6dcddedef1caffcc5de275ca6d1d4c29482a6036
[oota-llvm.git] / lib / Bitcode / Writer / BitcodeWriter.cpp
1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "llvm/Bitcode/BitstreamWriter.h"
16 #include "llvm/Bitcode/LLVMBitCodes.h"
17 #include "ValueEnumerator.h"
18 #include "llvm/Constants.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/InlineAsm.h"
21 #include "llvm/Instructions.h"
22 #include "llvm/MDNode.h"
23 #include "llvm/Module.h"
24 #include "llvm/TypeSymbolTable.h"
25 #include "llvm/ValueSymbolTable.h"
26 #include "llvm/Support/MathExtras.h"
27 #include "llvm/Support/Streams.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/System/Program.h"
30 using namespace llvm;
31
32 /// These are manifest constants used by the bitcode writer. They do not need to
33 /// be kept in sync with the reader, but need to be consistent within this file.
34 enum {
35   CurVersion = 0,
36   
37   // VALUE_SYMTAB_BLOCK abbrev id's.
38   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
39   VST_ENTRY_7_ABBREV,
40   VST_ENTRY_6_ABBREV,
41   VST_BBENTRY_6_ABBREV,
42   
43   // CONSTANTS_BLOCK abbrev id's.
44   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
45   CONSTANTS_INTEGER_ABBREV,
46   CONSTANTS_CE_CAST_Abbrev,
47   CONSTANTS_NULL_Abbrev,
48   
49   // FUNCTION_BLOCK abbrev id's.
50   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
51   FUNCTION_INST_BINOP_ABBREV,
52   FUNCTION_INST_CAST_ABBREV,
53   FUNCTION_INST_RET_VOID_ABBREV,
54   FUNCTION_INST_RET_VAL_ABBREV,
55   FUNCTION_INST_UNREACHABLE_ABBREV
56 };
57
58
59 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
60   switch (Opcode) {
61   default: assert(0 && "Unknown cast instruction!");
62   case Instruction::Trunc   : return bitc::CAST_TRUNC;
63   case Instruction::ZExt    : return bitc::CAST_ZEXT;
64   case Instruction::SExt    : return bitc::CAST_SEXT;
65   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
66   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
67   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
68   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
69   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
70   case Instruction::FPExt   : return bitc::CAST_FPEXT;
71   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
72   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
73   case Instruction::BitCast : return bitc::CAST_BITCAST;
74   }
75 }
76
77 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
78   switch (Opcode) {
79   default: assert(0 && "Unknown binary instruction!");
80   case Instruction::Add:
81   case Instruction::FAdd: return bitc::BINOP_ADD;
82   case Instruction::Sub:
83   case Instruction::FSub: return bitc::BINOP_SUB;
84   case Instruction::Mul:
85   case Instruction::FMul: return bitc::BINOP_MUL;
86   case Instruction::UDiv: return bitc::BINOP_UDIV;
87   case Instruction::FDiv:
88   case Instruction::SDiv: return bitc::BINOP_SDIV;
89   case Instruction::URem: return bitc::BINOP_UREM;
90   case Instruction::FRem:
91   case Instruction::SRem: return bitc::BINOP_SREM;
92   case Instruction::Shl:  return bitc::BINOP_SHL;
93   case Instruction::LShr: return bitc::BINOP_LSHR;
94   case Instruction::AShr: return bitc::BINOP_ASHR;
95   case Instruction::And:  return bitc::BINOP_AND;
96   case Instruction::Or:   return bitc::BINOP_OR;
97   case Instruction::Xor:  return bitc::BINOP_XOR;
98   }
99 }
100
101
102
103 static void WriteStringRecord(unsigned Code, const std::string &Str, 
104                               unsigned AbbrevToUse, BitstreamWriter &Stream) {
105   SmallVector<unsigned, 64> Vals;
106   
107   // Code: [strchar x N]
108   for (unsigned i = 0, e = Str.size(); i != e; ++i)
109     Vals.push_back(Str[i]);
110     
111   // Emit the finished record.
112   Stream.EmitRecord(Code, Vals, AbbrevToUse);
113 }
114
115 // Emit information about parameter attributes.
116 static void WriteAttributeTable(const ValueEnumerator &VE, 
117                                 BitstreamWriter &Stream) {
118   const std::vector<AttrListPtr> &Attrs = VE.getAttributes();
119   if (Attrs.empty()) return;
120   
121   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
122
123   SmallVector<uint64_t, 64> Record;
124   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
125     const AttrListPtr &A = Attrs[i];
126     for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) {
127       const AttributeWithIndex &PAWI = A.getSlot(i);
128       Record.push_back(PAWI.Index);
129
130       // FIXME: remove in LLVM 3.0
131       // Store the alignment in the bitcode as a 16-bit raw value instead of a
132       // 5-bit log2 encoded value. Shift the bits above the alignment up by
133       // 11 bits.
134       uint64_t FauxAttr = PAWI.Attrs & 0xffff;
135       if (PAWI.Attrs & Attribute::Alignment)
136         FauxAttr |= (1ull<<16)<<(((PAWI.Attrs & Attribute::Alignment)-1) >> 16);
137       FauxAttr |= (PAWI.Attrs & (0x3FFull << 21)) << 11;
138
139       Record.push_back(FauxAttr);
140     }
141     
142     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
143     Record.clear();
144   }
145   
146   Stream.ExitBlock();
147 }
148
149 /// WriteTypeTable - Write out the type table for a module.
150 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
151   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
152   
153   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */);
154   SmallVector<uint64_t, 64> TypeVals;
155   
156   // Abbrev for TYPE_CODE_POINTER.
157   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
158   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
159   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
160                             Log2_32_Ceil(VE.getTypes().size()+1)));
161   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
162   unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
163   
164   // Abbrev for TYPE_CODE_FUNCTION.
165   Abbv = new BitCodeAbbrev();
166   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
167   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
168   Abbv->Add(BitCodeAbbrevOp(0));  // FIXME: DEAD value, remove in LLVM 3.0
169   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
170   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
171                             Log2_32_Ceil(VE.getTypes().size()+1)));
172   unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
173   
174   // Abbrev for TYPE_CODE_STRUCT.
175   Abbv = new BitCodeAbbrev();
176   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT));
177   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
178   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
179   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
180                             Log2_32_Ceil(VE.getTypes().size()+1)));
181   unsigned StructAbbrev = Stream.EmitAbbrev(Abbv);
182  
183   // Abbrev for TYPE_CODE_ARRAY.
