   }
733
734   // Emit the function proto information.
735   for (const Function &F : *M) {
736     // FUNCTION:  [type, callingconv, isproto, linkage, paramattrs, alignment,
737     //             section, visibility, gc, unnamed_addr, prologuedata,
738     //             dllstorageclass, comdat, prefixdata, personalityfn]
739     Vals.push_back(VE.getTypeID(F.getFunctionType()));
740     Vals.push_back(F.getCallingConv());
741     Vals.push_back(F.isDeclaration());
742     Vals.push_back(getEncodedLinkage(F));
743     Vals.push_back(VE.getAttributeID(F.getAttributes()));
744     Vals.push_back(Log2_32(F.getAlignment())+1);
745     Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0);
746     Vals.push_back(getEncodedVisibility(F));
747     Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
748     Vals.push_back(F.hasUnnamedAddr());
749     Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
750                                        : 0);
751     Vals.push_back(getEncodedDLLStorageClass(F));
752     Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
753     Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
754                                      : 0);
755     Vals.push_back(
756         F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
757
758     unsigned AbbrevToUse = 0;
759     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
760     Vals.clear();
761   }
762
763   // Emit the alias information.
764   for (const GlobalAlias &A : M->aliases()) {
765     // ALIAS: [alias type, aliasee val#, linkage, visibility]
766     Vals.push_back(VE.getTypeID(A.getValueType()));
767     Vals.push_back(A.getType()->getAddressSpace());
768     Vals.push_back(VE.getValueID(A.getAliasee()));
769     Vals.push_back(getEncodedLinkage(A));
770     Vals.push_back(getEncodedVisibility(A));
771     Vals.push_back(getEncodedDLLStorageClass(A));
772     Vals.push_back(getEncodedThreadLocalMode(A));
773     Vals.push_back(A.hasUnnamedAddr());
774     unsigned AbbrevToUse = 0;
775     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
776     Vals.clear();
777   }
778
779   uint64_t VSTOffsetPlaceholder =
780       WriteValueSymbolTableForwardDecl(M->getValueSymbolTable(), Stream);
781   return VSTOffsetPlaceholder;
782 }
783
784 static uint64_t GetOptimizationFlags(const Value *V) {
785   uint64_t Flags = 0;
786
787   if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
788     if (OBO->hasNoSignedWrap())
789       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
790     if (OBO->hasNoUnsignedWrap())
791       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
792   } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
793     if (PEO->isExact())
794       Flags |= 1 << bitc::PEO_EXACT;
795   } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
796     if (FPMO->hasUnsafeAlgebra())
797       Flags |= FastMathFlags::UnsafeAlgebra;
798     if (FPMO->hasNoNaNs())
799       Flags |= FastMathFlags::NoNaNs;
800     if (FPMO->hasNoInfs())
801       Flags |= FastMathFlags::NoInfs;
802     if (FPMO->hasNoSignedZeros())
803       Flags |= FastMathFlags::NoSignedZeros;
804     if (FPMO->hasAllowReciprocal())
805       Flags |= FastMathFlags::AllowReciprocal;
806   }
807
808   return Flags;
809 }
810
811 static void WriteValueAsMetadata(const ValueAsMetadata *MD,
812                                  const ValueEnumerator &VE,
813                                  BitstreamWriter &Stream,
814                                  SmallVectorImpl<uint64_t> &Record) {
815   // Mimic an MDNode with a value as one operand.
816   Value *V = MD->getValue();
817   Record.push_back(VE.getTypeID(V->getType()));
818   Record.push_back(VE.getValueID(V));
819   Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
820   Record.clear();
821 }
822
823 static void WriteMDTuple(const MDTuple *N, const ValueEnumerator &VE,
824                          BitstreamWriter &Stream,
825                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
826   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
827     Metadata *MD = N->getOperand(i);
828     assert(!(MD && isa<LocalAsMetadata>(MD)) &&
829            "Unexpected function-local metadata");
830     Record.push_back(VE.getMetadataOrNullID(MD));
831   }
832   Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
833                                     : bitc::METADATA_NODE,
834                     Record, Abbrev);
835   Record.clear();
836 }
837
838 static void WriteDILocation(const DILocation *N, const ValueEnumerator &VE,
839                             BitstreamWriter &Stream,
840                             SmallVectorImpl<uint64_t> &Record,
841                             unsigned Abbrev) {
842   Record.push_back(N->isDistinct());
843   Record.push_back(N->getLine());
844   Record.push_back(N->getColumn());
845   Record.push_back(VE.getMetadataID(N->getScope()));
846   Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
847
848   Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
849   Record.clear();
850 }
851
852 static void WriteGenericDINode(const GenericDINode *N,
853                                const ValueEnumerator &VE,
854                                BitstreamWriter &Stream,
855                                SmallVectorImpl<uint64_t> &Record,
856                                unsigned Abbrev) {
857   Record.push_back(N->isDistinct());
858   Record.push_back(N->getTag());
859   Record.push_back(0); // Per-tag version field; unused for now.
860
861   for (auto &I : N->operands())
862     Record.push_back(VE.getMetadataOrNullID(I));
863
864   Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev);
865   Record.clear();
866 }
867
868 static uint64_t rotateSign(int64_t I) {
869   uint64_t U = I;
870   return I < 0 ? ~(U << 1) : U << 1;
871 }
872
873 static void WriteDISubrange(const DISubrange *N, const ValueEnumerator &,
874                             BitstreamWriter &Stream,
875                             SmallVectorImpl<uint64_t> &Record,
876                             unsigned Abbrev) {
877   Record.push_back(N->isDistinct());
878   Record.push_back(N->getCount());
879   Record.push_back(rotateSign(N->getLowerBound()));
880
881   Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
882   Record.clear();
883 }
884
885 static void WriteDIEnumerator(const DIEnumerator *N, const ValueEnumerator &VE,
886                               BitstreamWriter &Stream,
887                               SmallVectorImpl<uint64_t> &Record,
888                               unsigned Abbrev) {
889   Record.push_back(N->isDistinct());
890   Record.push_back(rotateSign(N->getValue()));
891   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
892
893   Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
894   Record.clear();
895 }
896
897 static void WriteDIBasicType(const DIBasicType *N, const ValueEnumerator &VE,
898                              BitstreamWriter &Stream,
899                              SmallVectorImpl<uint64_t> &Record,
900                              unsigned Abbrev) {
901   Record.push_back(N->isDistinct());
902   Record.push_back(N->getTag());
903   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
904   Record.push_back(N->getSizeInBits());
905   Record.push_back(N->getAlignInBits());
906   Record.push_back(N->getEncoding());
907
908   Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
909   Record.clear();
910 }
911
912 static void WriteDIDerivedType(const DIDerivedType *N,
913                                const ValueEnumerator &VE,
914                                BitstreamWriter &Stream,
915                                SmallVectorImpl<uint64_t> &Record,
916                                unsigned Abbrev) {
917   Record.push_back(N->isDistinct());
918   Record.push_back(N->getTag());
919   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
920   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
921   Record.push_back(N->getLine());
922   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
923   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
924   Record.push_back(N->getSizeInBits());
925   Record.push_back(N->getAlignInBits());
926   Record.push_back(N->getOffsetInBits());
927   Record.push_back(N->getFlags());
928   Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
929
930   Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
931   Record.clear();
932 }
933
934 static void WriteDICompositeType(const DICompositeType *N,
935                                  const ValueEnumerator &VE,
936                                  BitstreamWriter &Stream,
937                                  SmallVectorImpl<uint64_t> &Record,
938                                  unsigned Abbrev) {
939   Record.push_back(N->isDistinct());
940   Record.push_back(N->getTag());
941   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
942   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
943   Record.push_back(N->getLine());
944   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
945   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
946   Record.push_back(N->getSizeInBits());
947   Record.push_back(N->getAlignInBits());
948   Record.push_back(N->getOffsetInBits());
949   Record.push_back(N->getFlags());
950   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
951   Record.push_back(N->getRuntimeLang());
952   Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
953   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
954   Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
955
956   Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
957   Record.clear();
958 }
959
960 static void WriteDISubroutineType(const DISubroutineType *N,
961                                   const ValueEnumerator &VE,
962                                   BitstreamWriter &Stream,
963                                   SmallVectorImpl<uint64_t> &Record,
964                                   unsigned Abbrev) {
965   Record.push_back(N->isDistinct());
966   Record.push_back(N->getFlags());
967   Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
968
969   Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
970   Record.clear();
971 }
972
973 static void WriteDIFile(const DIFile *N, const ValueEnumerator &VE,
974                         BitstreamWriter &Stream,
975                         SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
976   Record.push_back(N->isDistinct());
977   Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
978   Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
979
980   Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
981   Record.clear();
982 }
983
984 static void WriteDICompileUnit(const DICompileUnit *N,
985                                const ValueEnumerator &VE,
986                                BitstreamWriter &Stream,
987                                SmallVectorImpl<uint64_t> &Record,
988                                unsigned Abbrev) {
989   assert(N->isDistinct() && "Expected distinct compile units");
990   Record.push_back(/* IsDistinct */ true);
991   Record.push_back(N->getSourceLanguage());
992   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
993   Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
994   Record.push_back(N->isOptimized());
995   Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
996   Record.push_back(N->getRuntimeVersion());
997   Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
998   Record.push_back(N->getEmissionKind());
999   Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
1000   Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
1001   Record.push_back(VE.getMetadataOrNullID(N->getSubprograms().get()));
1002   Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
1003   Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
1004   Record.push_back(N->getDWOId());
1005
1006   Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
1007   Record.clear();
1008 }
1009
1010 static void WriteDISubprogram(const DISubprogram *N, const ValueEnumerator &VE,
1011                               BitstreamWriter &Stream,
1012                               SmallVectorImpl<uint64_t> &Record,
1013                               unsigned Abbrev) {
1014   Record.push_back(N->isDistinct());
1015   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1016   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1017   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1018   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1019   Record.push_back(N->getLine());
1020   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1021   Record.push_back(N->isLocalToUnit());
1022   Record.push_back(N->isDefinition());
1023   Record.push_back(N->getScopeLine());
1024   Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
1025   Record.push_back(N->getVirtuality());
1026   Record.push_back(N->getVirtualIndex());
1027   Record.push_back(N->getFlags());
1028   Record.push_back(N->isOptimized());
1029   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1030   Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
1031   Record.push_back(VE.getMetadataOrNullID(N->getVariables().get()));
1032
1033   Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
1034   Record.clear();
1035 }
1036
1037 static void WriteDILexicalBlock(const DILexicalBlock *N,
1038                                 const ValueEnumerator &VE,
1039                                 BitstreamWriter &Stream,
1040                                 SmallVectorImpl<uint64_t> &Record,
1041                                 unsigned Abbrev) {
1042   Record.push_back(N->isDistinct());
