976cd873213f98e666e4fc81d8762087e9b3abb0
[oota-llvm.git] / lib / Analysis / TargetTransformInfo.cpp
1 //===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #define DEBUG_TYPE "tti"
11 #include "llvm/Analysis/TargetTransformInfo.h"
12 #include "llvm/IR/DataLayout.h"
13 #include "llvm/IR/Operator.h"
14 #include "llvm/IR/Instruction.h"
15 #include "llvm/IR/IntrinsicInst.h"
16 #include "llvm/IR/Instructions.h"
17 #include "llvm/Support/CallSite.h"
18 #include "llvm/Support/ErrorHandling.h"
19
20 using namespace llvm;
21
22 // Setup the analysis group to manage the TargetTransformInfo passes.
23 INITIALIZE_ANALYSIS_GROUP(TargetTransformInfo, "Target Information", NoTTI)
24 char TargetTransformInfo::ID = 0;
25
26 TargetTransformInfo::~TargetTransformInfo() {
27 }
28
29 void TargetTransformInfo::pushTTIStack(Pass *P) {
30   TopTTI = this;
31   PrevTTI = &P->getAnalysis<TargetTransformInfo>();
32
33   // Walk up the chain and update the top TTI pointer.
34   for (TargetTransformInfo *PTTI = PrevTTI; PTTI; PTTI = PTTI->PrevTTI)
35     PTTI->TopTTI = this;
36 }
37
38 void TargetTransformInfo::popTTIStack() {
39   TopTTI = 0;
40
41   // Walk up the chain and update the top TTI pointer.
42   for (TargetTransformInfo *PTTI = PrevTTI; PTTI; PTTI = PTTI->PrevTTI)
43     PTTI->TopTTI = PrevTTI;
44
45   PrevTTI = 0;
46 }
47
48 void TargetTransformInfo::getAnalysisUsage(AnalysisUsage &AU) const {
49   AU.addRequired<TargetTransformInfo>();
50 }
51
52 unsigned TargetTransformInfo::getOperationCost(unsigned Opcode, Type *Ty,
53                                                Type *OpTy) const {
54   return PrevTTI->getOperationCost(Opcode, Ty, OpTy);
55 }
56
57 unsigned TargetTransformInfo::getGEPCost(
58     const Value *Ptr, ArrayRef<const Value *> Operands) const {
59   return PrevTTI->getGEPCost(Ptr, Operands);
60 }
61
62 unsigned TargetTransformInfo::getCallCost(FunctionType *FTy,
63                                           int NumArgs) const {
64   return PrevTTI->getCallCost(FTy, NumArgs);
65 }
66
67 unsigned TargetTransformInfo::getCallCost(const Function *F,
68                                           int NumArgs) const {
69   return PrevTTI->getCallCost(F, NumArgs);
70 }
71
72 unsigned TargetTransformInfo::getCallCost(
73     const Function *F, ArrayRef<const Value *> Arguments) const {
74   return PrevTTI->getCallCost(F, Arguments);
75 }
76
77 unsigned TargetTransformInfo::getIntrinsicCost(
78     Intrinsic::ID IID, Type *RetTy, ArrayRef<Type *> ParamTys) const {
79   return PrevTTI->getIntrinsicCost(IID, RetTy, ParamTys);
80 }
81
82 unsigned TargetTransformInfo::getIntrinsicCost(
83     Intrinsic::ID IID, Type *RetTy, ArrayRef<const Value *> Arguments) const {
84   return PrevTTI->getIntrinsicCost(IID, RetTy, Arguments);
85 }
86
87 unsigned TargetTransformInfo::getUserCost(const User *U) const {
88   return PrevTTI->getUserCost(U);
89 }
90
91 bool TargetTransformInfo::isLoweredToCall(const Function *F) const {
92   return PrevTTI->isLoweredToCall(F);
93 }
94
95 bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const {
96   return PrevTTI->isLegalAddImmediate(Imm);
97 }
98
99 bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const {
100   return PrevTTI->isLegalICmpImmediate(Imm);
101 }
102
103 bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
104                                                 int64_t BaseOffset,
105                                                 bool HasBaseReg,
106                                                 int64_t Scale) const {
107   return PrevTTI->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
108                                         Scale);
109 }
110
111 bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const {
