3a539e12926d2b9bae1c3ba51bc73844b67d6f81
[oota-llvm.git] / lib / Bitcode / Writer / BitcodeWriter.cpp
1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "ValueEnumerator.h"
16 #include "llvm/ADT/Triple.h"
17 #include "llvm/Bitcode/BitstreamWriter.h"
18 #include "llvm/Bitcode/LLVMBitCodes.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/DebugInfoMetadata.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/InlineAsm.h"
23 #include "llvm/IR/Instructions.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/IR/Operator.h"
26 #include "llvm/IR/UseListOrder.h"
27 #include "llvm/IR/ValueSymbolTable.h"
28 #include "llvm/Support/CommandLine.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/MathExtras.h"
31 #include "llvm/Support/Program.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include <cctype>
34 #include <map>
35 using namespace llvm;
36
37 /// These are manifest constants used by the bitcode writer. They do not need to
38 /// be kept in sync with the reader, but need to be consistent within this file.
39 enum {
40   // VALUE_SYMTAB_BLOCK abbrev id's.
41   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
42   VST_ENTRY_7_ABBREV,
43   VST_ENTRY_6_ABBREV,
44   VST_BBENTRY_6_ABBREV,
45
46   // CONSTANTS_BLOCK abbrev id's.
47   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
48   CONSTANTS_INTEGER_ABBREV,
49   CONSTANTS_CE_CAST_Abbrev,
50   CONSTANTS_NULL_Abbrev,
51
52   // FUNCTION_BLOCK abbrev id's.
53   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
54   FUNCTION_INST_BINOP_ABBREV,
55   FUNCTION_INST_BINOP_FLAGS_ABBREV,
56   FUNCTION_INST_CAST_ABBREV,
57   FUNCTION_INST_RET_VOID_ABBREV,
58   FUNCTION_INST_RET_VAL_ABBREV,
59   FUNCTION_INST_UNREACHABLE_ABBREV,
60   FUNCTION_INST_GEP_ABBREV,
61 };
62
63 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
64   switch (Opcode) {
65   default: llvm_unreachable("Unknown cast instruction!");
66   case Instruction::Trunc   : return bitc::CAST_TRUNC;
67   case Instruction::ZExt    : return bitc::CAST_ZEXT;
68   case Instruction::SExt    : return bitc::CAST_SEXT;
69   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
70   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
71   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
72   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
73   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
74   case Instruction::FPExt   : return bitc::CAST_FPEXT;
75   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
76   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
77   case Instruction::BitCast : return bitc::CAST_BITCAST;
78   case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
79   }
80 }
81
82 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
83   switch (Opcode) {
84   default: llvm_unreachable("Unknown binary instruction!");
85   case Instruction::Add:
86   case Instruction::FAdd: return bitc::BINOP_ADD;
87   case Instruction::Sub:
88   case Instruction::FSub: return bitc::BINOP_SUB;
89   case Instruction::Mul:
90   case Instruction::FMul: return bitc::BINOP_MUL;
91   case Instruction::UDiv: return bitc::BINOP_UDIV;
92   case Instruction::FDiv:
93   case Instruction::SDiv: return bitc::BINOP_SDIV;
94   case Instruction::URem: return bitc::BINOP_UREM;
95   case Instruction::FRem:
96   case Instruction::SRem: return bitc::BINOP_SREM;
97   case Instruction::Shl:  return bitc::BINOP_SHL;
98   case Instruction::LShr: return bitc::BINOP_LSHR;
99   case Instruction::AShr: return bitc::BINOP_ASHR;
100   case Instruction::And:  return bitc::BINOP_AND;
101   case Instruction::Or:   return bitc::BINOP_OR;
102   case Instruction::Xor:  return bitc::BINOP_XOR;
103   }
104 }
105
106 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
107   switch (Op) {
108   default: llvm_unreachable("Unknown RMW operation!");
109   case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
110   case AtomicRMWInst::Add: return bitc::RMW_ADD;
111   case AtomicRMWInst::Sub: return bitc::RMW_SUB;
112   case AtomicRMWInst::And: return bitc::RMW_AND;
113   case AtomicRMWInst::Nand: return bitc::RMW_NAND;
114   case AtomicRMWInst::Or: return bitc::RMW_OR;
115   case AtomicRMWInst::Xor: return bitc::RMW_XOR;
116   case AtomicRMWInst::Max: return bitc::RMW_MAX;
117   case AtomicRMWInst::Min: return bitc::RMW_MIN;
118   case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
119   case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
120   }
121 }
122
123 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) {
124   switch (Ordering) {
125   case NotAtomic: return bitc::ORDERING_NOTATOMIC;
126   case Unordered: return bitc::ORDERING_UNORDERED;
127   case Monotonic: return bitc::ORDERING_MONOTONIC;
128   case Acquire: return bitc::ORDERING_ACQUIRE;
129   case Release: return bitc::ORDERING_RELEASE;
130   case AcquireRelease: return bitc::ORDERING_ACQREL;
131   case SequentiallyConsistent: return bitc::ORDERING_SEQCST;
132   }
133   llvm_unreachable("Invalid ordering");
134 }
135
136 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) {
137   switch (SynchScope) {
138   case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD;
139   case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD;
140   }
141   llvm_unreachable("Invalid synch scope");
142 }
143
144 static void WriteStringRecord(unsigned Code, StringRef Str,
145                               unsigned AbbrevToUse, BitstreamWriter &Stream) {
146   SmallVector<unsigned, 64> Vals;
147
148   // Code: [strchar x N]
149   for (unsigned i = 0, e = Str.size(); i != e; ++i) {
150     if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
151       AbbrevToUse = 0;
152     Vals.push_back(Str[i]);
153   }
154
155   // Emit the finished record.
156   Stream.EmitRecord(Code, Vals, AbbrevToUse);
157 }
158
159 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
160   switch (Kind) {
161   case Attribute::Alignment:
162     return bitc::ATTR_KIND_ALIGNMENT;
163   case Attribute::AlwaysInline:
164     return bitc::ATTR_KIND_ALWAYS_INLINE;
165   case Attribute::Builtin:
166     return bitc::ATTR_KIND_BUILTIN;
167   case Attribute::ByVal:
168     return bitc::ATTR_KIND_BY_VAL;
169   case Attribute::InAlloca:
170     return bitc::ATTR_KIND_IN_ALLOCA;
171   case Attribute::Cold:
172     return bitc::ATTR_KIND_COLD;
173   case Attribute::InlineHint:
174     return bitc::ATTR_KIND_INLINE_HINT;
175   case Attribute::InReg:
176     return bitc::ATTR_KIND_IN_REG;
177   case Attribute::JumpTable:
178     return bitc::ATTR_KIND_JUMP_TABLE;
179   case Attribute::MinSize:
180     return bitc::ATTR_KIND_MIN_SIZE;
181   case Attribute::Naked:
182     return bitc::ATTR_KIND_NAKED;
183   case Attribute::Nest:
184     return bitc::ATTR_KIND_NEST;
185   case Attribute::NoAlias:
186     return bitc::ATTR_KIND_NO_ALIAS;
187   case Attribute::NoBuiltin:
188     return bitc::ATTR_KIND_NO_BUILTIN;
189   case Attribute::NoCapture:
190     return bitc::ATTR_KIND_NO_CAPTURE;
191   case Attribute::NoDuplicate:
192     return bitc::ATTR_KIND_NO_DUPLICATE;
193   case Attribute::NoImplicitFloat:
194     return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
195   case Attribute::NoInline:
196     return bitc::ATTR_KIND_NO_INLINE;
197   case Attribute::NonLazyBind:
198     return bitc::ATTR_KIND_NON_LAZY_BIND;
199   case Attribute::NonNull:
200     return bitc::ATTR_KIND_NON_NULL;
201   case Attribute::Dereferenceable:
202     return bitc::ATTR_KIND_DEREFERENCEABLE;
203   case Attribute::DereferenceableOrNull:
204     return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
205   case Attribute::NoRedZone:
206     return bitc::ATTR_KIND_NO_RED_ZONE;
207   case Attribute::NoReturn:
208     return bitc::ATTR_KIND_NO_RETURN;
209   case Attribute::NoUnwind:
210     return bitc::ATTR_KIND_NO_UNWIND;
211   case Attribute::OptimizeForSize:
212     return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
213   case Attribute::OptimizeNone:
214     return bitc::ATTR_KIND_OPTIMIZE_NONE;
215   case Attribute::ReadNone:
216     return bitc::ATTR_KIND_READ_NONE;
217   case Attribute::ReadOnly:
218     return bitc::ATTR_KIND_READ_ONLY;
219   case Attribute::Returned:
220     return bitc::ATTR_KIND_RETURNED;
221   case Attribute::ReturnsTwice:
222     return bitc::ATTR_KIND_RETURNS_TWICE;
223   case Attribute::SExt:
224     return bitc::ATTR_KIND_S_EXT;
225   case Attribute::StackAlignment:
226     return bitc::ATTR_KIND_STACK_ALIGNMENT;
227   case Attribute::StackProtect:
228     return bitc::ATTR_KIND_STACK_PROTECT;
229   case Attribute::StackProtectReq:
230     return bitc::ATTR_KIND_STACK_PROTECT_REQ;
231   case Attribute::StackProtectStrong:
232     return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
233   case Attribute::StructRet:
234     return bitc::ATTR_KIND_STRUCT_RET;
235   case Attribute::SanitizeAddress:
236     return bitc::ATTR_KIND_SANITIZE_ADDRESS;
237   case Attribute::SanitizeThread:
238     return bitc::ATTR_KIND_SANITIZE_THREAD;
239   case Attribute::SanitizeMemory:
240     return bitc::ATTR_KIND_SANITIZE_MEMORY;
241   case Attribute::UWTable:
242     return bitc::ATTR_KIND_UW_TABLE;
243   case Attribute::ZExt:
244     return bitc::ATTR_KIND_Z_EXT;
245   case Attribute::EndAttrKinds:
246     llvm_unreachable("Can not encode end-attribute kinds marker.");
247   case Attribute::None:
248     llvm_unreachable("Can not encode none-attribute.");
249   }
250
251   llvm_unreachable("Trying to encode unknown attribute");
252 }
253
254 static void WriteAttributeGroupTable(const ValueEnumerator &VE,
255                                      BitstreamWriter &Stream) {
256   const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups();
257   if (AttrGrps.empty()) return;
258
259   Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
260
261   SmallVector<uint64_t, 64> Record;
262   for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) {
263     AttributeSet AS = AttrGrps[i];
264     for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) {
265       AttributeSet A = AS.getSlotAttributes(i);
266
267       Record.push_back(VE.getAttributeGroupID(A));
268       Record.push_back(AS.getSlotIndex(i));
269
270       for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0);
271            I != E; ++I) {
272         Attribute Attr = *I;
273         if (Attr.isEnumAttribute()) {
274           Record.push_back(0);
275           Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
276         } else if (Attr.isIntAttribute()) {
277           Record.push_back(1);
278           Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
279           Record.push_back(Attr.getValueAsInt());
280         } else {
281           StringRef Kind = Attr.getKindAsString();
282           StringRef Val = Attr.getValueAsString();
283
284           Record.push_back(Val.empty() ? 3 : 4);
285           Record.append(Kind.begin(), Kind.end());
286           Record.push_back(0);
287           if (!Val.empty()) {
288             Record.append(Val.begin(), Val.end());
289             Record.push_back(0);
290           }
291         }
292       }
293
294       Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
295       Record.clear();
296     }
297   }
298
299   Stream.ExitBlock();
300 }
301
302 static void WriteAttributeTable(const ValueEnumerator &VE,
303                                 BitstreamWriter &Stream) {
304   const std::vector<AttributeSet> &Attrs = VE.getAttributes();
305   if (Attrs.empty()) return;
306
307   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
308
309   SmallVector<uint64_t, 64> Record;
310   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
311     const AttributeSet &A = Attrs[i];
312     for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i)
313       Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i)));
314
315     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
316     Record.clear();
317   }
318
319   Stream.ExitBlock();
320 }
321
322 /// WriteTypeTable - Write out the type table for a module.
