3e80bfe1fdfb8bfd0b5e57d9fa0538e094362623
[oota-llvm.git] / lib / Analysis / MemoryDependenceAnalysis.cpp
1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements an analysis that determines, for a given memory
11 // operation, what preceding memory operations it depends on.  It builds on
12 // alias analysis information, and tries to provide a lazy, caching interface to
13 // a common kind of alias information query.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/AssumptionCache.h"
22 #include "llvm/Analysis/InstructionSimplify.h"
23 #include "llvm/Analysis/MemoryBuiltins.h"
24 #include "llvm/Analysis/PHITransAddr.h"
25 #include "llvm/Analysis/OrderedBasicBlock.h"
26 #include "llvm/Analysis/ValueTracking.h"
27 #include "llvm/Analysis/TargetLibraryInfo.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/LLVMContext.h"
34 #include "llvm/IR/PredIteratorCache.h"
35 #include "llvm/Support/Debug.h"
36 using namespace llvm;
37
38 #define DEBUG_TYPE "memdep"
39
40 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
41 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
42 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
43
44 STATISTIC(NumCacheNonLocalPtr,
45           "Number of fully cached non-local ptr responses");
46 STATISTIC(NumCacheDirtyNonLocalPtr,
47           "Number of cached, but dirty, non-local ptr responses");
48 STATISTIC(NumUncacheNonLocalPtr,
49           "Number of uncached non-local ptr responses");
50 STATISTIC(NumCacheCompleteNonLocalPtr,
51           "Number of block queries that were completely cached");
52
53 // Limit for the number of instructions to scan in a block.
54
55 static cl::opt<unsigned> BlockScanLimit(
56     "memdep-block-scan-limit", cl::Hidden, cl::init(100),
57     cl::desc("The number of instructions to scan in a block in memory "
58              "dependency analysis (default = 100)"));
59
60 // Limit on the number of memdep results to process.
61 static const unsigned int NumResultsLimit = 100;
62
63 char MemoryDependenceAnalysis::ID = 0;
64
65 // Register this pass...
66 INITIALIZE_PASS_BEGIN(MemoryDependenceAnalysis, "memdep",
67                 "Memory Dependence Analysis", false, true)
68 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
69 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
70 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
71 INITIALIZE_PASS_END(MemoryDependenceAnalysis, "memdep",
72                       "Memory Dependence Analysis", false, true)
73
74 MemoryDependenceAnalysis::MemoryDependenceAnalysis()
75     : FunctionPass(ID) {
76   initializeMemoryDependenceAnalysisPass(*PassRegistry::getPassRegistry());
77 }
78 MemoryDependenceAnalysis::~MemoryDependenceAnalysis() {
79 }
80
81 /// Clean up memory in between runs
82 void MemoryDependenceAnalysis::releaseMemory() {
83   LocalDeps.clear();
84   NonLocalDeps.clear();
85   NonLocalPointerDeps.clear();
86   ReverseLocalDeps.clear();
87   ReverseNonLocalDeps.clear();
88   ReverseNonLocalPtrDeps.clear();
89   PredCache.clear();
90 }
91
92 /// getAnalysisUsage - Does not modify anything.  It uses Alias Analysis.
93 ///
94 void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
95   AU.setPreservesAll();
96   AU.addRequired<AssumptionCacheTracker>();
97   AU.addRequiredTransitive<AAResultsWrapperPass>();
98   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
99 }
100
101 bool MemoryDependenceAnalysis::runOnFunction(Function &F) {
102   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
103   AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
104   DominatorTreeWrapperPass *DTWP =
105       getAnalysisIfAvailable<DominatorTreeWrapperPass>();
106   DT = DTWP ? &DTWP->getDomTree() : nullptr;
107   TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
108   return false;
109 }
110
111 /// RemoveFromReverseMap - This is a helper function that removes Val from
112 /// 'Inst's set in ReverseMap.  If the set becomes empty, remove Inst's entry.
113 template <typename KeyTy>
114 static void RemoveFromReverseMap(DenseMap<Instruction*,
115                                  SmallPtrSet<KeyTy, 4> > &ReverseMap,
116                                  Instruction *Inst, KeyTy Val) {
117   typename DenseMap<Instruction*, SmallPtrSet<KeyTy, 4> >::iterator
118   InstIt = ReverseMap.find(Inst);
119   assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
120   bool Found = InstIt->second.erase(Val);
121   assert(Found && "Invalid reverse map!"); (void)Found;
122   if (InstIt->second.empty())
123     ReverseMap.erase(InstIt);
124 }
125
126 /// GetLocation - If the given instruction references a specific memory
127 /// location, fill in Loc with the details, otherwise set Loc.Ptr to null.
128 /// Return a ModRefInfo value describing the general behavior of the
129 /// instruction.
130 static ModRefInfo GetLocation(const Instruction *Inst, MemoryLocation &Loc,
131                               const TargetLibraryInfo &TLI) {
132   if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
133     if (LI->isUnordered()) {
134       Loc = MemoryLocation::get(LI);
135       return MRI_Ref;
136     }
137     if (LI->getOrdering() == Monotonic) {
138       Loc = MemoryLocation::get(LI);
139       return MRI_ModRef;
140     }
141     Loc = MemoryLocation();
142     return MRI_ModRef;
143   }
144
145   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
146     if (SI->isUnordered()) {
147       Loc = MemoryLocation::get(SI);
148       return MRI_Mod;
149     }
150     if (SI->getOrdering() == Monotonic) {
151       Loc = MemoryLocation::get(SI);
152       return MRI_ModRef;
153     }
154     Loc = MemoryLocation();
155     return MRI_ModRef;
156   }
157
158   if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
159     Loc = MemoryLocation::get(V);
160     return MRI_ModRef;
161   }
162
163   if (const CallInst *CI = isFreeCall(Inst, &TLI)) {
164     // calls to free() deallocate the entire structure
165     Loc = MemoryLocation(CI->getArgOperand(0));
166     return MRI_Mod;
167   }
168
169   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
170     AAMDNodes AAInfo;
171
172     switch (II->getIntrinsicID()) {
173     case Intrinsic::lifetime_start:
174     case Intrinsic::lifetime_end:
175     case Intrinsic::invariant_start:
176       II->getAAMetadata(AAInfo);
177       Loc = MemoryLocation(
178           II->getArgOperand(1),
179           cast<ConstantInt>(II->getArgOperand(0))->getZExtValue(), AAInfo);
180       // These intrinsics don't really modify the memory, but returning Mod
181       // will allow them to be handled conservatively.
182       return MRI_Mod;
183     case Intrinsic::invariant_end:
184       II->getAAMetadata(AAInfo);
185       Loc = MemoryLocation(
186           II->getArgOperand(2),
187           cast<ConstantInt>(II->getArgOperand(1))->getZExtValue(), AAInfo);
188       // These intrinsics don't really modify the memory, but returning Mod
189       // will allow them to be handled conservatively.
190       return MRI_Mod;
191     default:
192       break;
193     }
194   }
195
196   // Otherwise, just do the coarse-grained thing that always works.