112   return PrevTTI->isTruncateFree(Ty1, Ty2);
113 }
114
115 bool TargetTransformInfo::isTypeLegal(Type *Ty) const {
116   return PrevTTI->isTypeLegal(Ty);
117 }
118
119 unsigned TargetTransformInfo::getJumpBufAlignment() const {
120   return PrevTTI->getJumpBufAlignment();
121 }
122
123 unsigned TargetTransformInfo::getJumpBufSize() const {
124   return PrevTTI->getJumpBufSize();
125 }
126
127 bool TargetTransformInfo::shouldBuildLookupTables() const {
128   return PrevTTI->shouldBuildLookupTables();
129 }
130
131 TargetTransformInfo::PopcntSupportKind
132 TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const {
133   return PrevTTI->getPopcntSupport(IntTyWidthInBit);
134 }
135
136 unsigned TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty) const {
137   return PrevTTI->getIntImmCost(Imm, Ty);
138 }
139
140 unsigned TargetTransformInfo::getNumberOfRegisters(bool Vector) const {
141   return PrevTTI->getNumberOfRegisters(Vector);
142 }
143
144 unsigned TargetTransformInfo::getRegisterBitWidth(bool Vector) const {
145   return PrevTTI->getRegisterBitWidth(Vector);
146 }
147
148 unsigned TargetTransformInfo::getMaximumUnrollFactor() const {
149   return PrevTTI->getMaximumUnrollFactor();
150 }
151
152 unsigned TargetTransformInfo::getArithmeticInstrCost(unsigned Opcode,
153                                                      Type *Ty) const {
154   return PrevTTI->getArithmeticInstrCost(Opcode, Ty);
155 }
156
157 unsigned TargetTransformInfo::getShuffleCost(ShuffleKind Kind, Type *Tp,
158                                              int Index, Type *SubTp) const {
159   return PrevTTI->getShuffleCost(Kind, Tp, Index, SubTp);
160 }
161
162 unsigned TargetTransformInfo::getCastInstrCost(unsigned Opcode, Type *Dst,
163                                                Type *Src) const {
164   return PrevTTI->getCastInstrCost(Opcode, Dst, Src);
165 }
166
167 unsigned TargetTransformInfo::getCFInstrCost(unsigned Opcode) const {
168   return PrevTTI->getCFInstrCost(Opcode);
169 }
170
171 unsigned TargetTransformInfo::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
172                                                  Type *CondTy) const {
173   return PrevTTI->getCmpSelInstrCost(Opcode, ValTy, CondTy);
174 }
175
176 unsigned TargetTransformInfo::getVectorInstrCost(unsigned Opcode, Type *Val,
177                                                  unsigned Index) const {
178   return PrevTTI->getVectorInstrCost(Opcode, Val, Index);
179 }
180
181 unsigned TargetTransformInfo::getMemoryOpCost(unsigned Opcode, Type *Src,
182                                               unsigned Alignment,
183                                               unsigned AddressSpace) const {
184   return PrevTTI->getMemoryOpCost(Opcode, Src, Alignment, AddressSpace);
185   ;
186 }
187
188 unsigned
189 TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID,
190                                            Type *RetTy,
191                                            ArrayRef<Type *> Tys) const {
192   return PrevTTI->getIntrinsicInstrCost(ID, RetTy, Tys);
193 }
194
195 unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const {
196   return PrevTTI->getNumberOfParts(Tp);
197 }
198
199 unsigned TargetTransformInfo::getAddressComputationCost(Type *Tp) const {
200   return PrevTTI->getAddressComputationCost(Tp);
201 }
202
203 namespace {
204
205 struct NoTTI : ImmutablePass, TargetTransformInfo {
206   const DataLayout *DL;
207
208   NoTTI() : ImmutablePass(ID), DL(0) {
209     initializeNoTTIPass(*PassRegistry::getPassRegistry());
210   }
211
212   virtual void initializePass() {
213     // Note that this subclass is special, and must *not* call initializeTTI as
214     // it does not chain.