323 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
324   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
325
326   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
327   SmallVector<uint64_t, 64> TypeVals;
328
329   uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies();
330
331   // Abbrev for TYPE_CODE_POINTER.
332   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
333   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
334   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
335   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
336   unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
337
338   // Abbrev for TYPE_CODE_FUNCTION.
339   Abbv = new BitCodeAbbrev();
340   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
341   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
342   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
343   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
344
345   unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
346
347   // Abbrev for TYPE_CODE_STRUCT_ANON.
348   Abbv = new BitCodeAbbrev();
349   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
350   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
351   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
352   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
353
354   unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv);
355
356   // Abbrev for TYPE_CODE_STRUCT_NAME.
357   Abbv = new BitCodeAbbrev();
358   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
359   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
360   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
361   unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv);
362
363   // Abbrev for TYPE_CODE_STRUCT_NAMED.
364   Abbv = new BitCodeAbbrev();
365   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
366   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
367   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
368   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
369
370   unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv);
371
372   // Abbrev for TYPE_CODE_ARRAY.
373   Abbv = new BitCodeAbbrev();
374   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
375   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
376   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
377
378   unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
379
380   // Emit an entry count so the reader can reserve space.
381   TypeVals.push_back(TypeList.size());
382   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
383   TypeVals.clear();
384
385   // Loop over all of the types, emitting each in turn.
386   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
387     Type *T = TypeList[i];
388     int AbbrevToUse = 0;
389     unsigned Code = 0;
390
391     switch (T->getTypeID()) {
392     case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;      break;
393     case Type::HalfTyID:      Code = bitc::TYPE_CODE_HALF;      break;
394     case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;     break;
395     case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE;    break;
396     case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80;  break;
397     case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128;     break;
398     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
399     case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;     break;
400     case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA;  break;
401     case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX;   break;
402     case Type::IntegerTyID:
403       // INTEGER: [width]
404       Code = bitc::TYPE_CODE_INTEGER;
405       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
406       break;
407     case Type::PointerTyID: {
408       PointerType *PTy = cast<PointerType>(T);
409       // POINTER: [pointee type, address space]
410       Code = bitc::TYPE_CODE_POINTER;
411       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
412       unsigned AddressSpace = PTy->getAddressSpace();
413       TypeVals.push_back(AddressSpace);
414       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
415       break;
416     }
417     case Type::FunctionTyID: {
418       FunctionType *FT = cast<FunctionType>(T);
419       // FUNCTION: [isvararg, retty, paramty x N]
420       Code = bitc::TYPE_CODE_FUNCTION;
421       TypeVals.push_back(FT->isVarArg());
422       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
423       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
424         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
425       AbbrevToUse = FunctionAbbrev;
426       break;
427     }
428     case Type::StructTyID: {
429       StructType *ST = cast<StructType>(T);
430       // STRUCT: [ispacked, eltty x N]
431       TypeVals.push_back(ST->isPacked());
432       // Output all of the element types.
433       for (StructType::element_iterator I = ST->element_begin(),
434            E = ST->element_end(); I != E; ++I)
435         TypeVals.push_back(VE.getTypeID(*I));
436
437       if (ST->isLiteral()) {
438         Code = bitc::TYPE_CODE_STRUCT_ANON;
439         AbbrevToUse = StructAnonAbbrev;
440       } else {
441         if (ST->isOpaque()) {
442           Code = bitc::TYPE_CODE_OPAQUE;
443         } else {
444           Code = bitc::TYPE_CODE_STRUCT_NAMED;
445           AbbrevToUse = StructNamedAbbrev;
446         }
447
448         // Emit the name if it is present.
449         if (!ST->getName().empty())
450           WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
451                             StructNameAbbrev, Stream);
452       }
453       break;
454     }
455     case Type::ArrayTyID: {
456       ArrayType *AT = cast<ArrayType>(T);
457       // ARRAY: [numelts, eltty]
458       Code = bitc::TYPE_CODE_ARRAY;
459       TypeVals.push_back(AT->getNumElements());
460       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
461       AbbrevToUse = ArrayAbbrev;
462       break;
463     }
464     case Type::VectorTyID: {
465       VectorType *VT = cast<VectorType>(T);
466       // VECTOR [numelts, eltty]
467       Code = bitc::TYPE_CODE_VECTOR;
468       TypeVals.push_back(VT->getNumElements());
469       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
470       break;
471     }
472     }
473
474     // Emit the finished record.
475     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
476     TypeVals.clear();
477   }
478
479   Stream.ExitBlock();
480 }
481
482 static unsigned getEncodedLinkage(const GlobalValue &GV) {
483   switch (GV.getLinkage()) {
484   case GlobalValue::ExternalLinkage:
485     return 0;
486   case GlobalValue::WeakAnyLinkage:
487     return 16;
488   case GlobalValue::AppendingLinkage:
489     return 2;
490   case GlobalValue::InternalLinkage:
491     return 3;
492   case GlobalValue::LinkOnceAnyLinkage:
493     return 18;
494   case GlobalValue::ExternalWeakLinkage:
495     return 7;
496   case GlobalValue::CommonLinkage:
497     return 8;
498   case GlobalValue::PrivateLinkage:
499     return 9;
500   case GlobalValue::WeakODRLinkage:
501     return 17;
502   case GlobalValue::LinkOnceODRLinkage:
503     return 19;
504   case GlobalValue::AvailableExternallyLinkage:
505     return 12;
506   }
507   llvm_unreachable("Invalid linkage");
508 }
509
510 static unsigned getEncodedVisibility(const GlobalValue &GV) {
511   switch (GV.getVisibility()) {
512   case GlobalValue::DefaultVisibility:   return 0;
513   case GlobalValue::HiddenVisibility:    return 1;
514   case GlobalValue::ProtectedVisibility: return 2;
515   }
516   llvm_unreachable("Invalid visibility");
517 }
518
519 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
520   switch (GV.getDLLStorageClass()) {
521   case GlobalValue::DefaultStorageClass:   return 0;
522   case GlobalValue::DLLImportStorageClass: return 1;
523   case GlobalValue::DLLExportStorageClass: return 2;
524   }
525   llvm_unreachable("Invalid DLL storage class");
526 }
527
528 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
529   switch (GV.getThreadLocalMode()) {
530     case GlobalVariable::NotThreadLocal:         return 0;
531     case GlobalVariable::GeneralDynamicTLSModel: return 1;
532     case GlobalVariable::LocalDynamicTLSModel:   return 2;
533     case GlobalVariable::InitialExecTLSModel:    return 3;
534     case GlobalVariable::LocalExecTLSModel:      return 4;
535   }
536   llvm_unreachable("Invalid TLS model");
537 }
538
539 static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
540   switch (C.getSelectionKind()) {
541   case Comdat::Any:
542     return bitc::COMDAT_SELECTION_KIND_ANY;
543   case Comdat::ExactMatch:
544     return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
545   case Comdat::Largest:
546     return bitc::COMDAT_SELECTION_KIND_LARGEST;
547   case Comdat::NoDuplicates:
548     return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
549   case Comdat::SameSize:
550     return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
551   }
552   llvm_unreachable("Invalid selection kind");
553 }
554
555 static void writeComdats(const ValueEnumerator &VE, BitstreamWriter &Stream) {
556   SmallVector<uint16_t, 64> Vals;
557   for (const Comdat *C : VE.getComdats()) {
558     // COMDAT: [selection_kind, name]
559     Vals.push_back(getEncodedComdatSelectionKind(*C));
560     size_t Size = C->getName().size();
561     assert(isUInt<16>(Size));
562     Vals.push_back(Size);
563     for (char Chr : C->getName())
564       Vals.push_back((unsigned char)Chr);
565     Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
566     Vals.clear();
567   }
568 }
569
570 // Emit top-level description of module, including target triple, inline asm,
571 // descriptors for global variables, and function prototype info.
572 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
573                             BitstreamWriter &Stream) {
574   // Emit various pieces of data attached to a module.
575   if (!M->getTargetTriple().empty())
576     WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
577                       0/*TODO*/, Stream);
578   const std::string &DL = M->getDataLayoutStr();
579   if (!DL.empty())
580     WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream);
581   if (!M->getModuleInlineAsm().empty())
582     WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
583                       0/*TODO*/, Stream);
584
585   // Emit information about sections and GC, computing how many there are. Also
586   // compute the maximum alignment value.
587   std::map<std::string, unsigned> SectionMap;
588   std::map<std::string, unsigned> GCMap;
589   unsigned MaxAlignment = 0;
590   unsigned MaxGlobalType = 0;
591   for (const GlobalValue &GV : M->globals()) {
592     MaxAlignment = std::max(MaxAlignment, GV.getAlignment());
593     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType()));
594     if (GV.hasSection()) {
595       // Give section names unique ID's.
596       unsigned &Entry = SectionMap[GV.getSection()];
597       if (!Entry) {
598         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
599                           0/*TODO*/, Stream);
600         Entry = SectionMap.size();
601       }
602     }
603   }
604   for (const Function &F : *M) {
605     MaxAlignment = std::max(MaxAlignment, F.getAlignment());
606     if (F.hasSection()) {
607       // Give section names unique ID's.
608       unsigned &Entry = SectionMap[F.getSection()];
609       if (!Entry) {
610         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
611                           0/*TODO*/, Stream);
612         Entry = SectionMap.size();
613       }
614     }
615     if (F.hasGC()) {
616       // Same for GC names.
617       unsigned &Entry = GCMap[F.getGC()];
618       if (!Entry) {
619         WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(),
620                           0/*TODO*/, Stream);
621         Entry = GCMap.size();
622       }
623     }
624   }
625
626   // Emit abbrev for globals, now that we know # sections and max alignment.