197   if (Inst->mayWriteToMemory())
198     return MRI_ModRef;
199   if (Inst->mayReadFromMemory())
200     return MRI_Ref;
201   return MRI_NoModRef;
202 }
203
204 /// getCallSiteDependencyFrom - Private helper for finding the local
205 /// dependencies of a call site.
206 MemDepResult MemoryDependenceAnalysis::
207 getCallSiteDependencyFrom(CallSite CS, bool isReadOnlyCall,
208                           BasicBlock::iterator ScanIt, BasicBlock *BB) {
209   unsigned Limit = BlockScanLimit;
210
211   // Walk backwards through the block, looking for dependencies
212   while (ScanIt != BB->begin()) {
213     // Limit the amount of scanning we do so we don't end up with quadratic
214     // running time on extreme testcases.
215     --Limit;
216     if (!Limit)
217       return MemDepResult::getUnknown();
218
219     Instruction *Inst = &*--ScanIt;
220
221     // If this inst is a memory op, get the pointer it accessed
222     MemoryLocation Loc;
223     ModRefInfo MR = GetLocation(Inst, Loc, *TLI);
224     if (Loc.Ptr) {
225       // A simple instruction.
226       if (AA->getModRefInfo(CS, Loc) != MRI_NoModRef)
227         return MemDepResult::getClobber(Inst);
228       continue;
229     }
230
231     if (auto InstCS = CallSite(Inst)) {
232       // Debug intrinsics don't cause dependences.
233       if (isa<DbgInfoIntrinsic>(Inst)) continue;
234       // If these two calls do not interfere, look past it.
235       switch (AA->getModRefInfo(CS, InstCS)) {
236       case MRI_NoModRef:
237         // If the two calls are the same, return InstCS as a Def, so that
238         // CS can be found redundant and eliminated.
239         if (isReadOnlyCall && !(MR & MRI_Mod) &&
240             CS.getInstruction()->isIdenticalToWhenDefined(Inst))
241           return MemDepResult::getDef(Inst);
242
243         // Otherwise if the two calls don't interact (e.g. InstCS is readnone)
244         // keep scanning.
245         continue;
246       default:
247         return MemDepResult::getClobber(Inst);
248       }
249     }
250
251     // If we could not obtain a pointer for the instruction and the instruction
252     // touches memory then assume that this is a dependency.
253     if (MR != MRI_NoModRef)
254       return MemDepResult::getClobber(Inst);
255   }
256
257   // No dependence found.  If this is the entry block of the function, it is
258   // unknown, otherwise it is non-local.
259   if (BB != &BB->getParent()->getEntryBlock())
260     return MemDepResult::getNonLocal();
261   return MemDepResult::getNonFuncLocal();
262 }
263
264 /// isLoadLoadClobberIfExtendedToFullWidth - Return true if LI is a load that
265 /// would fully overlap MemLoc if done as a wider legal integer load.
266 ///
267 /// MemLocBase, MemLocOffset are lazily computed here the first time the
268 /// base/offs of memloc is needed.
269 static bool isLoadLoadClobberIfExtendedToFullWidth(const MemoryLocation &MemLoc,
270                                                    const Value *&MemLocBase,
271                                                    int64_t &MemLocOffs,
272                                                    const LoadInst *LI) {
273   const DataLayout &DL = LI->getModule()->getDataLayout();
274
275   // If we haven't already computed the base/offset of MemLoc, do so now.
276   if (!MemLocBase)
277     MemLocBase = GetPointerBaseWithConstantOffset(MemLoc.Ptr, MemLocOffs, DL);
278
279   unsigned Size = MemoryDependenceAnalysis::getLoadLoadClobberFullWidthSize(
280       MemLocBase, MemLocOffs, MemLoc.Size, LI);
281   return Size != 0;
282 }
283
284 /// getLoadLoadClobberFullWidthSize - This is a little bit of analysis that
285 /// looks at a memory location for a load (specified by MemLocBase, Offs,
286 /// and Size) and compares it against a load.  If the specified load could
287 /// be safely widened to a larger integer load that is 1) still efficient,
288 /// 2) safe for the target, and 3) would provide the specified memory
289 /// location value, then this function returns the size in bytes of the
290 /// load width to use.  If not, this returns zero.
291 unsigned MemoryDependenceAnalysis::getLoadLoadClobberFullWidthSize(
292     const Value *MemLocBase, int64_t MemLocOffs, unsigned MemLocSize,
293     const LoadInst *LI) {
294   // We can only extend simple integer loads.
295   if (!isa<IntegerType>(LI->getType()) || !LI->isSimple()) return 0;
296
297   // Load widening is hostile to ThreadSanitizer: it may cause false positives
298   // or make the reports more cryptic (access sizes are wrong).
299   if (LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread))
300     return 0;
301
302   const DataLayout &DL = LI->getModule()->getDataLayout();
303
304   // Get the base of this load.
305   int64_t LIOffs = 0;
306   const Value *LIBase =
307       GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, DL);
308
309   // If the two pointers are not based on the same pointer, we can't tell that
310   // they are related.
311   if (LIBase != MemLocBase) return 0;
312
313   // Okay, the two values are based on the same pointer, but returned as
314   // no-alias.  This happens when we have things like two byte loads at "P+1"
315   // and "P+3".  Check to see if increasing the size of the "LI" load up to its
316   // alignment (or the largest native integer type) will allow us to load all
317   // the bits required by MemLoc.
318
319   // If MemLoc is before LI, then no widening of LI will help us out.
320   if (MemLocOffs < LIOffs) return 0;
321
322   // Get the alignment of the load in bytes.  We assume that it is safe to load
323   // any legal integer up to this size without a problem.  For example, if we're
324   // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can
325   // widen it up to an i32 load.  If it is known 2-byte aligned, we can widen it
326   // to i16.
327   unsigned LoadAlign = LI->getAlignment();
328
329   int64_t MemLocEnd = MemLocOffs+MemLocSize;
330
331   // If no amount of rounding up will let MemLoc fit into LI, then bail out.
332   if (LIOffs+LoadAlign < MemLocEnd) return 0;
333
334   // This is the size of the load to try.  Start with the next larger power of
335   // two.
336   unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits()/8U;
337   NewLoadByteSize = NextPowerOf2(NewLoadByteSize);
338
339   while (1) {
340     // If this load size is bigger than our known alignment or would not fit
341     // into a native integer register, then we fail.
342     if (NewLoadByteSize > LoadAlign ||
343         !DL.fitsInLegalInteger(NewLoadByteSize*8))
344       return 0;
345
346     if (LIOffs + NewLoadByteSize > MemLocEnd &&
347         LI->getParent()->getParent()->hasFnAttribute(
348             Attribute::SanitizeAddress))
349       // We will be reading past the location accessed by the original program.
350       // While this is safe in a regular build, Address Safety analysis tools
351       // may start reporting false warnings. So, don't do widening.
352       return 0;
353
354     // If a load of this width would include all of MemLoc, then we succeed.