1043   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1044   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1045   Record.push_back(N->getLine());
1046   Record.push_back(N->getColumn());
1047
1048   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
1049   Record.clear();
1050 }
1051
1052 static void WriteDILexicalBlockFile(const DILexicalBlockFile *N,
1053                                     const ValueEnumerator &VE,
1054                                     BitstreamWriter &Stream,
1055                                     SmallVectorImpl<uint64_t> &Record,
1056                                     unsigned Abbrev) {
1057   Record.push_back(N->isDistinct());
1058   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1059   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1060   Record.push_back(N->getDiscriminator());
1061
1062   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
1063   Record.clear();
1064 }
1065
1066 static void WriteDINamespace(const DINamespace *N, const ValueEnumerator &VE,
1067                              BitstreamWriter &Stream,
1068                              SmallVectorImpl<uint64_t> &Record,
1069                              unsigned Abbrev) {
1070   Record.push_back(N->isDistinct());
1071   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1072   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1073   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1074   Record.push_back(N->getLine());
1075
1076   Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
1077   Record.clear();
1078 }
1079
1080 static void WriteDIModule(const DIModule *N, const ValueEnumerator &VE,
1081                           BitstreamWriter &Stream,
1082                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
1083   Record.push_back(N->isDistinct());
1084   for (auto &I : N->operands())
1085     Record.push_back(VE.getMetadataOrNullID(I));
1086
1087   Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
1088   Record.clear();
1089 }
1090
1091 static void WriteDITemplateTypeParameter(const DITemplateTypeParameter *N,
1092                                          const ValueEnumerator &VE,
1093                                          BitstreamWriter &Stream,
1094                                          SmallVectorImpl<uint64_t> &Record,
1095                                          unsigned Abbrev) {
1096   Record.push_back(N->isDistinct());
1097   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1098   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1099
1100   Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
1101   Record.clear();
1102 }
1103
1104 static void WriteDITemplateValueParameter(const DITemplateValueParameter *N,
1105                                           const ValueEnumerator &VE,
1106                                           BitstreamWriter &Stream,
1107                                           SmallVectorImpl<uint64_t> &Record,
1108                                           unsigned Abbrev) {
1109   Record.push_back(N->isDistinct());
1110   Record.push_back(N->getTag());
1111   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1112   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1113   Record.push_back(VE.getMetadataOrNullID(N->getValue()));
1114
1115   Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
1116   Record.clear();
1117 }
1118
1119 static void WriteDIGlobalVariable(const DIGlobalVariable *N,
1120                                   const ValueEnumerator &VE,
1121                                   BitstreamWriter &Stream,
1122                                   SmallVectorImpl<uint64_t> &Record,
1123                                   unsigned Abbrev) {
1124   Record.push_back(N->isDistinct());
1125   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1126   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1127   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1128   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1129   Record.push_back(N->getLine());
1130   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1131   Record.push_back(N->isLocalToUnit());
1132   Record.push_back(N->isDefinition());
1133   Record.push_back(VE.getMetadataOrNullID(N->getRawVariable()));
1134   Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
1135
1136   Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
1137   Record.clear();
1138 }
1139
1140 static void WriteDILocalVariable(const DILocalVariable *N,
1141                                  const ValueEnumerator &VE,
1142                                  BitstreamWriter &Stream,
1143                                  SmallVectorImpl<uint64_t> &Record,
1144                                  unsigned Abbrev) {
1145   Record.push_back(N->isDistinct());
1146   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1147   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1148   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1149   Record.push_back(N->getLine());
1150   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1151   Record.push_back(N->getArg());
1152   Record.push_back(N->getFlags());
1153
1154   Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
1155   Record.clear();
1156 }
1157
1158 static void WriteDIExpression(const DIExpression *N, const ValueEnumerator &,
1159                               BitstreamWriter &Stream,
1160                               SmallVectorImpl<uint64_t> &Record,
1161                               unsigned Abbrev) {
1162   Record.reserve(N->getElements().size() + 1);
1163
1164   Record.push_back(N->isDistinct());
1165   Record.append(N->elements_begin(), N->elements_end());
1166
1167   Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
1168   Record.clear();
1169 }
1170
1171 static void WriteDIObjCProperty(const DIObjCProperty *N,
1172                                 const ValueEnumerator &VE,
1173                                 BitstreamWriter &Stream,
1174                                 SmallVectorImpl<uint64_t> &Record,
1175                                 unsigned Abbrev) {
1176   Record.push_back(N->isDistinct());
1177   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1178   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1179   Record.push_back(N->getLine());
1180   Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName()));
1181   Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName()));
1182   Record.push_back(N->getAttributes());
1183   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1184
1185   Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev);
1186   Record.clear();
1187 }
1188
1189 static void WriteDIImportedEntity(const DIImportedEntity *N,
1190                                   const ValueEnumerator &VE,
1191                                   BitstreamWriter &Stream,
1192                                   SmallVectorImpl<uint64_t> &Record,
1193                                   unsigned Abbrev) {
1194   Record.push_back(N->isDistinct());
1195   Record.push_back(N->getTag());
1196   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1197   Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
1198   Record.push_back(N->getLine());
1199   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1200
1201   Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
1202   Record.clear();
1203 }
1204
1205 static void WriteModuleMetadata(const Module *M,
1206                                 const ValueEnumerator &VE,
1207                                 BitstreamWriter &Stream) {
1208   const auto &MDs = VE.getMDs();
1209   if (MDs.empty() && M->named_metadata_empty())
1210     return;
1211
1212   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
1213
1214   unsigned MDSAbbrev = 0;
1215   if (VE.hasMDString()) {
1216     // Abbrev for METADATA_STRING.
1217     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1218     Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
1219     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1220     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1221     MDSAbbrev = Stream.EmitAbbrev(Abbv);
1222   }
1223
1224   // Initialize MDNode abbreviations.
1225 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
1226 #include "llvm/IR/Metadata.def"
1227
1228   if (VE.hasDILocation()) {
1229     // Abbrev for METADATA_LOCATION.
1230     //
1231     // Assume the column is usually under 128, and always output the inlined-at
1232     // location (it's never more expensive than building an array size 1).
1233     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1234     Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
1235     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1236     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1237     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1238     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1239     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1240     DILocationAbbrev = Stream.EmitAbbrev(Abbv);
1241   }
1242
1243   if (VE.hasGenericDINode()) {
1244     // Abbrev for METADATA_GENERIC_DEBUG.
1245     //
1246     // Assume the column is usually under 128, and always output the inlined-at
1247     // location (it's never more expensive than building an array size 1).
1248     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1249     Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
1250     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1251     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1252     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1253     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1254     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1255     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1256     GenericDINodeAbbrev = Stream.EmitAbbrev(Abbv);
1257   }
1258
1259   unsigned NameAbbrev = 0;
1260   if (!M->named_metadata_empty()) {
1261     // Abbrev for METADATA_NAME.
1262     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1263     Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
1264     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1265     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1266     NameAbbrev = Stream.EmitAbbrev(Abbv);
1267   }
1268
1269   SmallVector<uint64_t, 64> Record;
1270   for (const Metadata *MD : MDs) {
1271     if (const MDNode *N = dyn_cast<MDNode>(MD)) {
1272       assert(N->isResolved() && "Expected forward references to be resolved");
1273
1274       switch (N->getMetadataID()) {
1275       default:
1276         llvm_unreachable("Invalid MDNode subclass");
1277 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
1278   case Metadata::CLASS##Kind:                                                  \
1279     Write##CLASS(cast<CLASS>(N), VE, Stream, Record, CLASS##Abbrev);           \
1280     continue;
1281 #include "llvm/IR/Metadata.def"
1282       }
1283     }
1284     if (const auto *MDC = dyn_cast<ConstantAsMetadata>(MD)) {
1285       WriteValueAsMetadata(MDC, VE, Stream, Record);
1286       continue;
1287     }
1288     const MDString *MDS = cast<MDString>(MD);
1289     // Code: [strchar x N]
1290     Record.append(MDS->bytes_begin(), MDS->bytes_end());
1291
1292     // Emit the finished record.
1293     Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
1294     Record.clear();
1295   }
1296
1297   // Write named metadata.
1298   for (const NamedMDNode &NMD : M->named_metadata()) {
1299     // Write name.
1300     StringRef Str = NMD.getName();
1301     Record.append(Str.bytes_begin(), Str.bytes_end());
1302     Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev);
1303     Record.clear();
1304
1305     // Write named metadata operands.
1306     for (const MDNode *N : NMD.operands())
1307       Record.push_back(VE.getMetadataID(N));
1308     Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
1309     Record.clear();
1310   }
1311
1312   Stream.ExitBlock();
1313 }
1314
1315 static void WriteFunctionLocalMetadata(const Function &F,
1316                                        const ValueEnumerator &VE,
1317                                        BitstreamWriter &Stream) {
1318   bool StartedMetadataBlock = false;
1319   SmallVector<uint64_t, 64> Record;
1320   const SmallVectorImpl<const LocalAsMetadata *> &MDs =
1321       VE.getFunctionLocalMDs();
1322   for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
1323     assert(MDs[i] && "Expected valid function-local metadata");
1324     if (!StartedMetadataBlock) {
1325       Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
1326       StartedMetadataBlock = true;
1327     }
1328     WriteValueAsMetadata(MDs[i], VE, Stream, Record);
1329   }
1330
1331   if (StartedMetadataBlock)
1332     Stream.ExitBlock();
1333 }
1334
1335 static void WriteMetadataAttachment(const Function &F,
1336                                     const ValueEnumerator &VE,
1337                                     BitstreamWriter &Stream) {
1338   Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
1339
1340   SmallVector<uint64_t, 64> Record;
1341
1342   // Write metadata attachments
1343   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
1344   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1345   F.getAllMetadata(MDs);
1346   if (!MDs.empty()) {
1347     for (const auto &I : MDs) {
1348       Record.push_back(I.first);
1349       Record.push_back(VE.getMetadataID(I.second));
1350     }
1351     Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
1352     Record.clear();
1353   }
1354
1355   for (const BasicBlock &BB : F)
1356     for (const Instruction &I : BB) {
1357       MDs.clear();
1358       I.getAllMetadataOtherThanDebugLoc(MDs);
1359
1360       // If no metadata, ignore instruction.
