1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 #include "llvm/Bitcode/ReaderWriter.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/ADT/SmallString.h"
13 #include "llvm/ADT/SmallVector.h"
14 #include "llvm/ADT/Triple.h"
15 #include "llvm/Bitcode/BitstreamReader.h"
16 #include "llvm/Bitcode/LLVMBitCodes.h"
17 #include "llvm/IR/AutoUpgrade.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/DebugInfo.h"
20 #include "llvm/IR/DebugInfoMetadata.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/DiagnosticPrinter.h"
23 #include "llvm/IR/GVMaterializer.h"
24 #include "llvm/IR/InlineAsm.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/OperandTraits.h"
29 #include "llvm/IR/Operator.h"
30 #include "llvm/IR/FunctionInfo.h"
31 #include "llvm/IR/ValueHandle.h"
32 #include "llvm/Support/DataStream.h"
33 #include "llvm/Support/ManagedStatic.h"
34 #include "llvm/Support/MathExtras.h"
35 #include "llvm/Support/MemoryBuffer.h"
36 #include "llvm/Support/raw_ostream.h"
42 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
45 class BitcodeReaderValueList {
46 std::vector<WeakVH> ValuePtrs;
48 /// As we resolve forward-referenced constants, we add information about them
49 /// to this vector. This allows us to resolve them in bulk instead of
50 /// resolving each reference at a time. See the code in
51 /// ResolveConstantForwardRefs for more information about this.
53 /// The key of this vector is the placeholder constant, the value is the slot
54 /// number that holds the resolved value.
55 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy;
56 ResolveConstantsTy ResolveConstants;
59 BitcodeReaderValueList(LLVMContext &C) : Context(C) {}
60 ~BitcodeReaderValueList() {
61 assert(ResolveConstants.empty() && "Constants not resolved?");
64 // vector compatibility methods
65 unsigned size() const { return ValuePtrs.size(); }
66 void resize(unsigned N) { ValuePtrs.resize(N); }
67 void push_back(Value *V) { ValuePtrs.emplace_back(V); }
70 assert(ResolveConstants.empty() && "Constants not resolved?");
74 Value *operator[](unsigned i) const {
75 assert(i < ValuePtrs.size());
79 Value *back() const { return ValuePtrs.back(); }
80 void pop_back() { ValuePtrs.pop_back(); }
81 bool empty() const { return ValuePtrs.empty(); }
82 void shrinkTo(unsigned N) {
83 assert(N <= size() && "Invalid shrinkTo request!");
87 Constant *getConstantFwdRef(unsigned Idx, Type *Ty);
88 Value *getValueFwdRef(unsigned Idx, Type *Ty);
90 void assignValue(Value *V, unsigned Idx);
92 /// Once all constants are read, this method bulk resolves any forward
94 void resolveConstantForwardRefs();
97 class BitcodeReaderMDValueList {
102 std::vector<TrackingMDRef> MDValuePtrs;
104 LLVMContext &Context;
106 BitcodeReaderMDValueList(LLVMContext &C)
107 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {}
109 // vector compatibility methods
110 unsigned size() const { return MDValuePtrs.size(); }
111 void resize(unsigned N) { MDValuePtrs.resize(N); }
112 void push_back(Metadata *MD) { MDValuePtrs.emplace_back(MD); }
113 void clear() { MDValuePtrs.clear(); }
114 Metadata *back() const { return MDValuePtrs.back(); }
115 void pop_back() { MDValuePtrs.pop_back(); }
116 bool empty() const { return MDValuePtrs.empty(); }
118 Metadata *operator[](unsigned i) const {
119 assert(i < MDValuePtrs.size());
120 return MDValuePtrs[i];
123 void shrinkTo(unsigned N) {
124 assert(N <= size() && "Invalid shrinkTo request!");
125 MDValuePtrs.resize(N);
128 Metadata *getValueFwdRef(unsigned Idx);
129 void assignValue(Metadata *MD, unsigned Idx);
130 void tryToResolveCycles();
133 class BitcodeReader : public GVMaterializer {
134 LLVMContext &Context;
135 Module *TheModule = nullptr;
136 std::unique_ptr<MemoryBuffer> Buffer;
137 std::unique_ptr<BitstreamReader> StreamFile;
138 BitstreamCursor Stream;
139 // Next offset to start scanning for lazy parsing of function bodies.
140 uint64_t NextUnreadBit = 0;
141 // Last function offset found in the VST.
142 uint64_t LastFunctionBlockBit = 0;
143 bool SeenValueSymbolTable = false;
144 uint64_t VSTOffset = 0;
145 // Contains an arbitrary and optional string identifying the bitcode producer
146 std::string ProducerIdentification;
147 // Number of module level metadata records specified by the
148 // MODULE_CODE_METADATA_VALUES record.
149 unsigned NumModuleMDs = 0;
150 // Support older bitcode without the MODULE_CODE_METADATA_VALUES record.
151 bool SeenModuleValuesRecord = false;
153 std::vector<Type*> TypeList;
154 BitcodeReaderValueList ValueList;
155 BitcodeReaderMDValueList MDValueList;
156 std::vector<Comdat *> ComdatList;
157 SmallVector<Instruction *, 64> InstructionList;
159 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits;
160 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits;
161 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes;
162 std::vector<std::pair<Function*, unsigned> > FunctionPrologues;
163 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns;
165 SmallVector<Instruction*, 64> InstsWithTBAATag;
167 /// The set of attributes by index. Index zero in the file is for null, and
168 /// is thus not represented here. As such all indices are off by one.
169 std::vector<AttributeSet> MAttributes;
171 /// The set of attribute groups.
172 std::map<unsigned, AttributeSet> MAttributeGroups;
174 /// While parsing a function body, this is a list of the basic blocks for the
176 std::vector<BasicBlock*> FunctionBBs;
178 // When reading the module header, this list is populated with functions that
179 // have bodies later in the file.
180 std::vector<Function*> FunctionsWithBodies;
182 // When intrinsic functions are encountered which require upgrading they are
183 // stored here with their replacement function.
184 typedef DenseMap<Function*, Function*> UpgradedIntrinsicMap;
185 UpgradedIntrinsicMap UpgradedIntrinsics;
187 // Map the bitcode's custom MDKind ID to the Module's MDKind ID.
188 DenseMap<unsigned, unsigned> MDKindMap;
190 // Several operations happen after the module header has been read, but
191 // before function bodies are processed. This keeps track of whether
192 // we've done this yet.
193 bool SeenFirstFunctionBody = false;
195 /// When function bodies are initially scanned, this map contains info about
196 /// where to find deferred function body in the stream.
197 DenseMap<Function*, uint64_t> DeferredFunctionInfo;
199 /// When Metadata block is initially scanned when parsing the module, we may
200 /// choose to defer parsing of the metadata. This vector contains info about
201 /// which Metadata blocks are deferred.
202 std::vector<uint64_t> DeferredMetadataInfo;
204 /// These are basic blocks forward-referenced by block addresses. They are
205 /// inserted lazily into functions when they're loaded. The basic block ID is
206 /// its index into the vector.
207 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
208 std::deque<Function *> BasicBlockFwdRefQueue;
210 /// Indicates that we are using a new encoding for instruction operands where
211 /// most operands in the current FUNCTION_BLOCK are encoded relative to the
212 /// instruction number, for a more compact encoding. Some instruction
213 /// operands are not relative to the instruction ID: basic block numbers, and
214 /// types. Once the old style function blocks have been phased out, we would
215 /// not need this flag.
216 bool UseRelativeIDs = false;
218 /// True if all functions will be materialized, negating the need to process
219 /// (e.g.) blockaddress forward references.
220 bool WillMaterializeAllForwardRefs = false;
222 /// True if any Metadata block has been materialized.
223 bool IsMetadataMaterialized = false;
225 bool StripDebugInfo = false;
227 /// Functions that need to be matched with subprograms when upgrading old
229 SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs;
231 std::vector<std::string> BundleTags;
234 std::error_code error(BitcodeError E, const Twine &Message);
235 std::error_code error(BitcodeError E);
236 std::error_code error(const Twine &Message);
238 BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context);
239 BitcodeReader(LLVMContext &Context);
240 ~BitcodeReader() override { freeState(); }
242 std::error_code materializeForwardReferencedFunctions();
246 void releaseBuffer();
248 std::error_code materialize(GlobalValue *GV) override;
249 std::error_code materializeModule() override;
250 std::vector<StructType *> getIdentifiedStructTypes() const override;
252 /// \brief Main interface to parsing a bitcode buffer.
253 /// \returns true if an error occurred.
254 std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer,
256 bool ShouldLazyLoadMetadata = false);
258 /// \brief Cheap mechanism to just extract module triple
259 /// \returns true if an error occurred.
260 ErrorOr<std::string> parseTriple();
262 /// Cheap mechanism to just extract the identification block out of bitcode.
263 ErrorOr<std::string> parseIdentificationBlock();
265 static uint64_t decodeSignRotatedValue(uint64_t V);
267 /// Materialize any deferred Metadata block.
268 std::error_code materializeMetadata() override;
270 void setStripDebugInfo() override;
272 /// Save the mapping between the metadata values and the corresponding
273 /// value id that were recorded in the MDValueList during parsing. If
274 /// OnlyTempMD is true, then only record those entries that are still
275 /// temporary metadata. This interface is used when metadata linking is
276 /// performed as a postpass, such as during function importing.
277 void saveMDValueList(DenseMap<const Metadata *, unsigned> &MDValueToValIDMap,
278 bool OnlyTempMD) override;
281 /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the
282 // ProducerIdentification data member, and do some basic enforcement on the
283 // "epoch" encoded in the bitcode.
284 std::error_code parseBitcodeVersion();
286 std::vector<StructType *> IdentifiedStructTypes;
287 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
288 StructType *createIdentifiedStructType(LLVMContext &Context);
290 Type *getTypeByID(unsigned ID);
291 Value *getFnValueByID(unsigned ID, Type *Ty) {
292 if (Ty && Ty->isMetadataTy())
293 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
294 return ValueList.getValueFwdRef(ID, Ty);
296 Metadata *getFnMetadataByID(unsigned ID) {
297 return MDValueList.getValueFwdRef(ID);
299 BasicBlock *getBasicBlock(unsigned ID) const {
300 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
301 return FunctionBBs[ID];
303 AttributeSet getAttributes(unsigned i) const {
304 if (i-1 < MAttributes.size())
305 return MAttributes[i-1];
306 return AttributeSet();
309 /// Read a value/type pair out of the specified record from slot 'Slot'.
310 /// Increment Slot past the number of slots used in the record. Return true on
312 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
313 unsigned InstNum, Value *&ResVal) {
314 if (Slot == Record.size()) return true;
315 unsigned ValNo = (unsigned)Record[Slot++];
316 // Adjust the ValNo, if it was encoded relative to the InstNum.
318 ValNo = InstNum - ValNo;
319 if (ValNo < InstNum) {
320 // If this is not a forward reference, just return the value we already
322 ResVal = getFnValueByID(ValNo, nullptr);
323 return ResVal == nullptr;
325 if (Slot == Record.size())
328 unsigned TypeNo = (unsigned)Record[Slot++];
329 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
330 return ResVal == nullptr;
333 /// Read a value out of the specified record from slot 'Slot'. Increment Slot
334 /// past the number of slots used by the value in the record. Return true if
335 /// there is an error.
336 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
337 unsigned InstNum, Type *Ty, Value *&ResVal) {
338 if (getValue(Record, Slot, InstNum, Ty, ResVal))
340 // All values currently take a single record slot.
345 /// Like popValue, but does not increment the Slot number.
346 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
347 unsigned InstNum, Type *Ty, Value *&ResVal) {
348 ResVal = getValue(Record, Slot, InstNum, Ty);
349 return ResVal == nullptr;
352 /// Version of getValue that returns ResVal directly, or 0 if there is an
354 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
355 unsigned InstNum, Type *Ty) {
356 if (Slot == Record.size()) return nullptr;
357 unsigned ValNo = (unsigned)Record[Slot];
358 // Adjust the ValNo, if it was encoded relative to the InstNum.
360 ValNo = InstNum - ValNo;
361 return getFnValueByID(ValNo, Ty);
364 /// Like getValue, but decodes signed VBRs.
365 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
366 unsigned InstNum, Type *Ty) {
367 if (Slot == Record.size()) return nullptr;
368 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
369 // Adjust the ValNo, if it was encoded relative to the InstNum.
371 ValNo = InstNum - ValNo;
372 return getFnValueByID(ValNo, Ty);
375 /// Converts alignment exponent (i.e. power of two (or zero)) to the
376 /// corresponding alignment to use. If alignment is too large, returns
377 /// a corresponding error code.
378 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment);
379 std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
380 std::error_code parseModule(uint64_t ResumeBit,
381 bool ShouldLazyLoadMetadata = false);
382 std::error_code parseAttributeBlock();
383 std::error_code parseAttributeGroupBlock();
384 std::error_code parseTypeTable();
385 std::error_code parseTypeTableBody();
386 std::error_code parseOperandBundleTags();
388 ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
389 unsigned NameIndex, Triple &TT);
390 std::error_code parseValueSymbolTable(uint64_t Offset = 0);
391 std::error_code parseConstants();
392 std::error_code rememberAndSkipFunctionBodies();
393 std::error_code rememberAndSkipFunctionBody();
394 /// Save the positions of the Metadata blocks and skip parsing the blocks.
395 std::error_code rememberAndSkipMetadata();
396 std::error_code parseFunctionBody(Function *F);
397 std::error_code globalCleanup();
398 std::error_code resolveGlobalAndAliasInits();
399 std::error_code parseMetadata(bool ModuleLevel = false);
400 std::error_code parseMetadataKinds();
401 std::error_code parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record);
402 std::error_code parseMetadataAttachment(Function &F);
403 ErrorOr<std::string> parseModuleTriple();
404 std::error_code parseUseLists();
405 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer);
406 std::error_code initStreamFromBuffer();
407 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer);
408 std::error_code findFunctionInStream(
410 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
413 /// Class to manage reading and parsing function summary index bitcode
415 class FunctionIndexBitcodeReader {
416 DiagnosticHandlerFunction DiagnosticHandler;
418 /// Eventually points to the function index built during parsing.
419 FunctionInfoIndex *TheIndex = nullptr;
421 std::unique_ptr<MemoryBuffer> Buffer;
422 std::unique_ptr<BitstreamReader> StreamFile;
423 BitstreamCursor Stream;
425 /// \brief Used to indicate whether we are doing lazy parsing of summary data.
427 /// If false, the summary section is fully parsed into the index during
428 /// the initial parse. Otherwise, if true, the caller is expected to
429 /// invoke \a readFunctionSummary for each summary needed, and the summary
430 /// section is thus parsed lazily.
433 /// Used to indicate whether caller only wants to check for the presence
434 /// of the function summary bitcode section. All blocks are skipped,
435 /// but the SeenFuncSummary boolean is set.
436 bool CheckFuncSummaryPresenceOnly = false;
438 /// Indicates whether we have encountered a function summary section
439 /// yet during parsing, used when checking if file contains function
441 bool SeenFuncSummary = false;
443 /// \brief Map populated during function summary section parsing, and
444 /// consumed during ValueSymbolTable parsing.
446 /// Used to correlate summary records with VST entries. For the per-module
447 /// index this maps the ValueID to the parsed function summary, and
448 /// for the combined index this maps the summary record's bitcode
449 /// offset to the function summary (since in the combined index the
450 /// VST records do not hold value IDs but rather hold the function
451 /// summary record offset).
452 DenseMap<uint64_t, std::unique_ptr<FunctionSummary>> SummaryMap;
454 /// Map populated during module path string table parsing, from the
455 /// module ID to a string reference owned by the index's module
456 /// path string table, used to correlate with combined index function
458 DenseMap<uint64_t, StringRef> ModuleIdMap;
461 std::error_code error(BitcodeError E, const Twine &Message);
462 std::error_code error(BitcodeError E);
463 std::error_code error(const Twine &Message);
465 FunctionIndexBitcodeReader(MemoryBuffer *Buffer,
466 DiagnosticHandlerFunction DiagnosticHandler,
468 bool CheckFuncSummaryPresenceOnly = false);
469 FunctionIndexBitcodeReader(DiagnosticHandlerFunction DiagnosticHandler,
471 bool CheckFuncSummaryPresenceOnly = false);
472 ~FunctionIndexBitcodeReader() { freeState(); }
476 void releaseBuffer();
478 /// Check if the parser has encountered a function summary section.
479 bool foundFuncSummary() { return SeenFuncSummary; }
481 /// \brief Main interface to parsing a bitcode buffer.
482 /// \returns true if an error occurred.
483 std::error_code parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer,
484 FunctionInfoIndex *I);
486 /// \brief Interface for parsing a function summary lazily.
487 std::error_code parseFunctionSummary(std::unique_ptr<DataStreamer> Streamer,
488 FunctionInfoIndex *I,
489 size_t FunctionSummaryOffset);
492 std::error_code parseModule();
493 std::error_code parseValueSymbolTable();
494 std::error_code parseEntireSummary();
495 std::error_code parseModuleStringTable();
496 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer);
497 std::error_code initStreamFromBuffer();
498 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer);
502 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC,
503 DiagnosticSeverity Severity,
505 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {}
507 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; }
509 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler,
510 std::error_code EC, const Twine &Message) {
511 BitcodeDiagnosticInfo DI(EC, DS_Error, Message);
512 DiagnosticHandler(DI);
516 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler,
517 std::error_code EC) {
518 return error(DiagnosticHandler, EC, EC.message());
521 static std::error_code error(LLVMContext &Context, std::error_code EC,
522 const Twine &Message) {
523 return error([&](const DiagnosticInfo &DI) { Context.diagnose(DI); }, EC,
527 static std::error_code error(LLVMContext &Context, std::error_code EC) {
528 return error(Context, EC, EC.message());
531 static std::error_code error(LLVMContext &Context, const Twine &Message) {
532 return error(Context, make_error_code(BitcodeError::CorruptedBitcode),
536 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) {
537 if (!ProducerIdentification.empty()) {
538 return ::error(Context, make_error_code(E),
539 Message + " (Producer: '" + ProducerIdentification +
540 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')");
542 return ::error(Context, make_error_code(E), Message);
545 std::error_code BitcodeReader::error(const Twine &Message) {
546 if (!ProducerIdentification.empty()) {
547 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode),
548 Message + " (Producer: '" + ProducerIdentification +
549 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')");
551 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode),
555 std::error_code BitcodeReader::error(BitcodeError E) {
556 return ::error(Context, make_error_code(E));
559 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context)
560 : Context(Context), Buffer(Buffer), ValueList(Context),
561 MDValueList(Context) {}
563 BitcodeReader::BitcodeReader(LLVMContext &Context)
564 : Context(Context), Buffer(nullptr), ValueList(Context),
565 MDValueList(Context) {}
567 std::error_code BitcodeReader::materializeForwardReferencedFunctions() {
568 if (WillMaterializeAllForwardRefs)
569 return std::error_code();
571 // Prevent recursion.
572 WillMaterializeAllForwardRefs = true;
574 while (!BasicBlockFwdRefQueue.empty()) {
575 Function *F = BasicBlockFwdRefQueue.front();
576 BasicBlockFwdRefQueue.pop_front();
577 assert(F && "Expected valid function");
578 if (!BasicBlockFwdRefs.count(F))
579 // Already materialized.
582 // Check for a function that isn't materializable to prevent an infinite
583 // loop. When parsing a blockaddress stored in a global variable, there
584 // isn't a trivial way to check if a function will have a body without a
585 // linear search through FunctionsWithBodies, so just check it here.
586 if (!F->isMaterializable())
587 return error("Never resolved function from blockaddress");
589 // Try to materialize F.
590 if (std::error_code EC = materialize(F))
593 assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
596 WillMaterializeAllForwardRefs = false;
597 return std::error_code();
600 void BitcodeReader::freeState() {
602 std::vector<Type*>().swap(TypeList);
605 std::vector<Comdat *>().swap(ComdatList);
607 std::vector<AttributeSet>().swap(MAttributes);
608 std::vector<BasicBlock*>().swap(FunctionBBs);
609 std::vector<Function*>().swap(FunctionsWithBodies);
610 DeferredFunctionInfo.clear();
611 DeferredMetadataInfo.clear();
614 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references");
615 BasicBlockFwdRefQueue.clear();
618 //===----------------------------------------------------------------------===//
619 // Helper functions to implement forward reference resolution, etc.
620 //===----------------------------------------------------------------------===//
622 /// Convert a string from a record into an std::string, return true on failure.
623 template <typename StrTy>
624 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
626 if (Idx > Record.size())
629 for (unsigned i = Idx, e = Record.size(); i != e; ++i)
630 Result += (char)Record[i];
634 static bool hasImplicitComdat(size_t Val) {
638 case 1: // Old WeakAnyLinkage
639 case 4: // Old LinkOnceAnyLinkage
640 case 10: // Old WeakODRLinkage
641 case 11: // Old LinkOnceODRLinkage
646 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
648 default: // Map unknown/new linkages to external
650 return GlobalValue::ExternalLinkage;
652 return GlobalValue::AppendingLinkage;
654 return GlobalValue::InternalLinkage;
656 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
658 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
660 return GlobalValue::ExternalWeakLinkage;
662 return GlobalValue::CommonLinkage;
664 return GlobalValue::PrivateLinkage;
666 return GlobalValue::AvailableExternallyLinkage;
668 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
670 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
672 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
673 case 1: // Old value with implicit comdat.
675 return GlobalValue::WeakAnyLinkage;
676 case 10: // Old value with implicit comdat.
678 return GlobalValue::WeakODRLinkage;
679 case 4: // Old value with implicit comdat.
681 return GlobalValue::LinkOnceAnyLinkage;
682 case 11: // Old value with implicit comdat.
684 return GlobalValue::LinkOnceODRLinkage;
688 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
690 default: // Map unknown visibilities to default.
691 case 0: return GlobalValue::DefaultVisibility;
692 case 1: return GlobalValue::HiddenVisibility;
693 case 2: return GlobalValue::ProtectedVisibility;
697 static GlobalValue::DLLStorageClassTypes
698 getDecodedDLLStorageClass(unsigned Val) {
700 default: // Map unknown values to default.
701 case 0: return GlobalValue::DefaultStorageClass;
702 case 1: return GlobalValue::DLLImportStorageClass;
703 case 2: return GlobalValue::DLLExportStorageClass;
707 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
709 case 0: return GlobalVariable::NotThreadLocal;
710 default: // Map unknown non-zero value to general dynamic.