355     if (LIOffs+NewLoadByteSize >= MemLocEnd)
356       return NewLoadByteSize;
357
358     NewLoadByteSize <<= 1;
359   }
360 }
361
362 static bool isVolatile(Instruction *Inst) {
363   if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
364     return LI->isVolatile();
365   else if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
366     return SI->isVolatile();
367   else if (AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(Inst))
368     return AI->isVolatile();
369   return false;
370 }
371
372
373 /// getPointerDependencyFrom - Return the instruction on which a memory
374 /// location depends.  If isLoad is true, this routine ignores may-aliases with
375 /// read-only operations.  If isLoad is false, this routine ignores may-aliases
376 /// with reads from read-only locations.  If possible, pass the query
377 /// instruction as well; this function may take advantage of the metadata
378 /// annotated to the query instruction to refine the result.
379 MemDepResult MemoryDependenceAnalysis::getPointerDependencyFrom(
380     const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt,
381     BasicBlock *BB, Instruction *QueryInst) {
382
383   if (QueryInst != nullptr) {
384     if (auto *LI = dyn_cast<LoadInst>(QueryInst)) {
385       MemDepResult invariantGroupDependency =
386           getInvariantGroupPointerDependency(LI, BB);
387
388       if (invariantGroupDependency.isDef())
389         return invariantGroupDependency;
390     }
391   }
392   return getSimplePointerDependencyFrom(MemLoc, isLoad, ScanIt, BB, QueryInst);
393 }
394
395 MemDepResult
396 MemoryDependenceAnalysis::getInvariantGroupPointerDependency(LoadInst *LI,
397                                                              BasicBlock *BB) {
398   Value *LoadOperand = LI->getPointerOperand();
399   // It's is not safe to walk the use list of global value, because function
400   // passes aren't allowed to look outside their functions.
401   if (isa<GlobalValue>(LoadOperand))
402     return MemDepResult::getUnknown();
403
404   auto *InvariantGroupMD = LI->getMetadata(LLVMContext::MD_invariant_group);
405   if (!InvariantGroupMD)
406     return MemDepResult::getUnknown();
407
408   MemDepResult Result = MemDepResult::getUnknown();
409   llvm::SmallSet<Value *, 14> Seen;
410   // Queue to process all pointers that are equivalent to load operand.
411   llvm::SmallVector<Value *, 8> LoadOperandsQueue;
412   LoadOperandsQueue.push_back(LoadOperand);
413   while (!LoadOperandsQueue.empty()) {
414     Value *Ptr = LoadOperandsQueue.pop_back_val();
415     if (isa<GlobalValue>(Ptr))
416       continue;
417
418     if (auto *BCI = dyn_cast<BitCastInst>(Ptr)) {
419       if (!Seen.count(BCI->getOperand(0))) {
420         LoadOperandsQueue.push_back(BCI->getOperand(0));
421         Seen.insert(BCI->getOperand(0));
422       }
423     }
424
425     for (Use &Us : Ptr->uses()) {
426       auto *U = dyn_cast<Instruction>(Us.getUser());
427       if (!U || U == LI || !DT->dominates(U, LI))
428         continue;
429
430       if (auto *BCI = dyn_cast<BitCastInst>(U)) {
431         if (!Seen.count(BCI)) {
432           LoadOperandsQueue.push_back(BCI);
433           Seen.insert(BCI);
434         }
435         continue;
436       }
437       // If we hit load/store with the same invariant.group metadata (and the
438       // same pointer operand) we can assume that value pointed by pointer
439       // operand didn't change.
440       if ((isa<LoadInst>(U) || isa<StoreInst>(U)) && U->getParent() == BB &&
441           U->getMetadata(LLVMContext::MD_invariant_group) == InvariantGroupMD)
442         return MemDepResult::getDef(U);
443     }
444   }
445   return Result;
446 }
447
448 MemDepResult MemoryDependenceAnalysis::getSimplePointerDependencyFrom(
449     const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt,
450     BasicBlock *BB, Instruction *QueryInst) {
451
452   const Value *MemLocBase = nullptr;
453   int64_t MemLocOffset = 0;
454   unsigned Limit = BlockScanLimit;
455   bool isInvariantLoad = false;
456
457   // We must be careful with atomic accesses, as they may allow another thread
458   //   to touch this location, cloberring it. We are conservative: if the
459   //   QueryInst is not a simple (non-atomic) memory access, we automatically
460   //   return getClobber.
461   // If it is simple, we know based on the results of
462   // "Compiler testing via a theory of sound optimisations in the C11/C++11
463   //   memory model" in PLDI 2013, that a non-atomic location can only be
464   //   clobbered between a pair of a release and an acquire action, with no
465   //   access to the location in between.
466   // Here is an example for giving the general intuition behind this rule.
467   // In the following code:
468   //   store x 0;
469   //   release action; [1]
470   //   acquire action; [4]
471   //   %val = load x;
472   // It is unsafe to replace %val by 0 because another thread may be running:
473   //   acquire action; [2]
474   //   store x 42;
475   //   release action; [3]
476   // with synchronization from 1 to 2 and from 3 to 4, resulting in %val
477   // being 42. A key property of this program however is that if either
478   // 1 or 4 were missing, there would be a race between the store of 42
479   // either the store of 0 or the load (making the whole progam racy).
480   // The paper mentionned above shows that the same property is respected
481   // by every program that can detect any optimisation of that kind: either
482   // it is racy (undefined) or there is a release followed by an acquire
483   // between the pair of accesses under consideration.
484
485   // If the load is invariant, we "know" that it doesn't alias *any* write. We
486   // do want to respect mustalias results since defs are useful for value
487   // forwarding, but any mayalias write can be assumed to be noalias.
488   // Arguably, this logic should be pushed inside AliasAnalysis itself.
489   if (isLoad && QueryInst) {
490     LoadInst *LI = dyn_cast<LoadInst>(QueryInst);
491     if (LI && LI->getMetadata(LLVMContext::MD_invariant_load) != nullptr)
492       isInvariantLoad = true;
493   }
494
495   const DataLayout &DL = BB->getModule()->getDataLayout();
496
497   // Create a numbered basic block to lazily compute and cache instruction
498   // positions inside a BB. This is used to provide fast queries for relative
499   // position between two instructions in a BB and can be used by
500   // AliasAnalysis::callCapturesBefore.
501   OrderedBasicBlock OBB(BB);
502
503   // Walk backwards through the basic block, looking for dependencies.
504   while (ScanIt != BB->begin()) {
505     Instruction *Inst = &*--ScanIt;
506
507     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
508       // Debug intrinsics don't (and can't) cause dependencies.
509       if (isa<DbgInfoIntrinsic>(II)) continue;
510
511     // Limit the amount of scanning we do so we don't end up with quadratic
512     // running time on extreme testcases.
513     --Limit;
514     if (!Limit)
515       return MemDepResult::getUnknown();
516
517     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
518       // If we reach a lifetime begin or end marker, then the query ends here
519       // because the value is undefined.
520       if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
521         // FIXME: This only considers queries directly on the invariant-tagged
522         // pointer, not on query pointers that are indexed off of them.  It'd
523         // be nice to handle that at some point (the right approach is to use
524         // GetPointerBaseWithConstantOffset).