1361       if (MDs.empty()) continue;
1362
1363       Record.push_back(VE.getInstructionID(&I));
1364
1365       for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
1366         Record.push_back(MDs[i].first);
1367         Record.push_back(VE.getMetadataID(MDs[i].second));
1368       }
1369       Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
1370       Record.clear();
1371     }
1372
1373   Stream.ExitBlock();
1374 }
1375
1376 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) {
1377   SmallVector<uint64_t, 64> Record;
1378
1379   // Write metadata kinds
1380   // METADATA_KIND - [n x [id, name]]
1381   SmallVector<StringRef, 8> Names;
1382   M->getMDKindNames(Names);
1383
1384   if (Names.empty()) return;
1385
1386   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
1387
1388   for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
1389     Record.push_back(MDKindID);
1390     StringRef KName = Names[MDKindID];
1391     Record.append(KName.begin(), KName.end());
1392
1393     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
1394     Record.clear();
1395   }
1396
1397   Stream.ExitBlock();
1398 }
1399
1400 static void WriteOperandBundleTags(const Module *M, BitstreamWriter &Stream) {
1401   // Write metadata kinds
1402   //
1403   // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG
1404   //
1405   // OPERAND_BUNDLE_TAG - [strchr x N]
1406
1407   SmallVector<StringRef, 8> Tags;
1408   M->getOperandBundleTags(Tags);
1409
1410   if (Tags.empty())
1411     return;
1412
1413   Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3);
1414
1415   SmallVector<uint64_t, 64> Record;
1416
1417   for (auto Tag : Tags) {
1418     Record.append(Tag.begin(), Tag.end());
1419
1420     Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0);
1421     Record.clear();
1422   }
1423
1424   Stream.ExitBlock();
1425 }
1426
1427 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
1428   if ((int64_t)V >= 0)
1429     Vals.push_back(V << 1);
1430   else
1431     Vals.push_back((-V << 1) | 1);
1432 }
1433
1434 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
1435                            const ValueEnumerator &VE,
1436                            BitstreamWriter &Stream, bool isGlobal) {
1437   if (FirstVal == LastVal) return;
1438
1439   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
1440
1441   unsigned AggregateAbbrev = 0;
1442   unsigned String8Abbrev = 0;
1443   unsigned CString7Abbrev = 0;
1444   unsigned CString6Abbrev = 0;
1445   // If this is a constant pool for the module, emit module-specific abbrevs.
1446   if (isGlobal) {
1447     // Abbrev for CST_CODE_AGGREGATE.
1448     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1449     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
1450     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1451     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
1452     AggregateAbbrev = Stream.EmitAbbrev(Abbv);
1453
1454     // Abbrev for CST_CODE_STRING.
1455     Abbv = new BitCodeAbbrev();
1456     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
1457     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1458     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1459     String8Abbrev = Stream.EmitAbbrev(Abbv);
1460     // Abbrev for CST_CODE_CSTRING.
1461     Abbv = new BitCodeAbbrev();
1462     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
1463     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1464     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1465     CString7Abbrev = Stream.EmitAbbrev(Abbv);
1466     // Abbrev for CST_CODE_CSTRING.
1467     Abbv = new BitCodeAbbrev();
1468     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
1469     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1470     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1471     CString6Abbrev = Stream.EmitAbbrev(Abbv);
1472   }
1473
1474   SmallVector<uint64_t, 64> Record;
1475
1476   const ValueEnumerator::ValueList &Vals = VE.getValues();
1477   Type *LastTy = nullptr;
1478   for (unsigned i = FirstVal; i != LastVal; ++i) {
1479     const Value *V = Vals[i].first;
1480     // If we need to switch types, do so now.
1481     if (V->getType() != LastTy) {
1482       LastTy = V->getType();
1483       Record.push_back(VE.getTypeID(LastTy));
1484       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
1485                         CONSTANTS_SETTYPE_ABBREV);
1486       Record.clear();
1487     }
1488
1489     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
1490       Record.push_back(unsigned(IA->hasSideEffects()) |
1491                        unsigned(IA->isAlignStack()) << 1 |
1492                        unsigned(IA->getDialect()&1) << 2);
1493
1494       // Add the asm string.
1495       const std::string &AsmStr = IA->getAsmString();
1496       Record.push_back(AsmStr.size());
1497       Record.append(AsmStr.begin(), AsmStr.end());
1498
1499       // Add the constraint string.
1500       const std::string &ConstraintStr = IA->getConstraintString();
1501       Record.push_back(ConstraintStr.size());
1502       Record.append(ConstraintStr.begin(), ConstraintStr.end());
1503       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
1504       Record.clear();
1505       continue;
1506     }
1507     const Constant *C = cast<Constant>(V);
1508     unsigned Code = -1U;
1509     unsigned AbbrevToUse = 0;
1510     if (C->isNullValue()) {
1511       Code = bitc::CST_CODE_NULL;
1512     } else if (isa<UndefValue>(C)) {
1513       Code = bitc::CST_CODE_UNDEF;
1514     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
1515       if (IV->getBitWidth() <= 64) {
1516         uint64_t V = IV->getSExtValue();
1517         emitSignedInt64(Record, V);
1518         Code = bitc::CST_CODE_INTEGER;
1519         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
1520       } else {                             // Wide integers, > 64 bits in size.
1521         // We have an arbitrary precision integer value to write whose
1522         // bit width is > 64. However, in canonical unsigned integer
1523         // format it is likely that the high bits are going to be zero.
1524         // So, we only write the number of active words.
1525         unsigned NWords = IV->getValue().getActiveWords();
1526         const uint64_t *RawWords = IV->getValue().getRawData();
1527         for (unsigned i = 0; i != NWords; ++i) {
1528           emitSignedInt64(Record, RawWords[i]);
1529         }
1530         Code = bitc::CST_CODE_WIDE_INTEGER;
1531       }
1532     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
1533       Code = bitc::CST_CODE_FLOAT;
1534       Type *Ty = CFP->getType();
1535       if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
1536         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
1537       } else if (Ty->isX86_FP80Ty()) {
1538         // api needed to prevent premature destruction
1539         // bits are not in the same order as a normal i80 APInt, compensate.
1540         APInt api = CFP->getValueAPF().bitcastToAPInt();
1541         const uint64_t *p = api.getRawData();
1542         Record.push_back((p[1] << 48) | (p[0] >> 16));
1543         Record.push_back(p[0] & 0xffffLL);
1544       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
1545         APInt api = CFP->getValueAPF().bitcastToAPInt();
1546         const uint64_t *p = api.getRawData();
1547         Record.push_back(p[0]);
1548         Record.push_back(p[1]);
1549       } else {
1550         assert (0 && "Unknown FP type!");
1551       }
1552     } else if (isa<ConstantDataSequential>(C) &&
1553                cast<ConstantDataSequential>(C)->isString()) {
1554       const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
1555       // Emit constant strings specially.
1556       unsigned NumElts = Str->getNumElements();
1557       // If this is a null-terminated string, use the denser CSTRING encoding.
1558       if (Str->isCString()) {
1559         Code = bitc::CST_CODE_CSTRING;
1560         --NumElts;  // Don't encode the null, which isn't allowed by char6.
1561       } else {
1562         Code = bitc::CST_CODE_STRING;
1563         AbbrevToUse = String8Abbrev;
1564       }
1565       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
1566       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
1567       for (unsigned i = 0; i != NumElts; ++i) {
1568         unsigned char V = Str->getElementAsInteger(i);
1569         Record.push_back(V);
1570         isCStr7 &= (V & 128) == 0;
1571         if (isCStrChar6)
1572           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
1573       }
1574
1575       if (isCStrChar6)
1576         AbbrevToUse = CString6Abbrev;
1577       else if (isCStr7)
1578         AbbrevToUse = CString7Abbrev;
1579     } else if (const ConstantDataSequential *CDS =
1580                   dyn_cast<ConstantDataSequential>(C)) {
1581       Code = bitc::CST_CODE_DATA;
1582       Type *EltTy = CDS->getType()->getElementType();
1583       if (isa<IntegerType>(EltTy)) {
1584         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
1585           Record.push_back(CDS->getElementAsInteger(i));
1586       } else if (EltTy->isFloatTy()) {
1587         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1588           union { float F; uint32_t I; };
1589           F = CDS->getElementAsFloat(i);
1590           Record.push_back(I);
1591         }
1592       } else {
1593         assert(EltTy->isDoubleTy() && "Unknown ConstantData element type");
1594         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1595           union { double F; uint64_t I; };
1596           F = CDS->getElementAsDouble(i);
1597           Record.push_back(I);
1598         }
1599       }
1600     } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
1601                isa<ConstantVector>(C)) {
1602       Code = bitc::CST_CODE_AGGREGATE;
1603       for (const Value *Op : C->operands())
1604         Record.push_back(VE.getValueID(Op));
1605       AbbrevToUse = AggregateAbbrev;
1606     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1607       switch (CE->getOpcode()) {
1608       default:
1609         if (Instruction::isCast(CE->getOpcode())) {
1610           Code = bitc::CST_CODE_CE_CAST;
1611           Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
1612           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1613           Record.push_back(VE.getValueID(C->getOperand(0)));
1614           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
1615         } else {
1616           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
1617           Code = bitc::CST_CODE_CE_BINOP;
1618           Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
1619           Record.push_back(VE.getValueID(C->getOperand(0)));
1620           Record.push_back(VE.getValueID(C->getOperand(1)));
1621           uint64_t Flags = GetOptimizationFlags(CE);
1622           if (Flags != 0)
1623             Record.push_back(Flags);
1624         }
1625         break;
1626       case Instruction::GetElementPtr: {
1627         Code = bitc::CST_CODE_CE_GEP;
1628         const auto *GO = cast<GEPOperator>(C);
1629         if (GO->isInBounds())
1630           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
1631         Record.push_back(VE.getTypeID(GO->getSourceElementType()));
1632         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
1633           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
1634           Record.push_back(VE.getValueID(C->getOperand(i)));
1635         }
1636         break;
1637       }
1638       case Instruction::Select:
1639         Code = bitc::CST_CODE_CE_SELECT;
1640         Record.push_back(VE.getValueID(C->getOperand(0)));
1641         Record.push_back(VE.getValueID(C->getOperand(1)));
1642         Record.push_back(VE.getValueID(C->getOperand(2)));
1643         break;
1644       case Instruction::ExtractElement:
1645         Code = bitc::CST_CODE_CE_EXTRACTELT;
1646         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1647         Record.push_back(VE.getValueID(C->getOperand(0)));
1648         Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
1649         Record.push_back(VE.getValueID(C->getOperand(1)));
1650         break;
1651       case Instruction::InsertElement:
1652         Code = bitc::CST_CODE_CE_INSERTELT;
1653         Record.push_back(VE.getValueID(C->getOperand(0)));
1654         Record.push_back(VE.getValueID(C->getOperand(1)));
1655         Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
1656         Record.push_back(VE.getValueID(C->getOperand(2)));
1657         break;
1658       case Instruction::ShuffleVector:
1659         // If the return type and argument types are the same, this is a
1660         // standard shufflevector instruction.  If the types are different,
1661         // then the shuffle is widening or truncating the input vectors, and
1662         // the argument type must also be encoded.