711 case 1: return GlobalVariable::GeneralDynamicTLSModel;
712 case 2: return GlobalVariable::LocalDynamicTLSModel;
713 case 3: return GlobalVariable::InitialExecTLSModel;
714 case 4: return GlobalVariable::LocalExecTLSModel;
718 static int getDecodedCastOpcode(unsigned Val) {
721 case bitc::CAST_TRUNC : return Instruction::Trunc;
722 case bitc::CAST_ZEXT : return Instruction::ZExt;
723 case bitc::CAST_SEXT : return Instruction::SExt;
724 case bitc::CAST_FPTOUI : return Instruction::FPToUI;
725 case bitc::CAST_FPTOSI : return Instruction::FPToSI;
726 case bitc::CAST_UITOFP : return Instruction::UIToFP;
727 case bitc::CAST_SITOFP : return Instruction::SIToFP;
728 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
729 case bitc::CAST_FPEXT : return Instruction::FPExt;
730 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
731 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
732 case bitc::CAST_BITCAST : return Instruction::BitCast;
733 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
737 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
738 bool IsFP = Ty->isFPOrFPVectorTy();
739 // BinOps are only valid for int/fp or vector of int/fp types
740 if (!IsFP && !Ty->isIntOrIntVectorTy())
746 case bitc::BINOP_ADD:
747 return IsFP ? Instruction::FAdd : Instruction::Add;
748 case bitc::BINOP_SUB:
749 return IsFP ? Instruction::FSub : Instruction::Sub;
750 case bitc::BINOP_MUL:
751 return IsFP ? Instruction::FMul : Instruction::Mul;
752 case bitc::BINOP_UDIV:
753 return IsFP ? -1 : Instruction::UDiv;
754 case bitc::BINOP_SDIV:
755 return IsFP ? Instruction::FDiv : Instruction::SDiv;
756 case bitc::BINOP_UREM:
757 return IsFP ? -1 : Instruction::URem;
758 case bitc::BINOP_SREM:
759 return IsFP ? Instruction::FRem : Instruction::SRem;
760 case bitc::BINOP_SHL:
761 return IsFP ? -1 : Instruction::Shl;
762 case bitc::BINOP_LSHR:
763 return IsFP ? -1 : Instruction::LShr;
764 case bitc::BINOP_ASHR:
765 return IsFP ? -1 : Instruction::AShr;
766 case bitc::BINOP_AND:
767 return IsFP ? -1 : Instruction::And;
769 return IsFP ? -1 : Instruction::Or;
770 case bitc::BINOP_XOR:
771 return IsFP ? -1 : Instruction::Xor;
775 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
777 default: return AtomicRMWInst::BAD_BINOP;
778 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
779 case bitc::RMW_ADD: return AtomicRMWInst::Add;
780 case bitc::RMW_SUB: return AtomicRMWInst::Sub;
781 case bitc::RMW_AND: return AtomicRMWInst::And;
782 case bitc::RMW_NAND: return AtomicRMWInst::Nand;
783 case bitc::RMW_OR: return AtomicRMWInst::Or;
784 case bitc::RMW_XOR: return AtomicRMWInst::Xor;
785 case bitc::RMW_MAX: return AtomicRMWInst::Max;
786 case bitc::RMW_MIN: return AtomicRMWInst::Min;
787 case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
788 case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
792 static AtomicOrdering getDecodedOrdering(unsigned Val) {
794 case bitc::ORDERING_NOTATOMIC: return NotAtomic;
795 case bitc::ORDERING_UNORDERED: return Unordered;
796 case bitc::ORDERING_MONOTONIC: return Monotonic;
797 case bitc::ORDERING_ACQUIRE: return Acquire;
798 case bitc::ORDERING_RELEASE: return Release;
799 case bitc::ORDERING_ACQREL: return AcquireRelease;
800 default: // Map unknown orderings to sequentially-consistent.
801 case bitc::ORDERING_SEQCST: return SequentiallyConsistent;
805 static SynchronizationScope getDecodedSynchScope(unsigned Val) {
807 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread;
808 default: // Map unknown scopes to cross-thread.
809 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread;
813 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
815 default: // Map unknown selection kinds to any.
816 case bitc::COMDAT_SELECTION_KIND_ANY:
818 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
819 return Comdat::ExactMatch;
820 case bitc::COMDAT_SELECTION_KIND_LARGEST:
821 return Comdat::Largest;
822 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
823 return Comdat::NoDuplicates;
824 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
825 return Comdat::SameSize;
829 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
831 if (0 != (Val & FastMathFlags::UnsafeAlgebra))
832 FMF.setUnsafeAlgebra();
833 if (0 != (Val & FastMathFlags::NoNaNs))
835 if (0 != (Val & FastMathFlags::NoInfs))
837 if (0 != (Val & FastMathFlags::NoSignedZeros))
838 FMF.setNoSignedZeros();
839 if (0 != (Val & FastMathFlags::AllowReciprocal))
840 FMF.setAllowReciprocal();
844 static void upgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) {
846 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
847 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
853 /// \brief A class for maintaining the slot number definition
854 /// as a placeholder for the actual definition for forward constants defs.
855 class ConstantPlaceHolder : public ConstantExpr {
856 void operator=(const ConstantPlaceHolder &) = delete;
859 // allocate space for exactly one operand
860 void *operator new(size_t s) { return User::operator new(s, 1); }
861 explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context)
862 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
863 Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
866 /// \brief Methods to support type inquiry through isa, cast, and dyn_cast.
867 static bool classof(const Value *V) {
868 return isa<ConstantExpr>(V) &&
869 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
872 /// Provide fast operand accessors
873 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
877 // FIXME: can we inherit this from ConstantExpr?
879 struct OperandTraits<ConstantPlaceHolder> :
880 public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
882 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value)
885 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) {
894 WeakVH &OldV = ValuePtrs[Idx];
900 // Handle constants and non-constants (e.g. instrs) differently for
902 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
903 ResolveConstants.push_back(std::make_pair(PHC, Idx));
906 // If there was a forward reference to this value, replace it.
907 Value *PrevVal = OldV;
908 OldV->replaceAllUsesWith(V);
916 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
921 if (Value *V = ValuePtrs[Idx]) {
922 if (Ty != V->getType())
923 report_fatal_error("Type mismatch in constant table!");
924 return cast<Constant>(V);
927 // Create and return a placeholder, which will later be RAUW'd.
928 Constant *C = new ConstantPlaceHolder(Ty, Context);
933 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) {
934 // Bail out for a clearly invalid value. This would make us call resize(0)
941 if (Value *V = ValuePtrs[Idx]) {
942 // If the types don't match, it's invalid.
943 if (Ty && Ty != V->getType())
948 // No type specified, must be invalid reference.
949 if (!Ty) return nullptr;
951 // Create and return a placeholder, which will later be RAUW'd.
952 Value *V = new Argument(Ty);
957 /// Once all constants are read, this method bulk resolves any forward
958 /// references. The idea behind this is that we sometimes get constants (such
959 /// as large arrays) which reference *many* forward ref constants. Replacing
960 /// each of these causes a lot of thrashing when building/reuniquing the
961 /// constant. Instead of doing this, we look at all the uses and rewrite all
962 /// the place holders at once for any constant that uses a placeholder.
963 void BitcodeReaderValueList::resolveConstantForwardRefs() {
964 // Sort the values by-pointer so that they are efficient to look up with a
966 std::sort(ResolveConstants.begin(), ResolveConstants.end());
968 SmallVector<Constant*, 64> NewOps;
970 while (!ResolveConstants.empty()) {
971 Value *RealVal = operator[](ResolveConstants.back().second);
972 Constant *Placeholder = ResolveConstants.back().first;
973 ResolveConstants.pop_back();
975 // Loop over all users of the placeholder, updating them to reference the
976 // new value. If they reference more than one placeholder, update them all
978 while (!Placeholder->use_empty()) {
979 auto UI = Placeholder->user_begin();
982 // If the using object isn't uniqued, just update the operands. This
983 // handles instructions and initializers for global variables.
984 if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
985 UI.getUse().set(RealVal);
989 // Otherwise, we have a constant that uses the placeholder. Replace that
990 // constant with a new constant that has *all* placeholder uses updated.
991 Constant *UserC = cast<Constant>(U);
992 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
995 if (!isa<ConstantPlaceHolder>(*I)) {
996 // Not a placeholder reference.
998 } else if (*I == Placeholder) {
999 // Common case is that it just references this one placeholder.
1002 // Otherwise, look up the placeholder in ResolveConstants.
1003 ResolveConstantsTy::iterator It =
1004 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
1005 std::pair<Constant*, unsigned>(cast<Constant>(*I),
1007 assert(It != ResolveConstants.end() && It->first == *I);
1008 NewOp = operator[](It->second);
1011 NewOps.push_back(cast<Constant>(NewOp));
1014 // Make the new constant.
1016 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
1017 NewC = ConstantArray::get(UserCA->getType(), NewOps);
1018 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
1019 NewC = ConstantStruct::get(UserCS->getType(), NewOps);
1020 } else if (isa<ConstantVector>(UserC)) {
1021 NewC = ConstantVector::get(NewOps);
1023 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
1024 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
1027 UserC->replaceAllUsesWith(NewC);
1028 UserC->destroyConstant();
1032 // Update all ValueHandles, they should be the only users at this point.
1033 Placeholder->replaceAllUsesWith(RealVal);
1038 void BitcodeReaderMDValueList::assignValue(Metadata *MD, unsigned Idx) {
1039 if (Idx == size()) {
1047 TrackingMDRef &OldMD = MDValuePtrs[Idx];
1053 // If there was a forward reference to this value, replace it.
1054 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get()));
1055 PrevMD->replaceAllUsesWith(MD);
1059 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
1063 if (Metadata *MD = MDValuePtrs[Idx])
1066 // Track forward refs to be resolved later.
1068 MinFwdRef = std::min(MinFwdRef, Idx);
1069 MaxFwdRef = std::max(MaxFwdRef, Idx);
1072 MinFwdRef = MaxFwdRef = Idx;
1076 // Create and return a placeholder, which will later be RAUW'd.
1077 Metadata *MD = MDNode::getTemporary(Context, None).release();
1078 MDValuePtrs[Idx].reset(MD);
1082 void BitcodeReaderMDValueList::tryToResolveCycles() {
1088 // Still forward references... can't resolve cycles.
1091 // Resolve any cycles.
1092 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) {
1093 auto &MD = MDValuePtrs[I];
1094 auto *N = dyn_cast_or_null<MDNode>(MD);
1098 assert(!N->isTemporary() && "Unexpected forward reference");
1102 // Make sure we return early again until there's another forward ref.
1106 Type *BitcodeReader::getTypeByID(unsigned ID) {
1107 // The type table size is always specified correctly.
1108 if (ID >= TypeList.size())
1111 if (Type *Ty = TypeList[ID])
1114 // If we have a forward reference, the only possible case is when it is to a
1115 // named struct. Just create a placeholder for now.
1116 return TypeList[ID] = createIdentifiedStructType(Context);
1119 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1121 auto *Ret = StructType::create(Context, Name);
1122 IdentifiedStructTypes.push_back(Ret);
1126 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1127 auto *Ret = StructType::create(Context);
1128 IdentifiedStructTypes.push_back(Ret);
1133 //===----------------------------------------------------------------------===//
1134 // Functions for parsing blocks from the bitcode file
1135 //===----------------------------------------------------------------------===//
1138 /// \brief This fills an AttrBuilder object with the LLVM attributes that have
1139 /// been decoded from the given integer. This function must stay in sync with
1140 /// 'encodeLLVMAttributesForBitcode'.
1141 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1142 uint64_t EncodedAttrs) {
1143 // FIXME: Remove in 4.0.
1145 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift
1146 // the bits above 31 down by 11 bits.
1147 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1148 assert((!Alignment || isPowerOf2_32(Alignment)) &&
1149 "Alignment must be a power of two.");
1152 B.addAlignmentAttr(Alignment);
1153 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1154 (EncodedAttrs & 0xffff));
1157 std::error_code BitcodeReader::parseAttributeBlock() {
1158 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1159 return error("Invalid record");
1161 if (!MAttributes.empty())
1162 return error("Invalid multiple blocks");
1164 SmallVector<uint64_t, 64> Record;
1166 SmallVector<AttributeSet, 8> Attrs;
1168 // Read all the records.
1170 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1172 switch (Entry.Kind) {
1173 case BitstreamEntry::SubBlock: // Handled for us already.
1174 case BitstreamEntry::Error:
1175 return error("Malformed block");
1176 case BitstreamEntry::EndBlock:
1177 return std::error_code();
1178 case BitstreamEntry::Record:
1179 // The interesting case.
1185 switch (Stream.readRecord(Entry.ID, Record)) {
1186 default: // Default behavior: ignore.
1188 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...]
1189 // FIXME: Remove in 4.0.
1190 if (Record.size() & 1)
1191 return error("Invalid record");
1193 for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1195 decodeLLVMAttributesForBitcode(B, Record[i+1]);
1196 Attrs.push_back(AttributeSet::get(Context, Record[i], B));
1199 MAttributes.push_back(AttributeSet::get(Context, Attrs));
1203 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...]
1204 for (unsigned i = 0, e = Record.size(); i != e; ++i)
1205 Attrs.push_back(MAttributeGroups[Record[i]]);
1207 MAttributes.push_back(AttributeSet::get(Context, Attrs));
1215 // Returns Attribute::None on unrecognized codes.
1216 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1219 return Attribute::None;
1220 case bitc::ATTR_KIND_ALIGNMENT:
1221 return Attribute::Alignment;
1222 case bitc::ATTR_KIND_ALWAYS_INLINE:
1223 return Attribute::AlwaysInline;
1224 case bitc::ATTR_KIND_ARGMEMONLY:
1225 return Attribute::ArgMemOnly;
1226 case bitc::ATTR_KIND_BUILTIN:
1227 return Attribute::Builtin;
1228 case bitc::ATTR_KIND_BY_VAL:
1229 return Attribute::ByVal;
1230 case bitc::ATTR_KIND_IN_ALLOCA:
1231 return Attribute::InAlloca;
1232 case bitc::ATTR_KIND_COLD:
1233 return Attribute::Cold;
1234 case bitc::ATTR_KIND_CONVERGENT:
1235 return Attribute::Convergent;
1236 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1237 return Attribute::InaccessibleMemOnly;
1238 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1239 return Attribute::InaccessibleMemOrArgMemOnly;
1240 case bitc::ATTR_KIND_INLINE_HINT:
1241 return Attribute::InlineHint;
1242 case bitc::ATTR_KIND_IN_REG:
1243 return Attribute::InReg;
1244 case bitc::ATTR_KIND_JUMP_TABLE:
1245 return Attribute::JumpTable;
1246 case bitc::ATTR_KIND_MIN_SIZE:
1247 return Attribute::MinSize;
1248 case bitc::ATTR_KIND_NAKED:
1249 return Attribute::Naked;
1250 case bitc::ATTR_KIND_NEST:
1251 return Attribute::Nest;
1252 case bitc::ATTR_KIND_NO_ALIAS:
1253 return Attribute::NoAlias;
1254 case bitc::ATTR_KIND_NO_BUILTIN:
1255 return Attribute::NoBuiltin;
1256 case bitc::ATTR_KIND_NO_CAPTURE:
1257 return Attribute::NoCapture;
1258 case bitc::ATTR_KIND_NO_DUPLICATE:
1259 return Attribute::NoDuplicate;
1260 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1261 return Attribute::NoImplicitFloat;
1262 case bitc::ATTR_KIND_NO_INLINE:
1263 return Attribute::NoInline;
1264 case bitc::ATTR_KIND_NO_RECURSE:
1265 return Attribute::NoRecurse;
1266 case bitc::ATTR_KIND_NON_LAZY_BIND:
1267 return Attribute::NonLazyBind;
1268 case bitc::ATTR_KIND_NON_NULL:
1269 return Attribute::NonNull;
1270 case bitc::ATTR_KIND_DEREFERENCEABLE:
1271 return Attribute::Dereferenceable;
1272 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1273 return Attribute::DereferenceableOrNull;
1274 case bitc::ATTR_KIND_NO_RED_ZONE:
1275 return Attribute::NoRedZone;
1276 case bitc::ATTR_KIND_NO_RETURN:
1277 return Attribute::NoReturn;
1278 case bitc::ATTR_KIND_NO_UNWIND:
1279 return Attribute::NoUnwind;
1280 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1281 return Attribute::OptimizeForSize;
1282 case bitc::ATTR_KIND_OPTIMIZE_NONE:
1283 return Attribute::OptimizeNone;
1284 case bitc::ATTR_KIND_READ_NONE:
1285 return Attribute::ReadNone;
1286 case bitc::ATTR_KIND_READ_ONLY:
1287 return Attribute::ReadOnly;
1288 case bitc::ATTR_KIND_RETURNED:
1289 return Attribute::Returned;
1290 case bitc::ATTR_KIND_RETURNS_TWICE:
1291 return Attribute::ReturnsTwice;
1292 case bitc::ATTR_KIND_S_EXT:
1293 return Attribute::SExt;
1294 case bitc::ATTR_KIND_STACK_ALIGNMENT:
1295 return Attribute::StackAlignment;
1296 case bitc::ATTR_KIND_STACK_PROTECT:
1297 return Attribute::StackProtect;
1298 case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1299 return Attribute::StackProtectReq;
1300 case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1301 return Attribute::StackProtectStrong;
1302 case bitc::ATTR_KIND_SAFESTACK:
1303 return Attribute::SafeStack;
1304 case bitc::ATTR_KIND_STRUCT_RET:
1305 return Attribute::StructRet;
1306 case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1307 return Attribute::SanitizeAddress;
1308 case bitc::ATTR_KIND_SANITIZE_THREAD:
1309 return Attribute::SanitizeThread;
1310 case bitc::ATTR_KIND_SANITIZE_MEMORY:
1311 return Attribute::SanitizeMemory;
1312 case bitc::ATTR_KIND_UW_TABLE:
1313 return Attribute::UWTable;
1314 case bitc::ATTR_KIND_Z_EXT:
1315 return Attribute::ZExt;
1319 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1320 unsigned &Alignment) {
1321 // Note: Alignment in bitcode files is incremented by 1, so that zero
1322 // can be used for default alignment.
1323 if (Exponent > Value::MaxAlignmentExponent + 1)
1324 return error("Invalid alignment value");
1325 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1;
1326 return std::error_code();
1329 std::error_code BitcodeReader::parseAttrKind(uint64_t Code,
1330 Attribute::AttrKind *Kind) {
1331 *Kind = getAttrFromCode(Code);
1332 if (*Kind == Attribute::None)
1333 return error(BitcodeError::CorruptedBitcode,
1334 "Unknown attribute kind (" + Twine(Code) + ")");
1335 return std::error_code();
1338 std::error_code BitcodeReader::parseAttributeGroupBlock() {
1339 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1340 return error("Invalid record");
1342 if (!MAttributeGroups.empty())
1343 return error("Invalid multiple blocks");
1345 SmallVector<uint64_t, 64> Record;
1347 // Read all the records.
1349 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1351 switch (Entry.Kind) {
1352 case BitstreamEntry::SubBlock: // Handled for us already.
1353 case BitstreamEntry::Error:
1354 return error("Malformed block");
1355 case BitstreamEntry::EndBlock:
1356 return std::error_code();
1357 case BitstreamEntry::Record:
1358 // The interesting case.
1364 switch (Stream.readRecord(Entry.ID, Record)) {
1365 default: // Default behavior: ignore.
1367 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1368 if (Record.size() < 3)
1369 return error("Invalid record");
1371 uint64_t GrpID = Record[0];
1372 uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1375 for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1376 if (Record[i] == 0) { // Enum attribute
1377 Attribute::AttrKind Kind;
1378 if (std::error_code EC = parseAttrKind(Record[++i], &Kind))
1381 B.addAttribute(Kind);
1382 } else if (Record[i] == 1) { // Integer attribute
1383 Attribute::AttrKind Kind;
1384 if (std::error_code EC = parseAttrKind(Record[++i], &Kind))
1386 if (Kind == Attribute::Alignment)
1387 B.addAlignmentAttr(Record[++i]);
1388 else if (Kind == Attribute::StackAlignment)
1389 B.addStackAlignmentAttr(Record[++i]);
1390 else if (Kind == Attribute::Dereferenceable)
1391 B.addDereferenceableAttr(Record[++i]);
1392 else if (Kind == Attribute::DereferenceableOrNull)
1393 B.addDereferenceableOrNullAttr(Record[++i]);
1394 } else { // String attribute
1395 assert((Record[i] == 3 || Record[i] == 4) &&
1396 "Invalid attribute group entry");
1397 bool HasValue = (Record[i++] == 4);
1398 SmallString<64> KindStr;
1399 SmallString<64> ValStr;
1401 while (Record[i] != 0 && i != e)
1402 KindStr += Record[i++];
1403 assert(Record[i] == 0 && "Kind string not null terminated");
1406 // Has a value associated with it.
1407 ++i; // Skip the '0' that terminates the "kind" string.
1408 while (Record[i] != 0 && i != e)
1409 ValStr += Record[i++];
1410 assert(Record[i] == 0 && "Value string not null terminated");
1413 B.addAttribute(KindStr.str(), ValStr.str());
1417 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B);
1424 std::error_code BitcodeReader::parseTypeTable() {
1425 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1426 return error("Invalid record");
1428 return parseTypeTableBody();
1431 std::error_code BitcodeReader::parseTypeTableBody() {
1432 if (!TypeList.empty())
1433 return error("Invalid multiple blocks");
1435 SmallVector<uint64_t, 64> Record;
1436 unsigned NumRecords = 0;
1438 SmallString<64> TypeName;
1440 // Read all the records for this type table.
1442 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1444 switch (Entry.Kind) {
1445 case BitstreamEntry::SubBlock: // Handled for us already.
1446 case BitstreamEntry::Error:
1447 return error("Malformed block");
1448 case BitstreamEntry::EndBlock:
1449 if (NumRecords != TypeList.size())
1450 return error("Malformed block");
1451 return std::error_code();
1452 case BitstreamEntry::Record:
1453 // The interesting case.
1459 Type *ResultTy = nullptr;
1460 switch (Stream.readRecord(Entry.ID, Record)) {
1462 return error("Invalid value");
1463 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1464 // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1465 // type list. This allows us to reserve space.