525         if (AA->isMustAlias(MemoryLocation(II->getArgOperand(1)), MemLoc))
526           return MemDepResult::getDef(II);
527         continue;
528       }
529     }
530
531     // Values depend on loads if the pointers are must aliased.  This means that
532     // a load depends on another must aliased load from the same value.
533     // One exception is atomic loads: a value can depend on an atomic load that it
534     // does not alias with when this atomic load indicates that another thread may
535     // be accessing the location.
536     if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
537
538       // While volatile access cannot be eliminated, they do not have to clobber
539       // non-aliasing locations, as normal accesses, for example, can be safely
540       // reordered with volatile accesses.
541       if (LI->isVolatile()) {
542         if (!QueryInst)
543           // Original QueryInst *may* be volatile
544           return MemDepResult::getClobber(LI);
545         if (isVolatile(QueryInst))
546           // Ordering required if QueryInst is itself volatile
547           return MemDepResult::getClobber(LI);
548         // Otherwise, volatile doesn't imply any special ordering
549       }
550       
551       // Atomic loads have complications involved.
552       // A Monotonic (or higher) load is OK if the query inst is itself not atomic.
553       // FIXME: This is overly conservative.
554       if (LI->isAtomic() && LI->getOrdering() > Unordered) {
555         if (!QueryInst)
556           return MemDepResult::getClobber(LI);
557         if (LI->getOrdering() != Monotonic)
558           return MemDepResult::getClobber(LI);
559         if (auto *QueryLI = dyn_cast<LoadInst>(QueryInst)) {
560           if (!QueryLI->isSimple())
561             return MemDepResult::getClobber(LI);
562         } else if (auto *QuerySI = dyn_cast<StoreInst>(QueryInst)) {
563           if (!QuerySI->isSimple())
564             return MemDepResult::getClobber(LI);
565         } else if (QueryInst->mayReadOrWriteMemory()) {
566           return MemDepResult::getClobber(LI);
567         }
568       }
569
570       MemoryLocation LoadLoc = MemoryLocation::get(LI);
571
572       // If we found a pointer, check if it could be the same as our pointer.
573       AliasResult R = AA->alias(LoadLoc, MemLoc);
574
575       if (isLoad) {
576         if (R == NoAlias) {
577           // If this is an over-aligned integer load (for example,
578           // "load i8* %P, align 4") see if it would obviously overlap with the
579           // queried location if widened to a larger load (e.g. if the queried
580           // location is 1 byte at P+1).  If so, return it as a load/load
581           // clobber result, allowing the client to decide to widen the load if
582           // it wants to.
583           if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) {
584             if (LI->getAlignment() * 8 > ITy->getPrimitiveSizeInBits() &&
585                 isLoadLoadClobberIfExtendedToFullWidth(MemLoc, MemLocBase,
586                                                        MemLocOffset, LI))
587               return MemDepResult::getClobber(Inst);
588           }
589           continue;
590         }
591
592         // Must aliased loads are defs of each other.
593         if (R == MustAlias)
594           return MemDepResult::getDef(Inst);
595
596 #if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads
597       // in terms of clobbering loads, but since it does this by looking
598       // at the clobbering load directly, it doesn't know about any
599       // phi translation that may have happened along the way.
600
601         // If we have a partial alias, then return this as a clobber for the
602         // client to handle.
603         if (R == PartialAlias)
604           return MemDepResult::getClobber(Inst);
605 #endif
606
607         // Random may-alias loads don't depend on each other without a
608         // dependence.
609         continue;
610       }
611
612       // Stores don't depend on other no-aliased accesses.
613       if (R == NoAlias)
614         continue;
615
616       // Stores don't alias loads from read-only memory.
617       if (AA->pointsToConstantMemory(LoadLoc))
618         continue;
619
620       // Stores depend on may/must aliased loads.
621       return MemDepResult::getDef(Inst);
622     }
623
624     if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
625       // Atomic stores have complications involved.
626       // A Monotonic store is OK if the query inst is itself not atomic.
627       // FIXME: This is overly conservative.
628       if (!SI->isUnordered()) {
629         if (!QueryInst)
630           return MemDepResult::getClobber(SI);
631         if (SI->getOrdering() != Monotonic)
632           return MemDepResult::getClobber(SI);
633         if (auto *QueryLI = dyn_cast<LoadInst>(QueryInst)) {
634           if (!QueryLI->isSimple())
635             return MemDepResult::getClobber(SI);
636         } else if (auto *QuerySI = dyn_cast<StoreInst>(QueryInst)) {
637           if (!QuerySI->isSimple())
638             return MemDepResult::getClobber(SI);
639         } else if (QueryInst->mayReadOrWriteMemory()) {
640           return MemDepResult::getClobber(SI);
641         }
642       }
643
644       // FIXME: this is overly conservative.
645       // While volatile access cannot be eliminated, they do not have to clobber
646       // non-aliasing locations, as normal accesses can for example be reordered
647       // with volatile accesses.
648       if (SI->isVolatile())
649         return MemDepResult::getClobber(SI);
650
651       // If alias analysis can tell that this store is guaranteed to not modify
652       // the query pointer, ignore it.  Use getModRefInfo to handle cases where
653       // the query pointer points to constant memory etc.
654       if (AA->getModRefInfo(SI, MemLoc) == MRI_NoModRef)
655         continue;
656
657       // Ok, this store might clobber the query pointer.  Check to see if it is
658       // a must alias: in this case, we want to return this as a def.
659       MemoryLocation StoreLoc = MemoryLocation::get(SI);
660
661       // If we found a pointer, check if it could be the same as our pointer.
662       AliasResult R = AA->alias(StoreLoc, MemLoc);
663
664       if (R == NoAlias)
665         continue;
666       if (R == MustAlias)
667         return MemDepResult::getDef(Inst);
668       if (isInvariantLoad)
669        continue;
670       return MemDepResult::getClobber(Inst);
671     }
672
673     // If this is an allocation, and if we know that the accessed pointer is to
674     // the allocation, return Def.  This means that there is no dependence and
675     // the access can be optimized based on that.  For example, a load could
676     // turn into undef.
677     // Note: Only determine this to be a malloc if Inst is the malloc call, not
678     // a subsequent bitcast of the malloc call result.  There can be stores to
679     // the malloced memory between the malloc call and its bitcast uses, and we
680     // need to continue scanning until the malloc call.
681     if (isa<AllocaInst>(Inst) || isNoAliasFn(Inst, TLI)) {
682       const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr, DL);
683
684       if (AccessPtr == Inst || AA->isMustAlias(Inst, AccessPtr))
685         return MemDepResult::getDef(Inst);
686       if (isInvariantLoad)
687         continue;
688       // Be conservative if the accessed pointer may alias the allocation.
689       if (AA->alias(Inst, AccessPtr) != NoAlias)
690         return MemDepResult::getClobber(Inst);
691       // If the allocation is not aliased and does not read memory (like
692       // strdup), it is safe to ignore.
693       if (isa<AllocaInst>(Inst) ||
694           isMallocLikeFn(Inst, TLI) || isCallocLikeFn(Inst, TLI))
695         continue;
696     }
697
698     if (isInvariantLoad)
699        continue;
700
701     // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
702     ModRefInfo MR = AA->getModRefInfo(Inst, MemLoc);
703     // If necessary, perform additional analysis.