627   unsigned SimpleGVarAbbrev = 0;
628   if (!M->global_empty()) {
629     // Add an abbrev for common globals with no visibility or thread localness.
630     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
631     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
632     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
633                               Log2_32_Ceil(MaxGlobalType+1)));
634     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // AddrSpace << 2
635                                                            //| explicitType << 1
636                                                            //| constant
637     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // Initializer.
638     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
639     if (MaxAlignment == 0)                                 // Alignment.
640       Abbv->Add(BitCodeAbbrevOp(0));
641     else {
642       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
643       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
644                                Log2_32_Ceil(MaxEncAlignment+1)));
645     }
646     if (SectionMap.empty())                                    // Section.
647       Abbv->Add(BitCodeAbbrevOp(0));
648     else
649       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
650                                Log2_32_Ceil(SectionMap.size()+1)));
651     // Don't bother emitting vis + thread local.
652     SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
653   }
654
655   // Emit the global variable information.
656   SmallVector<unsigned, 64> Vals;
657   for (const GlobalVariable &GV : M->globals()) {
658     unsigned AbbrevToUse = 0;
659
660     // GLOBALVAR: [type, isconst, initid,
661     //             linkage, alignment, section, visibility, threadlocal,
662     //             unnamed_addr, externally_initialized, dllstorageclass,
663     //             comdat]
664     Vals.push_back(VE.getTypeID(GV.getValueType()));
665     Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant());
666     Vals.push_back(GV.isDeclaration() ? 0 :
667                    (VE.getValueID(GV.getInitializer()) + 1));
668     Vals.push_back(getEncodedLinkage(GV));
669     Vals.push_back(Log2_32(GV.getAlignment())+1);
670     Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0);
671     if (GV.isThreadLocal() ||
672         GV.getVisibility() != GlobalValue::DefaultVisibility ||
673         GV.hasUnnamedAddr() || GV.isExternallyInitialized() ||
674         GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
675         GV.hasComdat()) {
676       Vals.push_back(getEncodedVisibility(GV));
677       Vals.push_back(getEncodedThreadLocalMode(GV));
678       Vals.push_back(GV.hasUnnamedAddr());
679       Vals.push_back(GV.isExternallyInitialized());
680       Vals.push_back(getEncodedDLLStorageClass(GV));
681       Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
682     } else {
683       AbbrevToUse = SimpleGVarAbbrev;
684     }
685
686     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
687     Vals.clear();
688   }
689
690   // Emit the function proto information.
691   for (const Function &F : *M) {
692     // FUNCTION:  [type, callingconv, isproto, linkage, paramattrs, alignment,
693     //             section, visibility, gc, unnamed_addr, prologuedata,
694     //             dllstorageclass, comdat, prefixdata]
695     Vals.push_back(VE.getTypeID(F.getFunctionType()));
696     Vals.push_back(F.getCallingConv());
697     Vals.push_back(F.isDeclaration());
698     Vals.push_back(getEncodedLinkage(F));
699     Vals.push_back(VE.getAttributeID(F.getAttributes()));
700     Vals.push_back(Log2_32(F.getAlignment())+1);
701     Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0);
702     Vals.push_back(getEncodedVisibility(F));
703     Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
704     Vals.push_back(F.hasUnnamedAddr());
705     Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
706                                        : 0);
707     Vals.push_back(getEncodedDLLStorageClass(F));
708     Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
709     Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
710                                      : 0);
711
712     unsigned AbbrevToUse = 0;
713     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
714     Vals.clear();
715   }
716
717   // Emit the alias information.
718   for (const GlobalAlias &A : M->aliases()) {
719     // ALIAS: [alias type, aliasee val#, linkage, visibility]
720     Vals.push_back(VE.getTypeID(A.getType()));
721     Vals.push_back(VE.getValueID(A.getAliasee()));
722     Vals.push_back(getEncodedLinkage(A));
723     Vals.push_back(getEncodedVisibility(A));
724     Vals.push_back(getEncodedDLLStorageClass(A));
725     Vals.push_back(getEncodedThreadLocalMode(A));
726     Vals.push_back(A.hasUnnamedAddr());
727     unsigned AbbrevToUse = 0;
728     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
729     Vals.clear();
730   }
731 }
732
733 static uint64_t GetOptimizationFlags(const Value *V) {
734   uint64_t Flags = 0;
735
736   if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
737     if (OBO->hasNoSignedWrap())
738       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
739     if (OBO->hasNoUnsignedWrap())
740       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
741   } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
742     if (PEO->isExact())
743       Flags |= 1 << bitc::PEO_EXACT;
744   } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
745     if (FPMO->hasUnsafeAlgebra())
746       Flags |= FastMathFlags::UnsafeAlgebra;
747     if (FPMO->hasNoNaNs())
748       Flags |= FastMathFlags::NoNaNs;
749     if (FPMO->hasNoInfs())
750       Flags |= FastMathFlags::NoInfs;
751     if (FPMO->hasNoSignedZeros())
752       Flags |= FastMathFlags::NoSignedZeros;
753     if (FPMO->hasAllowReciprocal())
754       Flags |= FastMathFlags::AllowReciprocal;
755   }
756
757   return Flags;
758 }
759
760 static void WriteValueAsMetadata(const ValueAsMetadata *MD,
761                                  const ValueEnumerator &VE,
762                                  BitstreamWriter &Stream,
763                                  SmallVectorImpl<uint64_t> &Record) {
764   // Mimic an MDNode with a value as one operand.
765   Value *V = MD->getValue();
766   Record.push_back(VE.getTypeID(V->getType()));
767   Record.push_back(VE.getValueID(V));
768   Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
769   Record.clear();
770 }
771
772 static void WriteMDTuple(const MDTuple *N, const ValueEnumerator &VE,
773                          BitstreamWriter &Stream,
774                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
775   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
776     Metadata *MD = N->getOperand(i);
777     assert(!(MD && isa<LocalAsMetadata>(MD)) &&
778            "Unexpected function-local metadata");
779     Record.push_back(VE.getMetadataOrNullID(MD));
780   }
781   Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
782                                     : bitc::METADATA_NODE,
783                     Record, Abbrev);
784   Record.clear();
785 }
786
787 static void WriteDILocation(const DILocation *N, const ValueEnumerator &VE,
788                             BitstreamWriter &Stream,
789                             SmallVectorImpl<uint64_t> &Record,
790                             unsigned Abbrev) {
791   Record.push_back(N->isDistinct());
792   Record.push_back(N->getLine());
793   Record.push_back(N->getColumn());
794   Record.push_back(VE.getMetadataID(N->getScope()));
795   Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
796
797   Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
798   Record.clear();
799 }
800
801 static void WriteGenericDINode(const GenericDINode *N,
802                                const ValueEnumerator &VE,
803                                BitstreamWriter &Stream,
804                                SmallVectorImpl<uint64_t> &Record,
805                                unsigned Abbrev) {
806   Record.push_back(N->isDistinct());
807   Record.push_back(N->getTag());
808   Record.push_back(0); // Per-tag version field; unused for now.
809
810   for (auto &I : N->operands())
811     Record.push_back(VE.getMetadataOrNullID(I));
812
813   Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev);
814   Record.clear();
815 }
816
817 static uint64_t rotateSign(int64_t I) {
818   uint64_t U = I;
819   return I < 0 ? ~(U << 1) : U << 1;
820 }
821
822 static void WriteDISubrange(const DISubrange *N, const ValueEnumerator &,
823                             BitstreamWriter &Stream,
824                             SmallVectorImpl<uint64_t> &Record,
825                             unsigned Abbrev) {
826   Record.push_back(N->isDistinct());
827   Record.push_back(N->getCount());
828   Record.push_back(rotateSign(N->getLowerBound()));
829
830   Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
831   Record.clear();
832 }
833
834 static void WriteDIEnumerator(const DIEnumerator *N, const ValueEnumerator &VE,
835                               BitstreamWriter &Stream,
836                               SmallVectorImpl<uint64_t> &Record,
837                               unsigned Abbrev) {
838   Record.push_back(N->isDistinct());
839   Record.push_back(rotateSign(N->getValue()));
840   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
841
842   Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
843   Record.clear();
844 }
845
846 static void WriteDIBasicType(const DIBasicType *N, const ValueEnumerator &VE,
847                              BitstreamWriter &Stream,
848                              SmallVectorImpl<uint64_t> &Record,
849                              unsigned Abbrev) {
850   Record.push_back(N->isDistinct());
851   Record.push_back(N->getTag());
852   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
853   Record.push_back(N->getSizeInBits());
854   Record.push_back(N->getAlignInBits());
855   Record.push_back(N->getEncoding());
856
857   Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
858   Record.clear();
859 }
860
861 static void WriteDIDerivedType(const DIDerivedType *N,
862                                const ValueEnumerator &VE,
863                                BitstreamWriter &Stream,
864                                SmallVectorImpl<uint64_t> &Record,
865                                unsigned Abbrev) {
866   Record.push_back(N->isDistinct());
867   Record.push_back(N->getTag());
868   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
869   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
870   Record.push_back(N->getLine());
871   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
872   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
873   Record.push_back(N->getSizeInBits());
874   Record.push_back(N->getAlignInBits());
875   Record.push_back(N->getOffsetInBits());
876   Record.push_back(N->getFlags());
877   Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
878
879   Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
880   Record.clear();
881 }
882
883 static void WriteDICompositeType(const DICompositeType *N,
884                                  const ValueEnumerator &VE,
885                                  BitstreamWriter &Stream,
886                                  SmallVectorImpl<uint64_t> &Record,
887                                  unsigned Abbrev) {
888   Record.push_back(N->isDistinct());
889   Record.push_back(N->getTag());
890   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
891   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
892   Record.push_back(N->getLine());
893   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
894   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
895   Record.push_back(N->getSizeInBits());
896   Record.push_back(N->getAlignInBits());
897   Record.push_back(N->getOffsetInBits());
898   Record.push_back(N->getFlags());
899   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
900   Record.push_back(N->getRuntimeLang());
901   Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
902   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
903   Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
904
905   Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
906   Record.clear();
907 }
908
909 static void WriteDISubroutineType(const DISubroutineType *N,
910                                   const ValueEnumerator &VE,
911                                   BitstreamWriter &Stream,
912                                   SmallVectorImpl<uint64_t> &Record,
913                                   unsigned Abbrev) {
914   Record.push_back(N->isDistinct());
915   Record.push_back(N->getFlags());
916   Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
917
918   Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
919   Record.clear();
920 }
921
922 static void WriteDIFile(const DIFile *N, const ValueEnumerator &VE,
923                         BitstreamWriter &Stream,
924                         SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
925   Record.push_back(N->isDistinct());
926   Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
927   Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
928
929   Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
930   Record.clear();
931 }
932
933 static void WriteDICompileUnit(const DICompileUnit *N,
934                                const ValueEnumerator &VE,
935                                BitstreamWriter &Stream,
936                                SmallVectorImpl<uint64_t> &Record,
937                                unsigned Abbrev) {
938   Record.push_back(N->isDistinct());
939   Record.push_back(N->getSourceLanguage());
940   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
941   Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
942   Record.push_back(N->isOptimized());
943   Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
944   Record.push_back(N->getRuntimeVersion());
945   Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
946   Record.push_back(N->getEmissionKind());
947   Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
948   Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
949   Record.push_back(VE.getMetadataOrNullID(N->getSubprograms().get()));
950   Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
951   Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
952   Record.push_back(N->getDWOId());
953
954   Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
955   Record.clear();
956 }
957
958 static void WriteDISubprogram(const DISubprogram *N, const ValueEnumerator &VE,
959                               BitstreamWriter &Stream,
960                               SmallVectorImpl<uint64_t> &Record,
961                               unsigned Abbrev) {