184   Abbv = new BitCodeAbbrev();
185   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
186   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
187   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
188                             Log2_32_Ceil(VE.getTypes().size()+1)));
189   unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
190   
191   // Emit an entry count so the reader can reserve space.
192   TypeVals.push_back(TypeList.size());
193   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
194   TypeVals.clear();
195   
196   // Loop over all of the types, emitting each in turn.
197   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
198     const Type *T = TypeList[i].first;
199     int AbbrevToUse = 0;
200     unsigned Code = 0;
201     
202     switch (T->getTypeID()) {
203     default: assert(0 && "Unknown type!");
204     case Type::VoidTyID:   Code = bitc::TYPE_CODE_VOID;   break;
205     case Type::FloatTyID:  Code = bitc::TYPE_CODE_FLOAT;  break;
206     case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
207     case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
208     case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
209     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
210     case Type::LabelTyID:  Code = bitc::TYPE_CODE_LABEL;  break;
211     case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break;
212     case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break;
213     case Type::IntegerTyID:
214       // INTEGER: [width]
215       Code = bitc::TYPE_CODE_INTEGER;
216       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
217       break;
218     case Type::PointerTyID: {
219       const PointerType *PTy = cast<PointerType>(T);
220       // POINTER: [pointee type, address space]
221       Code = bitc::TYPE_CODE_POINTER;
222       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
223       unsigned AddressSpace = PTy->getAddressSpace();
224       TypeVals.push_back(AddressSpace);
225       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
226       break;
227     }
228     case Type::FunctionTyID: {
229       const FunctionType *FT = cast<FunctionType>(T);
230       // FUNCTION: [isvararg, attrid, retty, paramty x N]
231       Code = bitc::TYPE_CODE_FUNCTION;
232       TypeVals.push_back(FT->isVarArg());
233       TypeVals.push_back(0);  // FIXME: DEAD: remove in llvm 3.0
234       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
235       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
236         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
237       AbbrevToUse = FunctionAbbrev;
238       break;
239     }
240     case Type::StructTyID: {
241       const StructType *ST = cast<StructType>(T);
242       // STRUCT: [ispacked, eltty x N]
243       Code = bitc::TYPE_CODE_STRUCT;
244       TypeVals.push_back(ST->isPacked());
245       // Output all of the element types.
246       for (StructType::element_iterator I = ST->element_begin(),
247            E = ST->element_end(); I != E; ++I)
248         TypeVals.push_back(VE.getTypeID(*I));
249       AbbrevToUse = StructAbbrev;
250       break;
251     }
252     case Type::ArrayTyID: {
253       const ArrayType *AT = cast<ArrayType>(T);
254       // ARRAY: [numelts, eltty]
255       Code = bitc::TYPE_CODE_ARRAY;
256       TypeVals.push_back(AT->getNumElements());
257       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
258       AbbrevToUse = ArrayAbbrev;
259       break;
260     }
261     case Type::VectorTyID: {
262       const VectorType *VT = cast<VectorType>(T);
263       // VECTOR [numelts, eltty]
264       Code = bitc::TYPE_CODE_VECTOR;
265       TypeVals.push_back(VT->getNumElements());
266       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
267       break;
268     }
269     }
270
271     // Emit the finished record.
272     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
273     TypeVals.clear();
274   }
275   
276   Stream.ExitBlock();
277 }
278
279 static unsigned getEncodedLinkage(const GlobalValue *GV) {
280   switch (GV->getLinkage()) {
281   default: assert(0 && "Invalid linkage!");
282   case GlobalValue::GhostLinkage:  // Map ghost linkage onto external.
283   case GlobalValue::ExternalLinkage:     return 0;
284   case GlobalValue::WeakAnyLinkage:      return 1;
285   case GlobalValue::AppendingLinkage:    return 2;
286   case GlobalValue::InternalLinkage:     return 3;
287   case GlobalValue::LinkOnceAnyLinkage:  return 4;
288   case GlobalValue::DLLImportLinkage:    return 5;
289   case GlobalValue::DLLExportLinkage:    return 6;
290   case GlobalValue::ExternalWeakLinkage: return 7;
291   case GlobalValue::CommonLinkage:       return 8;
292   case GlobalValue::PrivateLinkage:      return 9;
293   case GlobalValue::WeakODRLinkage:      return 10;
294   case GlobalValue::LinkOnceODRLinkage:  return 11;
295   case GlobalValue::AvailableExternallyLinkage:  return 12;
296   }
297 }
298
299 static unsigned getEncodedVisibility(const GlobalValue *GV) {
300   switch (GV->getVisibility()) {
301   default: assert(0 && "Invalid visibility!");
302   case GlobalValue::DefaultVisibility:   return 0;
303   case GlobalValue::HiddenVisibility:    return 1;
304   case GlobalValue::ProtectedVisibility: return 2;
305   }
306 }
307
308 // Emit top-level description of module, including target triple, inline asm,
309 // descriptors for global variables, and function prototype info.
310 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
311                             BitstreamWriter &Stream) {
312   // Emit the list of dependent libraries for the Module.
313   for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I)
314     WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream);
315
316   // Emit various pieces of data attached to a module.
317   if (!M->getTargetTriple().empty())
318     WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
319                       0/*TODO*/, Stream);
320   if (!M->getDataLayout().empty())
321     WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
322                       0/*TODO*/, Stream);
323   if (!M->getModuleInlineAsm().empty())
324     WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
325                       0/*TODO*/, Stream);
326
327   // Emit information about sections and GC, computing how many there are. Also
328   // compute the maximum alignment value.
329   std::map<std::string, unsigned> SectionMap;
330   std::map<std::string, unsigned> GCMap;
331   unsigned MaxAlignment = 0;
332   unsigned MaxGlobalType = 0;
333   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
334        GV != E; ++GV) {
335     MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
336     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
337     
338     if (!GV->hasSection()) continue;
339     // Give section names unique ID's.
340     unsigned &Entry = SectionMap[GV->getSection()];
341     if (Entry != 0) continue;
342     WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
343                       0/*TODO*/, Stream);
344     Entry = SectionMap.size();
345   }
346   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
347     MaxAlignment = std::max(MaxAlignment, F->getAlignment());
348     if (F->hasSection()) {
349       // Give section names unique ID's.