704     if (MR == MRI_ModRef)
705       MR = AA->callCapturesBefore(Inst, MemLoc, DT, &OBB);
706     switch (MR) {
707     case MRI_NoModRef:
708       // If the call has no effect on the queried pointer, just ignore it.
709       continue;
710     case MRI_Mod:
711       return MemDepResult::getClobber(Inst);
712     case MRI_Ref:
713       // If the call is known to never store to the pointer, and if this is a
714       // load query, we can safely ignore it (scan past it).
715       if (isLoad)
716         continue;
717     default:
718       // Otherwise, there is a potential dependence.  Return a clobber.
719       return MemDepResult::getClobber(Inst);
720     }
721   }
722
723   // No dependence found.  If this is the entry block of the function, it is
724   // unknown, otherwise it is non-local.
725   if (BB != &BB->getParent()->getEntryBlock())
726     return MemDepResult::getNonLocal();
727   return MemDepResult::getNonFuncLocal();
728 }
729
730 /// getDependency - Return the instruction on which a memory operation
731 /// depends.
732 MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) {
733   Instruction *ScanPos = QueryInst;
734
735   // Check for a cached result
736   MemDepResult &LocalCache = LocalDeps[QueryInst];
737
738   // If the cached entry is non-dirty, just return it.  Note that this depends
739   // on MemDepResult's default constructing to 'dirty'.
740   if (!LocalCache.isDirty())
741     return LocalCache;
742
743   // Otherwise, if we have a dirty entry, we know we can start the scan at that
744   // instruction, which may save us some work.
745   if (Instruction *Inst = LocalCache.getInst()) {
746     ScanPos = Inst;
747
748     RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
749   }
750
751   BasicBlock *QueryParent = QueryInst->getParent();
752
753   // Do the scan.
754   if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
755     // No dependence found.  If this is the entry block of the function, it is
756     // unknown, otherwise it is non-local.
757     if (QueryParent != &QueryParent->getParent()->getEntryBlock())
758       LocalCache = MemDepResult::getNonLocal();
759     else
760       LocalCache = MemDepResult::getNonFuncLocal();
761   } else {
762     MemoryLocation MemLoc;
763     ModRefInfo MR = GetLocation(QueryInst, MemLoc, *TLI);
764     if (MemLoc.Ptr) {
765       // If we can do a pointer scan, make it happen.
766       bool isLoad = !(MR & MRI_Mod);
767       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(QueryInst))
768         isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start;
769
770       LocalCache = getPointerDependencyFrom(
771           MemLoc, isLoad, ScanPos->getIterator(), QueryParent, QueryInst);
772     } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) {
773       CallSite QueryCS(QueryInst);
774       bool isReadOnly = AA->onlyReadsMemory(QueryCS);
775       LocalCache = getCallSiteDependencyFrom(
776           QueryCS, isReadOnly, ScanPos->getIterator(), QueryParent);
777     } else
778       // Non-memory instruction.
779       LocalCache = MemDepResult::getUnknown();
780   }
781
782   // Remember the result!
783   if (Instruction *I = LocalCache.getInst())
784     ReverseLocalDeps[I].insert(QueryInst);
785
786   return LocalCache;
787 }
788
789 #ifndef NDEBUG
790 /// AssertSorted - This method is used when -debug is specified to verify that
791 /// cache arrays are properly kept sorted.
792 static void AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
793                          int Count = -1) {
794   if (Count == -1) Count = Cache.size();
795   if (Count == 0) return;
796
797   for (unsigned i = 1; i != unsigned(Count); ++i)
798     assert(!(Cache[i] < Cache[i-1]) && "Cache isn't sorted!");
799 }
800 #endif
801
802 /// getNonLocalCallDependency - Perform a full dependency query for the
803 /// specified call, returning the set of blocks that the value is
804 /// potentially live across.  The returned set of results will include a
805 /// "NonLocal" result for all blocks where the value is live across.
806 ///
807 /// This method assumes the instruction returns a "NonLocal" dependency
808 /// within its own block.
809 ///
810 /// This returns a reference to an internal data structure that may be
811 /// invalidated on the next non-local query or when an instruction is
812 /// removed.  Clients must copy this data if they want it around longer than
813 /// that.
814 const MemoryDependenceAnalysis::NonLocalDepInfo &
815 MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) {
816   assert(getDependency(QueryCS.getInstruction()).isNonLocal() &&
817  "getNonLocalCallDependency should only be used on calls with non-local deps!");
818   PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()];
819   NonLocalDepInfo &Cache = CacheP.first;
820
821   /// DirtyBlocks - This is the set of blocks that need to be recomputed.  In
822   /// the cached case, this can happen due to instructions being deleted etc. In
823   /// the uncached case, this starts out as the set of predecessors we care
824   /// about.
825   SmallVector<BasicBlock*, 32> DirtyBlocks;
826
827   if (!Cache.empty()) {
828     // Okay, we have a cache entry.  If we know it is not dirty, just return it
829     // with no computation.
830     if (!CacheP.second) {
831       ++NumCacheNonLocal;
832       return Cache;
833     }
834
835     // If we already have a partially computed set of results, scan them to
836     // determine what is dirty, seeding our initial DirtyBlocks worklist.
837     for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end();
838        I != E; ++I)
839       if (I->getResult().isDirty())
840         DirtyBlocks.push_back(I->getBB());
841
842     // Sort the cache so that we can do fast binary search lookups below.
843     std::sort(Cache.begin(), Cache.end());
844
845     ++NumCacheDirtyNonLocal;
846     //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
847     //     << Cache.size() << " cached: " << *QueryInst;
848   } else {
849     // Seed DirtyBlocks with each of the preds of QueryInst's block.
850     BasicBlock *QueryBB = QueryCS.getInstruction()->getParent();
851     for (BasicBlock *Pred : PredCache.get(QueryBB))
852       DirtyBlocks.push_back(Pred);
853     ++NumUncacheNonLocal;
854   }
855
856   // isReadonlyCall - If this is a read-only call, we can be more aggressive.
857   bool isReadonlyCall = AA->onlyReadsMemory(QueryCS);
858
859   SmallPtrSet<BasicBlock*, 64> Visited;
860
861   unsigned NumSortedEntries = Cache.size();
862   DEBUG(AssertSorted(Cache));
863
864   // Iterate while we still have blocks to update.
865   while (!DirtyBlocks.empty()) {
866     BasicBlock *DirtyBB = DirtyBlocks.back();
867     DirtyBlocks.pop_back();
868
869     // Already processed this block?
870     if (!Visited.insert(DirtyBB).second)
871       continue;
872
873     // Do a binary search to see if we already have an entry for this block in
874     // the cache set.  If so, find it.
875     DEBUG(AssertSorted(Cache, NumSortedEntries));
876     NonLocalDepInfo::iterator Entry =
877       std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries,
878                        NonLocalDepEntry(DirtyBB));
879     if (Entry != Cache.begin() && std::prev(Entry)->getBB() == DirtyBB)
880       --Entry;
881
882     NonLocalDepEntry *ExistingResult = nullptr;
883     if (Entry != Cache.begin()+NumSortedEntries &&
884         Entry->getBB() == DirtyBB) {
885       // If we already have an entry, and if it isn't already dirty, the block
886       // is done.