215     TopTTI = this;
216     PrevTTI = 0;
217     DL = getAnalysisIfAvailable<DataLayout>();
218   }
219
220   virtual void getAnalysisUsage(AnalysisUsage &AU) const {
221     // Note that this subclass is special, and must *not* call
222     // TTI::getAnalysisUsage as it breaks the recursion.
223   }
224
225   /// Pass identification.
226   static char ID;
227
228   /// Provide necessary pointer adjustments for the two base classes.
229   virtual void *getAdjustedAnalysisPointer(const void *ID) {
230     if (ID == &TargetTransformInfo::ID)
231       return (TargetTransformInfo*)this;
232     return this;
233   }
234
235   unsigned getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) const {
236     switch (Opcode) {
237     default:
238       // By default, just classify everything as 'basic'.
239       return TCC_Basic;
240
241     case Instruction::GetElementPtr:
242       llvm_unreachable("Use getGEPCost for GEP operations!");
243
244     case Instruction::BitCast:
245       assert(OpTy && "Cast instructions must provide the operand type");
246       if (Ty == OpTy || (Ty->isPointerTy() && OpTy->isPointerTy()))
247         // Identity and pointer-to-pointer casts are free.
248         return TCC_Free;
249
250       // Otherwise, the default basic cost is used.
251       return TCC_Basic;
252
253     case Instruction::IntToPtr:
254       // An inttoptr cast is free so long as the input is a legal integer type
255       // which doesn't contain values outside the range of a pointer.
256       if (DL && DL->isLegalInteger(OpTy->getScalarSizeInBits()) &&
257           OpTy->getScalarSizeInBits() <= DL->getPointerSizeInBits())
258         return TCC_Free;
259
260       // Otherwise it's not a no-op.
261       return TCC_Basic;
262
263     case Instruction::PtrToInt:
264       // A ptrtoint cast is free so long as the result is large enough to store
265       // the pointer, and a legal integer type.
266       if (DL && DL->isLegalInteger(Ty->getScalarSizeInBits()) &&
267           Ty->getScalarSizeInBits() >= DL->getPointerSizeInBits())
268         return TCC_Free;
269
270       // Otherwise it's not a no-op.
271       return TCC_Basic;
272
273     case Instruction::Trunc:
274       // trunc to a native type is free (assuming the target has compare and
275       // shift-right of the same width).
276       if (DL && DL->isLegalInteger(DL->getTypeSizeInBits(Ty)))
277         return TCC_Free;
278
279       return TCC_Basic;
280     }
281   }
282
283   unsigned getGEPCost(const Value *Ptr,
284                       ArrayRef<const Value *> Operands) const {
285     // In the basic model, we just assume that all-constant GEPs will be folded
286     // into their uses via addressing modes.
287     for (unsigned Idx = 0, Size = Operands.size(); Idx != Size; ++Idx)
288       if (!isa<Constant>(Operands[Idx]))
289         return TCC_Basic;
290
291     return TCC_Free;
292   }
293
294   unsigned getCallCost(FunctionType *FTy, int NumArgs = -1) const {
295     assert(FTy && "FunctionType must be provided to this routine.");
296
297     // The target-independent implementation just measures the size of the
298     // function by approximating that each argument will take on average one
299     // instruction to prepare.
300
301     if (NumArgs < 0)
302       // Set the argument number to the number of explicit arguments in the
303       // function.
304       NumArgs = FTy->getNumParams();
305
306     return TCC_Basic * (NumArgs + 1);
307   }
308
309   unsigned getCallCost(const Function *F, int NumArgs = -1) const {
310     assert(F && "A concrete function must be provided to this routine.");
311
312     if (NumArgs < 0)
313       // Set the argument number to the number of explicit arguments in the
314       // function.