962   Record.push_back(N->isDistinct());
963   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
964   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
965   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
966   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
967   Record.push_back(N->getLine());
968   Record.push_back(VE.getMetadataOrNullID(N->getType()));
969   Record.push_back(N->isLocalToUnit());
970   Record.push_back(N->isDefinition());
971   Record.push_back(N->getScopeLine());
972   Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
973   Record.push_back(N->getVirtuality());
974   Record.push_back(N->getVirtualIndex());
975   Record.push_back(N->getFlags());
976   Record.push_back(N->isOptimized());
977   Record.push_back(VE.getMetadataOrNullID(N->getRawFunction()));
978   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
979   Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
980   Record.push_back(VE.getMetadataOrNullID(N->getVariables().get()));
981
982   Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
983   Record.clear();
984 }
985
986 static void WriteDILexicalBlock(const DILexicalBlock *N,
987                                 const ValueEnumerator &VE,
988                                 BitstreamWriter &Stream,
989                                 SmallVectorImpl<uint64_t> &Record,
990                                 unsigned Abbrev) {
991   Record.push_back(N->isDistinct());
992   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
993   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
994   Record.push_back(N->getLine());
995   Record.push_back(N->getColumn());
996
997   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
998   Record.clear();
999 }
1000
1001 static void WriteDILexicalBlockFile(const DILexicalBlockFile *N,
1002                                     const ValueEnumerator &VE,
1003                                     BitstreamWriter &Stream,
1004                                     SmallVectorImpl<uint64_t> &Record,
1005                                     unsigned Abbrev) {
1006   Record.push_back(N->isDistinct());
1007   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1008   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1009   Record.push_back(N->getDiscriminator());
1010
1011   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
1012   Record.clear();
1013 }
1014
1015 static void WriteDINamespace(const DINamespace *N, const ValueEnumerator &VE,
1016                              BitstreamWriter &Stream,
1017                              SmallVectorImpl<uint64_t> &Record,
1018                              unsigned Abbrev) {
1019   Record.push_back(N->isDistinct());
1020   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1021   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1022   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1023   Record.push_back(N->getLine());
1024
1025   Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
1026   Record.clear();
1027 }
1028
1029 static void WriteDITemplateTypeParameter(const DITemplateTypeParameter *N,
1030                                          const ValueEnumerator &VE,
1031                                          BitstreamWriter &Stream,
1032                                          SmallVectorImpl<uint64_t> &Record,
1033                                          unsigned Abbrev) {
1034   Record.push_back(N->isDistinct());
1035   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1036   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1037
1038   Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
1039   Record.clear();
1040 }
1041
1042 static void WriteDITemplateValueParameter(const DITemplateValueParameter *N,
1043                                           const ValueEnumerator &VE,
1044                                           BitstreamWriter &Stream,
1045                                           SmallVectorImpl<uint64_t> &Record,
1046                                           unsigned Abbrev) {
1047   Record.push_back(N->isDistinct());
1048   Record.push_back(N->getTag());
1049   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1050   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1051   Record.push_back(VE.getMetadataOrNullID(N->getValue()));
1052
1053   Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
1054   Record.clear();
1055 }
1056
1057 static void WriteDIGlobalVariable(const DIGlobalVariable *N,
1058                                   const ValueEnumerator &VE,
1059                                   BitstreamWriter &Stream,
1060                                   SmallVectorImpl<uint64_t> &Record,
1061                                   unsigned Abbrev) {
1062   Record.push_back(N->isDistinct());
1063   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1064   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1065   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1066   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1067   Record.push_back(N->getLine());
1068   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1069   Record.push_back(N->isLocalToUnit());
1070   Record.push_back(N->isDefinition());
1071   Record.push_back(VE.getMetadataOrNullID(N->getRawVariable()));
1072   Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
1073
1074   Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
1075   Record.clear();
1076 }
1077
1078 static void WriteDILocalVariable(const DILocalVariable *N,
1079                                  const ValueEnumerator &VE,
1080                                  BitstreamWriter &Stream,
1081                                  SmallVectorImpl<uint64_t> &Record,
1082                                  unsigned Abbrev) {
1083   Record.push_back(N->isDistinct());
1084   Record.push_back(N->getTag());
1085   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1086   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1087   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1088   Record.push_back(N->getLine());
1089   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1090   Record.push_back(N->getArg());
1091   Record.push_back(N->getFlags());
1092
1093   Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
1094   Record.clear();
1095 }
1096
1097 static void WriteDIExpression(const DIExpression *N, const ValueEnumerator &,
1098                               BitstreamWriter &Stream,
1099                               SmallVectorImpl<uint64_t> &Record,
1100                               unsigned Abbrev) {
1101   Record.reserve(N->getElements().size() + 1);
1102
1103   Record.push_back(N->isDistinct());
1104   Record.append(N->elements_begin(), N->elements_end());
1105
1106   Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
1107   Record.clear();
1108 }
1109
1110 static void WriteDIObjCProperty(const DIObjCProperty *N,
1111                                 const ValueEnumerator &VE,
1112                                 BitstreamWriter &Stream,
1113                                 SmallVectorImpl<uint64_t> &Record,
1114                                 unsigned Abbrev) {
1115   Record.push_back(N->isDistinct());
1116   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1117   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1118   Record.push_back(N->getLine());
1119   Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName()));
1120   Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName()));
1121   Record.push_back(N->getAttributes());
1122   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1123
1124   Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev);
1125   Record.clear();
1126 }
1127
1128 static void WriteDIImportedEntity(const DIImportedEntity *N,
1129                                   const ValueEnumerator &VE,
1130                                   BitstreamWriter &Stream,
1131                                   SmallVectorImpl<uint64_t> &Record,
1132                                   unsigned Abbrev) {
1133   Record.push_back(N->isDistinct());
1134   Record.push_back(N->getTag());
1135   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1136   Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
1137   Record.push_back(N->getLine());
1138   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1139
1140   Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
1141   Record.clear();
1142 }
1143
1144 static void WriteModuleMetadata(const Module *M,
1145                                 const ValueEnumerator &VE,
1146                                 BitstreamWriter &Stream) {
1147   const auto &MDs = VE.getMDs();
1148   if (MDs.empty() && M->named_metadata_empty())
1149     return;
1150
1151   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
1152
1153   unsigned MDSAbbrev = 0;
1154   if (VE.hasMDString()) {
1155     // Abbrev for METADATA_STRING.
1156     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1157     Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
1158     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1159     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1160     MDSAbbrev = Stream.EmitAbbrev(Abbv);
1161   }
1162
1163   // Initialize MDNode abbreviations.
1164 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
1165 #include "llvm/IR/Metadata.def"
1166
1167   if (VE.hasDILocation()) {
1168     // Abbrev for METADATA_LOCATION.
1169     //
1170     // Assume the column is usually under 128, and always output the inlined-at
1171     // location (it's never more expensive than building an array size 1).
1172     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1173     Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
1174     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1175     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1176     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1177     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1178     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1179     DILocationAbbrev = Stream.EmitAbbrev(Abbv);
1180   }
1181
1182   if (VE.hasGenericDINode()) {
1183     // Abbrev for METADATA_GENERIC_DEBUG.
1184     //
1185     // Assume the column is usually under 128, and always output the inlined-at
1186     // location (it's never more expensive than building an array size 1).
1187     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1188     Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
1189     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1190     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1191     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1192     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1193     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1194     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1195     GenericDINodeAbbrev = Stream.EmitAbbrev(Abbv);
1196   }
1197
1198   unsigned NameAbbrev = 0;
1199   if (!M->named_metadata_empty()) {
1200     // Abbrev for METADATA_NAME.
1201     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1202     Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
1203     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1204     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1205     NameAbbrev = Stream.EmitAbbrev(Abbv);
1206   }
1207
1208   SmallVector<uint64_t, 64> Record;
1209   for (const Metadata *MD : MDs) {
1210     if (const MDNode *N = dyn_cast<MDNode>(MD)) {
1211       assert(N->isResolved() && "Expected forward references to be resolved");
1212
1213       switch (N->getMetadataID()) {
1214       default:
1215         llvm_unreachable("Invalid MDNode subclass");
1216 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
1217   case Metadata::CLASS##Kind:                                                  \
1218     Write##CLASS(cast<CLASS>(N), VE, Stream, Record, CLASS##Abbrev);           \
1219     continue;
1220 #include "llvm/IR/Metadata.def"
1221       }
1222     }
1223     if (const auto *MDC = dyn_cast<ConstantAsMetadata>(MD)) {
1224       WriteValueAsMetadata(MDC, VE, Stream, Record);
1225       continue;
1226     }
1227     const MDString *MDS = cast<MDString>(MD);
1228     // Code: [strchar x N]
1229     Record.append(MDS->bytes_begin(), MDS->bytes_end());
1230
1231     // Emit the finished record.
1232     Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
1233     Record.clear();
1234   }
1235
1236   // Write named metadata.
1237   for (const NamedMDNode &NMD : M->named_metadata()) {
1238     // Write name.
1239     StringRef Str = NMD.getName();
1240     Record.append(Str.bytes_begin(), Str.bytes_end());
1241     Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev);
1242     Record.clear();
1243
1244     // Write named metadata operands.
1245     for (const MDNode *N : NMD.operands())
1246       Record.push_back(VE.getMetadataID(N));
1247     Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
1248     Record.clear();
1249   }
1250
1251   Stream.ExitBlock();
1252 }
1253
1254 static void WriteFunctionLocalMetadata(const Function &F,
1255                                        const ValueEnumerator &VE,
1256                                        BitstreamWriter &Stream) {
1257   bool StartedMetadataBlock = false;
1258   SmallVector<uint64_t, 64> Record;
1259   const SmallVectorImpl<const LocalAsMetadata *> &MDs =
1260       VE.getFunctionLocalMDs();
1261   for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
1262     assert(MDs[i] && "Expected valid function-local metadata");
1263     if (!StartedMetadataBlock) {
1264       Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
1265       StartedMetadataBlock = true;
1266     }
1267     WriteValueAsMetadata(MDs[i], VE, Stream, Record);
1268   }
1269
1270   if (StartedMetadataBlock)
1271     Stream.ExitBlock();
1272 }
1273
1274 static void WriteMetadataAttachment(const Function &F,
1275                                     const ValueEnumerator &VE,
1276                                     BitstreamWriter &Stream) {
1277   Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
1278
1279   SmallVector<uint64_t, 64> Record;
1280
1281   // Write metadata attachments
1282   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
1283   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1284   F.getAllMetadata(MDs);
1285   if (!MDs.empty()) {
1286     for (const auto &I : MDs) {
1287       Record.push_back(I.first);
1288       Record.push_back(VE.getMetadataID(I.second));
1289     }
1290     Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
1291     Record.clear();
1292   }
1293
1294   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1295     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1296          I != E; ++I) {
1297       MDs.clear();
1298       I->getAllMetadataOtherThanDebugLoc(MDs);
1299
1300       // If no metadata, ignore instruction.