887       if (!Entry->getResult().isDirty())
888         continue;
889
890       // Otherwise, remember this slot so we can update the value.
891       ExistingResult = &*Entry;
892     }
893
894     // If the dirty entry has a pointer, start scanning from it so we don't have
895     // to rescan the entire block.
896     BasicBlock::iterator ScanPos = DirtyBB->end();
897     if (ExistingResult) {
898       if (Instruction *Inst = ExistingResult->getResult().getInst()) {
899         ScanPos = Inst->getIterator();
900         // We're removing QueryInst's use of Inst.
901         RemoveFromReverseMap(ReverseNonLocalDeps, Inst,
902                              QueryCS.getInstruction());
903       }
904     }
905
906     // Find out if this block has a local dependency for QueryInst.
907     MemDepResult Dep;
908
909     if (ScanPos != DirtyBB->begin()) {
910       Dep = getCallSiteDependencyFrom(QueryCS, isReadonlyCall,ScanPos, DirtyBB);
911     } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) {
912       // No dependence found.  If this is the entry block of the function, it is
913       // a clobber, otherwise it is unknown.
914       Dep = MemDepResult::getNonLocal();
915     } else {
916       Dep = MemDepResult::getNonFuncLocal();
917     }
918
919     // If we had a dirty entry for the block, update it.  Otherwise, just add
920     // a new entry.
921     if (ExistingResult)
922       ExistingResult->setResult(Dep);
923     else
924       Cache.push_back(NonLocalDepEntry(DirtyBB, Dep));
925
926     // If the block has a dependency (i.e. it isn't completely transparent to
927     // the value), remember the association!
928     if (!Dep.isNonLocal()) {
929       // Keep the ReverseNonLocalDeps map up to date so we can efficiently
930       // update this when we remove instructions.
931       if (Instruction *Inst = Dep.getInst())
932         ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction());
933     } else {
934
935       // If the block *is* completely transparent to the load, we need to check
936       // the predecessors of this block.  Add them to our worklist.
937       for (BasicBlock *Pred : PredCache.get(DirtyBB))
938         DirtyBlocks.push_back(Pred);
939     }
940   }
941
942   return Cache;
943 }
944
945 /// getNonLocalPointerDependency - Perform a full dependency query for an
946 /// access to the specified (non-volatile) memory location, returning the
947 /// set of instructions that either define or clobber the value.
948 ///
949 /// This method assumes the pointer has a "NonLocal" dependency within its
950 /// own block.
951 ///
952 void MemoryDependenceAnalysis::
953 getNonLocalPointerDependency(Instruction *QueryInst,
954                              SmallVectorImpl<NonLocalDepResult> &Result) {
955   const MemoryLocation Loc = MemoryLocation::get(QueryInst);
956   bool isLoad = isa<LoadInst>(QueryInst);
957   BasicBlock *FromBB = QueryInst->getParent();
958   assert(FromBB);
959
960   assert(Loc.Ptr->getType()->isPointerTy() &&
961          "Can't get pointer deps of a non-pointer!");
962   Result.clear();
963   
964   // This routine does not expect to deal with volatile instructions.
965   // Doing so would require piping through the QueryInst all the way through.
966   // TODO: volatiles can't be elided, but they can be reordered with other
967   // non-volatile accesses.
968
969   // We currently give up on any instruction which is ordered, but we do handle
970   // atomic instructions which are unordered.
971   // TODO: Handle ordered instructions
972   auto isOrdered = [](Instruction *Inst) {
973     if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
974       return !LI->isUnordered();
975     } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
976       return !SI->isUnordered();
977     }
978     return false;
979   };
980   if (isVolatile(QueryInst) || isOrdered(QueryInst)) {
981     Result.push_back(NonLocalDepResult(FromBB,
982                                        MemDepResult::getUnknown(),
983                                        const_cast<Value *>(Loc.Ptr)));
984     return;
985   }
986   const DataLayout &DL = FromBB->getModule()->getDataLayout();
987   PHITransAddr Address(const_cast<Value *>(Loc.Ptr), DL, AC);
988
989   // This is the set of blocks we've inspected, and the pointer we consider in
990   // each block.  Because of critical edges, we currently bail out if querying
991   // a block with multiple different pointers.  This can happen during PHI
992   // translation.
993   DenseMap<BasicBlock*, Value*> Visited;
994   if (!getNonLocalPointerDepFromBB(QueryInst, Address, Loc, isLoad, FromBB,
995                                    Result, Visited, true))
996     return;
997   Result.clear();
998   Result.push_back(NonLocalDepResult(FromBB,
999                                      MemDepResult::getUnknown(),
1000                                      const_cast<Value *>(Loc.Ptr)));
1001 }
1002
1003 /// GetNonLocalInfoForBlock - Compute the memdep value for BB with
1004 /// Pointer/PointeeSize using either cached information in Cache or by doing a
1005 /// lookup (which may use dirty cache info if available).  If we do a lookup,
1006 /// add the result to the cache.
1007 MemDepResult MemoryDependenceAnalysis::GetNonLocalInfoForBlock(
1008     Instruction *QueryInst, const MemoryLocation &Loc, bool isLoad,
1009     BasicBlock *BB, NonLocalDepInfo *Cache, unsigned NumSortedEntries) {
1010
1011   // Do a binary search to see if we already have an entry for this block in
1012   // the cache set.  If so, find it.
1013   NonLocalDepInfo::iterator Entry =
1014     std::upper_bound(Cache->begin(), Cache->begin()+NumSortedEntries,
1015                      NonLocalDepEntry(BB));
1016   if (Entry != Cache->begin() && (Entry-1)->getBB() == BB)
1017     --Entry;
1018
1019   NonLocalDepEntry *ExistingResult = nullptr;
1020   if (Entry != Cache->begin()+NumSortedEntries && Entry->getBB() == BB)
1021     ExistingResult = &*Entry;
1022
1023   // If we have a cached entry, and it is non-dirty, use it as the value for
1024   // this dependency.
1025   if (ExistingResult && !ExistingResult->getResult().isDirty()) {
1026     ++NumCacheNonLocalPtr;
1027     return ExistingResult->getResult();
1028   }
1029
1030   // Otherwise, we have to scan for the value.  If we have a dirty cache
1031   // entry, start scanning from its position, otherwise we scan from the end
1032   // of the block.
1033   BasicBlock::iterator ScanPos = BB->end();
1034   if (ExistingResult && ExistingResult->getResult().getInst()) {
1035     assert(ExistingResult->getResult().getInst()->getParent() == BB &&
1036            "Instruction invalidated?");
1037     ++NumCacheDirtyNonLocalPtr;
1038     ScanPos = ExistingResult->getResult().getInst()->getIterator();
1039
1040     // Eliminating the dirty entry from 'Cache', so update the reverse info.