1466 if (Record.size() < 1)
1467 return error("Invalid record");
1468 TypeList.resize(Record[0]);
1470 case bitc::TYPE_CODE_VOID: // VOID
1471 ResultTy = Type::getVoidTy(Context);
1473 case bitc::TYPE_CODE_HALF: // HALF
1474 ResultTy = Type::getHalfTy(Context);
1476 case bitc::TYPE_CODE_FLOAT: // FLOAT
1477 ResultTy = Type::getFloatTy(Context);
1479 case bitc::TYPE_CODE_DOUBLE: // DOUBLE
1480 ResultTy = Type::getDoubleTy(Context);
1482 case bitc::TYPE_CODE_X86_FP80: // X86_FP80
1483 ResultTy = Type::getX86_FP80Ty(Context);
1485 case bitc::TYPE_CODE_FP128: // FP128
1486 ResultTy = Type::getFP128Ty(Context);
1488 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1489 ResultTy = Type::getPPC_FP128Ty(Context);
1491 case bitc::TYPE_CODE_LABEL: // LABEL
1492 ResultTy = Type::getLabelTy(Context);
1494 case bitc::TYPE_CODE_METADATA: // METADATA
1495 ResultTy = Type::getMetadataTy(Context);
1497 case bitc::TYPE_CODE_X86_MMX: // X86_MMX
1498 ResultTy = Type::getX86_MMXTy(Context);
1500 case bitc::TYPE_CODE_TOKEN: // TOKEN
1501 ResultTy = Type::getTokenTy(Context);
1503 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1504 if (Record.size() < 1)
1505 return error("Invalid record");
1507 uint64_t NumBits = Record[0];
1508 if (NumBits < IntegerType::MIN_INT_BITS ||
1509 NumBits > IntegerType::MAX_INT_BITS)
1510 return error("Bitwidth for integer type out of range");
1511 ResultTy = IntegerType::get(Context, NumBits);
1514 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1515 // [pointee type, address space]
1516 if (Record.size() < 1)
1517 return error("Invalid record");
1518 unsigned AddressSpace = 0;
1519 if (Record.size() == 2)
1520 AddressSpace = Record[1];
1521 ResultTy = getTypeByID(Record[0]);
1523 !PointerType::isValidElementType(ResultTy))
1524 return error("Invalid type");
1525 ResultTy = PointerType::get(ResultTy, AddressSpace);
1528 case bitc::TYPE_CODE_FUNCTION_OLD: {
1529 // FIXME: attrid is dead, remove it in LLVM 4.0
1530 // FUNCTION: [vararg, attrid, retty, paramty x N]
1531 if (Record.size() < 3)
1532 return error("Invalid record");
1533 SmallVector<Type*, 8> ArgTys;
1534 for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1535 if (Type *T = getTypeByID(Record[i]))
1536 ArgTys.push_back(T);
1541 ResultTy = getTypeByID(Record[2]);
1542 if (!ResultTy || ArgTys.size() < Record.size()-3)
1543 return error("Invalid type");
1545 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1548 case bitc::TYPE_CODE_FUNCTION: {
1549 // FUNCTION: [vararg, retty, paramty x N]
1550 if (Record.size() < 2)
1551 return error("Invalid record");
1552 SmallVector<Type*, 8> ArgTys;
1553 for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1554 if (Type *T = getTypeByID(Record[i])) {
1555 if (!FunctionType::isValidArgumentType(T))
1556 return error("Invalid function argument type");
1557 ArgTys.push_back(T);
1563 ResultTy = getTypeByID(Record[1]);
1564 if (!ResultTy || ArgTys.size() < Record.size()-2)
1565 return error("Invalid type");
1567 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1570 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N]
1571 if (Record.size() < 1)
1572 return error("Invalid record");
1573 SmallVector<Type*, 8> EltTys;
1574 for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1575 if (Type *T = getTypeByID(Record[i]))
1576 EltTys.push_back(T);
1580 if (EltTys.size() != Record.size()-1)
1581 return error("Invalid type");
1582 ResultTy = StructType::get(Context, EltTys, Record[0]);
1585 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N]
1586 if (convertToString(Record, 0, TypeName))
1587 return error("Invalid record");
1590 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1591 if (Record.size() < 1)
1592 return error("Invalid record");
1594 if (NumRecords >= TypeList.size())
1595 return error("Invalid TYPE table");
1597 // Check to see if this was forward referenced, if so fill in the temp.
1598 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1600 Res->setName(TypeName);
1601 TypeList[NumRecords] = nullptr;
1602 } else // Otherwise, create a new struct.
1603 Res = createIdentifiedStructType(Context, TypeName);
1606 SmallVector<Type*, 8> EltTys;
1607 for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1608 if (Type *T = getTypeByID(Record[i]))
1609 EltTys.push_back(T);
1613 if (EltTys.size() != Record.size()-1)
1614 return error("Invalid record");
1615 Res->setBody(EltTys, Record[0]);
1619 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: []
1620 if (Record.size() != 1)
1621 return error("Invalid record");
1623 if (NumRecords >= TypeList.size())
1624 return error("Invalid TYPE table");
1626 // Check to see if this was forward referenced, if so fill in the temp.
1627 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1629 Res->setName(TypeName);
1630 TypeList[NumRecords] = nullptr;
1631 } else // Otherwise, create a new struct with no body.
1632 Res = createIdentifiedStructType(Context, TypeName);
1637 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty]
1638 if (Record.size() < 2)
1639 return error("Invalid record");
1640 ResultTy = getTypeByID(Record[1]);
1641 if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1642 return error("Invalid type");
1643 ResultTy = ArrayType::get(ResultTy, Record[0]);
1645 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty]
1646 if (Record.size() < 2)
1647 return error("Invalid record");
1649 return error("Invalid vector length");
1650 ResultTy = getTypeByID(Record[1]);
1651 if (!ResultTy || !StructType::isValidElementType(ResultTy))
1652 return error("Invalid type");
1653 ResultTy = VectorType::get(ResultTy, Record[0]);
1657 if (NumRecords >= TypeList.size())
1658 return error("Invalid TYPE table");
1659 if (TypeList[NumRecords])
1661 "Invalid TYPE table: Only named structs can be forward referenced");
1662 assert(ResultTy && "Didn't read a type?");
1663 TypeList[NumRecords++] = ResultTy;
1667 std::error_code BitcodeReader::parseOperandBundleTags() {
1668 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1669 return error("Invalid record");
1671 if (!BundleTags.empty())
1672 return error("Invalid multiple blocks");
1674 SmallVector<uint64_t, 64> Record;
1677 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1679 switch (Entry.Kind) {
1680 case BitstreamEntry::SubBlock: // Handled for us already.
1681 case BitstreamEntry::Error:
1682 return error("Malformed block");
1683 case BitstreamEntry::EndBlock:
1684 return std::error_code();
1685 case BitstreamEntry::Record:
1686 // The interesting case.
1690 // Tags are implicitly mapped to integers by their order.
1692 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG)
1693 return error("Invalid record");
1695 // OPERAND_BUNDLE_TAG: [strchr x N]
1696 BundleTags.emplace_back();
1697 if (convertToString(Record, 0, BundleTags.back()))
1698 return error("Invalid record");
1703 /// Associate a value with its name from the given index in the provided record.
1704 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
1705 unsigned NameIndex, Triple &TT) {
1706 SmallString<128> ValueName;
1707 if (convertToString(Record, NameIndex, ValueName))
1708 return error("Invalid record");
1709 unsigned ValueID = Record[0];
1710 if (ValueID >= ValueList.size() || !ValueList[ValueID])
1711 return error("Invalid record");
1712 Value *V = ValueList[ValueID];
1714 StringRef NameStr(ValueName.data(), ValueName.size());
1715 if (NameStr.find_first_of(0) != StringRef::npos)
1716 return error("Invalid value name");
1717 V->setName(NameStr);
1718 auto *GO = dyn_cast<GlobalObject>(V);
1720 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
1721 if (TT.isOSBinFormatMachO())
1722 GO->setComdat(nullptr);
1724 GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
1730 /// Parse the value symbol table at either the current parsing location or
1731 /// at the given bit offset if provided.
1732 std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
1733 uint64_t CurrentBit;
1734 // Pass in the Offset to distinguish between calling for the module-level
1735 // VST (where we want to jump to the VST offset) and the function-level
1736 // VST (where we don't).
1738 // Save the current parsing location so we can jump back at the end
1740 CurrentBit = Stream.GetCurrentBitNo();
1741 Stream.JumpToBit(Offset * 32);
1743 // Do some checking if we are in debug mode.
1744 BitstreamEntry Entry = Stream.advance();
1745 assert(Entry.Kind == BitstreamEntry::SubBlock);
1746 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID);
1748 // In NDEBUG mode ignore the output so we don't get an unused variable
1754 // Compute the delta between the bitcode indices in the VST (the word offset
1755 // to the word-aligned ENTER_SUBBLOCK for the function block, and that
1756 // expected by the lazy reader. The reader's EnterSubBlock expects to have
1757 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
1758 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
1759 // just before entering the VST subblock because: 1) the EnterSubBlock
1760 // changes the AbbrevID width; 2) the VST block is nested within the same
1761 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
1762 // AbbrevID width before calling EnterSubBlock; and 3) when we want to
1763 // jump to the FUNCTION_BLOCK using this offset later, we don't want
1764 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
1765 unsigned FuncBitcodeOffsetDelta =
1766 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
1768 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
1769 return error("Invalid record");
1771 SmallVector<uint64_t, 64> Record;
1773 Triple TT(TheModule->getTargetTriple());
1775 // Read all the records for this value table.
1776 SmallString<128> ValueName;
1778 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1780 switch (Entry.Kind) {
1781 case BitstreamEntry::SubBlock: // Handled for us already.
1782 case BitstreamEntry::Error:
1783 return error("Malformed block");
1784 case BitstreamEntry::EndBlock:
1786 Stream.JumpToBit(CurrentBit);
1787 return std::error_code();
1788 case BitstreamEntry::Record:
1789 // The interesting case.
1795 switch (Stream.readRecord(Entry.ID, Record)) {
1796 default: // Default behavior: unknown type.
1798 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N]
1799 ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT);
1800 if (std::error_code EC = ValOrErr.getError())
1805 case bitc::VST_CODE_FNENTRY: {
1806 // VST_FNENTRY: [valueid, offset, namechar x N]
1807 ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT);
1808 if (std::error_code EC = ValOrErr.getError())
1810 Value *V = ValOrErr.get();
1812 auto *GO = dyn_cast<GlobalObject>(V);
1814 // If this is an alias, need to get the actual Function object
1815 // it aliases, in order to set up the DeferredFunctionInfo entry below.
1816 auto *GA = dyn_cast<GlobalAlias>(V);
1818 GO = GA->getBaseObject();
1822 uint64_t FuncWordOffset = Record[1];
1823 Function *F = dyn_cast<Function>(GO);
1825 uint64_t FuncBitOffset = FuncWordOffset * 32;
1826 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
1827 // Set the LastFunctionBlockBit to point to the last function block.
1828 // Later when parsing is resumed after function materialization,
1829 // we can simply skip that last function block.
1830 if (FuncBitOffset > LastFunctionBlockBit)
1831 LastFunctionBlockBit = FuncBitOffset;
1834 case bitc::VST_CODE_BBENTRY: {
1835 if (convertToString(Record, 1, ValueName))
1836 return error("Invalid record");
1837 BasicBlock *BB = getBasicBlock(Record[0]);
1839 return error("Invalid record");
1841 BB->setName(StringRef(ValueName.data(), ValueName.size()));
1849 /// Parse a single METADATA_KIND record, inserting result in MDKindMap.
1851 BitcodeReader::parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record) {
1852 if (Record.size() < 2)
1853 return error("Invalid record");
1855 unsigned Kind = Record[0];
1856 SmallString<8> Name(Record.begin() + 1, Record.end());
1858 unsigned NewKind = TheModule->getMDKindID(Name.str());
1859 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
1860 return error("Conflicting METADATA_KIND records");
1861 return std::error_code();
1864 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; }
1866 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing
1867 /// module level metadata.
1868 std::error_code BitcodeReader::parseMetadata(bool ModuleLevel) {
1869 IsMetadataMaterialized = true;
1870 unsigned NextMDValueNo = MDValueList.size();
1871 if (ModuleLevel && SeenModuleValuesRecord) {
1872 // Now that we are parsing the module level metadata, we want to restart
1873 // the numbering of the MD values, and replace temp MD created earlier
1874 // with their real values. If we saw a METADATA_VALUE record then we
1875 // would have set the MDValueList size to the number specified in that
1876 // record, to support parsing function-level metadata first, and we need
1877 // to reset back to 0 to fill the MDValueList in with the parsed module
1878 // The function-level metadata parsing should have reset the MDValueList
1879 // size back to the value reported by the METADATA_VALUE record, saved in
1881 assert(NumModuleMDs == MDValueList.size() &&
1882 "Expected MDValueList to only contain module level values");
1886 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
1887 return error("Invalid record");
1889 SmallVector<uint64_t, 64> Record;
1892 [&](unsigned ID) -> Metadata *{ return MDValueList.getValueFwdRef(ID); };
1893 auto getMDOrNull = [&](unsigned ID) -> Metadata *{
1895 return getMD(ID - 1);
1898 auto getMDString = [&](unsigned ID) -> MDString *{
1899 // This requires that the ID is not really a forward reference. In
1900 // particular, the MDString must already have been resolved.
1901 return cast_or_null<MDString>(getMDOrNull(ID));
1904 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \
1905 (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS)
1907 // Read all the records.
1909 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1911 switch (Entry.Kind) {
1912 case BitstreamEntry::SubBlock: // Handled for us already.
1913 case BitstreamEntry::Error:
1914 return error("Malformed block");
1915 case BitstreamEntry::EndBlock:
1916 MDValueList.tryToResolveCycles();
1917 assert((!(ModuleLevel && SeenModuleValuesRecord) ||
1918 NumModuleMDs == MDValueList.size()) &&
1919 "Inconsistent bitcode: METADATA_VALUES mismatch");
1920 return std::error_code();
1921 case BitstreamEntry::Record:
1922 // The interesting case.
1928 unsigned Code = Stream.readRecord(Entry.ID, Record);
1929 bool IsDistinct = false;
1931 default: // Default behavior: ignore.
1933 case bitc::METADATA_NAME: {
1934 // Read name of the named metadata.
1935 SmallString<8> Name(Record.begin(), Record.end());
1937 Code = Stream.ReadCode();
1939 unsigned NextBitCode = Stream.readRecord(Code, Record);
1940 if (NextBitCode != bitc::METADATA_NAMED_NODE)
1941 return error("METADATA_NAME not followed by METADATA_NAMED_NODE");
1943 // Read named metadata elements.
1944 unsigned Size = Record.size();
1945 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
1946 for (unsigned i = 0; i != Size; ++i) {
1947 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i]));
1949 return error("Invalid record");
1950 NMD->addOperand(MD);
1954 case bitc::METADATA_OLD_FN_NODE: {
1955 // FIXME: Remove in 4.0.
1956 // This is a LocalAsMetadata record, the only type of function-local
1958 if (Record.size() % 2 == 1)
1959 return error("Invalid record");
1961 // If this isn't a LocalAsMetadata record, we're dropping it. This used
1962 // to be legal, but there's no upgrade path.
1963 auto dropRecord = [&] {
1964 MDValueList.assignValue(MDNode::get(Context, None), NextMDValueNo++);
1966 if (Record.size() != 2) {
1971 Type *Ty = getTypeByID(Record[0]);
1972 if (Ty->isMetadataTy() || Ty->isVoidTy()) {
1977 MDValueList.assignValue(
1978 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)),
1982 case bitc::METADATA_OLD_NODE: {
1983 // FIXME: Remove in 4.0.
1984 if (Record.size() % 2 == 1)
1985 return error("Invalid record");
1987 unsigned Size = Record.size();
1988 SmallVector<Metadata *, 8> Elts;
1989 for (unsigned i = 0; i != Size; i += 2) {
1990 Type *Ty = getTypeByID(Record[i]);
1992 return error("Invalid record");
1993 if (Ty->isMetadataTy())
1994 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
1995 else if (!Ty->isVoidTy()) {
1997 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty));
1998 assert(isa<ConstantAsMetadata>(MD) &&
1999 "Expected non-function-local metadata");
2002 Elts.push_back(nullptr);
2004 MDValueList.assignValue(MDNode::get(Context, Elts), NextMDValueNo++);
2007 case bitc::METADATA_VALUE: {
2008 if (Record.size() != 2)
2009 return error("Invalid record");
2011 Type *Ty = getTypeByID(Record[0]);
2012 if (Ty->isMetadataTy() || Ty->isVoidTy())
2013 return error("Invalid record");
2015 MDValueList.assignValue(
2016 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)),
2020 case bitc::METADATA_DISTINCT_NODE:
2023 case bitc::METADATA_NODE: {
2024 SmallVector<Metadata *, 8> Elts;
2025 Elts.reserve(Record.size());
2026 for (unsigned ID : Record)
2027 Elts.push_back(ID ? MDValueList.getValueFwdRef(ID - 1) : nullptr);
2028 MDValueList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts)
2029 : MDNode::get(Context, Elts),
2033 case bitc::METADATA_LOCATION: {
2034 if (Record.size() != 5)
2035 return error("Invalid record");
2037 unsigned Line = Record[1];
2038 unsigned Column = Record[2];
2039 MDNode *Scope = cast<MDNode>(MDValueList.getValueFwdRef(Record[3]));
2040 Metadata *InlinedAt =
2041 Record[4] ? MDValueList.getValueFwdRef(Record[4] - 1) : nullptr;
2042 MDValueList.assignValue(
2043 GET_OR_DISTINCT(DILocation, Record[0],
2044 (Context, Line, Column, Scope, InlinedAt)),
2048 case bitc::METADATA_GENERIC_DEBUG: {
2049 if (Record.size() < 4)
2050 return error("Invalid record");
2052 unsigned Tag = Record[1];
2053 unsigned Version = Record[2];
2055 if (Tag >= 1u << 16 || Version != 0)
2056 return error("Invalid record");
2058 auto *Header = getMDString(Record[3]);
2059 SmallVector<Metadata *, 8> DwarfOps;
2060 for (unsigned I = 4, E = Record.size(); I != E; ++I)
2061 DwarfOps.push_back(Record[I] ? MDValueList.getValueFwdRef(Record[I] - 1)
2063 MDValueList.assignValue(GET_OR_DISTINCT(GenericDINode, Record[0],
2064 (Context, Tag, Header, DwarfOps)),
2068 case bitc::METADATA_SUBRANGE: {
2069 if (Record.size() != 3)
2070 return error("Invalid record");
2072 MDValueList.assignValue(
2073 GET_OR_DISTINCT(DISubrange, Record[0],
2074 (Context, Record[1], unrotateSign(Record[2]))),
2078 case bitc::METADATA_ENUMERATOR: {
2079 if (Record.size() != 3)
2080 return error("Invalid record");
2082 MDValueList.assignValue(GET_OR_DISTINCT(DIEnumerator, Record[0],
2083 (Context, unrotateSign(Record[1]),
2084 getMDString(Record[2]))),
2088 case bitc::METADATA_BASIC_TYPE: {
2089 if (Record.size() != 6)
2090 return error("Invalid record");
2092 MDValueList.assignValue(
2093 GET_OR_DISTINCT(DIBasicType, Record[0],
2094 (Context, Record[1], getMDString(Record[2]),
2095 Record[3], Record[4], Record[5])),
2099 case bitc::METADATA_DERIVED_TYPE: {
2100 if (Record.size() != 12)
2101 return error("Invalid record");
2103 MDValueList.assignValue(
2104 GET_OR_DISTINCT(DIDerivedType, Record[0],
2105 (Context, Record[1], getMDString(Record[2]),
2106 getMDOrNull(Record[3]), Record[4],
2107 getMDOrNull(Record[5]), getMDOrNull(Record[6]),
2108 Record[7], Record[8], Record[9], Record[10],
2109 getMDOrNull(Record[11]))),
2113 case bitc::METADATA_COMPOSITE_TYPE: {
2114 if (Record.size() != 16)
2115 return error("Invalid record");
2117 MDValueList.assignValue(
2118 GET_OR_DISTINCT(DICompositeType, Record[0],
2119 (Context, Record[1], getMDString(Record[2]),
2120 getMDOrNull(Record[3]), Record[4],
2121 getMDOrNull(Record[5]), getMDOrNull(Record[6]),
2122 Record[7], Record[8], Record[9], Record[10],
2123 getMDOrNull(Record[11]), Record[12],
2124 getMDOrNull(Record[13]), getMDOrNull(Record[14]),
2125 getMDString(Record[15]))),
2129 case bitc::METADATA_SUBROUTINE_TYPE: {
2130 if (Record.size() != 3)
2131 return error("Invalid record");
2133 MDValueList.assignValue(
2134 GET_OR_DISTINCT(DISubroutineType, Record[0],
2135 (Context, Record[1], getMDOrNull(Record[2]))),
2140 case bitc::METADATA_MODULE: {
2141 if (Record.size() != 6)
2142 return error("Invalid record");
2144 MDValueList.assignValue(
2145 GET_OR_DISTINCT(DIModule, Record[0],
2146 (Context, getMDOrNull(Record[1]),
2147 getMDString(Record[2]), getMDString(Record[3]),
2148 getMDString(Record[4]), getMDString(Record[5]))),
2153 case bitc::METADATA_FILE: {
2154 if (Record.size() != 3)
2155 return error("Invalid record");
2157 MDValueList.assignValue(
2158 GET_OR_DISTINCT(DIFile, Record[0], (Context, getMDString(Record[1]),
2159 getMDString(Record[2]))),
2163 case bitc::METADATA_COMPILE_UNIT: {
2164 if (Record.size() < 14 || Record.size() > 16)
2165 return error("Invalid record");
2167 // Ignore Record[0], which indicates whether this compile unit is
2168 // distinct. It's always distinct.
2169 MDValueList.assignValue(
2170 DICompileUnit::getDistinct(
2171 Context, Record[1], getMDOrNull(Record[2]),
2172 getMDString(Record[3]), Record[4], getMDString(Record[5]),
2173 Record[6], getMDString(Record[7]), Record[8],
2174 getMDOrNull(Record[9]), getMDOrNull(Record[10]),
2175 getMDOrNull(Record[11]), getMDOrNull(Record[12]),
2176 getMDOrNull(Record[13]),
2177 Record.size() <= 15 ? 0 : getMDOrNull(Record[15]),
2178 Record.size() <= 14 ? 0 : Record[14]),
2182 case bitc::METADATA_SUBPROGRAM: {
2183 if (Record.size() != 18 && Record.size() != 19)
2184 return error("Invalid record");
2186 bool HasFn = Record.size() == 19;
2187 DISubprogram *SP = GET_OR_DISTINCT(
2189 Record[0] || Record[8], // All definitions should be distinct.
2190 (Context, getMDOrNull(Record[1]), getMDString(Record[2]),
2191 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5],
2192 getMDOrNull(Record[6]), Record[7], Record[8], Record[9],
2193 getMDOrNull(Record[10]), Record[11], Record[12], Record[13],
2194 Record[14], getMDOrNull(Record[15 + HasFn]),
2195 getMDOrNull(Record[16 + HasFn]), getMDOrNull(Record[17 + HasFn])));
2196 MDValueList.assignValue(SP, NextMDValueNo++);
2198 // Upgrade sp->function mapping to function->sp mapping.