315       NumArgs = F->arg_size();
316
317     if (Intrinsic::ID IID = (Intrinsic::ID)F->getIntrinsicID()) {
318       FunctionType *FTy = F->getFunctionType();
319       SmallVector<Type *, 8> ParamTys(FTy->param_begin(), FTy->param_end());
320       return TopTTI->getIntrinsicCost(IID, FTy->getReturnType(), ParamTys);
321     }
322
323     if (!TopTTI->isLoweredToCall(F))
324       return TCC_Basic; // Give a basic cost if it will be lowered directly.
325
326     return TopTTI->getCallCost(F->getFunctionType(), NumArgs);
327   }
328
329   unsigned getCallCost(const Function *F,
330                        ArrayRef<const Value *> Arguments) const {
331     // Simply delegate to generic handling of the call.
332     // FIXME: We should use instsimplify or something else to catch calls which
333     // will constant fold with these arguments.
334     return TopTTI->getCallCost(F, Arguments.size());
335   }
336
337   unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
338                             ArrayRef<Type *> ParamTys) const {
339     switch (IID) {
340     default:
341       // Intrinsics rarely (if ever) have normal argument setup constraints.
342       // Model them as having a basic instruction cost.
343       // FIXME: This is wrong for libc intrinsics.
344       return TCC_Basic;
345
346     case Intrinsic::dbg_declare:
347     case Intrinsic::dbg_value:
348     case Intrinsic::invariant_start:
349     case Intrinsic::invariant_end:
350     case Intrinsic::lifetime_start:
351     case Intrinsic::lifetime_end:
352     case Intrinsic::objectsize:
353     case Intrinsic::ptr_annotation:
354     case Intrinsic::var_annotation:
355       // These intrinsics don't actually represent code after lowering.
356       return TCC_Free;
357     }
358   }
359
360   unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
361                             ArrayRef<const Value *> Arguments) const {
362     // Delegate to the generic intrinsic handling code. This mostly provides an
363     // opportunity for targets to (for example) special case the cost of
364     // certain intrinsics based on constants used as arguments.
365     SmallVector<Type *, 8> ParamTys;
366     ParamTys.reserve(Arguments.size());
367     for (unsigned Idx = 0, Size = Arguments.size(); Idx != Size; ++Idx)
368       ParamTys.push_back(Arguments[Idx]->getType());
369     return TopTTI->getIntrinsicCost(IID, RetTy, ParamTys);
370   }
371
372   unsigned getUserCost(const User *U) const {
373     if (isa<PHINode>(U))
374       return TCC_Free; // Model all PHI nodes as free.
375
376     if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U))
377       // In the basic model we just assume that all-constant GEPs will be
378       // folded into their uses via addressing modes.
379       return GEP->hasAllConstantIndices() ? TCC_Free : TCC_Basic;
380
381     if (ImmutableCallSite CS = U) {
382       const Function *F = CS.getCalledFunction();
383       if (!F) {
384         // Just use the called value type.
385         Type *FTy = CS.getCalledValue()->getType()->getPointerElementType();
386         return TopTTI->getCallCost(cast<FunctionType>(FTy), CS.arg_size());
387       }
388
389       SmallVector<const Value *, 8> Arguments;
390       for (ImmutableCallSite::arg_iterator AI = CS.arg_begin(),
391                                            AE = CS.arg_end();
392            AI != AE; ++AI)
393         Arguments.push_back(*AI);
394
395       return TopTTI->getCallCost(F, Arguments);
396     }
397
398     if (const CastInst *CI = dyn_cast<CastInst>(U)) {
399       // Result of a cmp instruction is often extended (to be used by other
400       // cmp instructions, logical or return instructions). These are usually
401       // nop on most sane targets.
402       if (isa<CmpInst>(CI->getOperand(0)))
403         return TCC_Free;
404     }
405
406     // Otherwise delegate to the fully generic implementations.
407     return getOperationCost(Operator::getOpcode(U), U->getType(),
408                             U->getNumOperands() == 1 ?
409                                 U->getOperand(0)->getType() : 0);
410   }
411
412   bool isLoweredToCall(const Function *F) const {
413     // FIXME: These should almost certainly not be handled here, and instead
414     // handled with the help of TLI or the target itself. This was largely
415     // ported from existing analysis heuristics here so that such refactorings
416     // can take place in the future.