350       unsigned &Entry = SectionMap[F->getSection()];
351       if (!Entry) {
352         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
353                           0/*TODO*/, Stream);
354         Entry = SectionMap.size();
355       }
356     }
357     if (F->hasGC()) {
358       // Same for GC names.
359       unsigned &Entry = GCMap[F->getGC()];
360       if (!Entry) {
361         WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(),
362                           0/*TODO*/, Stream);
363         Entry = GCMap.size();
364       }
365     }
366   }
367   
368   // Emit abbrev for globals, now that we know # sections and max alignment.
369   unsigned SimpleGVarAbbrev = 0;
370   if (!M->global_empty()) { 
371     // Add an abbrev for common globals with no visibility or thread localness.
372     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
373     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
374     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
375                               Log2_32_Ceil(MaxGlobalType+1)));
376     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
377     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
378     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));      // Linkage.
379     if (MaxAlignment == 0)                                      // Alignment.
380       Abbv->Add(BitCodeAbbrevOp(0));
381     else {
382       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
383       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
384                                Log2_32_Ceil(MaxEncAlignment+1)));
385     }
386     if (SectionMap.empty())                                    // Section.
387       Abbv->Add(BitCodeAbbrevOp(0));
388     else
389       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
390                                Log2_32_Ceil(SectionMap.size()+1)));
391     // Don't bother emitting vis + thread local.
392     SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
393   }
394   
395   // Emit the global variable information.
396   SmallVector<unsigned, 64> Vals;
397   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
398        GV != E; ++GV) {
399     unsigned AbbrevToUse = 0;
400
401     // GLOBALVAR: [type, isconst, initid, 
402     //             linkage, alignment, section, visibility, threadlocal]
403     Vals.push_back(VE.getTypeID(GV->getType()));
404     Vals.push_back(GV->isConstant());
405     Vals.push_back(GV->isDeclaration() ? 0 :
406                    (VE.getValueID(GV->getInitializer()) + 1));
407     Vals.push_back(getEncodedLinkage(GV));
408     Vals.push_back(Log2_32(GV->getAlignment())+1);
409     Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
410     if (GV->isThreadLocal() || 
411         GV->getVisibility() != GlobalValue::DefaultVisibility) {
412       Vals.push_back(getEncodedVisibility(GV));
413       Vals.push_back(GV->isThreadLocal());
414     } else {
415       AbbrevToUse = SimpleGVarAbbrev;
416     }
417     
418     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
419     Vals.clear();
420   }
421
422   // Emit the function proto information.
423   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
424     // FUNCTION:  [type, callingconv, isproto, paramattr,
425     //             linkage, alignment, section, visibility, gc]
426     Vals.push_back(VE.getTypeID(F->getType()));
427     Vals.push_back(F->getCallingConv());
428     Vals.push_back(F->isDeclaration());
429     Vals.push_back(getEncodedLinkage(F));
430     Vals.push_back(VE.getAttributeID(F->getAttributes()));
431     Vals.push_back(Log2_32(F->getAlignment())+1);
432     Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
433     Vals.push_back(getEncodedVisibility(F));
434     Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0);
435     
436     unsigned AbbrevToUse = 0;
437     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
438     Vals.clear();
439   }
440   
441   
442   // Emit the alias information.
443   for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
444        AI != E; ++AI) {
445     Vals.push_back(VE.getTypeID(AI->getType()));
446     Vals.push_back(VE.getValueID(AI->getAliasee()));
447     Vals.push_back(getEncodedLinkage(AI));
448     Vals.push_back(getEncodedVisibility(AI));
449     unsigned AbbrevToUse = 0;
450     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
451     Vals.clear();
452   }
453 }
454
455
456 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
457                            const ValueEnumerator &VE,
458                            BitstreamWriter &Stream, bool isGlobal) {
459   if (FirstVal == LastVal) return;
460   
461   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
462
463   unsigned AggregateAbbrev = 0;
464   unsigned String8Abbrev = 0;
465   unsigned CString7Abbrev = 0;
466   unsigned CString6Abbrev = 0;
467   unsigned MDString8Abbrev = 0;
468   unsigned MDString6Abbrev = 0;
469   // If this is a constant pool for the module, emit module-specific abbrevs.
470   if (isGlobal) {
471     // Abbrev for CST_CODE_AGGREGATE.
472     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
473     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
474     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
475     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
476     AggregateAbbrev = Stream.EmitAbbrev(Abbv);
477
478     // Abbrev for CST_CODE_STRING.
479     Abbv = new BitCodeAbbrev();
480     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
481     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
482     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
483     String8Abbrev = Stream.EmitAbbrev(Abbv);
484     // Abbrev for CST_CODE_CSTRING.
485     Abbv = new BitCodeAbbrev();
486     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
487     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
488     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
489     CString7Abbrev = Stream.EmitAbbrev(Abbv);
490     // Abbrev for CST_CODE_CSTRING.
491     Abbv = new BitCodeAbbrev();
492     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
493     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
494     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
495     CString6Abbrev = Stream.EmitAbbrev(Abbv);
496
497     // Abbrev for CST_CODE_MDSTRING.
498     Abbv = new BitCodeAbbrev();
499     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_MDSTRING));
500     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
501     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
502     MDString8Abbrev = Stream.EmitAbbrev(Abbv);
503     // Abbrev for CST_CODE_MDSTRING.
504     Abbv = new BitCodeAbbrev();
505     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_MDSTRING));
506     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
507     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
508     MDString6Abbrev = Stream.EmitAbbrev(Abbv);
509   }  
510   
511   SmallVector<uint64_t, 64> Record;
512
513   const ValueEnumerator::ValueList &Vals = VE.getValues();
514   const Type *LastTy = 0;
515   for (unsigned i = FirstVal; i != LastVal; ++i) {
516     const Value *V = Vals[i].first;
517     // If we need to switch types, do so now.
518     if (V->getType() != LastTy) {
519       LastTy = V->getType();
520       Record.push_back(VE.getTypeID(LastTy));
521       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
522                         CONSTANTS_SETTYPE_ABBREV);
523       Record.clear();
524     }
525     
526     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
527       Record.push_back(unsigned(IA->hasSideEffects()));
528       
529       // Add the asm string.
530       const std::string &AsmStr = IA->getAsmString();
531       Record.push_back(AsmStr.size());
532       for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
533         Record.push_back(AsmStr[i]);
534       
535       // Add the constraint string.