2199 if (HasFn && Record[15]) {
2200 if (auto *CMD = dyn_cast<ConstantAsMetadata>(getMDOrNull(Record[15])))
2201 if (auto *F = dyn_cast<Function>(CMD->getValue())) {
2202 if (F->isMaterializable())
2203 // Defer until materialized; unmaterialized functions may not have
2205 FunctionsWithSPs[F] = SP;
2206 else if (!F->empty())
2207 F->setSubprogram(SP);
2212 case bitc::METADATA_LEXICAL_BLOCK: {
2213 if (Record.size() != 5)
2214 return error("Invalid record");
2216 MDValueList.assignValue(
2217 GET_OR_DISTINCT(DILexicalBlock, Record[0],
2218 (Context, getMDOrNull(Record[1]),
2219 getMDOrNull(Record[2]), Record[3], Record[4])),
2223 case bitc::METADATA_LEXICAL_BLOCK_FILE: {
2224 if (Record.size() != 4)
2225 return error("Invalid record");
2227 MDValueList.assignValue(
2228 GET_OR_DISTINCT(DILexicalBlockFile, Record[0],
2229 (Context, getMDOrNull(Record[1]),
2230 getMDOrNull(Record[2]), Record[3])),
2234 case bitc::METADATA_NAMESPACE: {
2235 if (Record.size() != 5)
2236 return error("Invalid record");
2238 MDValueList.assignValue(
2239 GET_OR_DISTINCT(DINamespace, Record[0],
2240 (Context, getMDOrNull(Record[1]),
2241 getMDOrNull(Record[2]), getMDString(Record[3]),
2246 case bitc::METADATA_MACRO: {
2247 if (Record.size() != 5)
2248 return error("Invalid record");
2250 MDValueList.assignValue(
2251 GET_OR_DISTINCT(DIMacro, Record[0],
2252 (Context, Record[1], Record[2],
2253 getMDString(Record[3]), getMDString(Record[4]))),
2257 case bitc::METADATA_MACRO_FILE: {
2258 if (Record.size() != 5)
2259 return error("Invalid record");
2261 MDValueList.assignValue(
2262 GET_OR_DISTINCT(DIMacroFile, Record[0],
2263 (Context, Record[1], Record[2],
2264 getMDOrNull(Record[3]), getMDOrNull(Record[4]))),
2268 case bitc::METADATA_TEMPLATE_TYPE: {
2269 if (Record.size() != 3)
2270 return error("Invalid record");
2272 MDValueList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter,
2274 (Context, getMDString(Record[1]),
2275 getMDOrNull(Record[2]))),
2279 case bitc::METADATA_TEMPLATE_VALUE: {
2280 if (Record.size() != 5)
2281 return error("Invalid record");
2283 MDValueList.assignValue(
2284 GET_OR_DISTINCT(DITemplateValueParameter, Record[0],
2285 (Context, Record[1], getMDString(Record[2]),
2286 getMDOrNull(Record[3]), getMDOrNull(Record[4]))),
2290 case bitc::METADATA_GLOBAL_VAR: {
2291 if (Record.size() != 11)
2292 return error("Invalid record");
2294 MDValueList.assignValue(
2295 GET_OR_DISTINCT(DIGlobalVariable, Record[0],
2296 (Context, getMDOrNull(Record[1]),
2297 getMDString(Record[2]), getMDString(Record[3]),
2298 getMDOrNull(Record[4]), Record[5],
2299 getMDOrNull(Record[6]), Record[7], Record[8],
2300 getMDOrNull(Record[9]), getMDOrNull(Record[10]))),
2304 case bitc::METADATA_LOCAL_VAR: {
2305 // 10th field is for the obseleted 'inlinedAt:' field.
2306 if (Record.size() < 8 || Record.size() > 10)
2307 return error("Invalid record");
2309 // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or
2310 // DW_TAG_arg_variable.
2311 bool HasTag = Record.size() > 8;
2312 MDValueList.assignValue(
2313 GET_OR_DISTINCT(DILocalVariable, Record[0],
2314 (Context, getMDOrNull(Record[1 + HasTag]),
2315 getMDString(Record[2 + HasTag]),
2316 getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag],
2317 getMDOrNull(Record[5 + HasTag]), Record[6 + HasTag],
2318 Record[7 + HasTag])),
2322 case bitc::METADATA_EXPRESSION: {
2323 if (Record.size() < 1)
2324 return error("Invalid record");
2326 MDValueList.assignValue(
2327 GET_OR_DISTINCT(DIExpression, Record[0],
2328 (Context, makeArrayRef(Record).slice(1))),
2332 case bitc::METADATA_OBJC_PROPERTY: {
2333 if (Record.size() != 8)
2334 return error("Invalid record");
2336 MDValueList.assignValue(
2337 GET_OR_DISTINCT(DIObjCProperty, Record[0],
2338 (Context, getMDString(Record[1]),
2339 getMDOrNull(Record[2]), Record[3],
2340 getMDString(Record[4]), getMDString(Record[5]),
2341 Record[6], getMDOrNull(Record[7]))),
2345 case bitc::METADATA_IMPORTED_ENTITY: {
2346 if (Record.size() != 6)
2347 return error("Invalid record");
2349 MDValueList.assignValue(
2350 GET_OR_DISTINCT(DIImportedEntity, Record[0],
2351 (Context, Record[1], getMDOrNull(Record[2]),
2352 getMDOrNull(Record[3]), Record[4],
2353 getMDString(Record[5]))),
2357 case bitc::METADATA_STRING: {
2358 std::string String(Record.begin(), Record.end());
2359 llvm::UpgradeMDStringConstant(String);
2360 Metadata *MD = MDString::get(Context, String);
2361 MDValueList.assignValue(MD, NextMDValueNo++);
2364 case bitc::METADATA_KIND: {
2365 // Support older bitcode files that had METADATA_KIND records in a
2366 // block with METADATA_BLOCK_ID.
2367 if (std::error_code EC = parseMetadataKindRecord(Record))
2373 #undef GET_OR_DISTINCT
2376 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK.
2377 std::error_code BitcodeReader::parseMetadataKinds() {
2378 if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID))
2379 return error("Invalid record");
2381 SmallVector<uint64_t, 64> Record;
2383 // Read all the records.
2385 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2387 switch (Entry.Kind) {
2388 case BitstreamEntry::SubBlock: // Handled for us already.
2389 case BitstreamEntry::Error:
2390 return error("Malformed block");
2391 case BitstreamEntry::EndBlock:
2392 return std::error_code();
2393 case BitstreamEntry::Record:
2394 // The interesting case.
2400 unsigned Code = Stream.readRecord(Entry.ID, Record);
2402 default: // Default behavior: ignore.
2404 case bitc::METADATA_KIND: {
2405 if (std::error_code EC = parseMetadataKindRecord(Record))
2413 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2415 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2420 // There is no such thing as -0 with integers. "-0" really means MININT.
2424 /// Resolve all of the initializers for global values and aliases that we can.
2425 std::error_code BitcodeReader::resolveGlobalAndAliasInits() {
2426 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
2427 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
2428 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist;
2429 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist;
2430 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist;
2432 GlobalInitWorklist.swap(GlobalInits);
2433 AliasInitWorklist.swap(AliasInits);
2434 FunctionPrefixWorklist.swap(FunctionPrefixes);
2435 FunctionPrologueWorklist.swap(FunctionPrologues);
2436 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
2438 while (!GlobalInitWorklist.empty()) {
2439 unsigned ValID = GlobalInitWorklist.back().second;
2440 if (ValID >= ValueList.size()) {
2441 // Not ready to resolve this yet, it requires something later in the file.
2442 GlobalInits.push_back(GlobalInitWorklist.back());
2444 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2445 GlobalInitWorklist.back().first->setInitializer(C);
2447 return error("Expected a constant");
2449 GlobalInitWorklist.pop_back();
2452 while (!AliasInitWorklist.empty()) {
2453 unsigned ValID = AliasInitWorklist.back().second;
2454 if (ValID >= ValueList.size()) {
2455 AliasInits.push_back(AliasInitWorklist.back());
2457 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2459 return error("Expected a constant");
2460 GlobalAlias *Alias = AliasInitWorklist.back().first;
2461 if (C->getType() != Alias->getType())
2462 return error("Alias and aliasee types don't match");
2463 Alias->setAliasee(C);
2465 AliasInitWorklist.pop_back();
2468 while (!FunctionPrefixWorklist.empty()) {
2469 unsigned ValID = FunctionPrefixWorklist.back().second;
2470 if (ValID >= ValueList.size()) {
2471 FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
2473 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2474 FunctionPrefixWorklist.back().first->setPrefixData(C);
2476 return error("Expected a constant");
2478 FunctionPrefixWorklist.pop_back();
2481 while (!FunctionPrologueWorklist.empty()) {
2482 unsigned ValID = FunctionPrologueWorklist.back().second;
2483 if (ValID >= ValueList.size()) {
2484 FunctionPrologues.push_back(FunctionPrologueWorklist.back());
2486 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2487 FunctionPrologueWorklist.back().first->setPrologueData(C);
2489 return error("Expected a constant");
2491 FunctionPrologueWorklist.pop_back();
2494 while (!FunctionPersonalityFnWorklist.empty()) {
2495 unsigned ValID = FunctionPersonalityFnWorklist.back().second;
2496 if (ValID >= ValueList.size()) {
2497 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
2499 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2500 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
2502 return error("Expected a constant");
2504 FunctionPersonalityFnWorklist.pop_back();
2507 return std::error_code();
2510 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2511 SmallVector<uint64_t, 8> Words(Vals.size());
2512 std::transform(Vals.begin(), Vals.end(), Words.begin(),
2513 BitcodeReader::decodeSignRotatedValue);
2515 return APInt(TypeBits, Words);
2518 std::error_code BitcodeReader::parseConstants() {
2519 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2520 return error("Invalid record");
2522 SmallVector<uint64_t, 64> Record;
2524 // Read all the records for this value table.
2525 Type *CurTy = Type::getInt32Ty(Context);
2526 unsigned NextCstNo = ValueList.size();
2528 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2530 switch (Entry.Kind) {
2531 case BitstreamEntry::SubBlock: // Handled for us already.
2532 case BitstreamEntry::Error:
2533 return error("Malformed block");
2534 case BitstreamEntry::EndBlock:
2535 if (NextCstNo != ValueList.size())
2536 return error("Invalid ronstant reference");
2538 // Once all the constants have been read, go through and resolve forward
2540 ValueList.resolveConstantForwardRefs();
2541 return std::error_code();
2542 case BitstreamEntry::Record:
2543 // The interesting case.
2550 unsigned BitCode = Stream.readRecord(Entry.ID, Record);
2552 default: // Default behavior: unknown constant
2553 case bitc::CST_CODE_UNDEF: // UNDEF
2554 V = UndefValue::get(CurTy);
2556 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid]
2558 return error("Invalid record");
2559 if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2560 return error("Invalid record");
2561 CurTy = TypeList[Record[0]];
2562 continue; // Skip the ValueList manipulation.
2563 case bitc::CST_CODE_NULL: // NULL
2564 V = Constant::getNullValue(CurTy);
2566 case bitc::CST_CODE_INTEGER: // INTEGER: [intval]
2567 if (!CurTy->isIntegerTy() || Record.empty())
2568 return error("Invalid record");
2569 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2571 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2572 if (!CurTy->isIntegerTy() || Record.empty())
2573 return error("Invalid record");
2576 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2577 V = ConstantInt::get(Context, VInt);
2581 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval]
2583 return error("Invalid record");
2584 if (CurTy->isHalfTy())
2585 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf,
2586 APInt(16, (uint16_t)Record[0])));
2587 else if (CurTy->isFloatTy())
2588 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle,
2589 APInt(32, (uint32_t)Record[0])));
2590 else if (CurTy->isDoubleTy())
2591 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble,
2592 APInt(64, Record[0])));
2593 else if (CurTy->isX86_FP80Ty()) {
2594 // Bits are not stored the same way as a normal i80 APInt, compensate.
2595 uint64_t Rearrange[2];
2596 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2597 Rearrange[1] = Record[0] >> 48;
2598 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended,
2599 APInt(80, Rearrange)));
2600 } else if (CurTy->isFP128Ty())
2601 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad,
2602 APInt(128, Record)));
2603 else if (CurTy->isPPC_FP128Ty())
2604 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble,
2605 APInt(128, Record)));
2607 V = UndefValue::get(CurTy);
2611 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2613 return error("Invalid record");
2615 unsigned Size = Record.size();
2616 SmallVector<Constant*, 16> Elts;
2618 if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2619 for (unsigned i = 0; i != Size; ++i)
2620 Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2621 STy->getElementType(i)));
2622 V = ConstantStruct::get(STy, Elts);
2623 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2624 Type *EltTy = ATy->getElementType();
2625 for (unsigned i = 0; i != Size; ++i)
2626 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2627 V = ConstantArray::get(ATy, Elts);
2628 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2629 Type *EltTy = VTy->getElementType();
2630 for (unsigned i = 0; i != Size; ++i)
2631 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2632 V = ConstantVector::get(Elts);
2634 V = UndefValue::get(CurTy);
2638 case bitc::CST_CODE_STRING: // STRING: [values]
2639 case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2641 return error("Invalid record");
2643 SmallString<16> Elts(Record.begin(), Record.end());
2644 V = ConstantDataArray::getString(Context, Elts,
2645 BitCode == bitc::CST_CODE_CSTRING);
2648 case bitc::CST_CODE_DATA: {// DATA: [n x value]
2650 return error("Invalid record");
2652 Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
2653 unsigned Size = Record.size();
2655 if (EltTy->isIntegerTy(8)) {
2656 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2657 if (isa<VectorType>(CurTy))
2658 V = ConstantDataVector::get(Context, Elts);
2660 V = ConstantDataArray::get(Context, Elts);
2661 } else if (EltTy->isIntegerTy(16)) {
2662 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2663 if (isa<VectorType>(CurTy))
2664 V = ConstantDataVector::get(Context, Elts);
2666 V = ConstantDataArray::get(Context, Elts);
2667 } else if (EltTy->isIntegerTy(32)) {
2668 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2669 if (isa<VectorType>(CurTy))
2670 V = ConstantDataVector::get(Context, Elts);
2672 V = ConstantDataArray::get(Context, Elts);
2673 } else if (EltTy->isIntegerTy(64)) {
2674 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2675 if (isa<VectorType>(CurTy))
2676 V = ConstantDataVector::get(Context, Elts);
2678 V = ConstantDataArray::get(Context, Elts);
2679 } else if (EltTy->isFloatTy()) {
2680 SmallVector<float, 16> Elts(Size);
2681 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat);
2682 if (isa<VectorType>(CurTy))
2683 V = ConstantDataVector::get(Context, Elts);
2685 V = ConstantDataArray::get(Context, Elts);
2686 } else if (EltTy->isDoubleTy()) {
2687 SmallVector<double, 16> Elts(Size);
2688 std::transform(Record.begin(), Record.end(), Elts.begin(),
2690 if (isa<VectorType>(CurTy))
2691 V = ConstantDataVector::get(Context, Elts);
2693 V = ConstantDataArray::get(Context, Elts);
2695 return error("Invalid type for value");
2700 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval]
2701 if (Record.size() < 3)
2702 return error("Invalid record");
2703 int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2705 V = UndefValue::get(CurTy); // Unknown binop.
2707 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2708 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2710 if (Record.size() >= 4) {
2711 if (Opc == Instruction::Add ||
2712 Opc == Instruction::Sub ||
2713 Opc == Instruction::Mul ||
2714 Opc == Instruction::Shl) {
2715 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2716 Flags |= OverflowingBinaryOperator::NoSignedWrap;
2717 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2718 Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2719 } else if (Opc == Instruction::SDiv ||
2720 Opc == Instruction::UDiv ||
2721 Opc == Instruction::LShr ||
2722 Opc == Instruction::AShr) {
2723 if (Record[3] & (1 << bitc::PEO_EXACT))
2724 Flags |= SDivOperator::IsExact;
2727 V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2731 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval]
2732 if (Record.size() < 3)
2733 return error("Invalid record");
2734 int Opc = getDecodedCastOpcode(Record[0]);
2736 V = UndefValue::get(CurTy); // Unknown cast.
2738 Type *OpTy = getTypeByID(Record[1]);
2740 return error("Invalid record");
2741 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2742 V = UpgradeBitCastExpr(Opc, Op, CurTy);
2743 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2747 case bitc::CST_CODE_CE_INBOUNDS_GEP:
2748 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands]
2750 Type *PointeeType = nullptr;
2751 if (Record.size() % 2)
2752 PointeeType = getTypeByID(Record[OpNum++]);
2753 SmallVector<Constant*, 16> Elts;
2754 while (OpNum != Record.size()) {
2755 Type *ElTy = getTypeByID(Record[OpNum++]);
2757 return error("Invalid record");
2758 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2763 cast<SequentialType>(Elts[0]->getType()->getScalarType())
2765 return error("Explicit gep operator type does not match pointee type "
2766 "of pointer operand");
2768 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2769 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2771 bitc::CST_CODE_CE_INBOUNDS_GEP);
2774 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#]
2775 if (Record.size() < 3)
2776 return error("Invalid record");
2778 Type *SelectorTy = Type::getInt1Ty(Context);
2780 // The selector might be an i1 or an <n x i1>
2781 // Get the type from the ValueList before getting a forward ref.
2782 if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
2783 if (Value *V = ValueList[Record[0]])
2784 if (SelectorTy != V->getType())
2785 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements());
2787 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
2789 ValueList.getConstantFwdRef(Record[1],CurTy),
2790 ValueList.getConstantFwdRef(Record[2],CurTy));
2793 case bitc::CST_CODE_CE_EXTRACTELT
2794 : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2795 if (Record.size() < 3)
2796 return error("Invalid record");
2798 dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2800 return error("Invalid record");
2801 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2802 Constant *Op1 = nullptr;
2803 if (Record.size() == 4) {
2804 Type *IdxTy = getTypeByID(Record[2]);
2806 return error("Invalid record");
2807 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2808 } else // TODO: Remove with llvm 4.0
2809 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2811 return error("Invalid record");
2812 V = ConstantExpr::getExtractElement(Op0, Op1);
2815 case bitc::CST_CODE_CE_INSERTELT
2816 : { // CE_INSERTELT: [opval, opval, opty, opval]
2817 VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2818 if (Record.size() < 3 || !OpTy)
2819 return error("Invalid record");
2820 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2821 Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2822 OpTy->getElementType());
2823 Constant *Op2 = nullptr;
2824 if (Record.size() == 4) {
2825 Type *IdxTy = getTypeByID(Record[2]);
2827 return error("Invalid record");
2828 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2829 } else // TODO: Remove with llvm 4.0
2830 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2832 return error("Invalid record");
2833 V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2836 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2837 VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2838 if (Record.size() < 3 || !OpTy)
2839 return error("Invalid record");
2840 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2841 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
2842 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2843 OpTy->getNumElements());
2844 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
2845 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2848 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2849 VectorType *RTy = dyn_cast<VectorType>(CurTy);
2851 dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2852 if (Record.size() < 4 || !RTy || !OpTy)
2853 return error("Invalid record");
2854 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2855 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2856 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2857 RTy->getNumElements());
2858 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
2859 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2862 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred]
2863 if (Record.size() < 4)
2864 return error("Invalid record");
2865 Type *OpTy = getTypeByID(Record[0]);
2867 return error("Invalid record");
2868 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2869 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2871 if (OpTy->isFPOrFPVectorTy())
2872 V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2874 V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2877 // This maintains backward compatibility, pre-asm dialect keywords.
2878 // FIXME: Remove with the 4.0 release.
2879 case bitc::CST_CODE_INLINEASM_OLD: {
2880 if (Record.size() < 2)
2881 return error("Invalid record");
2882 std::string AsmStr, ConstrStr;
2883 bool HasSideEffects = Record[0] & 1;
2884 bool IsAlignStack = Record[0] >> 1;
2885 unsigned AsmStrSize = Record[1];
2886 if (2+AsmStrSize >= Record.size())
2887 return error("Invalid record");
2888 unsigned ConstStrSize = Record[2+AsmStrSize];
2889 if (3+AsmStrSize+ConstStrSize > Record.size())
2890 return error("Invalid record");
2892 for (unsigned i = 0; i != AsmStrSize; ++i)
2893 AsmStr += (char)Record[2+i];
2894 for (unsigned i = 0; i != ConstStrSize; ++i)
2895 ConstrStr += (char)Record[3+AsmStrSize+i];
2896 PointerType *PTy = cast<PointerType>(CurTy);
2897 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
2898 AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
2901 // This version adds support for the asm dialect keywords (e.g.,
2903 case bitc::CST_CODE_INLINEASM: {
2904 if (Record.size() < 2)
2905 return error("Invalid record");
2906 std::string AsmStr, ConstrStr;
2907 bool HasSideEffects = Record[0] & 1;
2908 bool IsAlignStack = (Record[0] >> 1) & 1;
2909 unsigned AsmDialect = Record[0] >> 2;
2910 unsigned AsmStrSize = Record[1];
2911 if (2+AsmStrSize >= Record.size())
2912 return error("Invalid record");
2913 unsigned ConstStrSize = Record[2+AsmStrSize];
2914 if (3+AsmStrSize+ConstStrSize > Record.size())
2915 return error("Invalid record");
2917 for (unsigned i = 0; i != AsmStrSize; ++i)
2918 AsmStr += (char)Record[2+i];
2919 for (unsigned i = 0; i != ConstStrSize; ++i)
2920 ConstrStr += (char)Record[3+AsmStrSize+i];
2921 PointerType *PTy = cast<PointerType>(CurTy);
2922 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
2923 AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
2924 InlineAsm::AsmDialect(AsmDialect));
2927 case bitc::CST_CODE_BLOCKADDRESS:{
2928 if (Record.size() < 3)
2929 return error("Invalid record");
2930 Type *FnTy = getTypeByID(Record[0]);
2932 return error("Invalid record");
2934 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2936 return error("Invalid record");
2938 // If the function is already parsed we can insert the block address right
2941 unsigned BBID = Record[2];
2943 // Invalid reference to entry block.