1301       if (MDs.empty()) continue;
1302
1303       Record.push_back(VE.getInstructionID(I));
1304
1305       for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
1306         Record.push_back(MDs[i].first);
1307         Record.push_back(VE.getMetadataID(MDs[i].second));
1308       }
1309       Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
1310       Record.clear();
1311     }
1312
1313   Stream.ExitBlock();
1314 }
1315
1316 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) {
1317   SmallVector<uint64_t, 64> Record;
1318
1319   // Write metadata kinds
1320   // METADATA_KIND - [n x [id, name]]
1321   SmallVector<StringRef, 8> Names;
1322   M->getMDKindNames(Names);
1323
1324   if (Names.empty()) return;
1325
1326   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
1327
1328   for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
1329     Record.push_back(MDKindID);
1330     StringRef KName = Names[MDKindID];
1331     Record.append(KName.begin(), KName.end());
1332
1333     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
1334     Record.clear();
1335   }
1336
1337   Stream.ExitBlock();
1338 }
1339
1340 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
1341   if ((int64_t)V >= 0)
1342     Vals.push_back(V << 1);
1343   else
1344     Vals.push_back((-V << 1) | 1);
1345 }
1346
1347 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
1348                            const ValueEnumerator &VE,
1349                            BitstreamWriter &Stream, bool isGlobal) {
1350   if (FirstVal == LastVal) return;
1351
1352   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
1353
1354   unsigned AggregateAbbrev = 0;
1355   unsigned String8Abbrev = 0;
1356   unsigned CString7Abbrev = 0;
1357   unsigned CString6Abbrev = 0;
1358   // If this is a constant pool for the module, emit module-specific abbrevs.
1359   if (isGlobal) {
1360     // Abbrev for CST_CODE_AGGREGATE.
1361     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1362     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
1363     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1364     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
1365     AggregateAbbrev = Stream.EmitAbbrev(Abbv);
1366
1367     // Abbrev for CST_CODE_STRING.
1368     Abbv = new BitCodeAbbrev();
1369     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
1370     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1371     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1372     String8Abbrev = Stream.EmitAbbrev(Abbv);
1373     // Abbrev for CST_CODE_CSTRING.
1374     Abbv = new BitCodeAbbrev();
1375     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
1376     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1377     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1378     CString7Abbrev = Stream.EmitAbbrev(Abbv);
1379     // Abbrev for CST_CODE_CSTRING.
1380     Abbv = new BitCodeAbbrev();
1381     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
1382     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1383     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1384     CString6Abbrev = Stream.EmitAbbrev(Abbv);
1385   }
1386
1387   SmallVector<uint64_t, 64> Record;
1388
1389   const ValueEnumerator::ValueList &Vals = VE.getValues();
1390   Type *LastTy = nullptr;
1391   for (unsigned i = FirstVal; i != LastVal; ++i) {
1392     const Value *V = Vals[i].first;
1393     // If we need to switch types, do so now.
1394     if (V->getType() != LastTy) {
1395       LastTy = V->getType();
1396       Record.push_back(VE.getTypeID(LastTy));
1397       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
1398                         CONSTANTS_SETTYPE_ABBREV);
1399       Record.clear();
1400     }
1401
1402     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
1403       Record.push_back(unsigned(IA->hasSideEffects()) |
1404                        unsigned(IA->isAlignStack()) << 1 |
1405                        unsigned(IA->getDialect()&1) << 2);
1406
1407       // Add the asm string.
1408       const std::string &AsmStr = IA->getAsmString();
1409       Record.push_back(AsmStr.size());
1410       Record.append(AsmStr.begin(), AsmStr.end());
1411
1412       // Add the constraint string.
1413       const std::string &ConstraintStr = IA->getConstraintString();
1414       Record.push_back(ConstraintStr.size());
1415       Record.append(ConstraintStr.begin(), ConstraintStr.end());
1416       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
1417       Record.clear();
1418       continue;
1419     }
1420     const Constant *C = cast<Constant>(V);
1421     unsigned Code = -1U;
1422     unsigned AbbrevToUse = 0;
1423     if (C->isNullValue()) {
1424       Code = bitc::CST_CODE_NULL;
1425     } else if (isa<UndefValue>(C)) {
1426       Code = bitc::CST_CODE_UNDEF;
1427     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
1428       if (IV->getBitWidth() <= 64) {
1429         uint64_t V = IV->getSExtValue();
1430         emitSignedInt64(Record, V);
1431         Code = bitc::CST_CODE_INTEGER;
1432         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
1433       } else {                             // Wide integers, > 64 bits in size.
1434         // We have an arbitrary precision integer value to write whose
1435         // bit width is > 64. However, in canonical unsigned integer
1436         // format it is likely that the high bits are going to be zero.
1437         // So, we only write the number of active words.
1438         unsigned NWords = IV->getValue().getActiveWords();
1439         const uint64_t *RawWords = IV->getValue().getRawData();
1440         for (unsigned i = 0; i != NWords; ++i) {
1441           emitSignedInt64(Record, RawWords[i]);
1442         }
1443         Code = bitc::CST_CODE_WIDE_INTEGER;
1444       }
1445     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
1446       Code = bitc::CST_CODE_FLOAT;
1447       Type *Ty = CFP->getType();
1448       if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
1449         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
1450       } else if (Ty->isX86_FP80Ty()) {
1451         // api needed to prevent premature destruction
1452         // bits are not in the same order as a normal i80 APInt, compensate.
1453         APInt api = CFP->getValueAPF().bitcastToAPInt();
1454         const uint64_t *p = api.getRawData();
1455         Record.push_back((p[1] << 48) | (p[0] >> 16));
1456         Record.push_back(p[0] & 0xffffLL);
1457       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
1458         APInt api = CFP->getValueAPF().bitcastToAPInt();
1459         const uint64_t *p = api.getRawData();
1460         Record.push_back(p[0]);
1461         Record.push_back(p[1]);
1462       } else {
1463         assert (0 && "Unknown FP type!");
1464       }
1465     } else if (isa<ConstantDataSequential>(C) &&
1466                cast<ConstantDataSequential>(C)->isString()) {
1467       const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
1468       // Emit constant strings specially.
1469       unsigned NumElts = Str->getNumElements();
1470       // If this is a null-terminated string, use the denser CSTRING encoding.
1471       if (Str->isCString()) {
1472         Code = bitc::CST_CODE_CSTRING;
1473         --NumElts;  // Don't encode the null, which isn't allowed by char6.
1474       } else {
1475         Code = bitc::CST_CODE_STRING;
1476         AbbrevToUse = String8Abbrev;
1477       }
1478       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
1479       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
1480       for (unsigned i = 0; i != NumElts; ++i) {
1481         unsigned char V = Str->getElementAsInteger(i);
1482         Record.push_back(V);
1483         isCStr7 &= (V & 128) == 0;
1484         if (isCStrChar6)
1485           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
1486       }
1487
1488       if (isCStrChar6)
1489         AbbrevToUse = CString6Abbrev;
1490       else if (isCStr7)
1491         AbbrevToUse = CString7Abbrev;
1492     } else if (const ConstantDataSequential *CDS =
1493                   dyn_cast<ConstantDataSequential>(C)) {
1494       Code = bitc::CST_CODE_DATA;
1495       Type *EltTy = CDS->getType()->getElementType();
1496       if (isa<IntegerType>(EltTy)) {
1497         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
1498           Record.push_back(CDS->getElementAsInteger(i));
1499       } else if (EltTy->isFloatTy()) {
1500         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1501           union { float F; uint32_t I; };
1502           F = CDS->getElementAsFloat(i);
1503           Record.push_back(I);
1504         }
1505       } else {
1506         assert(EltTy->isDoubleTy() && "Unknown ConstantData element type");
1507         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1508           union { double F; uint64_t I; };
1509           F = CDS->getElementAsDouble(i);
1510           Record.push_back(I);
1511         }
1512       }
1513     } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
1514                isa<ConstantVector>(C)) {
1515       Code = bitc::CST_CODE_AGGREGATE;
1516       for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
1517         Record.push_back(VE.getValueID(C->getOperand(i)));
1518       AbbrevToUse = AggregateAbbrev;
1519     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1520       switch (CE->getOpcode()) {
1521       default:
1522         if (Instruction::isCast(CE->getOpcode())) {
1523           Code = bitc::CST_CODE_CE_CAST;
1524           Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
1525           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1526           Record.push_back(VE.getValueID(C->getOperand(0)));
1527           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
1528         } else {
1529           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
1530           Code = bitc::CST_CODE_CE_BINOP;
1531           Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
1532           Record.push_back(VE.getValueID(C->getOperand(0)));
1533           Record.push_back(VE.getValueID(C->getOperand(1)));
1534           uint64_t Flags = GetOptimizationFlags(CE);
1535           if (Flags != 0)
1536             Record.push_back(Flags);
1537         }
1538         break;
1539       case Instruction::GetElementPtr: {
1540         Code = bitc::CST_CODE_CE_GEP;
1541         const auto *GO = cast<GEPOperator>(C);
1542         if (GO->isInBounds())
1543           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
1544         Record.push_back(VE.getTypeID(GO->getSourceElementType()));
1545         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
1546           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
1547           Record.push_back(VE.getValueID(C->getOperand(i)));
1548         }
1549         break;
1550       }
1551       case Instruction::Select:
1552         Code = bitc::CST_CODE_CE_SELECT;
1553         Record.push_back(VE.getValueID(C->getOperand(0)));
1554         Record.push_back(VE.getValueID(C->getOperand(1)));
1555         Record.push_back(VE.getValueID(C->getOperand(2)));
1556         break;
1557       case Instruction::ExtractElement:
1558         Code = bitc::CST_CODE_CE_EXTRACTELT;
1559         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1560         Record.push_back(VE.getValueID(C->getOperand(0)));
1561         Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
1562         Record.push_back(VE.getValueID(C->getOperand(1)));
1563         break;
1564       case Instruction::InsertElement:
1565         Code = bitc::CST_CODE_CE_INSERTELT;
1566         Record.push_back(VE.getValueID(C->getOperand(0)));
1567         Record.push_back(VE.getValueID(C->getOperand(1)));
1568         Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
1569         Record.push_back(VE.getValueID(C->getOperand(2)));
1570         break;
1571       case Instruction::ShuffleVector:
1572         // If the return type and argument types are the same, this is a
1573         // standard shufflevector instruction.  If the types are different,
1574         // then the shuffle is widening or truncating the input vectors, and
1575         // the argument type must also be encoded.