536       const std::string &ConstraintStr = IA->getConstraintString();
537       Record.push_back(ConstraintStr.size());
538       for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
539         Record.push_back(ConstraintStr[i]);
540       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
541       Record.clear();
542       continue;
543     }
544     const Constant *C = cast<Constant>(V);
545     unsigned Code = -1U;
546     unsigned AbbrevToUse = 0;
547     if (C->isNullValue()) {
548       Code = bitc::CST_CODE_NULL;
549     } else if (isa<UndefValue>(C)) {
550       Code = bitc::CST_CODE_UNDEF;
551     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
552       if (IV->getBitWidth() <= 64) {
553         int64_t V = IV->getSExtValue();
554         if (V >= 0)
555           Record.push_back(V << 1);
556         else
557           Record.push_back((-V << 1) | 1);
558         Code = bitc::CST_CODE_INTEGER;
559         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
560       } else {                             // Wide integers, > 64 bits in size.
561         // We have an arbitrary precision integer value to write whose 
562         // bit width is > 64. However, in canonical unsigned integer 
563         // format it is likely that the high bits are going to be zero.
564         // So, we only write the number of active words.
565         unsigned NWords = IV->getValue().getActiveWords(); 
566         const uint64_t *RawWords = IV->getValue().getRawData();
567         for (unsigned i = 0; i != NWords; ++i) {
568           int64_t V = RawWords[i];
569           if (V >= 0)
570             Record.push_back(V << 1);
571           else
572             Record.push_back((-V << 1) | 1);
573         }
574         Code = bitc::CST_CODE_WIDE_INTEGER;
575       }
576     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
577       Code = bitc::CST_CODE_FLOAT;
578       const Type *Ty = CFP->getType();
579       if (Ty == Type::FloatTy || Ty == Type::DoubleTy) {
580         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
581       } else if (Ty == Type::X86_FP80Ty) {
582         // api needed to prevent premature destruction
583         // bits are not in the same order as a normal i80 APInt, compensate.
584         APInt api = CFP->getValueAPF().bitcastToAPInt();
585         const uint64_t *p = api.getRawData();
586         Record.push_back((p[1] << 48) | (p[0] >> 16));
587         Record.push_back(p[0] & 0xffffLL);
588       } else if (Ty == Type::FP128Ty || Ty == Type::PPC_FP128Ty) {
589         APInt api = CFP->getValueAPF().bitcastToAPInt();
590         const uint64_t *p = api.getRawData();
591         Record.push_back(p[0]);
592         Record.push_back(p[1]);
593       } else {
594         assert (0 && "Unknown FP type!");
595       }
596     } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
597       // Emit constant strings specially.
598       unsigned NumOps = C->getNumOperands();
599       // If this is a null-terminated string, use the denser CSTRING encoding.
600       if (C->getOperand(NumOps-1)->isNullValue()) {
601         Code = bitc::CST_CODE_CSTRING;
602         --NumOps;  // Don't encode the null, which isn't allowed by char6.
603       } else {
604         Code = bitc::CST_CODE_STRING;
605         AbbrevToUse = String8Abbrev;
606       }
607       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
608       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
609       for (unsigned i = 0; i != NumOps; ++i) {
610         unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue();
611         Record.push_back(V);
612         isCStr7 &= (V & 128) == 0;
613         if (isCStrChar6) 
614           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
615       }
616       
617       if (isCStrChar6)
618         AbbrevToUse = CString6Abbrev;
619       else if (isCStr7)
620         AbbrevToUse = CString7Abbrev;
621     } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) ||
622                isa<ConstantVector>(V)) {
623       Code = bitc::CST_CODE_AGGREGATE;
624       for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
625         Record.push_back(VE.getValueID(C->getOperand(i)));
626       AbbrevToUse = AggregateAbbrev;
627     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
628       switch (CE->getOpcode()) {
629       default:
630         if (Instruction::isCast(CE->getOpcode())) {
631           Code = bitc::CST_CODE_CE_CAST;
632           Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
633           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
634           Record.push_back(VE.getValueID(C->getOperand(0)));
635           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
636         } else {
637           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
638           Code = bitc::CST_CODE_CE_BINOP;
639           Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
640           Record.push_back(VE.getValueID(C->getOperand(0)));
641           Record.push_back(VE.getValueID(C->getOperand(1)));
642         }
643         break;
644       case Instruction::GetElementPtr:
645         Code = bitc::CST_CODE_CE_GEP;
646         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
647           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
648           Record.push_back(VE.getValueID(C->getOperand(i)));
649         }
650         break;
651       case Instruction::Select:
652         Code = bitc::CST_CODE_CE_SELECT;
653         Record.push_back(VE.getValueID(C->getOperand(0)));
654         Record.push_back(VE.getValueID(C->getOperand(1)));
655         Record.push_back(VE.getValueID(C->getOperand(2)));
656         break;
657       case Instruction::ExtractElement:
658         Code = bitc::CST_CODE_CE_EXTRACTELT;
659         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
660         Record.push_back(VE.getValueID(C->getOperand(0)));
661         Record.push_back(VE.getValueID(C->getOperand(1)));
662         break;
663       case Instruction::InsertElement:
664         Code = bitc::CST_CODE_CE_INSERTELT;
665         Record.push_back(VE.getValueID(C->getOperand(0)));
666         Record.push_back(VE.getValueID(C->getOperand(1)));
667         Record.push_back(VE.getValueID(C->getOperand(2)));
668         break;
669       case Instruction::ShuffleVector:
670         // If the return type and argument types are the same, this is a
671         // standard shufflevector instruction.  If the types are different,
672         // then the shuffle is widening or truncating the input vectors, and
673         // the argument type must also be encoded.