2944 return error("Invalid ID");
2946 Function::iterator BBI = Fn->begin(), BBE = Fn->end();
2947 for (size_t I = 0, E = BBID; I != E; ++I) {
2949 return error("Invalid ID");
2954 // Otherwise insert a placeholder and remember it so it can be inserted
2955 // when the function is parsed.
2956 auto &FwdBBs = BasicBlockFwdRefs[Fn];
2958 BasicBlockFwdRefQueue.push_back(Fn);
2959 if (FwdBBs.size() < BBID + 1)
2960 FwdBBs.resize(BBID + 1);
2962 FwdBBs[BBID] = BasicBlock::Create(Context);
2965 V = BlockAddress::get(Fn, BB);
2970 ValueList.assignValue(V, NextCstNo);
2975 std::error_code BitcodeReader::parseUseLists() {
2976 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
2977 return error("Invalid record");
2979 // Read all the records.
2980 SmallVector<uint64_t, 64> Record;
2982 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2984 switch (Entry.Kind) {
2985 case BitstreamEntry::SubBlock: // Handled for us already.
2986 case BitstreamEntry::Error:
2987 return error("Malformed block");
2988 case BitstreamEntry::EndBlock:
2989 return std::error_code();
2990 case BitstreamEntry::Record:
2991 // The interesting case.
2995 // Read a use list record.
2998 switch (Stream.readRecord(Entry.ID, Record)) {
2999 default: // Default behavior: unknown type.
3001 case bitc::USELIST_CODE_BB:
3004 case bitc::USELIST_CODE_DEFAULT: {
3005 unsigned RecordLength = Record.size();
3006 if (RecordLength < 3)
3007 // Records should have at least an ID and two indexes.
3008 return error("Invalid record");
3009 unsigned ID = Record.back();
3014 assert(ID < FunctionBBs.size() && "Basic block not found");
3015 V = FunctionBBs[ID];
3018 unsigned NumUses = 0;
3019 SmallDenseMap<const Use *, unsigned, 16> Order;
3020 for (const Use &U : V->materialized_uses()) {
3021 if (++NumUses > Record.size())
3023 Order[&U] = Record[NumUses - 1];
3025 if (Order.size() != Record.size() || NumUses > Record.size())
3026 // Mismatches can happen if the functions are being materialized lazily
3027 // (out-of-order), or a value has been upgraded.
3030 V->sortUseList([&](const Use &L, const Use &R) {
3031 return Order.lookup(&L) < Order.lookup(&R);
3039 /// When we see the block for metadata, remember where it is and then skip it.
3040 /// This lets us lazily deserialize the metadata.
3041 std::error_code BitcodeReader::rememberAndSkipMetadata() {
3042 // Save the current stream state.
3043 uint64_t CurBit = Stream.GetCurrentBitNo();
3044 DeferredMetadataInfo.push_back(CurBit);
3046 // Skip over the block for now.
3047 if (Stream.SkipBlock())
3048 return error("Invalid record");
3049 return std::error_code();
3052 std::error_code BitcodeReader::materializeMetadata() {
3053 for (uint64_t BitPos : DeferredMetadataInfo) {
3054 // Move the bit stream to the saved position.
3055 Stream.JumpToBit(BitPos);
3056 if (std::error_code EC = parseMetadata(true))
3059 DeferredMetadataInfo.clear();
3060 return std::error_code();
3063 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3065 void BitcodeReader::saveMDValueList(
3066 DenseMap<const Metadata *, unsigned> &MDValueToValIDMap, bool OnlyTempMD) {
3067 for (unsigned ValID = 0; ValID < MDValueList.size(); ++ValID) {
3068 Metadata *MD = MDValueList[ValID];
3069 auto *N = dyn_cast_or_null<MDNode>(MD);
3070 // Save all values if !OnlyTempMD, otherwise just the temporary metadata.
3071 if (!OnlyTempMD || (N && N->isTemporary())) {
3072 // Will call this after materializing each function, in order to
3073 // handle remapping of the function's instructions/metadata.
3074 // See if we already have an entry in that case.
3075 if (OnlyTempMD && MDValueToValIDMap.count(MD)) {
3076 assert(MDValueToValIDMap[MD] == ValID &&
3077 "Inconsistent metadata value id");
3080 MDValueToValIDMap[MD] = ValID;
3085 /// When we see the block for a function body, remember where it is and then
3086 /// skip it. This lets us lazily deserialize the functions.
3087 std::error_code BitcodeReader::rememberAndSkipFunctionBody() {
3088 // Get the function we are talking about.
3089 if (FunctionsWithBodies.empty())
3090 return error("Insufficient function protos");
3092 Function *Fn = FunctionsWithBodies.back();
3093 FunctionsWithBodies.pop_back();
3095 // Save the current stream state.
3096 uint64_t CurBit = Stream.GetCurrentBitNo();
3098 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3099 "Mismatch between VST and scanned function offsets");
3100 DeferredFunctionInfo[Fn] = CurBit;
3102 // Skip over the function block for now.
3103 if (Stream.SkipBlock())
3104 return error("Invalid record");
3105 return std::error_code();
3108 std::error_code BitcodeReader::globalCleanup() {
3109 // Patch the initializers for globals and aliases up.
3110 resolveGlobalAndAliasInits();
3111 if (!GlobalInits.empty() || !AliasInits.empty())
3112 return error("Malformed global initializer set");
3114 // Look for intrinsic functions which need to be upgraded at some point
3115 for (Function &F : *TheModule) {
3117 if (UpgradeIntrinsicFunction(&F, NewFn))
3118 UpgradedIntrinsics[&F] = NewFn;
3121 // Look for global variables which need to be renamed.
3122 for (GlobalVariable &GV : TheModule->globals())
3123 UpgradeGlobalVariable(&GV);
3125 // Force deallocation of memory for these vectors to favor the client that
3126 // want lazy deserialization.
3127 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
3128 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
3129 return std::error_code();
3132 /// Support for lazy parsing of function bodies. This is required if we
3133 /// either have an old bitcode file without a VST forward declaration record,
3134 /// or if we have an anonymous function being materialized, since anonymous
3135 /// functions do not have a name and are therefore not in the VST.
3136 std::error_code BitcodeReader::rememberAndSkipFunctionBodies() {
3137 Stream.JumpToBit(NextUnreadBit);
3139 if (Stream.AtEndOfStream())
3140 return error("Could not find function in stream");
3142 if (!SeenFirstFunctionBody)
3143 return error("Trying to materialize functions before seeing function blocks");
3145 // An old bitcode file with the symbol table at the end would have
3146 // finished the parse greedily.
3147 assert(SeenValueSymbolTable);
3149 SmallVector<uint64_t, 64> Record;
3152 BitstreamEntry Entry = Stream.advance();
3153 switch (Entry.Kind) {
3155 return error("Expect SubBlock");
3156 case BitstreamEntry::SubBlock:
3159 return error("Expect function block");
3160 case bitc::FUNCTION_BLOCK_ID:
3161 if (std::error_code EC = rememberAndSkipFunctionBody())
3163 NextUnreadBit = Stream.GetCurrentBitNo();
3164 return std::error_code();
3170 std::error_code BitcodeReader::parseBitcodeVersion() {
3171 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
3172 return error("Invalid record");
3174 // Read all the records.
3175 SmallVector<uint64_t, 64> Record;
3177 BitstreamEntry Entry = Stream.advance();
3179 switch (Entry.Kind) {
3181 case BitstreamEntry::Error:
3182 return error("Malformed block");
3183 case BitstreamEntry::EndBlock:
3184 return std::error_code();
3185 case BitstreamEntry::Record:
3186 // The interesting case.
3192 unsigned BitCode = Stream.readRecord(Entry.ID, Record);
3194 default: // Default behavior: reject
3195 return error("Invalid value");
3196 case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION: [strchr x
3198 convertToString(Record, 0, ProducerIdentification);
3201 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
3202 unsigned epoch = (unsigned)Record[0];
3203 if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
3205 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
3206 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
3213 std::error_code BitcodeReader::parseModule(uint64_t ResumeBit,
3214 bool ShouldLazyLoadMetadata) {
3216 Stream.JumpToBit(ResumeBit);
3217 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3218 return error("Invalid record");
3220 SmallVector<uint64_t, 64> Record;
3221 std::vector<std::string> SectionTable;
3222 std::vector<std::string> GCTable;
3224 // Read all the records for this module.
3226 BitstreamEntry Entry = Stream.advance();
3228 switch (Entry.Kind) {
3229 case BitstreamEntry::Error:
3230 return error("Malformed block");
3231 case BitstreamEntry::EndBlock:
3232 return globalCleanup();
3234 case BitstreamEntry::SubBlock:
3236 default: // Skip unknown content.
3237 if (Stream.SkipBlock())
3238 return error("Invalid record");
3240 case bitc::BLOCKINFO_BLOCK_ID:
3241 if (Stream.ReadBlockInfoBlock())
3242 return error("Malformed block");
3244 case bitc::PARAMATTR_BLOCK_ID:
3245 if (std::error_code EC = parseAttributeBlock())
3248 case bitc::PARAMATTR_GROUP_BLOCK_ID:
3249 if (std::error_code EC = parseAttributeGroupBlock())
3252 case bitc::TYPE_BLOCK_ID_NEW:
3253 if (std::error_code EC = parseTypeTable())
3256 case bitc::VALUE_SYMTAB_BLOCK_ID:
3257 if (!SeenValueSymbolTable) {
3258 // Either this is an old form VST without function index and an
3259 // associated VST forward declaration record (which would have caused
3260 // the VST to be jumped to and parsed before it was encountered
3261 // normally in the stream), or there were no function blocks to
3262 // trigger an earlier parsing of the VST.
3263 assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3264 if (std::error_code EC = parseValueSymbolTable())
3266 SeenValueSymbolTable = true;
3268 // We must have had a VST forward declaration record, which caused
3269 // the parser to jump to and parse the VST earlier.
3270 assert(VSTOffset > 0);
3271 if (Stream.SkipBlock())
3272 return error("Invalid record");
3275 case bitc::CONSTANTS_BLOCK_ID:
3276 if (std::error_code EC = parseConstants())
3278 if (std::error_code EC = resolveGlobalAndAliasInits())
3281 case bitc::METADATA_BLOCK_ID:
3282 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) {
3283 if (std::error_code EC = rememberAndSkipMetadata())
3287 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3288 if (std::error_code EC = parseMetadata(true))
3291 case bitc::METADATA_KIND_BLOCK_ID:
3292 if (std::error_code EC = parseMetadataKinds())
3295 case bitc::FUNCTION_BLOCK_ID:
3296 // If this is the first function body we've seen, reverse the
3297 // FunctionsWithBodies list.
3298 if (!SeenFirstFunctionBody) {
3299 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3300 if (std::error_code EC = globalCleanup())
3302 SeenFirstFunctionBody = true;
3305 if (VSTOffset > 0) {
3306 // If we have a VST forward declaration record, make sure we
3307 // parse the VST now if we haven't already. It is needed to
3308 // set up the DeferredFunctionInfo vector for lazy reading.
3309 if (!SeenValueSymbolTable) {
3310 if (std::error_code EC =
3311 BitcodeReader::parseValueSymbolTable(VSTOffset))
3313 SeenValueSymbolTable = true;
3314 // Fall through so that we record the NextUnreadBit below.
3315 // This is necessary in case we have an anonymous function that
3316 // is later materialized. Since it will not have a VST entry we
3317 // need to fall back to the lazy parse to find its offset.
3319 // If we have a VST forward declaration record, but have already
3320 // parsed the VST (just above, when the first function body was
3321 // encountered here), then we are resuming the parse after
3322 // materializing functions. The ResumeBit points to the
3323 // start of the last function block recorded in the
3324 // DeferredFunctionInfo map. Skip it.
3325 if (Stream.SkipBlock())
3326 return error("Invalid record");
3331 // Support older bitcode files that did not have the function
3332 // index in the VST, nor a VST forward declaration record, as
3333 // well as anonymous functions that do not have VST entries.
3334 // Build the DeferredFunctionInfo vector on the fly.
3335 if (std::error_code EC = rememberAndSkipFunctionBody())
3338 // Suspend parsing when we reach the function bodies. Subsequent
3339 // materialization calls will resume it when necessary. If the bitcode
3340 // file is old, the symbol table will be at the end instead and will not
3341 // have been seen yet. In this case, just finish the parse now.
3342 if (SeenValueSymbolTable) {
3343 NextUnreadBit = Stream.GetCurrentBitNo();
3344 return std::error_code();
3347 case bitc::USELIST_BLOCK_ID:
3348 if (std::error_code EC = parseUseLists())
3351 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3352 if (std::error_code EC = parseOperandBundleTags())
3358 case BitstreamEntry::Record:
3359 // The interesting case.
3365 auto BitCode = Stream.readRecord(Entry.ID, Record);
3367 default: break; // Default behavior, ignore unknown content.
3368 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#]
3369 if (Record.size() < 1)
3370 return error("Invalid record");
3371 // Only version #0 and #1 are supported so far.
3372 unsigned module_version = Record[0];
3373 switch (module_version) {
3375 return error("Invalid value");
3377 UseRelativeIDs = false;
3380 UseRelativeIDs = true;
3385 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
3387 if (convertToString(Record, 0, S))
3388 return error("Invalid record");
3389 TheModule->setTargetTriple(S);
3392 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N]
3394 if (convertToString(Record, 0, S))
3395 return error("Invalid record");
3396 TheModule->setDataLayout(S);
3399 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N]
3401 if (convertToString(Record, 0, S))
3402 return error("Invalid record");
3403 TheModule->setModuleInlineAsm(S);
3406 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N]
3407 // FIXME: Remove in 4.0.
3409 if (convertToString(Record, 0, S))
3410 return error("Invalid record");
3414 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
3416 if (convertToString(Record, 0, S))
3417 return error("Invalid record");
3418 SectionTable.push_back(S);
3421 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N]
3423 if (convertToString(Record, 0, S))
3424 return error("Invalid record");
3425 GCTable.push_back(S);
3428 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name]
3429 if (Record.size() < 2)
3430 return error("Invalid record");
3431 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3432 unsigned ComdatNameSize = Record[1];
3433 std::string ComdatName;
3434 ComdatName.reserve(ComdatNameSize);
3435 for (unsigned i = 0; i != ComdatNameSize; ++i)
3436 ComdatName += (char)Record[2 + i];
3437 Comdat *C = TheModule->getOrInsertComdat(ComdatName);
3438 C->setSelectionKind(SK);
3439 ComdatList.push_back(C);
3442 // GLOBALVAR: [pointer type, isconst, initid,
3443 // linkage, alignment, section, visibility, threadlocal,
3444 // unnamed_addr, externally_initialized, dllstorageclass,
3446 case bitc::MODULE_CODE_GLOBALVAR: {
3447 if (Record.size() < 6)
3448 return error("Invalid record");
3449 Type *Ty = getTypeByID(Record[0]);
3451 return error("Invalid record");
3452 bool isConstant = Record[1] & 1;
3453 bool explicitType = Record[1] & 2;
3454 unsigned AddressSpace;
3456 AddressSpace = Record[1] >> 2;
3458 if (!Ty->isPointerTy())
3459 return error("Invalid type for value");
3460 AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3461 Ty = cast<PointerType>(Ty)->getElementType();
3464 uint64_t RawLinkage = Record[3];
3465 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3467 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment))
3469 std::string Section;
3471 if (Record[5]-1 >= SectionTable.size())
3472 return error("Invalid ID");
3473 Section = SectionTable[Record[5]-1];
3475 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3476 // Local linkage must have default visibility.
3477 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3478 // FIXME: Change to an error if non-default in 4.0.
3479 Visibility = getDecodedVisibility(Record[6]);
3481 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3482 if (Record.size() > 7)
3483 TLM = getDecodedThreadLocalMode(Record[7]);
3485 bool UnnamedAddr = false;
3486 if (Record.size() > 8)
3487 UnnamedAddr = Record[8];
3489 bool ExternallyInitialized = false;
3490 if (Record.size() > 9)
3491 ExternallyInitialized = Record[9];
3493 GlobalVariable *NewGV =
3494 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr,
3495 TLM, AddressSpace, ExternallyInitialized);
3496 NewGV->setAlignment(Alignment);
3497 if (!Section.empty())
3498 NewGV->setSection(Section);
3499 NewGV->setVisibility(Visibility);
3500 NewGV->setUnnamedAddr(UnnamedAddr);
3502 if (Record.size() > 10)
3503 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3505 upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3507 ValueList.push_back(NewGV);
3509 // Remember which value to use for the global initializer.
3510 if (unsigned InitID = Record[2])
3511 GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
3513 if (Record.size() > 11) {
3514 if (unsigned ComdatID = Record[11]) {
3515 if (ComdatID > ComdatList.size())
3516 return error("Invalid global variable comdat ID");
3517 NewGV->setComdat(ComdatList[ComdatID - 1]);
3519 } else if (hasImplicitComdat(RawLinkage)) {
3520 NewGV->setComdat(reinterpret_cast<Comdat *>(1));
3524 // FUNCTION: [type, callingconv, isproto, linkage, paramattr,
3525 // alignment, section, visibility, gc, unnamed_addr,
3526 // prologuedata, dllstorageclass, comdat, prefixdata]
3527 case bitc::MODULE_CODE_FUNCTION: {
3528 if (Record.size() < 8)
3529 return error("Invalid record");
3530 Type *Ty = getTypeByID(Record[0]);
3532 return error("Invalid record");
3533 if (auto *PTy = dyn_cast<PointerType>(Ty))
3534 Ty = PTy->getElementType();
3535 auto *FTy = dyn_cast<FunctionType>(Ty);
3537 return error("Invalid type for value");
3538 auto CC = static_cast<CallingConv::ID>(Record[1]);
3539 if (CC & ~CallingConv::MaxID)
3540 return error("Invalid calling convention ID");
3542 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
3545 Func->setCallingConv(CC);
3546 bool isProto = Record[2];
3547 uint64_t RawLinkage = Record[3];
3548 Func->setLinkage(getDecodedLinkage(RawLinkage));
3549 Func->setAttributes(getAttributes(Record[4]));
3552 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment))
3554 Func->setAlignment(Alignment);
3556 if (Record[6]-1 >= SectionTable.size())
3557 return error("Invalid ID");
3558 Func->setSection(SectionTable[Record[6]-1]);
3560 // Local linkage must have default visibility.
3561 if (!Func->hasLocalLinkage())
3562 // FIXME: Change to an error if non-default in 4.0.
3563 Func->setVisibility(getDecodedVisibility(Record[7]));
3564 if (Record.size() > 8 && Record[8]) {
3565 if (Record[8]-1 >= GCTable.size())
3566 return error("Invalid ID");
3567 Func->setGC(GCTable[Record[8]-1].c_str());
3569 bool UnnamedAddr = false;
3570 if (Record.size() > 9)
3571 UnnamedAddr = Record[9];
3572 Func->setUnnamedAddr(UnnamedAddr);
3573 if (Record.size() > 10 && Record[10] != 0)
3574 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1));
3576 if (Record.size() > 11)
3577 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3579 upgradeDLLImportExportLinkage(Func, RawLinkage);
3581 if (Record.size() > 12) {
3582 if (unsigned ComdatID = Record[12]) {
3583 if (ComdatID > ComdatList.size())
3584 return error("Invalid function comdat ID");
3585 Func->setComdat(ComdatList[ComdatID - 1]);
3587 } else if (hasImplicitComdat(RawLinkage)) {
3588 Func->setComdat(reinterpret_cast<Comdat *>(1));
3591 if (Record.size() > 13 && Record[13] != 0)
3592 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1));
3594 if (Record.size() > 14 && Record[14] != 0)
3595 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
3597 ValueList.push_back(Func);
3599 // If this is a function with a body, remember the prototype we are
3600 // creating now, so that we can match up the body with them later.
3602 Func->setIsMaterializable(true);
3603 FunctionsWithBodies.push_back(Func);
3604 DeferredFunctionInfo[Func] = 0;
3608 // ALIAS: [alias type, addrspace, aliasee val#, linkage]
3609 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass]
3610 case bitc::MODULE_CODE_ALIAS:
3611 case bitc::MODULE_CODE_ALIAS_OLD: {
3612 bool NewRecord = BitCode == bitc::MODULE_CODE_ALIAS;
3613 if (Record.size() < (3 + (unsigned)NewRecord))
3614 return error("Invalid record");
3616 Type *Ty = getTypeByID(Record[OpNum++]);
3618 return error("Invalid record");
3622 auto *PTy = dyn_cast<PointerType>(Ty);
3624 return error("Invalid type for value");
3625 Ty = PTy->getElementType();
3626 AddrSpace = PTy->getAddressSpace();
3628 AddrSpace = Record[OpNum++];
3631 auto Val = Record[OpNum++];
3632 auto Linkage = Record[OpNum++];
3633 auto *NewGA = GlobalAlias::create(
3634 Ty, AddrSpace, getDecodedLinkage(Linkage), "", TheModule);
3635 // Old bitcode files didn't have visibility field.
3636 // Local linkage must have default visibility.
3637 if (OpNum != Record.size()) {
3638 auto VisInd = OpNum++;
3639 if (!NewGA->hasLocalLinkage())
3640 // FIXME: Change to an error if non-default in 4.0.
3641 NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3643 if (OpNum != Record.size())
3644 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3646 upgradeDLLImportExportLinkage(NewGA, Linkage);
3647 if (OpNum != Record.size())
3648 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3649 if (OpNum != Record.size())
3650 NewGA->setUnnamedAddr(Record[OpNum++]);
3651 ValueList.push_back(NewGA);
3652 AliasInits.push_back(std::make_pair(NewGA, Val));
3655 /// MODULE_CODE_PURGEVALS: [numvals]
3656 case bitc::MODULE_CODE_PURGEVALS:
3657 // Trim down the value list to the specified size.
3658 if (Record.size() < 1 || Record[0] > ValueList.size())
3659 return error("Invalid record");
3660 ValueList.shrinkTo(Record[0]);
3662 /// MODULE_CODE_VSTOFFSET: [offset]
3663 case bitc::MODULE_CODE_VSTOFFSET:
3664 if (Record.size() < 1)
3665 return error("Invalid record");
3666 VSTOffset = Record[0];
3668 /// MODULE_CODE_METADATA_VALUES: [numvals]
3669 case bitc::MODULE_CODE_METADATA_VALUES:
3670 if (Record.size() < 1)
3671 return error("Invalid record");
3672 assert(!IsMetadataMaterialized);
3673 // This record contains the number of metadata values in the module-level
3674 // METADATA_BLOCK. It is used to support lazy parsing of metadata as
3675 // a postpass, where we will parse function-level metadata first.