1041     ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
1042     RemoveFromReverseMap(ReverseNonLocalPtrDeps, &*ScanPos, CacheKey);
1043   } else {
1044     ++NumUncacheNonLocalPtr;
1045   }
1046
1047   // Scan the block for the dependency.
1048   MemDepResult Dep = getPointerDependencyFrom(Loc, isLoad, ScanPos, BB,
1049                                               QueryInst);
1050
1051   // If we had a dirty entry for the block, update it.  Otherwise, just add
1052   // a new entry.
1053   if (ExistingResult)
1054     ExistingResult->setResult(Dep);
1055   else
1056     Cache->push_back(NonLocalDepEntry(BB, Dep));
1057
1058   // If the block has a dependency (i.e. it isn't completely transparent to
1059   // the value), remember the reverse association because we just added it
1060   // to Cache!
1061   if (!Dep.isDef() && !Dep.isClobber())
1062     return Dep;
1063
1064   // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
1065   // update MemDep when we remove instructions.
1066   Instruction *Inst = Dep.getInst();
1067   assert(Inst && "Didn't depend on anything?");
1068   ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
1069   ReverseNonLocalPtrDeps[Inst].insert(CacheKey);
1070   return Dep;
1071 }
1072
1073 /// SortNonLocalDepInfoCache - Sort the NonLocalDepInfo cache, given a certain
1074 /// number of elements in the array that are already properly ordered.  This is
1075 /// optimized for the case when only a few entries are added.
1076 static void
1077 SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
1078                          unsigned NumSortedEntries) {
1079   switch (Cache.size() - NumSortedEntries) {
1080   case 0:
1081     // done, no new entries.
1082     break;
1083   case 2: {
1084     // Two new entries, insert the last one into place.
1085     NonLocalDepEntry Val = Cache.back();
1086     Cache.pop_back();
1087     MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
1088       std::upper_bound(Cache.begin(), Cache.end()-1, Val);
1089     Cache.insert(Entry, Val);
1090     // FALL THROUGH.
1091   }
1092   case 1:
1093     // One new entry, Just insert the new value at the appropriate position.
1094     if (Cache.size() != 1) {
1095       NonLocalDepEntry Val = Cache.back();
1096       Cache.pop_back();
1097       MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
1098         std::upper_bound(Cache.begin(), Cache.end(), Val);
1099       Cache.insert(Entry, Val);
1100     }
1101     break;
1102   default:
1103     // Added many values, do a full scale sort.
1104     std::sort(Cache.begin(), Cache.end());
1105     break;
1106   }
1107 }
1108
1109 /// getNonLocalPointerDepFromBB - Perform a dependency query based on
1110 /// pointer/pointeesize starting at the end of StartBB.  Add any clobber/def
1111 /// results to the results vector and keep track of which blocks are visited in
1112 /// 'Visited'.
1113 ///
1114 /// This has special behavior for the first block queries (when SkipFirstBlock
1115 /// is true).  In this special case, it ignores the contents of the specified
1116 /// block and starts returning dependence info for its predecessors.
1117 ///
1118 /// This function returns false on success, or true to indicate that it could
1119 /// not compute dependence information for some reason.  This should be treated
1120 /// as a clobber dependence on the first instruction in the predecessor block.
1121 bool MemoryDependenceAnalysis::getNonLocalPointerDepFromBB(
1122     Instruction *QueryInst, const PHITransAddr &Pointer,
1123     const MemoryLocation &Loc, bool isLoad, BasicBlock *StartBB,
1124     SmallVectorImpl<NonLocalDepResult> &Result,
1125     DenseMap<BasicBlock *, Value *> &Visited, bool SkipFirstBlock) {
1126   // Look up the cached info for Pointer.
1127   ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad);
1128
1129   // Set up a temporary NLPI value. If the map doesn't yet have an entry for
1130   // CacheKey, this value will be inserted as the associated value. Otherwise,
1131   // it'll be ignored, and we'll have to check to see if the cached size and
1132   // aa tags are consistent with the current query.
1133   NonLocalPointerInfo InitialNLPI;
1134   InitialNLPI.Size = Loc.Size;
1135   InitialNLPI.AATags = Loc.AATags;
1136
1137   // Get the NLPI for CacheKey, inserting one into the map if it doesn't
1138   // already have one.
1139   std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair =
1140     NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI));
1141   NonLocalPointerInfo *CacheInfo = &Pair.first->second;
1142
1143   // If we already have a cache entry for this CacheKey, we may need to do some
1144   // work to reconcile the cache entry and the current query.
1145   if (!Pair.second) {
1146     if (CacheInfo->Size < Loc.Size) {
1147       // The query's Size is greater than the cached one. Throw out the
1148       // cached data and proceed with the query at the greater size.
1149       CacheInfo->Pair = BBSkipFirstBlockPair();
1150       CacheInfo->Size = Loc.Size;
1151       for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(),
1152            DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI)
1153         if (Instruction *Inst = DI->getResult().getInst())
1154           RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
1155       CacheInfo->NonLocalDeps.clear();
1156     } else if (CacheInfo->Size > Loc.Size) {
1157       // This query's Size is less than the cached one. Conservatively restart
1158       // the query using the greater size.
1159       return getNonLocalPointerDepFromBB(QueryInst, Pointer,
1160                                          Loc.getWithNewSize(CacheInfo->Size),
1161                                          isLoad, StartBB, Result, Visited,
1162                                          SkipFirstBlock);
1163     }
1164
1165     // If the query's AATags are inconsistent with the cached one,
1166     // conservatively throw out the cached data and restart the query with
1167     // no tag if needed.
1168     if (CacheInfo->AATags != Loc.AATags) {
1169       if (CacheInfo->AATags) {
1170         CacheInfo->Pair = BBSkipFirstBlockPair();
1171         CacheInfo->AATags = AAMDNodes();
1172         for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(),
1173              DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI)
1174           if (Instruction *Inst = DI->getResult().getInst())
1175             RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
1176         CacheInfo->NonLocalDeps.clear();
1177       }
1178       if (Loc.AATags)
1179         return getNonLocalPointerDepFromBB(QueryInst,
1180                                            Pointer, Loc.getWithoutAATags(),
1181                                            isLoad, StartBB, Result, Visited,
1182                                            SkipFirstBlock);
1183     }
1184   }
1185
1186   NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps;
1187
1188   // If we have valid cached information for exactly the block we are
1189   // investigating, just return it with no recomputation.
1190   if (CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) {
1191     // We have a fully cached result for this query then we can just return the
1192     // cached results and populate the visited set.  However, we have to verify
1193     // that we don't already have conflicting results for these blocks.  Check
1194     // to ensure that if a block in the results set is in the visited set that
1195     // it was for the same pointer query.
1196     if (!Visited.empty()) {
1197       for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
1198            I != E; ++I) {
1199         DenseMap<BasicBlock*, Value*>::iterator VI = Visited.find(I->getBB());
1200         if (VI == Visited.end() || VI->second == Pointer.getAddr())
1201           continue;
1202
1203         // We have a pointer mismatch in a block.  Just return clobber, saying
1204         // that something was clobbered in this result.  We could also do a
1205         // non-fully cached query, but there is little point in doing this.