674         if (C->getType() == C->getOperand(0)->getType()) {
675           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
676         } else {
677           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
678           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
679         }
680         Record.push_back(VE.getValueID(C->getOperand(0)));
681         Record.push_back(VE.getValueID(C->getOperand(1)));
682         Record.push_back(VE.getValueID(C->getOperand(2)));
683         break;
684       case Instruction::ICmp:
685       case Instruction::FCmp:
686       case Instruction::VICmp:
687       case Instruction::VFCmp:
688         if (isa<VectorType>(C->getOperand(0)->getType())
689             && (CE->getOpcode() == Instruction::ICmp
690                 || CE->getOpcode() == Instruction::FCmp)) {
691           // compare returning vector of Int1Ty
692           assert(0 && "Unsupported constant!");
693         } else {
694           Code = bitc::CST_CODE_CE_CMP;
695         }
696         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
697         Record.push_back(VE.getValueID(C->getOperand(0)));
698         Record.push_back(VE.getValueID(C->getOperand(1)));
699         Record.push_back(CE->getPredicate());
700         break;
701       }
702     } else if (const MDString *S = dyn_cast<MDString>(C)) {
703       Code = bitc::CST_CODE_MDSTRING;
704       AbbrevToUse = MDString6Abbrev;
705       for (unsigned i = 0, e = S->size(); i != e; ++i) {
706         char V = S->begin()[i];
707         Record.push_back(V);
708
709         if (!BitCodeAbbrevOp::isChar6(V))
710           AbbrevToUse = MDString8Abbrev;
711       }
712     } else if (const MDNode *N = dyn_cast<MDNode>(C)) {
713       Code = bitc::CST_CODE_MDNODE;
714       for (unsigned i = 0, e = N->getNumElements(); i != e; ++i) {
715         if (N->getElement(i)) {
716           Record.push_back(VE.getTypeID(N->getElement(i)->getType()));
717           Record.push_back(VE.getValueID(N->getElement(i)));
718         } else {
719           Record.push_back(VE.getTypeID(Type::VoidTy));
720           Record.push_back(0);
721         }
722       }
723     } else {
724       assert(0 && "Unknown constant!");
725     }
726     Stream.EmitRecord(Code, Record, AbbrevToUse);
727     Record.clear();
728   }
729
730   Stream.ExitBlock();
731 }
732
733 static void WriteModuleConstants(const ValueEnumerator &VE,
734                                  BitstreamWriter &Stream) {
735   const ValueEnumerator::ValueList &Vals = VE.getValues();
736   
737   // Find the first constant to emit, which is the first non-globalvalue value.
738   // We know globalvalues have been emitted by WriteModuleInfo.
739   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
740     if (!isa<GlobalValue>(Vals[i].first)) {
741       WriteConstants(i, Vals.size(), VE, Stream, true);
742       return;
743     }
744   }
745 }
746
747 /// PushValueAndType - The file has to encode both the value and type id for
748 /// many values, because we need to know what type to create for forward
749 /// references.  However, most operands are not forward references, so this type
750 /// field is not needed.
751 ///
752 /// This function adds V's value ID to Vals.  If the value ID is higher than the
753 /// instruction ID, then it is a forward reference, and it also includes the
754 /// type ID.
755 static bool PushValueAndType(const Value *V, unsigned InstID,
756                              SmallVector<unsigned, 64> &Vals, 
757                              ValueEnumerator &VE) {
758   unsigned ValID = VE.getValueID(V);
759   Vals.push_back(ValID);
760   if (ValID >= InstID) {
761     Vals.push_back(VE.getTypeID(V->getType()));
762     return true;
763   }
764   return false;
765 }
766
767 /// WriteInstruction - Emit an instruction to the specified stream.
768 static void WriteInstruction(const Instruction &I, unsigned InstID,
769                              ValueEnumerator &VE, BitstreamWriter &Stream,
770                              SmallVector<unsigned, 64> &Vals) {
771   unsigned Code = 0;
772   unsigned AbbrevToUse = 0;
773   switch (I.getOpcode()) {
774   default:
775     if (Instruction::isCast(I.getOpcode())) {
776       Code = bitc::FUNC_CODE_INST_CAST;
777       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
778         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
779       Vals.push_back(VE.getTypeID(I.getType()));
780       Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
781     } else {
782       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
783       Code = bitc::FUNC_CODE_INST_BINOP;
784       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
785         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
786       Vals.push_back(VE.getValueID(I.getOperand(1)));
787       Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
788     }
789     break;
790
791   case Instruction::GetElementPtr:
792     Code = bitc::FUNC_CODE_INST_GEP;
793     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
794       PushValueAndType(I.getOperand(i), InstID, Vals, VE);
795     break;
796   case Instruction::ExtractValue: {
797     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
798     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
799     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
800     for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
801       Vals.push_back(*i);
802     break;
803   }
804   case Instruction::InsertValue: {
805     Code = bitc::FUNC_CODE_INST_INSERTVAL;
806     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
807     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
808     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
809     for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
810       Vals.push_back(*i);
811     break;
812   }
813   case Instruction::Select:
814     Code = bitc::FUNC_CODE_INST_VSELECT;
815     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
816     Vals.push_back(VE.getValueID(I.getOperand(2)));
817     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
818     break;
819   case Instruction::ExtractElement:
820     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
821     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
822     Vals.push_back(VE.getValueID(I.getOperand(1)));
823     break;
824   case Instruction::InsertElement:
825     Code = bitc::FUNC_CODE_INST_INSERTELT;
826     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
827     Vals.push_back(VE.getValueID(I.getOperand(1)));
828     Vals.push_back(VE.getValueID(I.getOperand(2)));
829     break;
830   case Instruction::ShuffleVector:
831     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
832     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
833     Vals.push_back(VE.getValueID(I.getOperand(1)));
834     Vals.push_back(VE.getValueID(I.getOperand(2)));
835     break;
836   case Instruction::ICmp:
837   case Instruction::FCmp:
838   case Instruction::VICmp:
839   case Instruction::VFCmp:
840     if (I.getOpcode() == Instruction::ICmp
841         || I.getOpcode() == Instruction::FCmp) {
842       // compare returning Int1Ty or vector of Int1Ty
843       Code = bitc::FUNC_CODE_INST_CMP2;
844     } else {
845       Code = bitc::FUNC_CODE_INST_CMP;
846     }
847     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
848     Vals.push_back(VE.getValueID(I.getOperand(1)));
849     Vals.push_back(cast<CmpInst>(I).getPredicate());
850     break;
851
852   case Instruction::Ret: 
853     {
854       Code = bitc::FUNC_CODE_INST_RET;
855       unsigned NumOperands = I.getNumOperands();
856       if (NumOperands == 0)
857         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
858       else if (NumOperands == 1) {
859         if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
860           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
861       } else {
862         for (unsigned i = 0, e = NumOperands; i != e; ++i)
863           PushValueAndType(I.getOperand(i), InstID, Vals, VE);
864       }
865     }
866     break;
867   case Instruction::Br:
868     {
869       Code = bitc::FUNC_CODE_INST_BR;
870       BranchInst &II(cast<BranchInst>(I));
871       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
872       if (II.isConditional()) {
873         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
874         Vals.push_back(VE.getValueID(II.getCondition()));
875       }
876     }
877     break;
878   case Instruction::Switch:
879     Code = bitc::FUNC_CODE_INST_SWITCH;
880     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
881     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
882       Vals.push_back(VE.getValueID(I.getOperand(i)));
883     break;
884   case Instruction::Invoke: {
885     const InvokeInst *II = cast<InvokeInst>(&I);
886     const Value *Callee(II->getCalledValue());
887     const PointerType *PTy = cast<PointerType>(Callee->getType());
888     const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
889     Code = bitc::FUNC_CODE_INST_INVOKE;
890     
891     Vals.push_back(VE.getAttributeID(II->getAttributes()));
892     Vals.push_back(II->getCallingConv());
893     Vals.push_back(VE.getValueID(II->getNormalDest()));
894     Vals.push_back(VE.getValueID(II->getUnwindDest()));
895     PushValueAndType(Callee, InstID, Vals, VE);
896     
897     // Emit value #'s for the fixed parameters.