3676 // This is needed because the ids of metadata are assigned implicitly
3677 // based on their ordering in the bitcode, with the function-level
3678 // metadata ids starting after the module-level metadata ids. Otherwise,
3679 // we would have to parse the module-level metadata block to prime the
3680 // MDValueList when we are lazy loading metadata during function
3681 // importing. Initialize the MDValueList size here based on the
3682 // record value, regardless of whether we are doing lazy metadata
3683 // loading, so that we have consistent handling and assertion
3684 // checking in parseMetadata for module-level metadata.
3685 NumModuleMDs = Record[0];
3686 SeenModuleValuesRecord = true;
3687 assert(MDValueList.size() == 0);
3688 MDValueList.resize(NumModuleMDs);
3695 /// Helper to read the header common to all bitcode files.
3696 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) {
3697 // Sniff for the signature.
3698 if (Stream.Read(8) != 'B' ||
3699 Stream.Read(8) != 'C' ||
3700 Stream.Read(4) != 0x0 ||
3701 Stream.Read(4) != 0xC ||
3702 Stream.Read(4) != 0xE ||
3703 Stream.Read(4) != 0xD)
3709 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer,
3710 Module *M, bool ShouldLazyLoadMetadata) {
3713 if (std::error_code EC = initStream(std::move(Streamer)))
3716 // Sniff for the signature.
3717 if (!hasValidBitcodeHeader(Stream))
3718 return error("Invalid bitcode signature");
3720 // We expect a number of well-defined blocks, though we don't necessarily
3721 // need to understand them all.
3723 if (Stream.AtEndOfStream()) {
3724 // We didn't really read a proper Module.
3725 return error("Malformed IR file");
3728 BitstreamEntry Entry =
3729 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
3731 if (Entry.Kind != BitstreamEntry::SubBlock)
3732 return error("Malformed block");
3734 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
3735 parseBitcodeVersion();
3739 if (Entry.ID == bitc::MODULE_BLOCK_ID)
3740 return parseModule(0, ShouldLazyLoadMetadata);
3742 if (Stream.SkipBlock())
3743 return error("Invalid record");
3747 ErrorOr<std::string> BitcodeReader::parseModuleTriple() {
3748 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3749 return error("Invalid record");
3751 SmallVector<uint64_t, 64> Record;
3754 // Read all the records for this module.
3756 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
3758 switch (Entry.Kind) {
3759 case BitstreamEntry::SubBlock: // Handled for us already.
3760 case BitstreamEntry::Error:
3761 return error("Malformed block");
3762 case BitstreamEntry::EndBlock:
3764 case BitstreamEntry::Record:
3765 // The interesting case.
3770 switch (Stream.readRecord(Entry.ID, Record)) {
3771 default: break; // Default behavior, ignore unknown content.
3772 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
3774 if (convertToString(Record, 0, S))
3775 return error("Invalid record");
3782 llvm_unreachable("Exit infinite loop");
3785 ErrorOr<std::string> BitcodeReader::parseTriple() {
3786 if (std::error_code EC = initStream(nullptr))
3789 // Sniff for the signature.
3790 if (!hasValidBitcodeHeader(Stream))
3791 return error("Invalid bitcode signature");
3793 // We expect a number of well-defined blocks, though we don't necessarily
3794 // need to understand them all.
3796 BitstreamEntry Entry = Stream.advance();
3798 switch (Entry.Kind) {
3799 case BitstreamEntry::Error:
3800 return error("Malformed block");
3801 case BitstreamEntry::EndBlock:
3802 return std::error_code();
3804 case BitstreamEntry::SubBlock:
3805 if (Entry.ID == bitc::MODULE_BLOCK_ID)
3806 return parseModuleTriple();
3808 // Ignore other sub-blocks.
3809 if (Stream.SkipBlock())
3810 return error("Malformed block");
3813 case BitstreamEntry::Record:
3814 Stream.skipRecord(Entry.ID);
3820 ErrorOr<std::string> BitcodeReader::parseIdentificationBlock() {
3821 if (std::error_code EC = initStream(nullptr))
3824 // Sniff for the signature.
3825 if (!hasValidBitcodeHeader(Stream))
3826 return error("Invalid bitcode signature");
3828 // We expect a number of well-defined blocks, though we don't necessarily
3829 // need to understand them all.
3831 BitstreamEntry Entry = Stream.advance();
3832 switch (Entry.Kind) {
3833 case BitstreamEntry::Error:
3834 return error("Malformed block");
3835 case BitstreamEntry::EndBlock:
3836 return std::error_code();
3838 case BitstreamEntry::SubBlock:
3839 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
3840 if (std::error_code EC = parseBitcodeVersion())
3842 return ProducerIdentification;
3844 // Ignore other sub-blocks.
3845 if (Stream.SkipBlock())
3846 return error("Malformed block");
3848 case BitstreamEntry::Record:
3849 Stream.skipRecord(Entry.ID);
3855 /// Parse metadata attachments.
3856 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) {
3857 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
3858 return error("Invalid record");
3860 SmallVector<uint64_t, 64> Record;
3862 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
3864 switch (Entry.Kind) {
3865 case BitstreamEntry::SubBlock: // Handled for us already.
3866 case BitstreamEntry::Error:
3867 return error("Malformed block");
3868 case BitstreamEntry::EndBlock:
3869 return std::error_code();
3870 case BitstreamEntry::Record:
3871 // The interesting case.
3875 // Read a metadata attachment record.
3877 switch (Stream.readRecord(Entry.ID, Record)) {
3878 default: // Default behavior: ignore.
3880 case bitc::METADATA_ATTACHMENT: {
3881 unsigned RecordLength = Record.size();
3883 return error("Invalid record");
3884 if (RecordLength % 2 == 0) {
3885 // A function attachment.
3886 for (unsigned I = 0; I != RecordLength; I += 2) {
3887 auto K = MDKindMap.find(Record[I]);
3888 if (K == MDKindMap.end())
3889 return error("Invalid ID");
3890 Metadata *MD = MDValueList.getValueFwdRef(Record[I + 1]);
3891 F.setMetadata(K->second, cast<MDNode>(MD));
3896 // An instruction attachment.
3897 Instruction *Inst = InstructionList[Record[0]];
3898 for (unsigned i = 1; i != RecordLength; i = i+2) {
3899 unsigned Kind = Record[i];
3900 DenseMap<unsigned, unsigned>::iterator I =
3901 MDKindMap.find(Kind);
3902 if (I == MDKindMap.end())
3903 return error("Invalid ID");
3904 Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]);
3905 if (isa<LocalAsMetadata>(Node))
3906 // Drop the attachment. This used to be legal, but there's no
3909 Inst->setMetadata(I->second, cast<MDNode>(Node));
3910 if (I->second == LLVMContext::MD_tbaa)
3911 InstsWithTBAATag.push_back(Inst);
3919 static std::error_code typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
3920 LLVMContext &Context = PtrType->getContext();
3921 if (!isa<PointerType>(PtrType))
3922 return error(Context, "Load/Store operand is not a pointer type");
3923 Type *ElemType = cast<PointerType>(PtrType)->getElementType();
3925 if (ValType && ValType != ElemType)
3926 return error(Context, "Explicit load/store type does not match pointee "
3927 "type of pointer operand");
3928 if (!PointerType::isLoadableOrStorableType(ElemType))
3929 return error(Context, "Cannot load/store from pointer");
3930 return std::error_code();
3933 /// Lazily parse the specified function body block.
3934 std::error_code BitcodeReader::parseFunctionBody(Function *F) {
3935 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
3936 return error("Invalid record");
3938 InstructionList.clear();
3939 unsigned ModuleValueListSize = ValueList.size();
3940 unsigned ModuleMDValueListSize = MDValueList.size();
3942 // Add all the function arguments to the value table.
3943 for (Argument &I : F->args())
3944 ValueList.push_back(&I);
3946 unsigned NextValueNo = ValueList.size();
3947 BasicBlock *CurBB = nullptr;
3948 unsigned CurBBNo = 0;
3951 auto getLastInstruction = [&]() -> Instruction * {
3952 if (CurBB && !CurBB->empty())
3953 return &CurBB->back();
3954 else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
3955 !FunctionBBs[CurBBNo - 1]->empty())
3956 return &FunctionBBs[CurBBNo - 1]->back();
3960 std::vector<OperandBundleDef> OperandBundles;
3962 // Read all the records.
3963 SmallVector<uint64_t, 64> Record;
3965 BitstreamEntry Entry = Stream.advance();
3967 switch (Entry.Kind) {
3968 case BitstreamEntry::Error:
3969 return error("Malformed block");
3970 case BitstreamEntry::EndBlock:
3971 goto OutOfRecordLoop;
3973 case BitstreamEntry::SubBlock:
3975 default: // Skip unknown content.
3976 if (Stream.SkipBlock())
3977 return error("Invalid record");
3979 case bitc::CONSTANTS_BLOCK_ID:
3980 if (std::error_code EC = parseConstants())
3982 NextValueNo = ValueList.size();
3984 case bitc::VALUE_SYMTAB_BLOCK_ID:
3985 if (std::error_code EC = parseValueSymbolTable())
3988 case bitc::METADATA_ATTACHMENT_ID:
3989 if (std::error_code EC = parseMetadataAttachment(*F))
3992 case bitc::METADATA_BLOCK_ID:
3993 if (std::error_code EC = parseMetadata())
3996 case bitc::USELIST_BLOCK_ID:
3997 if (std::error_code EC = parseUseLists())
4003 case BitstreamEntry::Record:
4004 // The interesting case.
4010 Instruction *I = nullptr;
4011 unsigned BitCode = Stream.readRecord(Entry.ID, Record);
4013 default: // Default behavior: reject
4014 return error("Invalid value");
4015 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks]
4016 if (Record.size() < 1 || Record[0] == 0)
4017 return error("Invalid record");
4018 // Create all the basic blocks for the function.
4019 FunctionBBs.resize(Record[0]);
4021 // See if anything took the address of blocks in this function.
4022 auto BBFRI = BasicBlockFwdRefs.find(F);
4023 if (BBFRI == BasicBlockFwdRefs.end()) {
4024 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
4025 FunctionBBs[i] = BasicBlock::Create(Context, "", F);
4027 auto &BBRefs = BBFRI->second;
4028 // Check for invalid basic block references.
4029 if (BBRefs.size() > FunctionBBs.size())
4030 return error("Invalid ID");
4031 assert(!BBRefs.empty() && "Unexpected empty array");
4032 assert(!BBRefs.front() && "Invalid reference to entry block");
4033 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
4035 if (I < RE && BBRefs[I]) {
4036 BBRefs[I]->insertInto(F);
4037 FunctionBBs[I] = BBRefs[I];
4039 FunctionBBs[I] = BasicBlock::Create(Context, "", F);
4042 // Erase from the table.
4043 BasicBlockFwdRefs.erase(BBFRI);
4046 CurBB = FunctionBBs[0];
4050 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN
4051 // This record indicates that the last instruction is at the same
4052 // location as the previous instruction with a location.
4053 I = getLastInstruction();
4056 return error("Invalid record");
4057 I->setDebugLoc(LastLoc);
4061 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia]
4062 I = getLastInstruction();
4063 if (!I || Record.size() < 4)
4064 return error("Invalid record");
4066 unsigned Line = Record[0], Col = Record[1];
4067 unsigned ScopeID = Record[2], IAID = Record[3];
4069 MDNode *Scope = nullptr, *IA = nullptr;
4070 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1));
4071 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1));
4072 LastLoc = DebugLoc::get(Line, Col, Scope, IA);
4073 I->setDebugLoc(LastLoc);
4078 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode]
4081 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4082 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
4083 OpNum+1 > Record.size())
4084 return error("Invalid record");
4086 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
4088 return error("Invalid record");
4089 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4090 InstructionList.push_back(I);
4091 if (OpNum < Record.size()) {
4092 if (Opc == Instruction::Add ||
4093 Opc == Instruction::Sub ||
4094 Opc == Instruction::Mul ||
4095 Opc == Instruction::Shl) {
4096 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
4097 cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
4098 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
4099 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
4100 } else if (Opc == Instruction::SDiv ||
4101 Opc == Instruction::UDiv ||
4102 Opc == Instruction::LShr ||
4103 Opc == Instruction::AShr) {
4104 if (Record[OpNum] & (1 << bitc::PEO_EXACT))
4105 cast<BinaryOperator>(I)->setIsExact(true);
4106 } else if (isa<FPMathOperator>(I)) {
4107 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4109 I->setFastMathFlags(FMF);
4115 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc]
4118 if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4119 OpNum+2 != Record.size())
4120 return error("Invalid record");
4122 Type *ResTy = getTypeByID(Record[OpNum]);
4123 int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
4124 if (Opc == -1 || !ResTy)
4125 return error("Invalid record");
4126 Instruction *Temp = nullptr;
4127 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4129 InstructionList.push_back(Temp);
4130 CurBB->getInstList().push_back(Temp);
4133 auto CastOp = (Instruction::CastOps)Opc;
4134 if (!CastInst::castIsValid(CastOp, Op, ResTy))
4135 return error("Invalid cast");
4136 I = CastInst::Create(CastOp, Op, ResTy);
4138 InstructionList.push_back(I);
4141 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
4142 case bitc::FUNC_CODE_INST_GEP_OLD:
4143 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
4149 if (BitCode == bitc::FUNC_CODE_INST_GEP) {
4150 InBounds = Record[OpNum++];
4151 Ty = getTypeByID(Record[OpNum++]);
4153 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4158 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
4159 return error("Invalid record");
4162 Ty = cast<SequentialType>(BasePtr->getType()->getScalarType())
4165 cast<SequentialType>(BasePtr->getType()->getScalarType())
4168 "Explicit gep type does not match pointee type of pointer operand");
4170 SmallVector<Value*, 16> GEPIdx;
4171 while (OpNum != Record.size()) {
4173 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4174 return error("Invalid record");
4175 GEPIdx.push_back(Op);
4178 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
4180 InstructionList.push_back(I);
4182 cast<GetElementPtrInst>(I)->setIsInBounds(true);
4186 case bitc::FUNC_CODE_INST_EXTRACTVAL: {
4187 // EXTRACTVAL: [opty, opval, n x indices]
4190 if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4191 return error("Invalid record");
4193 unsigned RecSize = Record.size();
4194 if (OpNum == RecSize)
4195 return error("EXTRACTVAL: Invalid instruction with 0 indices");
4197 SmallVector<unsigned, 4> EXTRACTVALIdx;
4198 Type *CurTy = Agg->getType();
4199 for (; OpNum != RecSize; ++OpNum) {
4200 bool IsArray = CurTy->isArrayTy();
4201 bool IsStruct = CurTy->isStructTy();
4202 uint64_t Index = Record[OpNum];
4204 if (!IsStruct && !IsArray)
4205 return error("EXTRACTVAL: Invalid type");
4206 if ((unsigned)Index != Index)
4207 return error("Invalid value");
4208 if (IsStruct && Index >= CurTy->subtypes().size())
4209 return error("EXTRACTVAL: Invalid struct index");
4210 if (IsArray && Index >= CurTy->getArrayNumElements())
4211 return error("EXTRACTVAL: Invalid array index");
4212 EXTRACTVALIdx.push_back((unsigned)Index);
4215 CurTy = CurTy->subtypes()[Index];
4217 CurTy = CurTy->subtypes()[0];
4220 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
4221 InstructionList.push_back(I);
4225 case bitc::FUNC_CODE_INST_INSERTVAL: {
4226 // INSERTVAL: [opty, opval, opty, opval, n x indices]
4229 if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4230 return error("Invalid record");
4232 if (getValueTypePair(Record, OpNum, NextValueNo, Val))
4233 return error("Invalid record");
4235 unsigned RecSize = Record.size();
4236 if (OpNum == RecSize)
4237 return error("INSERTVAL: Invalid instruction with 0 indices");
4239 SmallVector<unsigned, 4> INSERTVALIdx;
4240 Type *CurTy = Agg->getType();
4241 for (; OpNum != RecSize; ++OpNum) {
4242 bool IsArray = CurTy->isArrayTy();
4243 bool IsStruct = CurTy->isStructTy();
4244 uint64_t Index = Record[OpNum];
4246 if (!IsStruct && !IsArray)
4247 return error("INSERTVAL: Invalid type");
4248 if ((unsigned)Index != Index)
4249 return error("Invalid value");
4250 if (IsStruct && Index >= CurTy->subtypes().size())
4251 return error("INSERTVAL: Invalid struct index");
4252 if (IsArray && Index >= CurTy->getArrayNumElements())
4253 return error("INSERTVAL: Invalid array index");
4255 INSERTVALIdx.push_back((unsigned)Index);
4257 CurTy = CurTy->subtypes()[Index];
4259 CurTy = CurTy->subtypes()[0];
4262 if (CurTy != Val->getType())
4263 return error("Inserted value type doesn't match aggregate type");
4265 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4266 InstructionList.push_back(I);
4270 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4271 // obsolete form of select
4272 // handles select i1 ... in old bitcode
4274 Value *TrueVal, *FalseVal, *Cond;
4275 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4276 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4277 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
4278 return error("Invalid record");
4280 I = SelectInst::Create(Cond, TrueVal, FalseVal);
4281 InstructionList.push_back(I);
4285 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4286 // new form of select
4287 // handles select i1 or select [N x i1]
4289 Value *TrueVal, *FalseVal, *Cond;
4290 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4291 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4292 getValueTypePair(Record, OpNum, NextValueNo, Cond))
4293 return error("Invalid record");
4295 // select condition can be either i1 or [N x i1]
4296 if (VectorType* vector_type =
4297 dyn_cast<VectorType>(Cond->getType())) {
4299 if (vector_type->getElementType() != Type::getInt1Ty(Context))
4300 return error("Invalid type for value");
4303 if (Cond->getType() != Type::getInt1Ty(Context))
4304 return error("Invalid type for value");
4307 I = SelectInst::Create(Cond, TrueVal, FalseVal);
4308 InstructionList.push_back(I);
4312 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4315 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
4316 getValueTypePair(Record, OpNum, NextValueNo, Idx))
4317 return error("Invalid record");
4318 if (!Vec->getType()->isVectorTy())
4319 return error("Invalid type for value");
4320 I = ExtractElementInst::Create(Vec, Idx);
4321 InstructionList.push_back(I);
4325 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4327 Value *Vec, *Elt, *Idx;
4328 if (getValueTypePair(Record, OpNum, NextValueNo, Vec))
4329 return error("Invalid record");
4330 if (!Vec->getType()->isVectorTy())
4331 return error("Invalid type for value");
4332 if (popValue(Record, OpNum, NextValueNo,
4333 cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
4334 getValueTypePair(Record, OpNum, NextValueNo, Idx))
4335 return error("Invalid record");
4336 I = InsertElementInst::Create(Vec, Elt, Idx);
4337 InstructionList.push_back(I);
4341 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
4343 Value *Vec1, *Vec2, *Mask;
4344 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
4345 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
4346 return error("Invalid record");
4348 if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
4349 return error("Invalid record");
4350 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
4351 return error("Invalid type for value");
4352 I = new ShuffleVectorInst(Vec1, Vec2, Mask);
4353 InstructionList.push_back(I);
4357 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred]
4358 // Old form of ICmp/FCmp returning bool
4359 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
4360 // both legal on vectors but had different behaviour.
4361 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
4362 // FCmp/ICmp returning bool or vector of bool
4366 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4367 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
4368 return error("Invalid record");
4370 unsigned PredVal = Record[OpNum];
4371 bool IsFP = LHS->getType()->isFPOrFPVectorTy();
4373 if (IsFP && Record.size() > OpNum+1)
4374 FMF = getDecodedFastMathFlags(Record[++OpNum]);
4376 if (OpNum+1 != Record.size())
4377 return error("Invalid record");
4379 if (LHS->getType()->isFPOrFPVectorTy())
4380 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
4382 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
4385 I->setFastMathFlags(FMF);
4386 InstructionList.push_back(I);
4390 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
4392 unsigned Size = Record.size();
4394 I = ReturnInst::Create(Context);
4395 InstructionList.push_back(I);
4400 Value *Op = nullptr;
4401 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4402 return error("Invalid record");
4403 if (OpNum != Record.size())
4404 return error("Invalid record");
4406 I = ReturnInst::Create(Context, Op);
4407 InstructionList.push_back(I);
4410 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
4411 if (Record.size() != 1 && Record.size() != 3)
4412 return error("Invalid record");
4413 BasicBlock *TrueDest = getBasicBlock(Record[0]);
4415 return error("Invalid record");
4417 if (Record.size() == 1) {
4418 I = BranchInst::Create(TrueDest);
4419 InstructionList.push_back(I);
4422 BasicBlock *FalseDest = getBasicBlock(Record[1]);
4423 Value *Cond = getValue(Record, 2, NextValueNo,
4424 Type::getInt1Ty(Context));
4425 if (!FalseDest || !Cond)
4426 return error("Invalid record");
4427 I = BranchInst::Create(TrueDest, FalseDest, Cond);
4428 InstructionList.push_back(I);
4432 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
4433 if (Record.size() != 1 && Record.size() != 2)
4434 return error("Invalid record");
4437 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4439 return error("Invalid record");
4440 BasicBlock *UnwindDest = nullptr;
4441 if (Record.size() == 2) {
4442 UnwindDest = getBasicBlock(Record[Idx++]);
4444 return error("Invalid record");
4447 I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
4448 InstructionList.push_back(I);
4451 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
4452 if (Record.size() != 2)
4453 return error("Invalid record");
4456 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4458 return error("Invalid record");
4459 BasicBlock *BB = getBasicBlock(Record[Idx++]);
4461 return error("Invalid record");
4463 I = CatchReturnInst::Create(CatchPad, BB);
4464 InstructionList.push_back(I);
4467 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
4468 // We must have, at minimum, the outer scope and the number of arguments.
4469 if (Record.size() < 2)
4470 return error("Invalid record");
4475 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4477 unsigned NumHandlers = Record[Idx++];
4479 SmallVector<BasicBlock *, 2> Handlers;
4480 for (unsigned Op = 0; Op != NumHandlers; ++Op) {
4481 BasicBlock *BB = getBasicBlock(Record[Idx++]);
4483 return error("Invalid record");
4484 Handlers.push_back(BB);
4487 BasicBlock *UnwindDest = nullptr;
4488 if (Idx + 1 == Record.size()) {
4489 UnwindDest = getBasicBlock(Record[Idx++]);
4491 return error("Invalid record");
4494 if (Record.size() != Idx)
4495 return error("Invalid record");
4498 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
4499 for (BasicBlock *Handler : Handlers)
4500 CatchSwitch->addHandler(Handler);
4502 InstructionList.push_back(I);
4505 case bitc::FUNC_CODE_INST_CATCHPAD:
4506 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
4507 // We must have, at minimum, the outer scope and the number of arguments.