1576         if (C->getType() == C->getOperand(0)->getType()) {
1577           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
1578         } else {
1579           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
1580           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1581         }
1582         Record.push_back(VE.getValueID(C->getOperand(0)));
1583         Record.push_back(VE.getValueID(C->getOperand(1)));
1584         Record.push_back(VE.getValueID(C->getOperand(2)));
1585         break;
1586       case Instruction::ICmp:
1587       case Instruction::FCmp:
1588         Code = bitc::CST_CODE_CE_CMP;
1589         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1590         Record.push_back(VE.getValueID(C->getOperand(0)));
1591         Record.push_back(VE.getValueID(C->getOperand(1)));
1592         Record.push_back(CE->getPredicate());
1593         break;
1594       }
1595     } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
1596       Code = bitc::CST_CODE_BLOCKADDRESS;
1597       Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
1598       Record.push_back(VE.getValueID(BA->getFunction()));
1599       Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
1600     } else {
1601 #ifndef NDEBUG
1602       C->dump();
1603 #endif
1604       llvm_unreachable("Unknown constant!");
1605     }
1606     Stream.EmitRecord(Code, Record, AbbrevToUse);
1607     Record.clear();
1608   }
1609
1610   Stream.ExitBlock();
1611 }
1612
1613 static void WriteModuleConstants(const ValueEnumerator &VE,
1614                                  BitstreamWriter &Stream) {
1615   const ValueEnumerator::ValueList &Vals = VE.getValues();
1616
1617   // Find the first constant to emit, which is the first non-globalvalue value.
1618   // We know globalvalues have been emitted by WriteModuleInfo.
1619   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
1620     if (!isa<GlobalValue>(Vals[i].first)) {
1621       WriteConstants(i, Vals.size(), VE, Stream, true);
1622       return;
1623     }
1624   }
1625 }
1626
1627 /// PushValueAndType - The file has to encode both the value and type id for
1628 /// many values, because we need to know what type to create for forward
1629 /// references.  However, most operands are not forward references, so this type
1630 /// field is not needed.
1631 ///
1632 /// This function adds V's value ID to Vals.  If the value ID is higher than the
1633 /// instruction ID, then it is a forward reference, and it also includes the
1634 /// type ID.  The value ID that is written is encoded relative to the InstID.
1635 static bool PushValueAndType(const Value *V, unsigned InstID,
1636                              SmallVectorImpl<unsigned> &Vals,
1637                              ValueEnumerator &VE) {
1638   unsigned ValID = VE.getValueID(V);
1639   // Make encoding relative to the InstID.
1640   Vals.push_back(InstID - ValID);
1641   if (ValID >= InstID) {
1642     Vals.push_back(VE.getTypeID(V->getType()));
1643     return true;
1644   }
1645   return false;
1646 }
1647
1648 /// pushValue - Like PushValueAndType, but where the type of the value is
1649 /// omitted (perhaps it was already encoded in an earlier operand).
1650 static void pushValue(const Value *V, unsigned InstID,
1651                       SmallVectorImpl<unsigned> &Vals,
1652                       ValueEnumerator &VE) {
1653   unsigned ValID = VE.getValueID(V);
1654   Vals.push_back(InstID - ValID);
1655 }
1656
1657 static void pushValueSigned(const Value *V, unsigned InstID,
1658                             SmallVectorImpl<uint64_t> &Vals,
1659                             ValueEnumerator &VE) {
1660   unsigned ValID = VE.getValueID(V);
1661   int64_t diff = ((int32_t)InstID - (int32_t)ValID);
1662   emitSignedInt64(Vals, diff);
1663 }
1664
1665 /// WriteInstruction - Emit an instruction to the specified stream.
1666 static void WriteInstruction(const Instruction &I, unsigned InstID,
1667                              ValueEnumerator &VE, BitstreamWriter &Stream,
1668                              SmallVectorImpl<unsigned> &Vals) {
1669   unsigned Code = 0;
1670   unsigned AbbrevToUse = 0;
1671   VE.setInstructionID(&I);
1672   switch (I.getOpcode()) {
1673   default:
1674     if (Instruction::isCast(I.getOpcode())) {
1675       Code = bitc::FUNC_CODE_INST_CAST;
1676       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1677         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
1678       Vals.push_back(VE.getTypeID(I.getType()));
1679       Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
1680     } else {
1681       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
1682       Code = bitc::FUNC_CODE_INST_BINOP;
1683       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1684         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
1685       pushValue(I.getOperand(1), InstID, Vals, VE);
1686       Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
1687       uint64_t Flags = GetOptimizationFlags(&I);
1688       if (Flags != 0) {
1689         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
1690           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
1691         Vals.push_back(Flags);
1692       }
1693     }
1694     break;
1695
1696   case Instruction::GetElementPtr: {
1697     Code = bitc::FUNC_CODE_INST_GEP;
1698     AbbrevToUse = FUNCTION_INST_GEP_ABBREV;
1699     auto &GEPInst = cast<GetElementPtrInst>(I);
1700     Vals.push_back(GEPInst.isInBounds());
1701     Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType()));
1702     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1703       PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1704     break;
1705   }
1706   case Instruction::ExtractValue: {
1707     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
1708     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1709     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
1710     Vals.append(EVI->idx_begin(), EVI->idx_end());
1711     break;
1712   }
1713   case Instruction::InsertValue: {
1714     Code = bitc::FUNC_CODE_INST_INSERTVAL;
1715     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1716     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1717     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
1718     Vals.append(IVI->idx_begin(), IVI->idx_end());
1719     break;
1720   }
1721   case Instruction::Select:
1722     Code = bitc::FUNC_CODE_INST_VSELECT;
1723     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1724     pushValue(I.getOperand(2), InstID, Vals, VE);
1725     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1726     break;
1727   case Instruction::ExtractElement:
1728     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
1729     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1730     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1731     break;
1732   case Instruction::InsertElement:
1733     Code = bitc::FUNC_CODE_INST_INSERTELT;
1734     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1735     pushValue(I.getOperand(1), InstID, Vals, VE);
1736     PushValueAndType(I.getOperand(2), InstID, Vals, VE);
1737     break;
1738   case Instruction::ShuffleVector:
1739     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
1740     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1741     pushValue(I.getOperand(1), InstID, Vals, VE);
1742     pushValue(I.getOperand(2), InstID, Vals, VE);
1743     break;
1744   case Instruction::ICmp:
1745   case Instruction::FCmp:
1746     // compare returning Int1Ty or vector of Int1Ty
1747     Code = bitc::FUNC_CODE_INST_CMP2;
1748     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1749     pushValue(I.getOperand(1), InstID, Vals, VE);
1750     Vals.push_back(cast<CmpInst>(I).getPredicate());
1751     break;
1752
1753   case Instruction::Ret:
1754     {
1755       Code = bitc::FUNC_CODE_INST_RET;
1756       unsigned NumOperands = I.getNumOperands();
1757       if (NumOperands == 0)
1758         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
1759       else if (NumOperands == 1) {
1760         if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1761           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
1762       } else {
1763         for (unsigned i = 0, e = NumOperands; i != e; ++i)
1764           PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1765       }
1766     }
1767     break;
1768   case Instruction::Br:
1769     {
1770       Code = bitc::FUNC_CODE_INST_BR;
1771       const BranchInst &II = cast<BranchInst>(I);
1772       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
1773       if (II.isConditional()) {
1774         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
1775         pushValue(II.getCondition(), InstID, Vals, VE);
1776       }
1777     }
1778     break;
1779   case Instruction::Switch:
1780     {
1781       Code = bitc::FUNC_CODE_INST_SWITCH;
1782       const SwitchInst &SI = cast<SwitchInst>(I);
1783       Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
1784       pushValue(SI.getCondition(), InstID, Vals, VE);
1785       Vals.push_back(VE.getValueID(SI.getDefaultDest()));
1786       for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
1787            i != e; ++i) {
1788         Vals.push_back(VE.getValueID(i.getCaseValue()));
1789         Vals.push_back(VE.getValueID(i.getCaseSuccessor()));
1790       }
1791     }
1792     break;
1793   case Instruction::IndirectBr:
1794     Code = bitc::FUNC_CODE_INST_INDIRECTBR;
1795     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1796     // Encode the address operand as relative, but not the basic blocks.
1797     pushValue(I.getOperand(0), InstID, Vals, VE);
1798     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
1799       Vals.push_back(VE.getValueID(I.getOperand(i)));
1800     break;
1801
1802   case Instruction::Invoke: {
1803     const InvokeInst *II = cast<InvokeInst>(&I);
1804     const Value *Callee = II->getCalledValue();
1805     FunctionType *FTy = II->getFunctionType();
1806     Code = bitc::FUNC_CODE_INST_INVOKE;
1807
1808     Vals.push_back(VE.getAttributeID(II->getAttributes()));
1809     Vals.push_back(II->getCallingConv() | 1 << 13);
1810     Vals.push_back(VE.getValueID(II->getNormalDest()));
1811     Vals.push_back(VE.getValueID(II->getUnwindDest()));
1812     Vals.push_back(VE.getTypeID(FTy));
1813     PushValueAndType(Callee, InstID, Vals, VE);
1814
1815     // Emit value #'s for the fixed parameters.
1816     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1817       pushValue(I.getOperand(i), InstID, Vals, VE);  // fixed param.
1818
1819     // Emit type/value pairs for varargs params.
1820     if (FTy->isVarArg()) {
1821       for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3;
1822            i != e; ++i)
1823         PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
1824     }
1825     break;
1826   }
1827   case Instruction::Resume:
1828     Code = bitc::FUNC_CODE_INST_RESUME;
1829     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1830     break;
1831   case Instruction::Unreachable:
1832     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
1833     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
1834     break;
1835
1836   case Instruction::PHI: {
1837     const PHINode &PN = cast<PHINode>(I);
1838     Code = bitc::FUNC_CODE_INST_PHI;
1839     // With the newer instruction encoding, forward references could give
1840     // negative valued IDs.  This is most common for PHIs, so we use
1841     // signed VBRs.
1842     SmallVector<uint64_t, 128> Vals64;
1843     Vals64.push_back(VE.getTypeID(PN.getType()));
1844     for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1845       pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE);
1846       Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
1847     }
1848     // Emit a Vals64 vector and exit.