1663         if (C->getType() == C->getOperand(0)->getType()) {
1664           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
1665         } else {
1666           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
1667           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1668         }
1669         Record.push_back(VE.getValueID(C->getOperand(0)));
1670         Record.push_back(VE.getValueID(C->getOperand(1)));
1671         Record.push_back(VE.getValueID(C->getOperand(2)));
1672         break;
1673       case Instruction::ICmp:
1674       case Instruction::FCmp:
1675         Code = bitc::CST_CODE_CE_CMP;
1676         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1677         Record.push_back(VE.getValueID(C->getOperand(0)));
1678         Record.push_back(VE.getValueID(C->getOperand(1)));
1679         Record.push_back(CE->getPredicate());
1680         break;
1681       }
1682     } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
1683       Code = bitc::CST_CODE_BLOCKADDRESS;
1684       Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
1685       Record.push_back(VE.getValueID(BA->getFunction()));
1686       Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
1687     } else {
1688 #ifndef NDEBUG
1689       C->dump();
1690 #endif
1691       llvm_unreachable("Unknown constant!");
1692     }
1693     Stream.EmitRecord(Code, Record, AbbrevToUse);
1694     Record.clear();
1695   }
1696
1697   Stream.ExitBlock();
1698 }
1699
1700 static void WriteModuleConstants(const ValueEnumerator &VE,
1701                                  BitstreamWriter &Stream) {
1702   const ValueEnumerator::ValueList &Vals = VE.getValues();
1703
1704   // Find the first constant to emit, which is the first non-globalvalue value.
1705   // We know globalvalues have been emitted by WriteModuleInfo.
1706   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
1707     if (!isa<GlobalValue>(Vals[i].first)) {
1708       WriteConstants(i, Vals.size(), VE, Stream, true);
1709       return;
1710     }
1711   }
1712 }
1713
1714 /// PushValueAndType - The file has to encode both the value and type id for
1715 /// many values, because we need to know what type to create for forward
1716 /// references.  However, most operands are not forward references, so this type
1717 /// field is not needed.
1718 ///
1719 /// This function adds V's value ID to Vals.  If the value ID is higher than the
1720 /// instruction ID, then it is a forward reference, and it also includes the
1721 /// type ID.  The value ID that is written is encoded relative to the InstID.
1722 static bool PushValueAndType(const Value *V, unsigned InstID,
1723                              SmallVectorImpl<unsigned> &Vals,
1724                              ValueEnumerator &VE) {
1725   unsigned ValID = VE.getValueID(V);
1726   // Make encoding relative to the InstID.
1727   Vals.push_back(InstID - ValID);
1728   if (ValID >= InstID) {
1729     Vals.push_back(VE.getTypeID(V->getType()));
1730     return true;
1731   }
1732   return false;
1733 }
1734
1735 static void WriteOperandBundles(BitstreamWriter &Stream, ImmutableCallSite CS,
1736                                 unsigned InstID, ValueEnumerator &VE) {
1737   SmallVector<unsigned, 64> Record;
1738   LLVMContext &C = CS.getInstruction()->getContext();
1739
1740   for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
1741     const auto &Bundle = CS.getOperandBundleAt(i);
1742     Record.push_back(C.getOperandBundleTagID(Bundle.getTagName()));
1743
1744     for (auto &Input : Bundle.Inputs)
1745       PushValueAndType(Input, InstID, Record, VE);
1746
1747     Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record);
1748     Record.clear();
1749   }
1750 }
1751
1752 /// pushValue - Like PushValueAndType, but where the type of the value is
1753 /// omitted (perhaps it was already encoded in an earlier operand).
1754 static void pushValue(const Value *V, unsigned InstID,
1755                       SmallVectorImpl<unsigned> &Vals,
1756                       ValueEnumerator &VE) {
1757   unsigned ValID = VE.getValueID(V);
1758   Vals.push_back(InstID - ValID);
1759 }
1760
1761 static void pushValueSigned(const Value *V, unsigned InstID,
1762                             SmallVectorImpl<uint64_t> &Vals,
1763                             ValueEnumerator &VE) {
1764   unsigned ValID = VE.getValueID(V);
1765   int64_t diff = ((int32_t)InstID - (int32_t)ValID);
1766   emitSignedInt64(Vals, diff);
1767 }
1768
1769 /// WriteInstruction - Emit an instruction to the specified stream.
1770 static void WriteInstruction(const Instruction &I, unsigned InstID,
1771                              ValueEnumerator &VE, BitstreamWriter &Stream,
1772                              SmallVectorImpl<unsigned> &Vals) {
1773   unsigned Code = 0;
1774   unsigned AbbrevToUse = 0;
1775   VE.setInstructionID(&I);
1776   switch (I.getOpcode()) {
1777   default:
1778     if (Instruction::isCast(I.getOpcode())) {
1779       Code = bitc::FUNC_CODE_INST_CAST;
1780       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1781         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
1782       Vals.push_back(VE.getTypeID(I.getType()));
1783       Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
1784     } else {
1785       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
1786       Code = bitc::FUNC_CODE_INST_BINOP;
1787       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1788         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
1789       pushValue(I.getOperand(1), InstID, Vals, VE);
1790       Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
1791       uint64_t Flags = GetOptimizationFlags(&I);
1792       if (Flags != 0) {
1793         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
1794           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
1795         Vals.push_back(Flags);
1796       }
1797     }
1798     break;
1799
1800   case Instruction::GetElementPtr: {
1801     Code = bitc::FUNC_CODE_INST_GEP;
1802     AbbrevToUse = FUNCTION_INST_GEP_ABBREV;
1803     auto &GEPInst = cast<GetElementPtrInst>(I);
1804     Vals.push_back(GEPInst.isInBounds());
1805     Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType()));
1806     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1807       PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1808     break;
1809   }
1810   case Instruction::ExtractValue: {
1811     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
1812     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1813     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
1814     Vals.append(EVI->idx_begin(), EVI->idx_end());
1815     break;
1816   }
1817   case Instruction::InsertValue: {
1818     Code = bitc::FUNC_CODE_INST_INSERTVAL;
1819     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1820     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1821     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
1822     Vals.append(IVI->idx_begin(), IVI->idx_end());
1823     break;
1824   }
1825   case Instruction::Select:
1826     Code = bitc::FUNC_CODE_INST_VSELECT;
1827     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1828     pushValue(I.getOperand(2), InstID, Vals, VE);
1829     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1830     break;
1831   case Instruction::ExtractElement:
1832     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
1833     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1834     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1835     break;
1836   case Instruction::InsertElement:
1837     Code = bitc::FUNC_CODE_INST_INSERTELT;
1838     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1839     pushValue(I.getOperand(1), InstID, Vals, VE);
1840     PushValueAndType(I.getOperand(2), InstID, Vals, VE);
1841     break;
1842   case Instruction::ShuffleVector:
1843     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
1844     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1845     pushValue(I.getOperand(1), InstID, Vals, VE);
1846     pushValue(I.getOperand(2), InstID, Vals, VE);
1847     break;
1848   case Instruction::ICmp:
1849   case Instruction::FCmp: {
1850     // compare returning Int1Ty or vector of Int1Ty
1851     Code = bitc::FUNC_CODE_INST_CMP2;
1852     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1853     pushValue(I.getOperand(1), InstID, Vals, VE);
1854     Vals.push_back(cast<CmpInst>(I).getPredicate());
1855     uint64_t Flags = GetOptimizationFlags(&I);
1856     if (Flags != 0)
1857       Vals.push_back(Flags);
1858     break;
1859   }
1860
1861   case Instruction::Ret:
1862     {
1863       Code = bitc::FUNC_CODE_INST_RET;
1864       unsigned NumOperands = I.getNumOperands();
1865       if (NumOperands == 0)
1866         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
1867       else if (NumOperands == 1) {
1868         if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1869           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
1870       } else {
1871         for (unsigned i = 0, e = NumOperands; i != e; ++i)
1872           PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1873       }
1874     }
1875     break;
1876   case Instruction::Br:
1877     {
1878       Code = bitc::FUNC_CODE_INST_BR;
1879       const BranchInst &II = cast<BranchInst>(I);
1880       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
1881       if (II.isConditional()) {
1882         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
1883         pushValue(II.getCondition(), InstID, Vals, VE);
1884       }
1885     }
1886     break;
1887   case Instruction::Switch:
1888     {
1889       Code = bitc::FUNC_CODE_INST_SWITCH;
1890       const SwitchInst &SI = cast<SwitchInst>(I);
1891       Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
1892       pushValue(SI.getCondition(), InstID, Vals, VE);
1893       Vals.push_back(VE.getValueID(SI.getDefaultDest()));
1894       for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
1895            i != e; ++i) {
1896         Vals.push_back(VE.getValueID(i.getCaseValue()));
1897         Vals.push_back(VE.getValueID(i.getCaseSuccessor()));
1898       }
1899     }
1900     break;
1901   case Instruction::IndirectBr:
1902     Code = bitc::FUNC_CODE_INST_INDIRECTBR;
1903     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1904     // Encode the address operand as relative, but not the basic blocks.
1905     pushValue(I.getOperand(0), InstID, Vals, VE);
1906     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
1907       Vals.push_back(VE.getValueID(I.getOperand(i)));
1908     break;
1909
1910   case Instruction::Invoke: {
1911     const InvokeInst *II = cast<InvokeInst>(&I);
1912     const Value *Callee = II->getCalledValue();
1913     FunctionType *FTy = II->getFunctionType();
1914
1915     if (II->hasOperandBundles())
1916       WriteOperandBundles(Stream, II, InstID, VE);
1917
1918     Code = bitc::FUNC_CODE_INST_INVOKE;
1919
1920     Vals.push_back(VE.getAttributeID(II->getAttributes()));
1921     Vals.push_back(II->getCallingConv() | 1 << 13);
1922     Vals.push_back(VE.getValueID(II->getNormalDest()));
1923     Vals.push_back(VE.getValueID(II->getUnwindDest()));
1924     Vals.push_back(VE.getTypeID(FTy));
1925     PushValueAndType(Callee, InstID, Vals, VE);
1926
1927     // Emit value #'s for the fixed parameters.
1928     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1929       pushValue(I.getOperand(i), InstID, Vals, VE);  // fixed param.
1930
1931     // Emit type/value pairs for varargs params.