898     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
899       Vals.push_back(VE.getValueID(I.getOperand(i+3)));  // fixed param.
900
901     // Emit type/value pairs for varargs params.
902     if (FTy->isVarArg()) {
903       for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands();
904            i != e; ++i)
905         PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
906     }
907     break;
908   }
909   case Instruction::Unwind:
910     Code = bitc::FUNC_CODE_INST_UNWIND;
911     break;
912   case Instruction::Unreachable:
913     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
914     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
915     break;
916   
917   case Instruction::PHI:
918     Code = bitc::FUNC_CODE_INST_PHI;
919     Vals.push_back(VE.getTypeID(I.getType()));
920     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
921       Vals.push_back(VE.getValueID(I.getOperand(i)));
922     break;
923     
924   case Instruction::Malloc:
925     Code = bitc::FUNC_CODE_INST_MALLOC;
926     Vals.push_back(VE.getTypeID(I.getType()));
927     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
928     Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1);
929     break;
930     
931   case Instruction::Free:
932     Code = bitc::FUNC_CODE_INST_FREE;
933     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
934     break;
935     
936   case Instruction::Alloca:
937     Code = bitc::FUNC_CODE_INST_ALLOCA;
938     Vals.push_back(VE.getTypeID(I.getType()));
939     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
940     Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
941     break;
942     
943   case Instruction::Load:
944     Code = bitc::FUNC_CODE_INST_LOAD;
945     if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
946       AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
947       
948     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
949     Vals.push_back(cast<LoadInst>(I).isVolatile());
950     break;
951   case Instruction::Store:
952     Code = bitc::FUNC_CODE_INST_STORE2;
953     PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
954     Vals.push_back(VE.getValueID(I.getOperand(0)));       // val.
955     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
956     Vals.push_back(cast<StoreInst>(I).isVolatile());
957     break;
958   case Instruction::Call: {
959     const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
960     const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
961
962     Code = bitc::FUNC_CODE_INST_CALL;
963     
964     const CallInst *CI = cast<CallInst>(&I);
965     Vals.push_back(VE.getAttributeID(CI->getAttributes()));
966     Vals.push_back((CI->getCallingConv() << 1) | unsigned(CI->isTailCall()));
967     PushValueAndType(CI->getOperand(0), InstID, Vals, VE);  // Callee
968     
969     // Emit value #'s for the fixed parameters.
970     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
971       Vals.push_back(VE.getValueID(I.getOperand(i+1)));  // fixed param.
972       
973     // Emit type/value pairs for varargs params.
974     if (FTy->isVarArg()) {
975       unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams();
976       for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands();
977            i != e; ++i)
978         PushValueAndType(I.getOperand(i), InstID, Vals, VE);  // varargs
979     }
980     break;
981   }
982   case Instruction::VAArg:
983     Code = bitc::FUNC_CODE_INST_VAARG;
984     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
985     Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
986     Vals.push_back(VE.getTypeID(I.getType())); // restype.
987     break;
988   }
989   
990   Stream.EmitRecord(Code, Vals, AbbrevToUse);
991   Vals.clear();
992 }
993
994 // Emit names for globals/functions etc.
995 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
996                                   const ValueEnumerator &VE,
997                                   BitstreamWriter &Stream) {
998   if (VST.empty()) return;
999   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
1000
1001   // FIXME: Set up the abbrev, we know how many values there are!
1002   // FIXME: We know if the type names can use 7-bit ascii.
1003   SmallVector<unsigned, 64> NameVals;
1004   
1005   for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
1006        SI != SE; ++SI) {
1007     
1008     const ValueName &Name = *SI;
1009     
1010     // Figure out the encoding to use for the name.
1011     bool is7Bit = true;
1012     bool isChar6 = true;
1013     for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
1014          C != E; ++C) {
1015       if (isChar6) 
1016         isChar6 = BitCodeAbbrevOp::isChar6(*C);
1017       if ((unsigned char)*C & 128) {
1018         is7Bit = false;
1019         break;  // don't bother scanning the rest.
1020       }
1021     }
1022     
1023     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
1024     
1025     // VST_ENTRY:   [valueid, namechar x N]
1026     // VST_BBENTRY: [bbid, namechar x N]
1027     unsigned Code;
1028     if (isa<BasicBlock>(SI->getValue())) {
1029       Code = bitc::VST_CODE_BBENTRY;
1030       if (isChar6)
1031         AbbrevToUse = VST_BBENTRY_6_ABBREV;
1032     } else {
1033       Code = bitc::VST_CODE_ENTRY;
1034       if (isChar6)
1035         AbbrevToUse = VST_ENTRY_6_ABBREV;
1036       else if (is7Bit)
1037         AbbrevToUse = VST_ENTRY_7_ABBREV;
1038     }
1039     
1040     NameVals.push_back(VE.getValueID(SI->getValue()));
1041     for (const char *P = Name.getKeyData(),
1042          *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
1043       NameVals.push_back((unsigned char)*P);
1044     
1045     // Emit the finished record.
1046     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
1047     NameVals.clear();
1048   }
1049   Stream.ExitBlock();
1050 }
1051
1052 /// WriteFunction - Emit a function body to the module stream.