1849     Stream.EmitRecord(Code, Vals64, AbbrevToUse);
1850     Vals64.clear();
1851     return;
1852   }
1853
1854   case Instruction::LandingPad: {
1855     const LandingPadInst &LP = cast<LandingPadInst>(I);
1856     Code = bitc::FUNC_CODE_INST_LANDINGPAD;
1857     Vals.push_back(VE.getTypeID(LP.getType()));
1858     PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE);
1859     Vals.push_back(LP.isCleanup());
1860     Vals.push_back(LP.getNumClauses());
1861     for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
1862       if (LP.isCatch(I))
1863         Vals.push_back(LandingPadInst::Catch);
1864       else
1865         Vals.push_back(LandingPadInst::Filter);
1866       PushValueAndType(LP.getClause(I), InstID, Vals, VE);
1867     }
1868     break;
1869   }
1870
1871   case Instruction::Alloca: {
1872     Code = bitc::FUNC_CODE_INST_ALLOCA;
1873     const AllocaInst &AI = cast<AllocaInst>(I);
1874     Vals.push_back(VE.getTypeID(AI.getAllocatedType()));
1875     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1876     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
1877     unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1;
1878     assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 &&
1879            "not enough bits for maximum alignment");
1880     assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64");
1881     AlignRecord |= AI.isUsedWithInAlloca() << 5;
1882     AlignRecord |= 1 << 6;
1883     Vals.push_back(AlignRecord);
1884     break;
1885   }
1886
1887   case Instruction::Load:
1888     if (cast<LoadInst>(I).isAtomic()) {
1889       Code = bitc::FUNC_CODE_INST_LOADATOMIC;
1890       PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1891     } else {
1892       Code = bitc::FUNC_CODE_INST_LOAD;
1893       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
1894         AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
1895     }
1896     Vals.push_back(VE.getTypeID(I.getType()));
1897     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
1898     Vals.push_back(cast<LoadInst>(I).isVolatile());
1899     if (cast<LoadInst>(I).isAtomic()) {
1900       Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering()));
1901       Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope()));
1902     }
1903     break;
1904   case Instruction::Store:
1905     if (cast<StoreInst>(I).isAtomic())
1906       Code = bitc::FUNC_CODE_INST_STOREATOMIC;
1907     else
1908       Code = bitc::FUNC_CODE_INST_STORE;
1909     PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
1910     PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // valty + val
1911     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
1912     Vals.push_back(cast<StoreInst>(I).isVolatile());
1913     if (cast<StoreInst>(I).isAtomic()) {
1914       Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering()));
1915       Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope()));
1916     }
1917     break;
1918   case Instruction::AtomicCmpXchg:
1919     Code = bitc::FUNC_CODE_INST_CMPXCHG;
1920     PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // ptrty + ptr
1921     PushValueAndType(I.getOperand(1), InstID, Vals, VE);         // cmp.
1922     pushValue(I.getOperand(2), InstID, Vals, VE);         // newval.
1923     Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
1924     Vals.push_back(GetEncodedOrdering(
1925                      cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
1926     Vals.push_back(GetEncodedSynchScope(
1927                      cast<AtomicCmpXchgInst>(I).getSynchScope()));
1928     Vals.push_back(GetEncodedOrdering(
1929                      cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
1930     Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
1931     break;
1932   case Instruction::AtomicRMW:
1933     Code = bitc::FUNC_CODE_INST_ATOMICRMW;
1934     PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // ptrty + ptr
1935     pushValue(I.getOperand(1), InstID, Vals, VE);         // val.
1936     Vals.push_back(GetEncodedRMWOperation(
1937                      cast<AtomicRMWInst>(I).getOperation()));
1938     Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
1939     Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
1940     Vals.push_back(GetEncodedSynchScope(
1941                      cast<AtomicRMWInst>(I).getSynchScope()));
1942     break;
1943   case Instruction::Fence:
1944     Code = bitc::FUNC_CODE_INST_FENCE;
1945     Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering()));
1946     Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope()));
1947     break;
1948   case Instruction::Call: {
1949     const CallInst &CI = cast<CallInst>(I);
1950     FunctionType *FTy = CI.getFunctionType();
1951
1952     Code = bitc::FUNC_CODE_INST_CALL;
1953
1954     Vals.push_back(VE.getAttributeID(CI.getAttributes()));
1955     Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) |
1956                    unsigned(CI.isMustTailCall()) << 14 | 1 << 15);
1957     Vals.push_back(VE.getTypeID(FTy));
1958     PushValueAndType(CI.getCalledValue(), InstID, Vals, VE);  // Callee
1959
1960     // Emit value #'s for the fixed parameters.
1961     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
1962       // Check for labels (can happen with asm labels).
1963       if (FTy->getParamType(i)->isLabelTy())
1964         Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
1965       else
1966         pushValue(CI.getArgOperand(i), InstID, Vals, VE);  // fixed param.
1967     }
1968
1969     // Emit type/value pairs for varargs params.
1970     if (FTy->isVarArg()) {
1971       for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
1972            i != e; ++i)
1973         PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE);  // varargs
1974     }
1975     break;
1976   }
1977   case Instruction::VAArg:
1978     Code = bitc::FUNC_CODE_INST_VAARG;
1979     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
1980     pushValue(I.getOperand(0), InstID, Vals, VE); // valist.
1981     Vals.push_back(VE.getTypeID(I.getType())); // restype.
1982     break;
1983   }
1984
1985   Stream.EmitRecord(Code, Vals, AbbrevToUse);
1986   Vals.clear();
1987 }
1988
1989 // Emit names for globals/functions etc.
1990 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
1991                                   const ValueEnumerator &VE,
1992                                   BitstreamWriter &Stream) {
1993   if (VST.empty()) return;
1994   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
1995
1996   // FIXME: Set up the abbrev, we know how many values there are!
1997   // FIXME: We know if the type names can use 7-bit ascii.
1998   SmallVector<unsigned, 64> NameVals;
1999
2000   for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
2001        SI != SE; ++SI) {
2002
2003     const ValueName &Name = *SI;
2004
2005     // Figure out the encoding to use for the name.
2006     bool is7Bit = true;
2007     bool isChar6 = true;
2008     for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
2009          C != E; ++C) {
2010       if (isChar6)
2011         isChar6 = BitCodeAbbrevOp::isChar6(*C);
2012       if ((unsigned char)*C & 128) {
2013         is7Bit = false;
2014         break;  // don't bother scanning the rest.
2015       }
2016     }
2017
2018     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
2019
2020     // VST_ENTRY:   [valueid, namechar x N]
2021     // VST_BBENTRY: [bbid, namechar x N]
2022     unsigned Code;
2023     if (isa<BasicBlock>(SI->getValue())) {
2024       Code = bitc::VST_CODE_BBENTRY;
2025       if (isChar6)
2026         AbbrevToUse = VST_BBENTRY_6_ABBREV;
2027     } else {
2028       Code = bitc::VST_CODE_ENTRY;
2029       if (isChar6)
2030         AbbrevToUse = VST_ENTRY_6_ABBREV;
2031       else if (is7Bit)
2032         AbbrevToUse = VST_ENTRY_7_ABBREV;
2033     }
2034
2035     NameVals.push_back(VE.getValueID(SI->getValue()));
2036     for (const char *P = Name.getKeyData(),
2037          *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
2038       NameVals.push_back((unsigned char)*P);
2039
2040     // Emit the finished record.
2041     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
2042     NameVals.clear();
2043   }
2044   Stream.ExitBlock();
2045 }
2046
2047 static void WriteUseList(ValueEnumerator &VE, UseListOrder &&Order,
2048                          BitstreamWriter &Stream) {
2049   assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
2050   unsigned Code;
2051   if (isa<BasicBlock>(Order.V))
2052     Code = bitc::USELIST_CODE_BB;
2053   else
2054     Code = bitc::USELIST_CODE_DEFAULT;
2055
2056   SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
2057   Record.push_back(VE.getValueID(Order.V));
2058   Stream.EmitRecord(Code, Record);
2059 }
2060
2061 static void WriteUseListBlock(const Function *F, ValueEnumerator &VE,
2062                               BitstreamWriter &Stream) {
2063   assert(VE.shouldPreserveUseListOrder() &&
2064          "Expected to be preserving use-list order");
2065
2066   auto hasMore = [&]() {
2067     return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
2068   };
2069   if (!hasMore())
2070     // Nothing to do.
2071     return;
2072
2073   Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
2074   while (hasMore()) {
2075     WriteUseList(VE, std::move(VE.UseListOrders.back()), Stream);
2076     VE.UseListOrders.pop_back();
2077   }
2078   Stream.ExitBlock();
2079 }
2080
2081 /// WriteFunction - Emit a function body to the module stream.
2082 static void WriteFunction(const Function &F, ValueEnumerator &VE,
2083                           BitstreamWriter &Stream) {
2084   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
2085   VE.incorporateFunction(F);
2086
2087   SmallVector<unsigned, 64> Vals;
2088
2089   // Emit the number of basic blocks, so the reader can create them ahead of
2090   // time.
2091   Vals.push_back(VE.getBasicBlocks().size());
2092   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
2093   Vals.clear();
2094
2095   // If there are function-local constants, emit them now.
2096   unsigned CstStart, CstEnd;
2097   VE.getFunctionConstantRange(CstStart, CstEnd);
2098   WriteConstants(CstStart, CstEnd, VE, Stream, false);
2099
2100   // If there is function-local metadata, emit it now.
2101   WriteFunctionLocalMetadata(F, VE, Stream);
2102
2103   // Keep a running idea of what the instruction ID is.
2104   unsigned InstID = CstEnd;
2105
2106   bool NeedsMetadataAttachment = F.hasMetadata();
2107
2108   DILocation *LastDL = nullptr;
2109
2110   // Finally, emit all the instructions, in order.
2111   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
2112     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
2113          I != E; ++I) {
2114       WriteInstruction(*I, InstID, VE, Stream, Vals);
2115
2116       if (!I->getType()->isVoidTy())
2117         ++InstID;
2118
2119       // If the instruction has metadata, write a metadata attachment later.
2120       NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
2121
2122       // If the instruction has a debug location, emit it.
2123       DILocation *DL = I->getDebugLoc();
2124       if (!DL)
2125         continue;
2126
2127       if (DL == LastDL) {
2128         // Just repeat the same debug loc as last time.
2129         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
2130         continue;
2131       }
2132
2133       Vals.push_back(DL->getLine());
2134       Vals.push_back(DL->getColumn());
2135       Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
2136       Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
2137       Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
2138       Vals.clear();
2139
2140       LastDL = DL;
2141     }
2142
2143   // Emit names for all the instructions etc.
2144   WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
2145
2146   if (NeedsMetadataAttachment)
2147     WriteMetadataAttachment(F, VE, Stream);
2148   if (VE.shouldPreserveUseListOrder())
2149     WriteUseListBlock(&F, VE, Stream);
2150   VE.purgeFunction();
2151   Stream.ExitBlock();
2152 }
2153
2154 // Emit blockinfo, which defines the standard abbreviations etc.
2155 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
2156   // We only want to emit block info records for blocks that have multiple
2157   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
2158   // Other blocks can define their abbrevs inline.