1932     if (FTy->isVarArg()) {
1933       for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3;
1934            i != e; ++i)
1935         PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
1936     }
1937     break;
1938   }
1939   case Instruction::Resume:
1940     Code = bitc::FUNC_CODE_INST_RESUME;
1941     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1942     break;
1943   case Instruction::CleanupRet: {
1944     Code = bitc::FUNC_CODE_INST_CLEANUPRET;
1945     const auto &CRI = cast<CleanupReturnInst>(I);
1946     pushValue(CRI.getCleanupPad(), InstID, Vals, VE);
1947     if (CRI.hasUnwindDest())
1948       Vals.push_back(VE.getValueID(CRI.getUnwindDest()));
1949     break;
1950   }
1951   case Instruction::CatchRet: {
1952     Code = bitc::FUNC_CODE_INST_CATCHRET;
1953     const auto &CRI = cast<CatchReturnInst>(I);
1954     pushValue(CRI.getCatchPad(), InstID, Vals, VE);
1955     Vals.push_back(VE.getValueID(CRI.getSuccessor()));
1956     break;
1957   }
1958   case Instruction::CatchPad: {
1959     Code = bitc::FUNC_CODE_INST_CATCHPAD;
1960     const auto &CPI = cast<CatchPadInst>(I);
1961     Vals.push_back(VE.getValueID(CPI.getNormalDest()));
1962     Vals.push_back(VE.getValueID(CPI.getUnwindDest()));
1963     unsigned NumArgOperands = CPI.getNumArgOperands();
1964     Vals.push_back(NumArgOperands);
1965     for (unsigned Op = 0; Op != NumArgOperands; ++Op)
1966       PushValueAndType(CPI.getArgOperand(Op), InstID, Vals, VE);
1967     break;
1968   }
1969   case Instruction::TerminatePad: {
1970     Code = bitc::FUNC_CODE_INST_TERMINATEPAD;
1971     const auto &TPI = cast<TerminatePadInst>(I);
1972     Vals.push_back(TPI.hasUnwindDest());
1973     if (TPI.hasUnwindDest())
1974       Vals.push_back(VE.getValueID(TPI.getUnwindDest()));
1975     unsigned NumArgOperands = TPI.getNumArgOperands();
1976     Vals.push_back(NumArgOperands);
1977     for (unsigned Op = 0; Op != NumArgOperands; ++Op)
1978       PushValueAndType(TPI.getArgOperand(Op), InstID, Vals, VE);
1979     break;
1980   }
1981   case Instruction::CleanupPad: {
1982     Code = bitc::FUNC_CODE_INST_CLEANUPPAD;
1983     const auto &CPI = cast<CleanupPadInst>(I);
1984     unsigned NumOperands = CPI.getNumOperands();
1985     Vals.push_back(NumOperands);
1986     for (unsigned Op = 0; Op != NumOperands; ++Op)
1987       PushValueAndType(CPI.getOperand(Op), InstID, Vals, VE);
1988     break;
1989   }
1990   case Instruction::CatchEndPad: {
1991     Code = bitc::FUNC_CODE_INST_CATCHENDPAD;
1992     const auto &CEPI = cast<CatchEndPadInst>(I);
1993     if (CEPI.hasUnwindDest())
1994       Vals.push_back(VE.getValueID(CEPI.getUnwindDest()));
1995     break;
1996   }
1997   case Instruction::CleanupEndPad: {
1998     Code = bitc::FUNC_CODE_INST_CLEANUPENDPAD;
1999     const auto &CEPI = cast<CleanupEndPadInst>(I);
2000     pushValue(CEPI.getCleanupPad(), InstID, Vals, VE);
2001     if (CEPI.hasUnwindDest())
2002       Vals.push_back(VE.getValueID(CEPI.getUnwindDest()));
2003     break;
2004   }
2005   case Instruction::Unreachable:
2006     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
2007     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
2008     break;
2009
2010   case Instruction::PHI: {
2011     const PHINode &PN = cast<PHINode>(I);
2012     Code = bitc::FUNC_CODE_INST_PHI;
2013     // With the newer instruction encoding, forward references could give
2014     // negative valued IDs.  This is most common for PHIs, so we use
2015     // signed VBRs.
2016     SmallVector<uint64_t, 128> Vals64;
2017     Vals64.push_back(VE.getTypeID(PN.getType()));
2018     for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
2019       pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE);
2020       Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
2021     }
2022     // Emit a Vals64 vector and exit.
2023     Stream.EmitRecord(Code, Vals64, AbbrevToUse);
2024     Vals64.clear();
2025     return;
2026   }
2027
2028   case Instruction::LandingPad: {
2029     const LandingPadInst &LP = cast<LandingPadInst>(I);
2030     Code = bitc::FUNC_CODE_INST_LANDINGPAD;
2031     Vals.push_back(VE.getTypeID(LP.getType()));
2032     Vals.push_back(LP.isCleanup());
2033     Vals.push_back(LP.getNumClauses());
2034     for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
2035       if (LP.isCatch(I))
2036         Vals.push_back(LandingPadInst::Catch);
2037       else
2038         Vals.push_back(LandingPadInst::Filter);
2039       PushValueAndType(LP.getClause(I), InstID, Vals, VE);
2040     }
2041     break;
2042   }
2043
2044   case Instruction::Alloca: {
2045     Code = bitc::FUNC_CODE_INST_ALLOCA;
2046     const AllocaInst &AI = cast<AllocaInst>(I);
2047     Vals.push_back(VE.getTypeID(AI.getAllocatedType()));
2048     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
2049     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
2050     unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1;
2051     assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 &&
2052            "not enough bits for maximum alignment");
2053     assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64");
2054     AlignRecord |= AI.isUsedWithInAlloca() << 5;
2055     AlignRecord |= 1 << 6;
2056     // Reserve bit 7 for SwiftError flag.
2057     // AlignRecord |= AI.isSwiftError() << 7;
2058     Vals.push_back(AlignRecord);
2059     break;
2060   }
2061
2062   case Instruction::Load:
2063     if (cast<LoadInst>(I).isAtomic()) {
2064       Code = bitc::FUNC_CODE_INST_LOADATOMIC;
2065       PushValueAndType(I.getOperand(0), InstID, Vals, VE);
2066     } else {
2067       Code = bitc::FUNC_CODE_INST_LOAD;
2068       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
2069         AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
2070     }
2071     Vals.push_back(VE.getTypeID(I.getType()));
2072     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
2073     Vals.push_back(cast<LoadInst>(I).isVolatile());
2074     if (cast<LoadInst>(I).isAtomic()) {
2075       Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering()));
2076       Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope()));
2077     }
2078     break;
2079   case Instruction::Store:
2080     if (cast<StoreInst>(I).isAtomic())
2081       Code = bitc::FUNC_CODE_INST_STOREATOMIC;
2082     else
2083       Code = bitc::FUNC_CODE_INST_STORE;
2084     PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
2085     PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // valty + val
2086     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
2087     Vals.push_back(cast<StoreInst>(I).isVolatile());
2088     if (cast<StoreInst>(I).isAtomic()) {
2089       Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering()));
2090       Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope()));
2091     }
2092     break;
2093   case Instruction::AtomicCmpXchg:
2094     Code = bitc::FUNC_CODE_INST_CMPXCHG;
2095     PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // ptrty + ptr
2096     PushValueAndType(I.getOperand(1), InstID, Vals, VE);         // cmp.
2097     pushValue(I.getOperand(2), InstID, Vals, VE);         // newval.
2098     Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
2099     Vals.push_back(GetEncodedOrdering(
2100                      cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
2101     Vals.push_back(GetEncodedSynchScope(
2102                      cast<AtomicCmpXchgInst>(I).getSynchScope()));
2103     Vals.push_back(GetEncodedOrdering(
2104                      cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
2105     Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
2106     break;
2107   case Instruction::AtomicRMW:
2108     Code = bitc::FUNC_CODE_INST_ATOMICRMW;
2109     PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // ptrty + ptr
2110     pushValue(I.getOperand(1), InstID, Vals, VE);         // val.
2111     Vals.push_back(GetEncodedRMWOperation(
2112                      cast<AtomicRMWInst>(I).getOperation()));
2113     Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
2114     Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
2115     Vals.push_back(GetEncodedSynchScope(
2116                      cast<AtomicRMWInst>(I).getSynchScope()));
2117     break;
2118   case Instruction::Fence:
2119     Code = bitc::FUNC_CODE_INST_FENCE;
2120     Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering()));
2121     Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope()));
2122     break;
2123   case Instruction::Call: {
2124     const CallInst &CI = cast<CallInst>(I);
2125     FunctionType *FTy = CI.getFunctionType();
2126
2127     if (CI.hasOperandBundles())
2128       WriteOperandBundles(Stream, &CI, InstID, VE);
2129
2130     Code = bitc::FUNC_CODE_INST_CALL;
2131
2132     Vals.push_back(VE.getAttributeID(CI.getAttributes()));
2133     Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV |
2134                    unsigned(CI.isTailCall()) << bitc::CALL_TAIL |
2135                    unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL |
2136                    1 << bitc::CALL_EXPLICIT_TYPE |
2137                    unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL);
2138     Vals.push_back(VE.getTypeID(FTy));
2139     PushValueAndType(CI.getCalledValue(), InstID, Vals, VE);  // Callee
2140
2141     // Emit value #'s for the fixed parameters.
2142     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
2143       // Check for labels (can happen with asm labels).
2144       if (FTy->getParamType(i)->isLabelTy())
2145         Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
2146       else
2147         pushValue(CI.getArgOperand(i), InstID, Vals, VE);  // fixed param.
2148     }
2149
2150     // Emit type/value pairs for varargs params.
2151     if (FTy->isVarArg()) {
2152       for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
2153            i != e; ++i)
2154         PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE);  // varargs
2155     }
2156     break;
2157   }
2158   case Instruction::VAArg:
2159     Code = bitc::FUNC_CODE_INST_VAARG;
2160     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
2161     pushValue(I.getOperand(0), InstID, Vals, VE); // valist.
2162     Vals.push_back(VE.getTypeID(I.getType())); // restype.
2163     break;
2164   }
2165
2166   Stream.EmitRecord(Code, Vals, AbbrevToUse);
2167   Vals.clear();
2168 }
2169
2170 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 };
2171
2172 /// Determine the encoding to use for the given string name and length.
2173 static StringEncoding getStringEncoding(const char *Str, unsigned StrLen) {
2174   bool isChar6 = true;
2175   for (const char *C = Str, *E = C + StrLen; C != E; ++C) {
2176     if (isChar6)
2177       isChar6 = BitCodeAbbrevOp::isChar6(*C);
2178     if ((unsigned char)*C & 128)
2179       // don't bother scanning the rest.
2180       return SE_Fixed8;
2181   }
2182   if (isChar6)
2183     return SE_Char6;
2184   else
2185     return SE_Fixed7;
2186 }
2187
2188 /// Emit names for globals/functions etc. The VSTOffsetPlaceholder,
2189 /// BitcodeStartBit and FunctionIndex are only passed for the module-level
2190 /// VST, where we are including a function bitcode index and need to
2191 /// backpatch the VST forward declaration record.
2192 static void WriteValueSymbolTable(
2193     const ValueSymbolTable &VST, const ValueEnumerator &VE,
2194     BitstreamWriter &Stream, uint64_t VSTOffsetPlaceholder = 0,
2195     uint64_t BitcodeStartBit = 0,
2196     DenseMap<const Function *, std::unique_ptr<FunctionInfo>> *FunctionIndex =
2197         nullptr) {
2198   if (VST.empty()) {
2199     // WriteValueSymbolTableForwardDecl should have returned early as
2200     // well. Ensure this handling remains in sync by asserting that
2201     // the placeholder offset is not set.