4508 if (Record.size() < 2)
4509 return error("Invalid record");
4514 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4516 unsigned NumArgOperands = Record[Idx++];
4518 SmallVector<Value *, 2> Args;
4519 for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4521 if (getValueTypePair(Record, Idx, NextValueNo, Val))
4522 return error("Invalid record");
4523 Args.push_back(Val);
4526 if (Record.size() != Idx)
4527 return error("Invalid record");
4529 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
4530 I = CleanupPadInst::Create(ParentPad, Args);
4532 I = CatchPadInst::Create(ParentPad, Args);
4533 InstructionList.push_back(I);
4536 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
4538 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
4539 // "New" SwitchInst format with case ranges. The changes to write this
4540 // format were reverted but we still recognize bitcode that uses it.
4541 // Hopefully someday we will have support for case ranges and can use
4542 // this format again.
4544 Type *OpTy = getTypeByID(Record[1]);
4545 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
4547 Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
4548 BasicBlock *Default = getBasicBlock(Record[3]);
4549 if (!OpTy || !Cond || !Default)
4550 return error("Invalid record");
4552 unsigned NumCases = Record[4];
4554 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4555 InstructionList.push_back(SI);
4557 unsigned CurIdx = 5;
4558 for (unsigned i = 0; i != NumCases; ++i) {
4559 SmallVector<ConstantInt*, 1> CaseVals;
4560 unsigned NumItems = Record[CurIdx++];
4561 for (unsigned ci = 0; ci != NumItems; ++ci) {
4562 bool isSingleNumber = Record[CurIdx++];
4565 unsigned ActiveWords = 1;
4566 if (ValueBitWidth > 64)
4567 ActiveWords = Record[CurIdx++];
4568 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
4570 CurIdx += ActiveWords;
4572 if (!isSingleNumber) {
4574 if (ValueBitWidth > 64)
4575 ActiveWords = Record[CurIdx++];
4576 APInt High = readWideAPInt(
4577 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
4578 CurIdx += ActiveWords;
4580 // FIXME: It is not clear whether values in the range should be
4581 // compared as signed or unsigned values. The partially
4582 // implemented changes that used this format in the past used
4583 // unsigned comparisons.
4584 for ( ; Low.ule(High); ++Low)
4585 CaseVals.push_back(ConstantInt::get(Context, Low));
4587 CaseVals.push_back(ConstantInt::get(Context, Low));
4589 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4590 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
4591 cve = CaseVals.end(); cvi != cve; ++cvi)
4592 SI->addCase(*cvi, DestBB);
4598 // Old SwitchInst format without case ranges.
4600 if (Record.size() < 3 || (Record.size() & 1) == 0)
4601 return error("Invalid record");
4602 Type *OpTy = getTypeByID(Record[0]);
4603 Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
4604 BasicBlock *Default = getBasicBlock(Record[2]);
4605 if (!OpTy || !Cond || !Default)
4606 return error("Invalid record");
4607 unsigned NumCases = (Record.size()-3)/2;
4608 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4609 InstructionList.push_back(SI);
4610 for (unsigned i = 0, e = NumCases; i != e; ++i) {
4611 ConstantInt *CaseVal =
4612 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4613 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4614 if (!CaseVal || !DestBB) {
4616 return error("Invalid record");
4618 SI->addCase(CaseVal, DestBB);
4623 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4624 if (Record.size() < 2)
4625 return error("Invalid record");
4626 Type *OpTy = getTypeByID(Record[0]);
4627 Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4628 if (!OpTy || !Address)
4629 return error("Invalid record");
4630 unsigned NumDests = Record.size()-2;
4631 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4632 InstructionList.push_back(IBI);
4633 for (unsigned i = 0, e = NumDests; i != e; ++i) {
4634 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4635 IBI->addDestination(DestBB);
4638 return error("Invalid record");
4645 case bitc::FUNC_CODE_INST_INVOKE: {
4646 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4647 if (Record.size() < 4)
4648 return error("Invalid record");
4650 AttributeSet PAL = getAttributes(Record[OpNum++]);
4651 unsigned CCInfo = Record[OpNum++];
4652 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4653 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4655 FunctionType *FTy = nullptr;
4656 if (CCInfo >> 13 & 1 &&
4657 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
4658 return error("Explicit invoke type is not a function type");
4661 if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4662 return error("Invalid record");
4664 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4666 return error("Callee is not a pointer");
4668 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType());
4670 return error("Callee is not of pointer to function type");
4671 } else if (CalleeTy->getElementType() != FTy)
4672 return error("Explicit invoke type does not match pointee type of "
4674 if (Record.size() < FTy->getNumParams() + OpNum)
4675 return error("Insufficient operands to call");
4677 SmallVector<Value*, 16> Ops;
4678 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4679 Ops.push_back(getValue(Record, OpNum, NextValueNo,
4680 FTy->getParamType(i)));
4682 return error("Invalid record");
4685 if (!FTy->isVarArg()) {
4686 if (Record.size() != OpNum)
4687 return error("Invalid record");
4689 // Read type/value pairs for varargs params.
4690 while (OpNum != Record.size()) {
4692 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4693 return error("Invalid record");
4698 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles);
4699 OperandBundles.clear();
4700 InstructionList.push_back(I);
4701 cast<InvokeInst>(I)->setCallingConv(
4702 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
4703 cast<InvokeInst>(I)->setAttributes(PAL);
4706 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
4708 Value *Val = nullptr;
4709 if (getValueTypePair(Record, Idx, NextValueNo, Val))
4710 return error("Invalid record");
4711 I = ResumeInst::Create(Val);
4712 InstructionList.push_back(I);
4715 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
4716 I = new UnreachableInst(Context);
4717 InstructionList.push_back(I);
4719 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
4720 if (Record.size() < 1 || ((Record.size()-1)&1))
4721 return error("Invalid record");
4722 Type *Ty = getTypeByID(Record[0]);
4724 return error("Invalid record");
4726 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
4727 InstructionList.push_back(PN);
4729 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
4731 // With the new function encoding, it is possible that operands have
4732 // negative IDs (for forward references). Use a signed VBR
4733 // representation to keep the encoding small.
4735 V = getValueSigned(Record, 1+i, NextValueNo, Ty);
4737 V = getValue(Record, 1+i, NextValueNo, Ty);
4738 BasicBlock *BB = getBasicBlock(Record[2+i]);
4740 return error("Invalid record");
4741 PN->addIncoming(V, BB);
4747 case bitc::FUNC_CODE_INST_LANDINGPAD:
4748 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
4749 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4751 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
4752 if (Record.size() < 3)
4753 return error("Invalid record");
4755 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
4756 if (Record.size() < 4)
4757 return error("Invalid record");
4759 Type *Ty = getTypeByID(Record[Idx++]);
4761 return error("Invalid record");
4762 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
4763 Value *PersFn = nullptr;
4764 if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4765 return error("Invalid record");
4767 if (!F->hasPersonalityFn())
4768 F->setPersonalityFn(cast<Constant>(PersFn));
4769 else if (F->getPersonalityFn() != cast<Constant>(PersFn))
4770 return error("Personality function mismatch");
4773 bool IsCleanup = !!Record[Idx++];
4774 unsigned NumClauses = Record[Idx++];
4775 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
4776 LP->setCleanup(IsCleanup);
4777 for (unsigned J = 0; J != NumClauses; ++J) {
4778 LandingPadInst::ClauseType CT =
4779 LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4782 if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4784 return error("Invalid record");
4787 assert((CT != LandingPadInst::Catch ||
4788 !isa<ArrayType>(Val->getType())) &&
4789 "Catch clause has a invalid type!");
4790 assert((CT != LandingPadInst::Filter ||
4791 isa<ArrayType>(Val->getType())) &&
4792 "Filter clause has invalid type!");
4793 LP->addClause(cast<Constant>(Val));
4797 InstructionList.push_back(I);
4801 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
4802 if (Record.size() != 4)
4803 return error("Invalid record");
4804 uint64_t AlignRecord = Record[3];
4805 const uint64_t InAllocaMask = uint64_t(1) << 5;
4806 const uint64_t ExplicitTypeMask = uint64_t(1) << 6;
4807 // Reserve bit 7 for SwiftError flag.
4808 // const uint64_t SwiftErrorMask = uint64_t(1) << 7;
4809 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask;
4810 bool InAlloca = AlignRecord & InAllocaMask;
4811 Type *Ty = getTypeByID(Record[0]);
4812 if ((AlignRecord & ExplicitTypeMask) == 0) {
4813 auto *PTy = dyn_cast_or_null<PointerType>(Ty);
4815 return error("Old-style alloca with a non-pointer type");
4816 Ty = PTy->getElementType();
4818 Type *OpTy = getTypeByID(Record[1]);
4819 Value *Size = getFnValueByID(Record[2], OpTy);
4821 if (std::error_code EC =
4822 parseAlignmentValue(AlignRecord & ~FlagMask, Align)) {
4826 return error("Invalid record");
4827 AllocaInst *AI = new AllocaInst(Ty, Size, Align);
4828 AI->setUsedWithInAlloca(InAlloca);
4830 InstructionList.push_back(I);
4833 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
4836 if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4837 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
4838 return error("Invalid record");
4841 if (OpNum + 3 == Record.size())
4842 Ty = getTypeByID(Record[OpNum++]);
4843 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType()))
4846 Ty = cast<PointerType>(Op->getType())->getElementType();
4849 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
4851 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align);
4853 InstructionList.push_back(I);
4856 case bitc::FUNC_CODE_INST_LOADATOMIC: {
4857 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope]
4860 if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4861 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
4862 return error("Invalid record");
4865 if (OpNum + 5 == Record.size())
4866 Ty = getTypeByID(Record[OpNum++]);
4867 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType()))
4870 Ty = cast<PointerType>(Op->getType())->getElementType();
4872 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4873 if (Ordering == NotAtomic || Ordering == Release ||
4874 Ordering == AcquireRelease)
4875 return error("Invalid record");
4876 if (Ordering != NotAtomic && Record[OpNum] == 0)
4877 return error("Invalid record");
4878 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
4881 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
4883 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope);
4885 InstructionList.push_back(I);
4888 case bitc::FUNC_CODE_INST_STORE:
4889 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
4892 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4893 (BitCode == bitc::FUNC_CODE_INST_STORE
4894 ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4895 : popValue(Record, OpNum, NextValueNo,
4896 cast<PointerType>(Ptr->getType())->getElementType(),
4898 OpNum + 2 != Record.size())
4899 return error("Invalid record");
4901 if (std::error_code EC =
4902 typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4905 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
4907 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align);
4908 InstructionList.push_back(I);
4911 case bitc::FUNC_CODE_INST_STOREATOMIC:
4912 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
4913 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope]
4916 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4917 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
4918 ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4919 : popValue(Record, OpNum, NextValueNo,
4920 cast<PointerType>(Ptr->getType())->getElementType(),
4922 OpNum + 4 != Record.size())
4923 return error("Invalid record");
4925 if (std::error_code EC =
4926 typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4928 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4929 if (Ordering == NotAtomic || Ordering == Acquire ||
4930 Ordering == AcquireRelease)
4931 return error("Invalid record");
4932 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
4933 if (Ordering != NotAtomic && Record[OpNum] == 0)
4934 return error("Invalid record");
4937 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
4939 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope);
4940 InstructionList.push_back(I);
4943 case bitc::FUNC_CODE_INST_CMPXCHG_OLD:
4944 case bitc::FUNC_CODE_INST_CMPXCHG: {
4945 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope,
4946 // failureordering?, isweak?]
4948 Value *Ptr, *Cmp, *New;
4949 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4950 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG
4951 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp)
4952 : popValue(Record, OpNum, NextValueNo,
4953 cast<PointerType>(Ptr->getType())->getElementType(),
4955 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
4956 Record.size() < OpNum + 3 || Record.size() > OpNum + 5)
4957 return error("Invalid record");
4958 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]);
4959 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered)
4960 return error("Invalid record");
4961 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]);
4963 if (std::error_code EC =
4964 typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
4966 AtomicOrdering FailureOrdering;
4967 if (Record.size() < 7)
4969 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering);
4971 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]);
4973 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering,
4975 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
4977 if (Record.size() < 8) {
4978 // Before weak cmpxchgs existed, the instruction simply returned the
4979 // value loaded from memory, so bitcode files from that era will be
4980 // expecting the first component of a modern cmpxchg.
4981 CurBB->getInstList().push_back(I);
4982 I = ExtractValueInst::Create(I, 0);
4984 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]);
4987 InstructionList.push_back(I);
4990 case bitc::FUNC_CODE_INST_ATOMICRMW: {
4991 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope]
4994 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4995 popValue(Record, OpNum, NextValueNo,
4996 cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
4997 OpNum+4 != Record.size())
4998 return error("Invalid record");
4999 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]);
5000 if (Operation < AtomicRMWInst::FIRST_BINOP ||
5001 Operation > AtomicRMWInst::LAST_BINOP)
5002 return error("Invalid record");
5003 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5004 if (Ordering == NotAtomic || Ordering == Unordered)
5005 return error("Invalid record");
5006 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
5007 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope);
5008 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
5009 InstructionList.push_back(I);
5012 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope]
5013 if (2 != Record.size())
5014 return error("Invalid record");
5015 AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
5016 if (Ordering == NotAtomic || Ordering == Unordered ||
5017 Ordering == Monotonic)
5018 return error("Invalid record");
5019 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]);
5020 I = new FenceInst(Context, Ordering, SynchScope);
5021 InstructionList.push_back(I);
5024 case bitc::FUNC_CODE_INST_CALL: {
5025 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
5026 if (Record.size() < 3)
5027 return error("Invalid record");
5030 AttributeSet PAL = getAttributes(Record[OpNum++]);
5031 unsigned CCInfo = Record[OpNum++];
5034 if ((CCInfo >> bitc::CALL_FMF) & 1) {
5035 FMF = getDecodedFastMathFlags(Record[OpNum++]);
5037 return error("Fast math flags indicator set for call with no FMF");
5040 FunctionType *FTy = nullptr;
5041 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 &&
5042 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
5043 return error("Explicit call type is not a function type");
5046 if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
5047 return error("Invalid record");
5049 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5051 return error("Callee is not a pointer type");
5053 FTy = dyn_cast<FunctionType>(OpTy->getElementType());
5055 return error("Callee is not of pointer to function type");
5056 } else if (OpTy->getElementType() != FTy)
5057 return error("Explicit call type does not match pointee type of "
5059 if (Record.size() < FTy->getNumParams() + OpNum)
5060 return error("Insufficient operands to call");
5062 SmallVector<Value*, 16> Args;
5063 // Read the fixed params.
5064 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5065 if (FTy->getParamType(i)->isLabelTy())
5066 Args.push_back(getBasicBlock(Record[OpNum]));
5068 Args.push_back(getValue(Record, OpNum, NextValueNo,
5069 FTy->getParamType(i)));
5071 return error("Invalid record");
5074 // Read type/value pairs for varargs params.
5075 if (!FTy->isVarArg()) {
5076 if (OpNum != Record.size())
5077 return error("Invalid record");
5079 while (OpNum != Record.size()) {
5081 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5082 return error("Invalid record");
5087 I = CallInst::Create(FTy, Callee, Args, OperandBundles);
5088 OperandBundles.clear();
5089 InstructionList.push_back(I);
5090 cast<CallInst>(I)->setCallingConv(
5091 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5092 CallInst::TailCallKind TCK = CallInst::TCK_None;
5093 if (CCInfo & 1 << bitc::CALL_TAIL)
5094 TCK = CallInst::TCK_Tail;
5095 if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
5096 TCK = CallInst::TCK_MustTail;
5097 if (CCInfo & (1 << bitc::CALL_NOTAIL))
5098 TCK = CallInst::TCK_NoTail;
5099 cast<CallInst>(I)->setTailCallKind(TCK);
5100 cast<CallInst>(I)->setAttributes(PAL);
5102 if (!isa<FPMathOperator>(I))
5103 return error("Fast-math-flags specified for call without "
5104 "floating-point scalar or vector return type");
5105 I->setFastMathFlags(FMF);
5109 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
5110 if (Record.size() < 3)
5111 return error("Invalid record");
5112 Type *OpTy = getTypeByID(Record[0]);
5113 Value *Op = getValue(Record, 1, NextValueNo, OpTy);
5114 Type *ResTy = getTypeByID(Record[2]);
5115 if (!OpTy || !Op || !ResTy)
5116 return error("Invalid record");
5117 I = new VAArgInst(Op, ResTy);
5118 InstructionList.push_back(I);
5122 case bitc::FUNC_CODE_OPERAND_BUNDLE: {
5123 // A call or an invoke can be optionally prefixed with some variable
5124 // number of operand bundle blocks. These blocks are read into
5125 // OperandBundles and consumed at the next call or invoke instruction.
5127 if (Record.size() < 1 || Record[0] >= BundleTags.size())
5128 return error("Invalid record");
5130 std::vector<Value *> Inputs;
5133 while (OpNum != Record.size()) {
5135 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5136 return error("Invalid record");
5137 Inputs.push_back(Op);
5140 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
5145 // Add instruction to end of current BB. If there is no current BB, reject
5149 return error("Invalid instruction with no BB");
5151 if (!OperandBundles.empty()) {
5153 return error("Operand bundles found with no consumer");
5155 CurBB->getInstList().push_back(I);
5157 // If this was a terminator instruction, move to the next block.
5158 if (isa<TerminatorInst>(I)) {
5160 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
5163 // Non-void values get registered in the value table for future use.
5164 if (I && !I->getType()->isVoidTy())
5165 ValueList.assignValue(I, NextValueNo++);
5170 if (!OperandBundles.empty())
5171 return error("Operand bundles found with no consumer");
5173 // Check the function list for unresolved values.
5174 if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
5175 if (!A->getParent()) {
5176 // We found at least one unresolved value. Nuke them all to avoid leaks.
5177 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
5178 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
5179 A->replaceAllUsesWith(UndefValue::get(A->getType()));
5183 return error("Never resolved value found in function");
5187 // FIXME: Check for unresolved forward-declared metadata references
5188 // and clean up leaks.
5190 // Trim the value list down to the size it was before we parsed this function.
5191 ValueList.shrinkTo(ModuleValueListSize);
5192 MDValueList.shrinkTo(ModuleMDValueListSize);
5193 std::vector<BasicBlock*>().swap(FunctionBBs);
5194 return std::error_code();
5197 /// Find the function body in the bitcode stream
5198 std::error_code BitcodeReader::findFunctionInStream(
5200 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
5201 while (DeferredFunctionInfoIterator->second == 0) {
5202 // This is the fallback handling for the old format bitcode that
5203 // didn't contain the function index in the VST, or when we have
5204 // an anonymous function which would not have a VST entry.
5205 // Assert that we have one of those two cases.
5206 assert(VSTOffset == 0 || !F->hasName());
5207 // Parse the next body in the stream and set its position in the
5208 // DeferredFunctionInfo map.
5209 if (std::error_code EC = rememberAndSkipFunctionBodies())
5212 return std::error_code();
5215 //===----------------------------------------------------------------------===//
5216 // GVMaterializer implementation
5217 //===----------------------------------------------------------------------===//
5219 void BitcodeReader::releaseBuffer() { Buffer.release(); }
5221 std::error_code BitcodeReader::materialize(GlobalValue *GV) {
5222 // In older bitcode we must materialize the metadata before parsing
5223 // any functions, in order to set up the MDValueList properly.
5224 if (!SeenModuleValuesRecord) {
5225 if (std::error_code EC = materializeMetadata())
5229 Function *F = dyn_cast<Function>(GV);
5230 // If it's not a function or is already material, ignore the request.
5231 if (!F || !F->isMaterializable())
5232 return std::error_code();
5234 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
5235 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
5236 // If its position is recorded as 0, its body is somewhere in the stream
5237 // but we haven't seen it yet.
5238 if (DFII->second == 0)
5239 if (std::error_code EC = findFunctionInStream(F, DFII))
5242 // Move the bit stream to the saved position of the deferred function body.
5243 Stream.JumpToBit(DFII->second);
5245 if (std::error_code EC = parseFunctionBody(F))
5247 F->setIsMaterializable(false);
5252 // Upgrade any old intrinsic calls in the function.
5253 for (auto &I : UpgradedIntrinsics) {
5254 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5258 if (CallInst *CI = dyn_cast<CallInst>(U))
5259 UpgradeIntrinsicCall(CI, I.second);
5263 // Finish fn->subprogram upgrade for materialized functions.
5264 if (DISubprogram *SP = FunctionsWithSPs.lookup(F))
5265 F->setSubprogram(SP);
5267 // Bring in any functions that this function forward-referenced via
5269 return materializeForwardReferencedFunctions();
5272 std::error_code BitcodeReader::materializeModule() {
5273 if (std::error_code EC = materializeMetadata())
5276 // Promise to materialize all forward references.
5277 WillMaterializeAllForwardRefs = true;
5279 // Iterate over the module, deserializing any functions that are still on
5281 for (Function &F : *TheModule) {
5282 if (std::error_code EC = materialize(&F))
5285 // At this point, if there are any function bodies, parse the rest of
5286 // the bits in the module past the last function block we have recorded
5287 // through either lazy scanning or the VST.
5288 if (LastFunctionBlockBit || NextUnreadBit)
5289 parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit
5292 // Check that all block address forward references got resolved (as we
5294 if (!BasicBlockFwdRefs.empty())
5295 return error("Never resolved function from blockaddress");
5297 // Upgrade any intrinsic calls that slipped through (should not happen!) and
5298 // delete the old functions to clean up. We can't do this unless the entire
5299 // module is materialized because there could always be another function body
5300 // with calls to the old function.
5301 for (auto &I : UpgradedIntrinsics) {
5302 for (auto *U : I.first->users()) {
5303 if (CallInst *CI = dyn_cast<CallInst>(U))
5304 UpgradeIntrinsicCall(CI, I.second);
5306 if (!I.first->use_empty())
5307 I.first->replaceAllUsesWith(I.second);
5308 I.first->eraseFromParent();
5310 UpgradedIntrinsics.clear();
5312 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++)
5313 UpgradeInstWithTBAATag(InstsWithTBAATag[I]);
5315 UpgradeDebugInfo(*TheModule);
5316 return std::error_code();
5319 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
5320 return IdentifiedStructTypes;
5324 BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) {
5326 return initLazyStream(std::move(Streamer));
5327 return initStreamFromBuffer();
5330 std::error_code BitcodeReader::initStreamFromBuffer() {
5331 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart();
5332 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
5334 if (Buffer->getBufferSize() & 3)
5335 return error("Invalid bitcode signature");
5337 // If we have a wrapper header, parse it and ignore the non-bc file contents.