2159   Stream.EnterBlockInfoBlock(2);
2160
2161   { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
2162     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2163     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
2164     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2165     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2166     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2167     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2168                                    Abbv) != VST_ENTRY_8_ABBREV)
2169       llvm_unreachable("Unexpected abbrev ordering!");
2170   }
2171
2172   { // 7-bit fixed width VST_ENTRY strings.
2173     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2174     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
2175     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2176     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2177     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2178     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2179                                    Abbv) != VST_ENTRY_7_ABBREV)
2180       llvm_unreachable("Unexpected abbrev ordering!");
2181   }
2182   { // 6-bit char6 VST_ENTRY strings.
2183     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2184     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
2185     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2186     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2187     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2188     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2189                                    Abbv) != VST_ENTRY_6_ABBREV)
2190       llvm_unreachable("Unexpected abbrev ordering!");
2191   }
2192   { // 6-bit char6 VST_BBENTRY strings.
2193     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2194     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
2195     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2196     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2197     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2198     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2199                                    Abbv) != VST_BBENTRY_6_ABBREV)
2200       llvm_unreachable("Unexpected abbrev ordering!");
2201   }
2202
2203
2204
2205   { // SETTYPE abbrev for CONSTANTS_BLOCK.
2206     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2207     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
2208     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
2209                               VE.computeBitsRequiredForTypeIndicies()));
2210     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
2211                                    Abbv) != CONSTANTS_SETTYPE_ABBREV)
2212       llvm_unreachable("Unexpected abbrev ordering!");
2213   }
2214
2215   { // INTEGER abbrev for CONSTANTS_BLOCK.
2216     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2217     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
2218     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2219     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
2220                                    Abbv) != CONSTANTS_INTEGER_ABBREV)
2221       llvm_unreachable("Unexpected abbrev ordering!");
2222   }
2223
2224   { // CE_CAST abbrev for CONSTANTS_BLOCK.
2225     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2226     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
2227     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
2228     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
2229                               VE.computeBitsRequiredForTypeIndicies()));
2230     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
2231
2232     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
2233                                    Abbv) != CONSTANTS_CE_CAST_Abbrev)
2234       llvm_unreachable("Unexpected abbrev ordering!");
2235   }
2236   { // NULL abbrev for CONSTANTS_BLOCK.
2237     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2238     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
2239     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
2240                                    Abbv) != CONSTANTS_NULL_Abbrev)
2241       llvm_unreachable("Unexpected abbrev ordering!");
2242   }
2243
2244   // FIXME: This should only use space for first class types!
2245
2246   { // INST_LOAD abbrev for FUNCTION_BLOCK.
2247     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2248     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
2249     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
2250     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,    // dest ty
2251                               VE.computeBitsRequiredForTypeIndicies()));
2252     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
2253     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
2254     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2255                                    Abbv) != FUNCTION_INST_LOAD_ABBREV)
2256       llvm_unreachable("Unexpected abbrev ordering!");
2257   }
2258   { // INST_BINOP abbrev for FUNCTION_BLOCK.
2259     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2260     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
2261     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
2262     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
2263     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
2264     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2265                                    Abbv) != FUNCTION_INST_BINOP_ABBREV)
2266       llvm_unreachable("Unexpected abbrev ordering!");
2267   }
2268   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
2269     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2270     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
2271     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
2272     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
2273     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
2274     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
2275     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2276                                    Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
2277       llvm_unreachable("Unexpected abbrev ordering!");
2278   }
2279   { // INST_CAST abbrev for FUNCTION_BLOCK.
2280     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2281     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
2282     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
2283     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
2284                               VE.computeBitsRequiredForTypeIndicies()));
2285     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
2286     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2287                                    Abbv) != FUNCTION_INST_CAST_ABBREV)
2288       llvm_unreachable("Unexpected abbrev ordering!");
2289   }
2290
2291   { // INST_RET abbrev for FUNCTION_BLOCK.
2292     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2293     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
2294     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2295                                    Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
2296       llvm_unreachable("Unexpected abbrev ordering!");
2297   }
2298   { // INST_RET abbrev for FUNCTION_BLOCK.
2299     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2300     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
2301     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
2302     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2303                                    Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
2304       llvm_unreachable("Unexpected abbrev ordering!");
2305   }
2306   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
2307     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2308     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
2309     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2310                                    Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
2311       llvm_unreachable("Unexpected abbrev ordering!");
2312   }
2313   {
2314     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2315     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
2316     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
2317     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
2318                               Log2_32_Ceil(VE.getTypes().size() + 1)));
2319     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2320     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
2321     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
2322         FUNCTION_INST_GEP_ABBREV)
2323       llvm_unreachable("Unexpected abbrev ordering!");
2324   }
2325
2326   Stream.ExitBlock();
2327 }
2328
2329 /// WriteModule - Emit the specified module to the bitstream.
2330 static void WriteModule(const Module *M, BitstreamWriter &Stream,
2331                         bool ShouldPreserveUseListOrder) {
2332   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
2333
2334   SmallVector<unsigned, 1> Vals;
2335   unsigned CurVersion = 1;
2336   Vals.push_back(CurVersion);
2337   Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
2338
2339   // Analyze the module, enumerating globals, functions, etc.
2340   ValueEnumerator VE(*M, ShouldPreserveUseListOrder);
2341
2342   // Emit blockinfo, which defines the standard abbreviations etc.
2343   WriteBlockInfo(VE, Stream);
2344
2345   // Emit information about attribute groups.
2346   WriteAttributeGroupTable(VE, Stream);
2347
2348   // Emit information about parameter attributes.
2349   WriteAttributeTable(VE, Stream);
2350
2351   // Emit information describing all of the types in the module.
2352   WriteTypeTable(VE, Stream);
2353
2354   writeComdats(VE, Stream);
2355
2356   // Emit top-level description of module, including target triple, inline asm,
2357   // descriptors for global variables, and function prototype info.
2358   WriteModuleInfo(M, VE, Stream);
2359
2360   // Emit constants.
2361   WriteModuleConstants(VE, Stream);
2362
2363   // Emit metadata.
2364   WriteModuleMetadata(M, VE, Stream);
2365
2366   // Emit metadata.
2367   WriteModuleMetadataStore(M, Stream);
2368
2369   // Emit names for globals/functions etc.
2370   WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
2371
2372   // Emit module-level use-lists.
2373   if (VE.shouldPreserveUseListOrder())
2374     WriteUseListBlock(nullptr, VE, Stream);
2375
2376   // Emit function bodies.
2377   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F)
2378     if (!F->isDeclaration())
2379       WriteFunction(*F, VE, Stream);
2380
2381   Stream.ExitBlock();
2382 }
2383
2384 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
2385 /// header and trailer to make it compatible with the system archiver.  To do
2386 /// this we emit the following header, and then emit a trailer that pads the
2387 /// file out to be a multiple of 16 bytes.
2388 ///
2389 /// struct bc_header {
2390 ///   uint32_t Magic;         // 0x0B17C0DE
2391 ///   uint32_t Version;       // Version, currently always 0.
2392 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
2393 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
2394 ///   uint32_t CPUType;       // CPU specifier.
2395 ///   ... potentially more later ...
2396 /// };
2397 enum {
2398   DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
2399   DarwinBCHeaderSize = 5*4
2400 };
2401
2402 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
2403                                uint32_t &Position) {
2404   Buffer[Position + 0] = (unsigned char) (Value >>  0);
2405   Buffer[Position + 1] = (unsigned char) (Value >>  8);
2406   Buffer[Position + 2] = (unsigned char) (Value >> 16);
2407   Buffer[Position + 3] = (unsigned char) (Value >> 24);
2408   Position += 4;
2409 }
2410
2411 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
2412                                          const Triple &TT) {
2413   unsigned CPUType = ~0U;
2414
2415   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
2416   // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
2417   // number from /usr/include/mach/machine.h.  It is ok to reproduce the
2418   // specific constants here because they are implicitly part of the Darwin ABI.
2419   enum {
2420     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
2421     DARWIN_CPU_TYPE_X86        = 7,
2422     DARWIN_CPU_TYPE_ARM        = 12,
2423     DARWIN_CPU_TYPE_POWERPC    = 18
2424   };
2425
2426   Triple::ArchType Arch = TT.getArch();
2427   if (Arch == Triple::x86_64)
2428     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
2429   else if (Arch == Triple::x86)
2430     CPUType = DARWIN_CPU_TYPE_X86;
2431   else if (Arch == Triple::ppc)
2432     CPUType = DARWIN_CPU_TYPE_POWERPC;
2433   else if (Arch == Triple::ppc64)
2434     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
2435   else if (Arch == Triple::arm || Arch == Triple::thumb)
2436     CPUType = DARWIN_CPU_TYPE_ARM;
2437
2438   // Traditional Bitcode starts after header.
2439   assert(Buffer.size() >= DarwinBCHeaderSize &&
2440          "Expected header size to be reserved");
2441   unsigned BCOffset = DarwinBCHeaderSize;
2442   unsigned BCSize = Buffer.size()-DarwinBCHeaderSize;
2443
2444   // Write the magic and version.
2445   unsigned Position = 0;
2446   WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position);
2447   WriteInt32ToBuffer(0          , Buffer, Position); // Version.
2448   WriteInt32ToBuffer(BCOffset   , Buffer, Position);
2449   WriteInt32ToBuffer(BCSize     , Buffer, Position);
2450   WriteInt32ToBuffer(CPUType    , Buffer, Position);
2451
2452   // If the file is not a multiple of 16 bytes, insert dummy padding.
2453   while (Buffer.size() & 15)
2454     Buffer.push_back(0);
2455 }
2456
2457 /// WriteBitcodeToFile - Write the specified module to the specified output
2458 /// stream.
2459 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out,
2460                               bool ShouldPreserveUseListOrder) {
2461   SmallVector<char, 0> Buffer;
2462   Buffer.reserve(256*1024);
2463
2464   // If this is darwin or another generic macho target, reserve space for the
2465   // header.
2466   Triple TT(M->getTargetTriple());
2467   if (TT.isOSDarwin())
2468     Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0);
2469
2470   // Emit the module into the buffer.
2471   {
2472     BitstreamWriter Stream(Buffer);
2473
2474     // Emit the file header.
2475     Stream.Emit((unsigned)'B', 8);
2476     Stream.Emit((unsigned)'C', 8);
2477     Stream.Emit(0x0, 4);
2478     Stream.Emit(0xC, 4);
2479     Stream.Emit(0xE, 4);
2480     Stream.Emit(0xD, 4);
2481
2482     // Emit the module.
2483     WriteModule(M, Stream, ShouldPreserveUseListOrder);
2484   }
2485
2486   if (TT.isOSDarwin())
2487     EmitDarwinBCHeaderAndTrailer(Buffer, TT);
2488
2489   // Write the generated bitstream to "Out".
2490   Out.write((char*)&Buffer.front(), Buffer.size());
2491 }