1053 static void WriteFunction(const Function &F, ValueEnumerator &VE, 
1054                           BitstreamWriter &Stream) {
1055   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
1056   VE.incorporateFunction(F);
1057
1058   SmallVector<unsigned, 64> Vals;
1059   
1060   // Emit the number of basic blocks, so the reader can create them ahead of
1061   // time.
1062   Vals.push_back(VE.getBasicBlocks().size());
1063   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
1064   Vals.clear();
1065   
1066   // If there are function-local constants, emit them now.
1067   unsigned CstStart, CstEnd;
1068   VE.getFunctionConstantRange(CstStart, CstEnd);
1069   WriteConstants(CstStart, CstEnd, VE, Stream, false);
1070   
1071   // Keep a running idea of what the instruction ID is. 
1072   unsigned InstID = CstEnd;
1073   
1074   // Finally, emit all the instructions, in order.
1075   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1076     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1077          I != E; ++I) {
1078       WriteInstruction(*I, InstID, VE, Stream, Vals);
1079       if (I->getType() != Type::VoidTy)
1080         ++InstID;
1081     }
1082   
1083   // Emit names for all the instructions etc.
1084   WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
1085     
1086   VE.purgeFunction();
1087   Stream.ExitBlock();
1088 }
1089
1090 /// WriteTypeSymbolTable - Emit a block for the specified type symtab.
1091 static void WriteTypeSymbolTable(const TypeSymbolTable &TST,
1092                                  const ValueEnumerator &VE,
1093                                  BitstreamWriter &Stream) {
1094   if (TST.empty()) return;
1095   
1096   Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3);
1097   
1098   // 7-bit fixed width VST_CODE_ENTRY strings.
1099   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1100   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1101   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1102                             Log2_32_Ceil(VE.getTypes().size()+1)));
1103   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1104   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1105   unsigned V7Abbrev = Stream.EmitAbbrev(Abbv);
1106   
1107   SmallVector<unsigned, 64> NameVals;
1108   
1109   for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 
1110        TI != TE; ++TI) {
1111     // TST_ENTRY: [typeid, namechar x N]
1112     NameVals.push_back(VE.getTypeID(TI->second));
1113     
1114     const std::string &Str = TI->first;
1115     bool is7Bit = true;
1116     for (unsigned i = 0, e = Str.size(); i != e; ++i) {
1117       NameVals.push_back((unsigned char)Str[i]);
1118       if (Str[i] & 128)
1119         is7Bit = false;
1120     }
1121     
1122     // Emit the finished record.
1123     Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0);
1124     NameVals.clear();
1125   }
1126   
1127   Stream.ExitBlock();
1128 }
1129
1130 // Emit blockinfo, which defines the standard abbreviations etc.
1131 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
1132   // We only want to emit block info records for blocks that have multiple
1133   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.  Other
1134   // blocks can defined their abbrevs inline.
1135   Stream.EnterBlockInfoBlock(2);
1136   
1137   { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1138     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1139     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
1140     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1141     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1142     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1143     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 
1144                                    Abbv) != VST_ENTRY_8_ABBREV)
1145       assert(0 && "Unexpected abbrev ordering!");
1146   }
1147   
1148   { // 7-bit fixed width VST_ENTRY strings.
1149     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1150     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1151     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1152     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1153     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1154     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1155                                    Abbv) != VST_ENTRY_7_ABBREV)
1156       assert(0 && "Unexpected abbrev ordering!");
1157   }
1158   { // 6-bit char6 VST_ENTRY strings.
1159     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1160     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1161     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1162     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1163     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1164     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1165                                    Abbv) != VST_ENTRY_6_ABBREV)
1166       assert(0 && "Unexpected abbrev ordering!");
1167   }
1168   { // 6-bit char6 VST_BBENTRY strings.
1169     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1170     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1171     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1172     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1173     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1174     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1175                                    Abbv) != VST_BBENTRY_6_ABBREV)
1176       assert(0 && "Unexpected abbrev ordering!");
1177   }
1178   
1179   
1180   
1181   { // SETTYPE abbrev for CONSTANTS_BLOCK.
1182     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1183     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1184     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1185                               Log2_32_Ceil(VE.getTypes().size()+1)));
1186     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1187                                    Abbv) != CONSTANTS_SETTYPE_ABBREV)
1188       assert(0 && "Unexpected abbrev ordering!");
1189   }
1190   
1191   { // INTEGER abbrev for CONSTANTS_BLOCK.
1192     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1193     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1194     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1195     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1196                                    Abbv) != CONSTANTS_INTEGER_ABBREV)
1197       assert(0 && "Unexpected abbrev ordering!");
1198   }
1199   
1200   { // CE_CAST abbrev for CONSTANTS_BLOCK.
1201     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1202     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1203     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
1204     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
1205                               Log2_32_Ceil(VE.getTypes().size()+1)));
1206     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
1207
1208     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1209                                    Abbv) != CONSTANTS_CE_CAST_Abbrev)
1210       assert(0 && "Unexpected abbrev ordering!");
1211   }
1212   { // NULL abbrev for CONSTANTS_BLOCK.
1213     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1214     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1215     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1216                                    Abbv) != CONSTANTS_NULL_Abbrev)
1217       assert(0 && "Unexpected abbrev ordering!");
1218   }
1219   
1220   // FIXME: This should only use space for first class types!
1221  
1222   { // INST_LOAD abbrev for FUNCTION_BLOCK.
1223     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1224     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1225     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1226     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1227     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1228     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1229                                    Abbv) != FUNCTION_INST_LOAD_ABBREV)
1230       assert(0 && "Unexpected abbrev ordering!");
1231   }
1232   { // INST_BINOP abbrev for FUNCTION_BLOCK.
1233     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1234     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1235     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1236     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1237     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1238     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1239                                    Abbv) != FUNCTION_INST_BINOP_ABBREV)
1240       assert(0 && "Unexpected abbrev ordering!");
1241   }
1242   { // INST_CAST abbrev for FUNCTION_BLOCK.
1243     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1244     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
1245     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
1246     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
1247                               Log2_32_Ceil(VE.getTypes().size()+1)));
1248     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
1249     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1250                                    Abbv) != FUNCTION_INST_CAST_ABBREV)
1251       assert(0 && "Unexpected abbrev ordering!");
1252   }
1253   
1254   { // INST_RET abbrev for FUNCTION_BLOCK.