417
418     if (F->isIntrinsic())
419       return false;
420
421     if (F->hasLocalLinkage() || !F->hasName())
422       return true;
423
424     StringRef Name = F->getName();
425
426     // These will all likely lower to a single selection DAG node.
427     if (Name == "copysign" || Name == "copysignf" || Name == "copysignl" ||
428         Name == "fabs" || Name == "fabsf" || Name == "fabsl" || Name == "sin" ||
429         Name == "sinf" || Name == "sinl" || Name == "cos" || Name == "cosf" ||
430         Name == "cosl" || Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl")
431       return false;
432
433     // These are all likely to be optimized into something smaller.
434     if (Name == "pow" || Name == "powf" || Name == "powl" || Name == "exp2" ||
435         Name == "exp2l" || Name == "exp2f" || Name == "floor" || Name ==
436         "floorf" || Name == "ceil" || Name == "round" || Name == "ffs" ||
437         Name == "ffsl" || Name == "abs" || Name == "labs" || Name == "llabs")
438       return false;
439
440     return true;
441   }
442
443   bool isLegalAddImmediate(int64_t Imm) const {
444     return false;
445   }
446
447   bool isLegalICmpImmediate(int64_t Imm) const {
448     return false;
449   }
450
451   bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
452                              bool HasBaseReg, int64_t Scale) const {
453     // Guess that reg+reg addressing is allowed. This heuristic is taken from
454     // the implementation of LSR.
455     return !BaseGV && BaseOffset == 0 && Scale <= 1;
456   }
457
458   bool isTruncateFree(Type *Ty1, Type *Ty2) const {
459     return false;
460   }
461
462   bool isTypeLegal(Type *Ty) const {
463     return false;
464   }
465
466   unsigned getJumpBufAlignment() const {
467     return 0;
468   }
469
470   unsigned getJumpBufSize() const {
471     return 0;
472   }
473
474   bool shouldBuildLookupTables() const {
475     return true;
476   }
477
478   PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const {
479     return PSK_Software;
480   }
481
482   unsigned getIntImmCost(const APInt &Imm, Type *Ty) const {
483     return 1;
484   }
485
486   unsigned getNumberOfRegisters(bool Vector) const {
487     return 8;
488   }
489
490   unsigned  getRegisterBitWidth(bool Vector) const {
491     return 32;
492   }
493
494   unsigned getMaximumUnrollFactor() const {
495     return 1;
496   }
497
498   unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty) const {
499     return 1;
500   }
501
502   unsigned getShuffleCost(ShuffleKind Kind, Type *Tp,
503                           int Index = 0, Type *SubTp = 0) const {
504     return 1;
505   }
506
507   unsigned getCastInstrCost(unsigned Opcode, Type *Dst,
508                             Type *Src) const {
509     return 1;
510   }
511
512   unsigned getCFInstrCost(unsigned Opcode) const {
513     return 1;
514   }
515
516   unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
517                               Type *CondTy = 0) const {
518     return 1;
519   }
520
521   unsigned getVectorInstrCost(unsigned Opcode, Type *Val,
522                               unsigned Index = -1) const {
523     return 1;
524   }
525
526   unsigned getMemoryOpCost(unsigned Opcode, Type *Src,
527                            unsigned Alignment,
528                            unsigned AddressSpace) const {
529     return 1;
530   }
531
532   unsigned getIntrinsicInstrCost(Intrinsic::ID ID,
533                                  Type *RetTy,
534                                  ArrayRef<Type*> Tys) const {
535     return 1;
536   }
537
538   unsigned getNumberOfParts(Type *Tp) const {
539     return 0;
540   }
541
542   unsigned getAddressComputationCost(Type *Tp) const {
543     return 0;
544   }
545 };
546
547 } // end anonymous namespace
548
549 INITIALIZE_AG_PASS(NoTTI, TargetTransformInfo, "notti",
550                    "No target information", true, true, true)
551 char NoTTI::ID = 0;
552
553 ImmutablePass *llvm::createNoTargetTransformInfoPass() {
554   return new NoTTI();
555 }