5338 // The magic number is 0x0B17C0DE stored in little endian.
5339 if (isBitcodeWrapper(BufPtr, BufEnd))
5340 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
5341 return error("Invalid bitcode wrapper header");
5343 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd));
5344 Stream.init(&*StreamFile);
5346 return std::error_code();
5350 BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) {
5351 // Check and strip off the bitcode wrapper; BitstreamReader expects never to
5354 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer));
5355 StreamingMemoryObject &Bytes = *OwnedBytes;
5356 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes));
5357 Stream.init(&*StreamFile);
5359 unsigned char buf[16];
5360 if (Bytes.readBytes(buf, 16, 0) != 16)
5361 return error("Invalid bitcode signature");
5363 if (!isBitcode(buf, buf + 16))
5364 return error("Invalid bitcode signature");
5366 if (isBitcodeWrapper(buf, buf + 4)) {
5367 const unsigned char *bitcodeStart = buf;
5368 const unsigned char *bitcodeEnd = buf + 16;
5369 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false);
5370 Bytes.dropLeadingBytes(bitcodeStart - buf);
5371 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart);
5373 return std::error_code();
5376 std::error_code FunctionIndexBitcodeReader::error(BitcodeError E,
5377 const Twine &Message) {
5378 return ::error(DiagnosticHandler, make_error_code(E), Message);
5381 std::error_code FunctionIndexBitcodeReader::error(const Twine &Message) {
5382 return ::error(DiagnosticHandler,
5383 make_error_code(BitcodeError::CorruptedBitcode), Message);
5386 std::error_code FunctionIndexBitcodeReader::error(BitcodeError E) {
5387 return ::error(DiagnosticHandler, make_error_code(E));
5390 FunctionIndexBitcodeReader::FunctionIndexBitcodeReader(
5391 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler,
5392 bool IsLazy, bool CheckFuncSummaryPresenceOnly)
5393 : DiagnosticHandler(DiagnosticHandler), Buffer(Buffer), IsLazy(IsLazy),
5394 CheckFuncSummaryPresenceOnly(CheckFuncSummaryPresenceOnly) {}
5396 FunctionIndexBitcodeReader::FunctionIndexBitcodeReader(
5397 DiagnosticHandlerFunction DiagnosticHandler, bool IsLazy,
5398 bool CheckFuncSummaryPresenceOnly)
5399 : DiagnosticHandler(DiagnosticHandler), Buffer(nullptr), IsLazy(IsLazy),
5400 CheckFuncSummaryPresenceOnly(CheckFuncSummaryPresenceOnly) {}
5402 void FunctionIndexBitcodeReader::freeState() { Buffer = nullptr; }
5404 void FunctionIndexBitcodeReader::releaseBuffer() { Buffer.release(); }
5406 // Specialized value symbol table parser used when reading function index
5407 // blocks where we don't actually create global values.
5408 // At the end of this routine the function index is populated with a map
5409 // from function name to FunctionInfo. The function info contains
5410 // the function block's bitcode offset as well as the offset into the
5411 // function summary section.
5412 std::error_code FunctionIndexBitcodeReader::parseValueSymbolTable() {
5413 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
5414 return error("Invalid record");
5416 SmallVector<uint64_t, 64> Record;
5418 // Read all the records for this value table.
5419 SmallString<128> ValueName;
5421 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5423 switch (Entry.Kind) {
5424 case BitstreamEntry::SubBlock: // Handled for us already.
5425 case BitstreamEntry::Error:
5426 return error("Malformed block");
5427 case BitstreamEntry::EndBlock:
5428 return std::error_code();
5429 case BitstreamEntry::Record:
5430 // The interesting case.
5436 switch (Stream.readRecord(Entry.ID, Record)) {
5437 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
5439 case bitc::VST_CODE_FNENTRY: {
5440 // VST_FNENTRY: [valueid, offset, namechar x N]
5441 if (convertToString(Record, 2, ValueName))
5442 return error("Invalid record");
5443 unsigned ValueID = Record[0];
5444 uint64_t FuncOffset = Record[1];
5445 std::unique_ptr<FunctionInfo> FuncInfo =
5446 llvm::make_unique<FunctionInfo>(FuncOffset);
5447 if (foundFuncSummary() && !IsLazy) {
5448 DenseMap<uint64_t, std::unique_ptr<FunctionSummary>>::iterator SMI =
5449 SummaryMap.find(ValueID);
5450 assert(SMI != SummaryMap.end() && "Summary info not found");
5451 FuncInfo->setFunctionSummary(std::move(SMI->second));
5453 TheIndex->addFunctionInfo(ValueName, std::move(FuncInfo));
5458 case bitc::VST_CODE_COMBINED_FNENTRY: {
5459 // VST_FNENTRY: [offset, namechar x N]
5460 if (convertToString(Record, 1, ValueName))
5461 return error("Invalid record");
5462 uint64_t FuncSummaryOffset = Record[0];
5463 std::unique_ptr<FunctionInfo> FuncInfo =
5464 llvm::make_unique<FunctionInfo>(FuncSummaryOffset);
5465 if (foundFuncSummary() && !IsLazy) {
5466 DenseMap<uint64_t, std::unique_ptr<FunctionSummary>>::iterator SMI =
5467 SummaryMap.find(FuncSummaryOffset);
5468 assert(SMI != SummaryMap.end() && "Summary info not found");
5469 FuncInfo->setFunctionSummary(std::move(SMI->second));
5471 TheIndex->addFunctionInfo(ValueName, std::move(FuncInfo));
5480 // Parse just the blocks needed for function index building out of the module.
5481 // At the end of this routine the function Index is populated with a map
5482 // from function name to FunctionInfo. The function info contains
5483 // either the parsed function summary information (when parsing summaries
5484 // eagerly), or just to the function summary record's offset
5485 // if parsing lazily (IsLazy).
5486 std::error_code FunctionIndexBitcodeReader::parseModule() {
5487 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5488 return error("Invalid record");
5490 // Read the function index for this module.
5492 BitstreamEntry Entry = Stream.advance();
5494 switch (Entry.Kind) {
5495 case BitstreamEntry::Error:
5496 return error("Malformed block");
5497 case BitstreamEntry::EndBlock:
5498 return std::error_code();
5500 case BitstreamEntry::SubBlock:
5501 if (CheckFuncSummaryPresenceOnly) {
5502 if (Entry.ID == bitc::FUNCTION_SUMMARY_BLOCK_ID) {
5503 SeenFuncSummary = true;
5504 // No need to parse the rest since we found the summary.
5505 return std::error_code();
5507 if (Stream.SkipBlock())
5508 return error("Invalid record");
5512 default: // Skip unknown content.
5513 if (Stream.SkipBlock())
5514 return error("Invalid record");
5516 case bitc::BLOCKINFO_BLOCK_ID:
5517 // Need to parse these to get abbrev ids (e.g. for VST)
5518 if (Stream.ReadBlockInfoBlock())
5519 return error("Malformed block");
5521 case bitc::VALUE_SYMTAB_BLOCK_ID:
5522 if (std::error_code EC = parseValueSymbolTable())
5525 case bitc::FUNCTION_SUMMARY_BLOCK_ID:
5526 SeenFuncSummary = true;
5528 // Lazy parsing of summary info, skip it.
5529 if (Stream.SkipBlock())
5530 return error("Invalid record");
5531 } else if (std::error_code EC = parseEntireSummary())
5534 case bitc::MODULE_STRTAB_BLOCK_ID:
5535 if (std::error_code EC = parseModuleStringTable())
5541 case BitstreamEntry::Record:
5542 Stream.skipRecord(Entry.ID);
5548 // Eagerly parse the entire function summary block (i.e. for all functions
5549 // in the index). This populates the FunctionSummary objects in
5551 std::error_code FunctionIndexBitcodeReader::parseEntireSummary() {
5552 if (Stream.EnterSubBlock(bitc::FUNCTION_SUMMARY_BLOCK_ID))
5553 return error("Invalid record");
5555 SmallVector<uint64_t, 64> Record;
5558 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5560 switch (Entry.Kind) {
5561 case BitstreamEntry::SubBlock: // Handled for us already.
5562 case BitstreamEntry::Error:
5563 return error("Malformed block");
5564 case BitstreamEntry::EndBlock:
5565 return std::error_code();
5566 case BitstreamEntry::Record:
5567 // The interesting case.
5571 // Read a record. The record format depends on whether this
5572 // is a per-module index or a combined index file. In the per-module
5573 // case the records contain the associated value's ID for correlation
5574 // with VST entries. In the combined index the correlation is done
5575 // via the bitcode offset of the summary records (which were saved
5576 // in the combined index VST entries). The records also contain
5577 // information used for ThinLTO renaming and importing.
5579 uint64_t CurRecordBit = Stream.GetCurrentBitNo();
5580 switch (Stream.readRecord(Entry.ID, Record)) {
5581 default: // Default behavior: ignore.
5583 // FS_PERMODULE_ENTRY: [valueid, islocal, instcount]
5584 case bitc::FS_CODE_PERMODULE_ENTRY: {
5585 unsigned ValueID = Record[0];
5586 bool IsLocal = Record[1];
5587 unsigned InstCount = Record[2];
5588 std::unique_ptr<FunctionSummary> FS =
5589 llvm::make_unique<FunctionSummary>(InstCount);
5590 FS->setLocalFunction(IsLocal);
5591 // The module path string ref set in the summary must be owned by the
5592 // index's module string table. Since we don't have a module path
5593 // string table section in the per-module index, we create a single
5594 // module path string table entry with an empty (0) ID to take
5597 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0));
5598 SummaryMap[ValueID] = std::move(FS);
5600 // FS_COMBINED_ENTRY: [modid, instcount]
5601 case bitc::FS_CODE_COMBINED_ENTRY: {
5602 uint64_t ModuleId = Record[0];
5603 unsigned InstCount = Record[1];
5604 std::unique_ptr<FunctionSummary> FS =
5605 llvm::make_unique<FunctionSummary>(InstCount);
5606 FS->setModulePath(ModuleIdMap[ModuleId]);
5607 SummaryMap[CurRecordBit] = std::move(FS);
5611 llvm_unreachable("Exit infinite loop");
5614 // Parse the module string table block into the Index.
5615 // This populates the ModulePathStringTable map in the index.
5616 std::error_code FunctionIndexBitcodeReader::parseModuleStringTable() {
5617 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
5618 return error("Invalid record");
5620 SmallVector<uint64_t, 64> Record;
5622 SmallString<128> ModulePath;
5624 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5626 switch (Entry.Kind) {
5627 case BitstreamEntry::SubBlock: // Handled for us already.
5628 case BitstreamEntry::Error:
5629 return error("Malformed block");
5630 case BitstreamEntry::EndBlock:
5631 return std::error_code();
5632 case BitstreamEntry::Record:
5633 // The interesting case.
5638 switch (Stream.readRecord(Entry.ID, Record)) {
5639 default: // Default behavior: ignore.
5641 case bitc::MST_CODE_ENTRY: {
5642 // MST_ENTRY: [modid, namechar x N]
5643 if (convertToString(Record, 1, ModulePath))
5644 return error("Invalid record");
5645 uint64_t ModuleId = Record[0];
5646 StringRef ModulePathInMap = TheIndex->addModulePath(ModulePath, ModuleId);
5647 ModuleIdMap[ModuleId] = ModulePathInMap;
5653 llvm_unreachable("Exit infinite loop");
5656 // Parse the function info index from the bitcode streamer into the given index.
5657 std::error_code FunctionIndexBitcodeReader::parseSummaryIndexInto(
5658 std::unique_ptr<DataStreamer> Streamer, FunctionInfoIndex *I) {
5661 if (std::error_code EC = initStream(std::move(Streamer)))
5664 // Sniff for the signature.
5665 if (!hasValidBitcodeHeader(Stream))
5666 return error("Invalid bitcode signature");
5668 // We expect a number of well-defined blocks, though we don't necessarily
5669 // need to understand them all.
5671 if (Stream.AtEndOfStream()) {
5672 // We didn't really read a proper Module block.
5673 return error("Malformed block");
5676 BitstreamEntry Entry =
5677 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
5679 if (Entry.Kind != BitstreamEntry::SubBlock)
5680 return error("Malformed block");
5682 // If we see a MODULE_BLOCK, parse it to find the blocks needed for
5683 // building the function summary index.
5684 if (Entry.ID == bitc::MODULE_BLOCK_ID)
5685 return parseModule();
5687 if (Stream.SkipBlock())
5688 return error("Invalid record");
5692 // Parse the function information at the given offset in the buffer into
5693 // the index. Used to support lazy parsing of function summaries from the
5694 // combined index during importing.
5695 // TODO: This function is not yet complete as it won't have a consumer
5696 // until ThinLTO function importing is added.
5697 std::error_code FunctionIndexBitcodeReader::parseFunctionSummary(
5698 std::unique_ptr<DataStreamer> Streamer, FunctionInfoIndex *I,
5699 size_t FunctionSummaryOffset) {
5702 if (std::error_code EC = initStream(std::move(Streamer)))
5705 // Sniff for the signature.
5706 if (!hasValidBitcodeHeader(Stream))
5707 return error("Invalid bitcode signature");
5709 Stream.JumpToBit(FunctionSummaryOffset);
5711 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5713 switch (Entry.Kind) {
5715 return error("Malformed block");
5716 case BitstreamEntry::Record:
5717 // The expected case.
5721 // TODO: Read a record. This interface will be completed when ThinLTO
5722 // importing is added so that it can be tested.
5723 SmallVector<uint64_t, 64> Record;
5724 switch (Stream.readRecord(Entry.ID, Record)) {
5725 case bitc::FS_CODE_COMBINED_ENTRY:
5727 return error("Invalid record");
5730 return std::error_code();
5734 FunctionIndexBitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) {
5736 return initLazyStream(std::move(Streamer));
5737 return initStreamFromBuffer();
5740 std::error_code FunctionIndexBitcodeReader::initStreamFromBuffer() {
5741 const unsigned char *BufPtr = (const unsigned char *)Buffer->getBufferStart();
5742 const unsigned char *BufEnd = BufPtr + Buffer->getBufferSize();
5744 if (Buffer->getBufferSize() & 3)
5745 return error("Invalid bitcode signature");
5747 // If we have a wrapper header, parse it and ignore the non-bc file contents.
5748 // The magic number is 0x0B17C0DE stored in little endian.
5749 if (isBitcodeWrapper(BufPtr, BufEnd))
5750 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
5751 return error("Invalid bitcode wrapper header");
5753 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd));
5754 Stream.init(&*StreamFile);
5756 return std::error_code();
5759 std::error_code FunctionIndexBitcodeReader::initLazyStream(
5760 std::unique_ptr<DataStreamer> Streamer) {
5761 // Check and strip off the bitcode wrapper; BitstreamReader expects never to
5764 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer));
5765 StreamingMemoryObject &Bytes = *OwnedBytes;
5766 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes));
5767 Stream.init(&*StreamFile);
5769 unsigned char buf[16];
5770 if (Bytes.readBytes(buf, 16, 0) != 16)
5771 return error("Invalid bitcode signature");
5773 if (!isBitcode(buf, buf + 16))
5774 return error("Invalid bitcode signature");
5776 if (isBitcodeWrapper(buf, buf + 4)) {
5777 const unsigned char *bitcodeStart = buf;
5778 const unsigned char *bitcodeEnd = buf + 16;
5779 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false);
5780 Bytes.dropLeadingBytes(bitcodeStart - buf);
5781 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart);
5783 return std::error_code();
5787 class BitcodeErrorCategoryType : public std::error_category {
5788 const char *name() const LLVM_NOEXCEPT override {
5789 return "llvm.bitcode";
5791 std::string message(int IE) const override {
5792 BitcodeError E = static_cast<BitcodeError>(IE);
5794 case BitcodeError::InvalidBitcodeSignature:
5795 return "Invalid bitcode signature";
5796 case BitcodeError::CorruptedBitcode:
5797 return "Corrupted bitcode";
5799 llvm_unreachable("Unknown error type!");
5804 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
5806 const std::error_category &llvm::BitcodeErrorCategory() {
5807 return *ErrorCategory;
5810 //===----------------------------------------------------------------------===//
5811 // External interface
5812 //===----------------------------------------------------------------------===//
5814 static ErrorOr<std::unique_ptr<Module>>
5815 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name,
5816 BitcodeReader *R, LLVMContext &Context,
5817 bool MaterializeAll, bool ShouldLazyLoadMetadata) {
5818 std::unique_ptr<Module> M = make_unique<Module>(Name, Context);
5819 M->setMaterializer(R);
5821 auto cleanupOnError = [&](std::error_code EC) {
5822 R->releaseBuffer(); // Never take ownership on error.
5826 // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
5827 if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(),
5828 ShouldLazyLoadMetadata))
5829 return cleanupOnError(EC);
5831 if (MaterializeAll) {
5832 // Read in the entire module, and destroy the BitcodeReader.
5833 if (std::error_code EC = M->materializeAll())
5834 return cleanupOnError(EC);
5836 // Resolve forward references from blockaddresses.
5837 if (std::error_code EC = R->materializeForwardReferencedFunctions())
5838 return cleanupOnError(EC);
5840 return std::move(M);
5843 /// \brief Get a lazy one-at-time loading module from bitcode.
5845 /// This isn't always used in a lazy context. In particular, it's also used by
5846 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull
5847 /// in forward-referenced functions from block address references.
5849 /// \param[in] MaterializeAll Set to \c true if we should materialize
5851 static ErrorOr<std::unique_ptr<Module>>
5852 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer,
5853 LLVMContext &Context, bool MaterializeAll,
5854 bool ShouldLazyLoadMetadata = false) {
5855 BitcodeReader *R = new BitcodeReader(Buffer.get(), Context);
5857 ErrorOr<std::unique_ptr<Module>> Ret =
5858 getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context,
5859 MaterializeAll, ShouldLazyLoadMetadata);
5863 Buffer.release(); // The BitcodeReader owns it now.
5867 ErrorOr<std::unique_ptr<Module>>
5868 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer,
5869 LLVMContext &Context, bool ShouldLazyLoadMetadata) {
5870 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false,
5871 ShouldLazyLoadMetadata);
5874 ErrorOr<std::unique_ptr<Module>>
5875 llvm::getStreamedBitcodeModule(StringRef Name,
5876 std::unique_ptr<DataStreamer> Streamer,
5877 LLVMContext &Context) {
5878 std::unique_ptr<Module> M = make_unique<Module>(Name, Context);
5879 BitcodeReader *R = new BitcodeReader(Context);
5881 return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false,
5885 ErrorOr<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer,
5886 LLVMContext &Context) {
5887 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
5888 return getLazyBitcodeModuleImpl(std::move(Buf), Context, true);
5889 // TODO: Restore the use-lists to the in-memory state when the bitcode was
5890 // written. We must defer until the Module has been fully materialized.
5893 std::string llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer,
5894 LLVMContext &Context) {
5895 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
5896 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context);
5897 ErrorOr<std::string> Triple = R->parseTriple();
5898 if (Triple.getError())
5900 return Triple.get();
5903 std::string llvm::getBitcodeProducerString(MemoryBufferRef Buffer,
5904 LLVMContext &Context) {
5905 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
5906 BitcodeReader R(Buf.release(), Context);
5907 ErrorOr<std::string> ProducerString = R.parseIdentificationBlock();
5908 if (ProducerString.getError())
5910 return ProducerString.get();
5913 // Parse the specified bitcode buffer, returning the function info index.
5914 // If IsLazy is false, parse the entire function summary into
5915 // the index. Otherwise skip the function summary section, and only create
5916 // an index object with a map from function name to function summary offset.
5917 // The index is used to perform lazy function summary reading later.
5918 ErrorOr<std::unique_ptr<FunctionInfoIndex>>
5919 llvm::getFunctionInfoIndex(MemoryBufferRef Buffer,
5920 DiagnosticHandlerFunction DiagnosticHandler,
5922 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
5923 FunctionIndexBitcodeReader R(Buf.get(), DiagnosticHandler, IsLazy);
5925 auto Index = llvm::make_unique<FunctionInfoIndex>();
5927 auto cleanupOnError = [&](std::error_code EC) {
5928 R.releaseBuffer(); // Never take ownership on error.
5932 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, Index.get()))
5933 return cleanupOnError(EC);
5935 Buf.release(); // The FunctionIndexBitcodeReader owns it now.
5936 return std::move(Index);
5939 // Check if the given bitcode buffer contains a function summary block.
5940 bool llvm::hasFunctionSummary(MemoryBufferRef Buffer,
5941 DiagnosticHandlerFunction DiagnosticHandler) {
5942 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
5943 FunctionIndexBitcodeReader R(Buf.get(), DiagnosticHandler, false, true);
5945 auto cleanupOnError = [&](std::error_code EC) {
5946 R.releaseBuffer(); // Never take ownership on error.
5950 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, nullptr))
5951 return cleanupOnError(EC);
5953 Buf.release(); // The FunctionIndexBitcodeReader owns it now.
5954 return R.foundFuncSummary();
5957 // This method supports lazy reading of function summary data from the combined
5958 // index during ThinLTO function importing. When reading the combined index
5959 // file, getFunctionInfoIndex is first invoked with IsLazy=true.
5960 // Then this method is called for each function considered for importing,
5961 // to parse the summary information for the given function name into
5963 std::error_code llvm::readFunctionSummary(
5964 MemoryBufferRef Buffer, DiagnosticHandlerFunction DiagnosticHandler,
5965 StringRef FunctionName, std::unique_ptr<FunctionInfoIndex> Index) {
5966 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
5967 FunctionIndexBitcodeReader R(Buf.get(), DiagnosticHandler);
5969 auto cleanupOnError = [&](std::error_code EC) {
5970 R.releaseBuffer(); // Never take ownership on error.
5974 // Lookup the given function name in the FunctionMap, which may
5975 // contain a list of function infos in the case of a COMDAT. Walk through
5976 // and parse each function summary info at the function summary offset
5977 // recorded when parsing the value symbol table.
5978 for (const auto &FI : Index->getFunctionInfoList(FunctionName)) {
5979 size_t FunctionSummaryOffset = FI->bitcodeIndex();
5980 if (std::error_code EC =
5981 R.parseFunctionSummary(nullptr, Index.get(), FunctionSummaryOffset))
5982 return cleanupOnError(EC);
5985 Buf.release(); // The FunctionIndexBitcodeReader owns it now.
5986 return std::error_code();