2202     assert(VSTOffsetPlaceholder == 0);
2203     return;
2204   }
2205
2206   if (VSTOffsetPlaceholder > 0) {
2207     // Get the offset of the VST we are writing, and backpatch it into
2208     // the VST forward declaration record.
2209     uint64_t VSTOffset = Stream.GetCurrentBitNo();
2210     // The BitcodeStartBit was the stream offset of the actual bitcode
2211     // (e.g. excluding any initial darwin header).
2212     VSTOffset -= BitcodeStartBit;
2213     assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned");
2214     Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32);
2215   }
2216
2217   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
2218
2219   // For the module-level VST, add abbrev Ids for the VST_CODE_FNENTRY
2220   // records, which are not used in the per-function VSTs.
2221   unsigned FnEntry8BitAbbrev;
2222   unsigned FnEntry7BitAbbrev;
2223   unsigned FnEntry6BitAbbrev;
2224   if (VSTOffsetPlaceholder > 0) {
2225     // 8-bit fixed-width VST_FNENTRY function strings.
2226     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2227     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
2228     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
2229     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
2230     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2231     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2232     FnEntry8BitAbbrev = Stream.EmitAbbrev(Abbv);
2233
2234     // 7-bit fixed width VST_FNENTRY function strings.
2235     Abbv = new BitCodeAbbrev();
2236     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
2237     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
2238     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
2239     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2240     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2241     FnEntry7BitAbbrev = Stream.EmitAbbrev(Abbv);
2242
2243     // 6-bit char6 VST_FNENTRY function strings.
2244     Abbv = new BitCodeAbbrev();
2245     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
2246     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
2247     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
2248     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2249     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2250     FnEntry6BitAbbrev = Stream.EmitAbbrev(Abbv);
2251   }
2252
2253   // FIXME: Set up the abbrev, we know how many values there are!
2254   // FIXME: We know if the type names can use 7-bit ascii.
2255   SmallVector<unsigned, 64> NameVals;
2256
2257   for (const ValueName &Name : VST) {
2258     // Figure out the encoding to use for the name.
2259     StringEncoding Bits =
2260         getStringEncoding(Name.getKeyData(), Name.getKeyLength());
2261
2262     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
2263     NameVals.push_back(VE.getValueID(Name.getValue()));
2264
2265     Function *F = dyn_cast<Function>(Name.getValue());
2266     if (!F) {
2267       // If value is an alias, need to get the aliased base object to
2268       // see if it is a function.
2269       auto *GA = dyn_cast<GlobalAlias>(Name.getValue());
2270       if (GA && GA->getBaseObject())
2271         F = dyn_cast<Function>(GA->getBaseObject());
2272     }
2273
2274     // VST_ENTRY:   [valueid, namechar x N]
2275     // VST_FNENTRY: [valueid, funcoffset, namechar x N]
2276     // VST_BBENTRY: [bbid, namechar x N]
2277     unsigned Code;
2278     if (isa<BasicBlock>(Name.getValue())) {
2279       Code = bitc::VST_CODE_BBENTRY;
2280       if (Bits == SE_Char6)
2281         AbbrevToUse = VST_BBENTRY_6_ABBREV;
2282     } else if (F && !F->isDeclaration()) {
2283       // Must be the module-level VST, where we pass in the Index and
2284       // have a VSTOffsetPlaceholder. The function-level VST should not
2285       // contain any Function symbols.
2286       assert(FunctionIndex);
2287       assert(VSTOffsetPlaceholder > 0);
2288
2289       // Save the word offset of the function (from the start of the
2290       // actual bitcode written to the stream).
2291       assert(FunctionIndex->count(F) == 1);
2292       uint64_t BitcodeIndex =
2293           (*FunctionIndex)[F]->bitcodeIndex() - BitcodeStartBit;
2294       assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned");
2295       NameVals.push_back(BitcodeIndex / 32);
2296
2297       Code = bitc::VST_CODE_FNENTRY;
2298       AbbrevToUse = FnEntry8BitAbbrev;
2299       if (Bits == SE_Char6)
2300         AbbrevToUse = FnEntry6BitAbbrev;
2301       else if (Bits == SE_Fixed7)
2302         AbbrevToUse = FnEntry7BitAbbrev;
2303     } else {
2304       Code = bitc::VST_CODE_ENTRY;
2305       if (Bits == SE_Char6)
2306         AbbrevToUse = VST_ENTRY_6_ABBREV;
2307       else if (Bits == SE_Fixed7)
2308         AbbrevToUse = VST_ENTRY_7_ABBREV;
2309     }
2310
2311     for (const auto P : Name.getKey())
2312       NameVals.push_back((unsigned char)P);
2313
2314     // Emit the finished record.
2315     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
2316     NameVals.clear();
2317   }
2318   Stream.ExitBlock();
2319 }
2320
2321 /// Emit function names and summary offsets for the combined index
2322 /// used by ThinLTO.
2323 static void WriteCombinedValueSymbolTable(const FunctionInfoIndex &Index,
2324                                           BitstreamWriter &Stream) {
2325   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
2326
2327   // 8-bit fixed-width VST_COMBINED_FNENTRY function strings.
2328   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2329   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_FNENTRY));
2330   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
2331   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2332   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2333   unsigned FnEntry8BitAbbrev = Stream.EmitAbbrev(Abbv);
2334
2335   // 7-bit fixed width VST_COMBINED_FNENTRY function strings.
2336   Abbv = new BitCodeAbbrev();
2337   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_FNENTRY));
2338   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
2339   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2340   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2341   unsigned FnEntry7BitAbbrev = Stream.EmitAbbrev(Abbv);
2342
2343   // 6-bit char6 VST_COMBINED_FNENTRY function strings.
2344   Abbv = new BitCodeAbbrev();
2345   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_FNENTRY));
2346   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
2347   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2348   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2349   unsigned FnEntry6BitAbbrev = Stream.EmitAbbrev(Abbv);
2350
2351   // FIXME: We know if the type names can use 7-bit ascii.
2352   SmallVector<unsigned, 64> NameVals;
2353
2354   for (const auto &FII : Index) {
2355     for (const auto &FI : FII.getValue()) {
2356       NameVals.push_back(FI->bitcodeIndex());
2357
2358       StringRef FuncName = FII.first();
2359
2360       // Figure out the encoding to use for the name.
2361       StringEncoding Bits = getStringEncoding(FuncName.data(), FuncName.size());
2362
2363       // VST_COMBINED_FNENTRY: [funcsumoffset, namechar x N]
2364       unsigned AbbrevToUse = FnEntry8BitAbbrev;
2365       if (Bits == SE_Char6)
2366         AbbrevToUse = FnEntry6BitAbbrev;
2367       else if (Bits == SE_Fixed7)
2368         AbbrevToUse = FnEntry7BitAbbrev;
2369
2370       for (const auto P : FuncName)
2371         NameVals.push_back((unsigned char)P);
2372
2373       // Emit the finished record.
2374       Stream.EmitRecord(bitc::VST_CODE_COMBINED_FNENTRY, NameVals, AbbrevToUse);
2375       NameVals.clear();
2376     }
2377   }
2378   Stream.ExitBlock();
2379 }
2380
2381 static void WriteUseList(ValueEnumerator &VE, UseListOrder &&Order,
2382                          BitstreamWriter &Stream) {
2383   assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
2384   unsigned Code;
2385   if (isa<BasicBlock>(Order.V))
2386     Code = bitc::USELIST_CODE_BB;
2387   else
2388     Code = bitc::USELIST_CODE_DEFAULT;
2389
2390   SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
2391   Record.push_back(VE.getValueID(Order.V));
2392   Stream.EmitRecord(Code, Record);
2393 }
2394
2395 static void WriteUseListBlock(const Function *F, ValueEnumerator &VE,
2396                               BitstreamWriter &Stream) {
2397   assert(VE.shouldPreserveUseListOrder() &&
2398          "Expected to be preserving use-list order");
2399
2400   auto hasMore = [&]() {
2401     return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
2402   };
2403   if (!hasMore())
2404     // Nothing to do.
2405     return;
2406
2407   Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
2408   while (hasMore()) {
2409     WriteUseList(VE, std::move(VE.UseListOrders.back()), Stream);
2410     VE.UseListOrders.pop_back();
2411   }
2412   Stream.ExitBlock();
2413 }
2414
2415 /// \brief Save information for the given function into the function index.
2416 ///
2417 /// At a minimum this saves the bitcode index of the function record that
2418 /// was just written. However, if we are emitting function summary information,
2419 /// for example for ThinLTO, then a \a FunctionSummary object is created
2420 /// to hold the provided summary information.
2421 static void SaveFunctionInfo(
2422     const Function &F,
2423     DenseMap<const Function *, std::unique_ptr<FunctionInfo>> &FunctionIndex,
2424     unsigned NumInsts, uint64_t BitcodeIndex, bool EmitFunctionSummary) {
2425   std::unique_ptr<FunctionSummary> FuncSummary;
2426   if (EmitFunctionSummary) {
2427     FuncSummary = llvm::make_unique<FunctionSummary>(NumInsts);
2428     FuncSummary->setLocalFunction(F.hasLocalLinkage());
2429   }
2430   FunctionIndex[&F] =
2431       llvm::make_unique<FunctionInfo>(BitcodeIndex, std::move(FuncSummary));
2432 }
2433
2434 /// Emit a function body to the module stream.
2435 static void WriteFunction(
2436     const Function &F, ValueEnumerator &VE, BitstreamWriter &Stream,
2437     DenseMap<const Function *, std::unique_ptr<FunctionInfo>> &FunctionIndex,
2438     bool EmitFunctionSummary) {
2439   // Save the bitcode index of the start of this function block for recording
2440   // in the VST.
2441   uint64_t BitcodeIndex = Stream.GetCurrentBitNo();
2442
2443   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
2444   VE.incorporateFunction(F);
2445
2446   SmallVector<unsigned, 64> Vals;
2447
2448   // Emit the number of basic blocks, so the reader can create them ahead of
2449   // time.
2450   Vals.push_back(VE.getBasicBlocks().size());
2451   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
2452   Vals.clear();
2453
2454   // If there are function-local constants, emit them now.
2455   unsigned CstStart, CstEnd;
2456   VE.getFunctionConstantRange(CstStart, CstEnd);
2457   WriteConstants(CstStart, CstEnd, VE, Stream, false);
2458
2459   // If there is function-local metadata, emit it now.
2460   WriteFunctionLocalMetadata(F, VE, Stream);
2461
2462   // Keep a running idea of what the instruction ID is.
2463   unsigned InstID = CstEnd;
2464
2465   bool NeedsMetadataAttachment = F.hasMetadata();
2466
2467   DILocation *LastDL = nullptr;
2468   unsigned NumInsts = 0;
2469
2470   // Finally, emit all the instructions, in order.