1255     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1256     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1257     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1258                                    Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
1259       assert(0 && "Unexpected abbrev ordering!");
1260   }
1261   { // INST_RET abbrev for FUNCTION_BLOCK.
1262     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1263     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1264     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
1265     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1266                                    Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
1267       assert(0 && "Unexpected abbrev ordering!");
1268   }
1269   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1270     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1271     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
1272     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1273                                    Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
1274       assert(0 && "Unexpected abbrev ordering!");
1275   }
1276   
1277   Stream.ExitBlock();
1278 }
1279
1280
1281 /// WriteModule - Emit the specified module to the bitstream.
1282 static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1283   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1284   
1285   // Emit the version number if it is non-zero.
1286   if (CurVersion) {
1287     SmallVector<unsigned, 1> Vals;
1288     Vals.push_back(CurVersion);
1289     Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1290   }
1291   
1292   // Analyze the module, enumerating globals, functions, etc.
1293   ValueEnumerator VE(M);
1294
1295   // Emit blockinfo, which defines the standard abbreviations etc.
1296   WriteBlockInfo(VE, Stream);
1297   
1298   // Emit information about parameter attributes.
1299   WriteAttributeTable(VE, Stream);
1300   
1301   // Emit information describing all of the types in the module.
1302   WriteTypeTable(VE, Stream);
1303   
1304   // Emit top-level description of module, including target triple, inline asm,
1305   // descriptors for global variables, and function prototype info.
1306   WriteModuleInfo(M, VE, Stream);
1307   
1308   // Emit constants.
1309   WriteModuleConstants(VE, Stream);
1310   
1311   // Emit function bodies.
1312   for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1313     if (!I->isDeclaration())
1314       WriteFunction(*I, VE, Stream);
1315   
1316   // Emit the type symbol table information.
1317   WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream);
1318   
1319   // Emit names for globals/functions etc.
1320   WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1321   
1322   Stream.ExitBlock();
1323 }
1324
1325 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
1326 /// header and trailer to make it compatible with the system archiver.  To do
1327 /// this we emit the following header, and then emit a trailer that pads the
1328 /// file out to be a multiple of 16 bytes.
1329 /// 
1330 /// struct bc_header {
1331 ///   uint32_t Magic;         // 0x0B17C0DE
1332 ///   uint32_t Version;       // Version, currently always 0.
1333 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
1334 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
1335 ///   uint32_t CPUType;       // CPU specifier.
1336 ///   ... potentially more later ...
1337 /// };
1338 enum {
1339   DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
1340   DarwinBCHeaderSize = 5*4
1341 };
1342
1343 static void EmitDarwinBCHeader(BitstreamWriter &Stream,
1344                                const std::string &TT) {
1345   unsigned CPUType = ~0U;
1346   
1347   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*.  The CPUType is a
1348   // magic number from /usr/include/mach/machine.h.  It is ok to reproduce the
1349   // specific constants here because they are implicitly part of the Darwin ABI.
1350   enum {
1351     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
1352     DARWIN_CPU_TYPE_X86        = 7,
1353     DARWIN_CPU_TYPE_POWERPC    = 18
1354   };
1355   
1356   if (TT.find("x86_64-") == 0)
1357     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
1358   else if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' &&
1359            TT[4] == '-' && TT[1] - '3' < 6)
1360     CPUType = DARWIN_CPU_TYPE_X86;
1361   else if (TT.find("powerpc-") == 0)
1362     CPUType = DARWIN_CPU_TYPE_POWERPC;
1363   else if (TT.find("powerpc64-") == 0)
1364     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
1365   
1366   // Traditional Bitcode starts after header.
1367   unsigned BCOffset = DarwinBCHeaderSize;
1368   
1369   Stream.Emit(0x0B17C0DE, 32);
1370   Stream.Emit(0         , 32);  // Version.
1371   Stream.Emit(BCOffset  , 32);
1372   Stream.Emit(0         , 32);  // Filled in later.
1373   Stream.Emit(CPUType   , 32);
1374 }
1375
1376 /// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and
1377 /// finalize the header.
1378 static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) {
1379   // Update the size field in the header.
1380   Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize);
1381   
1382   // If the file is not a multiple of 16 bytes, insert dummy padding.
1383   while (BufferSize & 15) {
1384     Stream.Emit(0, 8);
1385     ++BufferSize;
1386   }
1387 }
1388
1389
1390 /// WriteBitcodeToFile - Write the specified module to the specified output
1391 /// stream.
1392 void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) {
1393   raw_os_ostream RawOut(Out);
1394   // If writing to stdout, set binary mode.
1395   if (llvm::cout == Out)
1396     sys::Program::ChangeStdoutToBinary();
1397   WriteBitcodeToFile(M, RawOut);
1398 }
1399
1400 /// WriteBitcodeToFile - Write the specified module to the specified output
1401 /// stream.
1402 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
1403   std::vector<unsigned char> Buffer;
1404   BitstreamWriter Stream(Buffer);
1405   
1406   Buffer.reserve(256*1024);
1407
1408   WriteBitcodeToStream( M, Stream );
1409   
1410   // If writing to stdout, set binary mode.
1411   if (&llvm::outs() == &Out)
1412     sys::Program::ChangeStdoutToBinary();
1413
1414   // Write the generated bitstream to "Out".
1415   Out.write((char*)&Buffer.front(), Buffer.size());
1416   
1417   // Make sure it hits disk now.
1418   Out.flush();
1419 }
1420
1421 /// WriteBitcodeToStream - Write the specified module to the specified output
1422 /// stream.
1423 void llvm::WriteBitcodeToStream(const Module *M, BitstreamWriter &Stream) {
1424   // If this is darwin, emit a file header and trailer if needed.
1425   bool isDarwin = M->getTargetTriple().find("-darwin") != std::string::npos;
1426   if (isDarwin)
1427     EmitDarwinBCHeader(Stream, M->getTargetTriple());
1428   
1429   // Emit the file header.
1430   Stream.Emit((unsigned)'B', 8);
1431   Stream.Emit((unsigned)'C', 8);
1432   Stream.Emit(0x0, 4);
1433   Stream.Emit(0xC, 4);
1434   Stream.Emit(0xE, 4);
1435   Stream.Emit(0xD, 4);
1436
1437   // Emit the module.
1438   WriteModule(M, Stream);
1439
1440   if (isDarwin)
1441     EmitDarwinBCTrailer(Stream, Stream.getBuffer().size());
1442 }