2471   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
2472     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
2473          I != E; ++I) {
2474       WriteInstruction(*I, InstID, VE, Stream, Vals);
2475
2476       if (!isa<DbgInfoIntrinsic>(I))
2477         ++NumInsts;
2478
2479       if (!I->getType()->isVoidTy())
2480         ++InstID;
2481
2482       // If the instruction has metadata, write a metadata attachment later.
2483       NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
2484
2485       // If the instruction has a debug location, emit it.
2486       DILocation *DL = I->getDebugLoc();
2487       if (!DL)
2488         continue;
2489
2490       if (DL == LastDL) {
2491         // Just repeat the same debug loc as last time.
2492         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
2493         continue;
2494       }
2495
2496       Vals.push_back(DL->getLine());
2497       Vals.push_back(DL->getColumn());
2498       Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
2499       Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
2500       Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
2501       Vals.clear();
2502
2503       LastDL = DL;
2504     }
2505
2506   // Emit names for all the instructions etc.
2507   WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
2508
2509   if (NeedsMetadataAttachment)
2510     WriteMetadataAttachment(F, VE, Stream);
2511   if (VE.shouldPreserveUseListOrder())
2512     WriteUseListBlock(&F, VE, Stream);
2513   VE.purgeFunction();
2514   Stream.ExitBlock();
2515
2516   SaveFunctionInfo(F, FunctionIndex, NumInsts, BitcodeIndex,
2517                    EmitFunctionSummary);
2518 }
2519
2520 // Emit blockinfo, which defines the standard abbreviations etc.
2521 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
2522   // We only want to emit block info records for blocks that have multiple
2523   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
2524   // Other blocks can define their abbrevs inline.
2525   Stream.EnterBlockInfoBlock(2);
2526
2527   { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
2528     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2529     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
2530     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2531     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2532     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2533     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2534                                    Abbv) != VST_ENTRY_8_ABBREV)
2535       llvm_unreachable("Unexpected abbrev ordering!");
2536   }
2537
2538   { // 7-bit fixed width VST_ENTRY strings.
2539     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2540     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
2541     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2542     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2543     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2544     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2545                                    Abbv) != VST_ENTRY_7_ABBREV)
2546       llvm_unreachable("Unexpected abbrev ordering!");
2547   }
2548   { // 6-bit char6 VST_ENTRY strings.
2549     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2550     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
2551     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2552     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2553     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2554     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2555                                    Abbv) != VST_ENTRY_6_ABBREV)
2556       llvm_unreachable("Unexpected abbrev ordering!");
2557   }
2558   { // 6-bit char6 VST_BBENTRY strings.
2559     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2560     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
2561     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2562     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2563     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2564     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2565                                    Abbv) != VST_BBENTRY_6_ABBREV)
2566       llvm_unreachable("Unexpected abbrev ordering!");
2567   }
2568
2569
2570
2571   { // SETTYPE abbrev for CONSTANTS_BLOCK.
2572     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2573     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
2574     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
2575                               VE.computeBitsRequiredForTypeIndicies()));
2576     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
2577                                    Abbv) != CONSTANTS_SETTYPE_ABBREV)
2578       llvm_unreachable("Unexpected abbrev ordering!");
2579   }
2580
2581   { // INTEGER abbrev for CONSTANTS_BLOCK.
2582     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2583     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
2584     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2585     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
2586                                    Abbv) != CONSTANTS_INTEGER_ABBREV)
2587       llvm_unreachable("Unexpected abbrev ordering!");
2588   }
2589
2590   { // CE_CAST abbrev for CONSTANTS_BLOCK.
2591     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2592     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
2593     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
2594     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
2595                               VE.computeBitsRequiredForTypeIndicies()));
2596     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
2597
2598     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
2599                                    Abbv) != CONSTANTS_CE_CAST_Abbrev)
2600       llvm_unreachable("Unexpected abbrev ordering!");
2601   }
2602   { // NULL abbrev for CONSTANTS_BLOCK.
2603     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2604     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
2605     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
2606                                    Abbv) != CONSTANTS_NULL_Abbrev)
2607       llvm_unreachable("Unexpected abbrev ordering!");
2608   }
2609
2610   // FIXME: This should only use space for first class types!
2611
2612   { // INST_LOAD abbrev for FUNCTION_BLOCK.
2613     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2614     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
2615     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
2616     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,    // dest ty
2617                               VE.computeBitsRequiredForTypeIndicies()));
2618     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
2619     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
2620     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2621                                    Abbv) != FUNCTION_INST_LOAD_ABBREV)
2622       llvm_unreachable("Unexpected abbrev ordering!");
2623   }
2624   { // INST_BINOP abbrev for FUNCTION_BLOCK.
2625     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2626     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
2627     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
2628     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
2629     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
2630     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2631                                    Abbv) != FUNCTION_INST_BINOP_ABBREV)
2632       llvm_unreachable("Unexpected abbrev ordering!");
2633   }
2634   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
2635     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2636     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
2637     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
2638     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
2639     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
2640     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
2641     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2642                                    Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
2643       llvm_unreachable("Unexpected abbrev ordering!");
2644   }
2645   { // INST_CAST abbrev for FUNCTION_BLOCK.
2646     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2647     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
2648     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
2649     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
2650                               VE.computeBitsRequiredForTypeIndicies()));
2651     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
2652     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2653                                    Abbv) != FUNCTION_INST_CAST_ABBREV)
2654       llvm_unreachable("Unexpected abbrev ordering!");
2655   }
2656
2657   { // INST_RET abbrev for FUNCTION_BLOCK.
2658     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2659     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
2660     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2661                                    Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
2662       llvm_unreachable("Unexpected abbrev ordering!");
2663   }
2664   { // INST_RET abbrev for FUNCTION_BLOCK.
2665     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2666     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
2667     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
2668     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2669                                    Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
2670       llvm_unreachable("Unexpected abbrev ordering!");
2671   }
2672   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
2673     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2674     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
2675     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2676                                    Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
2677       llvm_unreachable("Unexpected abbrev ordering!");
2678   }
2679   {
2680     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2681     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
2682     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
2683     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
2684                               Log2_32_Ceil(VE.getTypes().size() + 1)));
2685     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2686     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
2687     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
2688         FUNCTION_INST_GEP_ABBREV)
2689       llvm_unreachable("Unexpected abbrev ordering!");
2690   }
2691
2692   Stream.ExitBlock();
2693 }
2694
2695 /// Write the module path strings, currently only used when generating
2696 /// a combined index file.
2697 static void WriteModStrings(const FunctionInfoIndex &I,
2698                             BitstreamWriter &Stream) {
2699   Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3);
2700
2701   // TODO: See which abbrev sizes we actually need to emit
2702
2703   // 8-bit fixed-width MST_ENTRY strings.
2704   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2705   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
2706   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2707   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2708   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2709   unsigned Abbrev8Bit = Stream.EmitAbbrev(Abbv);
2710
2711   // 7-bit fixed width MST_ENTRY strings.
2712   Abbv = new BitCodeAbbrev();
2713   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
2714   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2715   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2716   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2717   unsigned Abbrev7Bit = Stream.EmitAbbrev(Abbv);
2718
2719   // 6-bit char6 MST_ENTRY strings.
2720   Abbv = new BitCodeAbbrev();
2721   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
2722   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2723   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2724   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2725   unsigned Abbrev6Bit = Stream.EmitAbbrev(Abbv);
2726
2727   SmallVector<unsigned, 64> NameVals;
2728   for (const StringMapEntry<uint64_t> &MPSE : I.modPathStringEntries()) {
2729     StringEncoding Bits =
2730         getStringEncoding(MPSE.getKey().data(), MPSE.getKey().size());
2731     unsigned AbbrevToUse = Abbrev8Bit;
2732     if (Bits == SE_Char6)
2733       AbbrevToUse = Abbrev6Bit;
2734     else if (Bits == SE_Fixed7)
2735       AbbrevToUse = Abbrev7Bit;
2736
2737     NameVals.push_back(MPSE.getValue());
2738
2739     for (const auto P : MPSE.getKey())
2740       NameVals.push_back((unsigned char)P);
2741
2742     // Emit the finished record.
2743     Stream.EmitRecord(bitc::MST_CODE_ENTRY, NameVals, AbbrevToUse);
2744     NameVals.clear();
2745   }
2746   Stream.ExitBlock();
2747 }
2748
2749 // Helper to emit a single function summary record.
2750 static void WritePerModuleFunctionSummaryRecord(
2751     SmallVector<unsigned, 64> &NameVals, FunctionSummary *FS, unsigned ValueID,
2752     unsigned FSAbbrev, BitstreamWriter &Stream) {
2753   assert(FS);
2754   NameVals.push_back(ValueID);
2755   NameVals.push_back(FS->isLocalFunction());
2756   NameVals.push_back(FS->instCount());
2757
2758   // Emit the finished record.
2759   Stream.EmitRecord(bitc::FS_CODE_PERMODULE_ENTRY, NameVals, FSAbbrev);
2760   NameVals.clear();
2761 }
2762
2763 /// Emit the per-module function summary section alongside the rest of
2764 /// the module's bitcode.
2765 static void WritePerModuleFunctionSummary(
2766     DenseMap<const Function *, std::unique_ptr<FunctionInfo>> &FunctionIndex,
2767     const Module *M, const ValueEnumerator &VE, BitstreamWriter &Stream) {
2768   Stream.EnterSubblock(bitc::FUNCTION_SUMMARY_BLOCK_ID, 3);
2769
2770   // Abbrev for FS_CODE_PERMODULE_ENTRY.
2771   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2772   Abbv->Add(BitCodeAbbrevOp(bitc::FS_CODE_PERMODULE_ENTRY));
2773   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
2774   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // islocal
2775   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
2776   unsigned FSAbbrev = Stream.EmitAbbrev(Abbv);
2777
2778   SmallVector<unsigned, 64> NameVals;
2779   for (auto &I : FunctionIndex) {
2780     // Skip anonymous functions. We will emit a function summary for
2781     // any aliases below.
2782     if (!I.first->hasName())
2783       continue;
2784
2785     WritePerModuleFunctionSummaryRecord(
2786         NameVals, I.second->functionSummary(),
2787         VE.getValueID(M->getValueSymbolTable().lookup(I.first->getName())),
2788         FSAbbrev, Stream);
2789   }
2790
2791   for (const GlobalAlias &A : M->aliases()) {
2792     if (!A.getBaseObject())
2793       continue;
2794     const Function *F = dyn_cast<Function>(A.getBaseObject());
2795     if (!F || F->isDeclaration())
2796       continue;
2797
2798     assert(FunctionIndex.count(F) == 1);
2799     WritePerModuleFunctionSummaryRecord(
2800         NameVals, FunctionIndex[F]->functionSummary(),
2801         VE.getValueID(M->getValueSymbolTable().lookup(A.getName())), FSAbbrev,
2802         Stream);
2803   }
2804
2805   Stream.ExitBlock();
2806 }
2807
2808 /// Emit the combined function summary section into the combined index
2809 /// file.
2810 static void WriteCombinedFunctionSummary(const FunctionInfoIndex &I,
2811                                          BitstreamWriter &Stream) {
2812   Stream.EnterSubblock(bitc::FUNCTION_SUMMARY_BLOCK_ID, 3);
2813
2814   // Abbrev for FS_CODE_COMBINED_ENTRY.
2815   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2816   Abbv->Add(BitCodeAbbrevOp(bitc::FS_CODE_COMBINED_ENTRY));
2817   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
2818   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
2819   unsigned FSAbbrev = Stream.EmitAbbrev(Abbv);
2820
2821   SmallVector<unsigned, 64> NameVals;
2822   for (const auto &FII : I) {
2823     for (auto &FI : FII.getValue()) {
2824       FunctionSummary *FS = FI->functionSummary();
2825       assert(FS);
2826
2827       NameVals.push_back(I.getModuleId(FS->modulePath()));
2828       NameVals.push_back(FS->instCount());
2829
2830       // Record the starting offset of this summary entry for use
2831       // in the VST entry. Add the current code size since the
2832       // reader will invoke readRecord after the abbrev id read.
2833       FI->setBitcodeIndex(Stream.GetCurrentBitNo() + Stream.GetAbbrevIDWidth());
2834
2835       // Emit the finished record.
2836       Stream.EmitRecord(bitc::FS_CODE_COMBINED_ENTRY, NameVals, FSAbbrev);
2837       NameVals.clear();
2838     }
2839   }
2840
2841   Stream.ExitBlock();
2842 }
2843
2844 // Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the
2845 // current llvm version, and a record for the epoch number.
2846 static void WriteIdentificationBlock(const Module *M, BitstreamWriter &Stream) {
2847   Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5);
2848
2849   // Write the "user readable" string identifying the bitcode producer
2850   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2851   Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING));
2852   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2853   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2854   auto StringAbbrev = Stream.EmitAbbrev(Abbv);
2855   WriteStringRecord(bitc::IDENTIFICATION_CODE_STRING,
2856                     "LLVM" LLVM_VERSION_STRING, StringAbbrev, Stream);
2857
2858   // Write the epoch version
2859   Abbv = new BitCodeAbbrev();
2860   Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH));
2861   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
2862   auto EpochAbbrev = Stream.EmitAbbrev(Abbv);
2863   SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH};
2864   Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev);
2865   Stream.ExitBlock();
2866 }
2867
2868 /// WriteModule - Emit the specified module to the bitstream.
2869 static void WriteModule(const Module *M, BitstreamWriter &Stream,
2870                         bool ShouldPreserveUseListOrder,
2871                         uint64_t BitcodeStartBit, bool EmitFunctionSummary) {
2872   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
2873
2874   SmallVector<unsigned, 1> Vals;
2875   unsigned CurVersion = 1;
2876   Vals.push_back(CurVersion);
2877   Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
2878
2879   // Analyze the module, enumerating globals, functions, etc.
2880   ValueEnumerator VE(*M, ShouldPreserveUseListOrder);
2881
2882   // Emit blockinfo, which defines the standard abbreviations etc.
2883   WriteBlockInfo(VE, Stream);
2884
2885   // Emit information about attribute groups.
2886   WriteAttributeGroupTable(VE, Stream);
2887
2888   // Emit information about parameter attributes.
2889   WriteAttributeTable(VE, Stream);
2890
2891   // Emit information describing all of the types in the module.
2892   WriteTypeTable(VE, Stream);
2893
2894   writeComdats(VE, Stream);
2895
2896   // Emit top-level description of module, including target triple, inline asm,
2897   // descriptors for global variables, and function prototype info.
2898   uint64_t VSTOffsetPlaceholder = WriteModuleInfo(M, VE, Stream);
2899
2900   // Emit constants.
2901   WriteModuleConstants(VE, Stream);
2902
2903   // Emit metadata.
2904   WriteModuleMetadata(M, VE, Stream);
2905
2906   // Emit metadata.
2907   WriteModuleMetadataStore(M, Stream);
2908
2909   // Emit module-level use-lists.
2910   if (VE.shouldPreserveUseListOrder())
2911     WriteUseListBlock(nullptr, VE, Stream);
2912
2913   WriteOperandBundleTags(M, Stream);
2914
2915   // Emit function bodies.
2916   DenseMap<const Function *, std::unique_ptr<FunctionInfo>> FunctionIndex;
2917   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F)
2918     if (!F->isDeclaration())
2919       WriteFunction(*F, VE, Stream, FunctionIndex, EmitFunctionSummary);
2920
2921   // Need to write after the above call to WriteFunction which populates
2922   // the summary information in the index.
2923   if (EmitFunctionSummary)
2924     WritePerModuleFunctionSummary(FunctionIndex, M, VE, Stream);
2925
2926   WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream,
2927                         VSTOffsetPlaceholder, BitcodeStartBit, &FunctionIndex);
2928
2929   Stream.ExitBlock();
2930 }
2931
2932 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
2933 /// header and trailer to make it compatible with the system archiver.  To do
2934 /// this we emit the following header, and then emit a trailer that pads the
2935 /// file out to be a multiple of 16 bytes.
2936 ///
2937 /// struct bc_header {
2938 ///   uint32_t Magic;         // 0x0B17C0DE
2939 ///   uint32_t Version;       // Version, currently always 0.
2940 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
2941 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
2942 ///   uint32_t CPUType;       // CPU specifier.
2943 ///   ... potentially more later ...
2944 /// };
2945 enum {
2946   DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
2947   DarwinBCHeaderSize = 5*4
2948 };
2949
2950 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
2951                                uint32_t &Position) {
2952   support::endian::write32le(&Buffer[Position], Value);
2953   Position += 4;
2954 }
2955
2956 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
2957                                          const Triple &TT) {
2958   unsigned CPUType = ~0U;
2959
2960   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
2961   // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
2962   // number from /usr/include/mach/machine.h.  It is ok to reproduce the
2963   // specific constants here because they are implicitly part of the Darwin ABI.
2964   enum {
2965     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
2966     DARWIN_CPU_TYPE_X86        = 7,
2967     DARWIN_CPU_TYPE_ARM        = 12,
2968     DARWIN_CPU_TYPE_POWERPC    = 18
2969   };
2970
2971   Triple::ArchType Arch = TT.getArch();
2972   if (Arch == Triple::x86_64)
2973     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
2974   else if (Arch == Triple::x86)
2975     CPUType = DARWIN_CPU_TYPE_X86;
2976   else if (Arch == Triple::ppc)
2977     CPUType = DARWIN_CPU_TYPE_POWERPC;
2978   else if (Arch == Triple::ppc64)
2979     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
2980   else if (Arch == Triple::arm || Arch == Triple::thumb)
2981     CPUType = DARWIN_CPU_TYPE_ARM;
2982
2983   // Traditional Bitcode starts after header.
2984   assert(Buffer.size() >= DarwinBCHeaderSize &&
2985          "Expected header size to be reserved");
2986   unsigned BCOffset = DarwinBCHeaderSize;
2987   unsigned BCSize = Buffer.size()-DarwinBCHeaderSize;
2988
2989   // Write the magic and version.
2990   unsigned Position = 0;
2991   WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position);
2992   WriteInt32ToBuffer(0          , Buffer, Position); // Version.
2993   WriteInt32ToBuffer(BCOffset   , Buffer, Position);
2994   WriteInt32ToBuffer(BCSize     , Buffer, Position);
2995   WriteInt32ToBuffer(CPUType    , Buffer, Position);
2996
2997   // If the file is not a multiple of 16 bytes, insert dummy padding.
2998   while (Buffer.size() & 15)
2999     Buffer.push_back(0);
3000 }
3001
3002 /// Helper to write the header common to all bitcode files.
3003 static void WriteBitcodeHeader(BitstreamWriter &Stream) {
3004   // Emit the file header.
3005   Stream.Emit((unsigned)'B', 8);
3006   Stream.Emit((unsigned)'C', 8);
3007   Stream.Emit(0x0, 4);
3008   Stream.Emit(0xC, 4);
3009   Stream.Emit(0xE, 4);
3010   Stream.Emit(0xD, 4);
3011 }
3012
3013 /// WriteBitcodeToFile - Write the specified module to the specified output
3014 /// stream.
3015 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out,
3016                               bool ShouldPreserveUseListOrder,
3017                               bool EmitFunctionSummary) {
3018   SmallVector<char, 0> Buffer;
3019   Buffer.reserve(256*1024);
3020
3021   // If this is darwin or another generic macho target, reserve space for the
3022   // header.
3023   Triple TT(M->getTargetTriple());
3024   if (TT.isOSDarwin())
3025     Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0);
3026
3027   // Emit the module into the buffer.
3028   {
3029     BitstreamWriter Stream(Buffer);
3030     // Save the start bit of the actual bitcode, in case there is space
3031     // saved at the start for the darwin header above. The reader stream
3032     // will start at the bitcode, and we need the offset of the VST
3033     // to line up.
3034     uint64_t BitcodeStartBit = Stream.GetCurrentBitNo();
3035
3036     // Emit the file header.
3037     WriteBitcodeHeader(Stream);
3038
3039     WriteIdentificationBlock(M, Stream);
3040
3041     // Emit the module.
3042     WriteModule(M, Stream, ShouldPreserveUseListOrder, BitcodeStartBit,
3043                 EmitFunctionSummary);
3044   }
3045
3046   if (TT.isOSDarwin())
3047     EmitDarwinBCHeaderAndTrailer(Buffer, TT);
3048
3049   // Write the generated bitstream to "Out".
3050   Out.write((char*)&Buffer.front(), Buffer.size());
3051 }
3052
3053 // Write the specified function summary index to the given raw output stream,
3054 // where it will be written in a new bitcode block. This is used when
3055 // writing the combined index file for ThinLTO.
3056 void llvm::WriteFunctionSummaryToFile(const FunctionInfoIndex &Index,
3057                                       raw_ostream &Out) {
3058   SmallVector<char, 0> Buffer;
3059   Buffer.reserve(256 * 1024);
3060
3061   BitstreamWriter Stream(Buffer);
3062
3063   // Emit the bitcode header.
3064   WriteBitcodeHeader(Stream);
3065
3066   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
3067
3068   SmallVector<unsigned, 1> Vals;
3069   unsigned CurVersion = 1;
3070   Vals.push_back(CurVersion);
3071   Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
3072
3073   // Write the module paths in the combined index.
3074   WriteModStrings(Index, Stream);
3075
3076   // Write the function summary combined index records.
3077   WriteCombinedFunctionSummary(Index, Stream);
3078
3079   // Need a special VST writer for the combined index (we don't have a
3080   // real VST and real values when this is invoked).
3081   WriteCombinedValueSymbolTable(Index, Stream);
3082
3083   Stream.ExitBlock();
3084
3085   Out.write((char *)&Buffer.front(), Buffer.size());
3086 }