1206         return true;
1207       }
1208     }
1209
1210     Value *Addr = Pointer.getAddr();
1211     for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
1212          I != E; ++I) {
1213       Visited.insert(std::make_pair(I->getBB(), Addr));
1214       if (I->getResult().isNonLocal()) {
1215         continue;
1216       }
1217
1218       if (!DT) {
1219         Result.push_back(NonLocalDepResult(I->getBB(),
1220                                            MemDepResult::getUnknown(),
1221                                            Addr));
1222       } else if (DT->isReachableFromEntry(I->getBB())) {
1223         Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(), Addr));
1224       }
1225     }
1226     ++NumCacheCompleteNonLocalPtr;
1227     return false;
1228   }
1229
1230   // Otherwise, either this is a new block, a block with an invalid cache
1231   // pointer or one that we're about to invalidate by putting more info into it
1232   // than its valid cache info.  If empty, the result will be valid cache info,
1233   // otherwise it isn't.
1234   if (Cache->empty())
1235     CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock);
1236   else
1237     CacheInfo->Pair = BBSkipFirstBlockPair();
1238
1239   SmallVector<BasicBlock*, 32> Worklist;
1240   Worklist.push_back(StartBB);
1241
1242   // PredList used inside loop.
1243   SmallVector<std::pair<BasicBlock*, PHITransAddr>, 16> PredList;
1244
1245   // Keep track of the entries that we know are sorted.  Previously cached
1246   // entries will all be sorted.  The entries we add we only sort on demand (we
1247   // don't insert every element into its sorted position).  We know that we
1248   // won't get any reuse from currently inserted values, because we don't
1249   // revisit blocks after we insert info for them.
1250   unsigned NumSortedEntries = Cache->size();
1251   DEBUG(AssertSorted(*Cache));
1252
1253   while (!Worklist.empty()) {
1254     BasicBlock *BB = Worklist.pop_back_val();
1255
1256     // If we do process a large number of blocks it becomes very expensive and
1257     // likely it isn't worth worrying about
1258     if (Result.size() > NumResultsLimit) {
1259       Worklist.clear();
1260       // Sort it now (if needed) so that recursive invocations of
1261       // getNonLocalPointerDepFromBB and other routines that could reuse the
1262       // cache value will only see properly sorted cache arrays.
1263       if (Cache && NumSortedEntries != Cache->size()) {
1264         SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1265       }
1266       // Since we bail out, the "Cache" set won't contain all of the
1267       // results for the query.  This is ok (we can still use it to accelerate
1268       // specific block queries) but we can't do the fastpath "return all
1269       // results from the set".  Clear out the indicator for this.
1270       CacheInfo->Pair = BBSkipFirstBlockPair();
1271       return true;
1272     }
1273
1274     // Skip the first block if we have it.
1275     if (!SkipFirstBlock) {
1276       // Analyze the dependency of *Pointer in FromBB.  See if we already have
1277       // been here.
1278       assert(Visited.count(BB) && "Should check 'visited' before adding to WL");
1279
1280       // Get the dependency info for Pointer in BB.  If we have cached
1281       // information, we will use it, otherwise we compute it.
1282       DEBUG(AssertSorted(*Cache, NumSortedEntries));
1283       MemDepResult Dep = GetNonLocalInfoForBlock(QueryInst,
1284                                                  Loc, isLoad, BB, Cache,
1285                                                  NumSortedEntries);
1286
1287       // If we got a Def or Clobber, add this to the list of results.
1288       if (!Dep.isNonLocal()) {
1289         if (!DT) {
1290           Result.push_back(NonLocalDepResult(BB,
1291                                              MemDepResult::getUnknown(),
1292                                              Pointer.getAddr()));
1293           continue;
1294         } else if (DT->isReachableFromEntry(BB)) {
1295           Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr()));
1296           continue;
1297         }
1298       }
1299     }
1300
1301     // If 'Pointer' is an instruction defined in this block, then we need to do
1302     // phi translation to change it into a value live in the predecessor block.
1303     // If not, we just add the predecessors to the worklist and scan them with
1304     // the same Pointer.
1305     if (!Pointer.NeedsPHITranslationFromBlock(BB)) {
1306       SkipFirstBlock = false;
1307       SmallVector<BasicBlock*, 16> NewBlocks;
1308       for (BasicBlock *Pred : PredCache.get(BB)) {
1309         // Verify that we haven't looked at this block yet.
1310         std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
1311           InsertRes = Visited.insert(std::make_pair(Pred, Pointer.getAddr()));
1312         if (InsertRes.second) {
1313           // First time we've looked at *PI.
1314           NewBlocks.push_back(Pred);
1315           continue;
1316         }
1317
1318         // If we have seen this block before, but it was with a different
1319         // pointer then we have a phi translation failure and we have to treat
1320         // this as a clobber.
1321         if (InsertRes.first->second != Pointer.getAddr()) {
1322           // Make sure to clean up the Visited map before continuing on to
1323           // PredTranslationFailure.
1324           for (unsigned i = 0; i < NewBlocks.size(); i++)
1325             Visited.erase(NewBlocks[i]);
1326           goto PredTranslationFailure;
1327         }
1328       }
1329       Worklist.append(NewBlocks.begin(), NewBlocks.end());
1330       continue;
1331     }
1332
1333     // We do need to do phi translation, if we know ahead of time we can't phi
1334     // translate this value, don't even try.
1335     if (!Pointer.IsPotentiallyPHITranslatable())
1336       goto PredTranslationFailure;
1337
1338     // We may have added values to the cache list before this PHI translation.
1339     // If so, we haven't done anything to ensure that the cache remains sorted.
1340     // Sort it now (if needed) so that recursive invocations of
1341     // getNonLocalPointerDepFromBB and other routines that could reuse the cache
1342     // value will only see properly sorted cache arrays.
1343     if (Cache && NumSortedEntries != Cache->size()) {
1344       SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1345       NumSortedEntries = Cache->size();
1346     }
1347     Cache = nullptr;
1348
1349     PredList.clear();
1350     for (BasicBlock *Pred : PredCache.get(BB)) {
1351       PredList.push_back(std::make_pair(Pred, Pointer));
1352
1353       // Get the PHI translated pointer in this predecessor.  This can fail if
1354       // not translatable, in which case the getAddr() returns null.
1355       PHITransAddr &PredPointer = PredList.back().second;
1356       PredPointer.PHITranslateValue(BB, Pred, DT, /*MustDominate=*/false);
1357       Value *PredPtrVal = PredPointer.getAddr();
1358
1359       // Check to see if we have already visited this pred block with another
1360       // pointer.  If so, we can't do this lookup.  This failure can occur
1361       // with PHI translation when a critical edge exists and the PHI node in
1362       // the successor translates to a pointer value different than the
1363       // pointer the block was first analyzed with.
1364       std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
1365         InsertRes = Visited.insert(std::make_pair(Pred, PredPtrVal));
1366
1367       if (!InsertRes.second) {
1368         // We found the pred; take it off the list of preds to visit.
1369         PredList.pop_back();
1370
1371         // If the predecessor was visited with PredPtr, then we already did
1372         // the analysis and can ignore it.
1373         if (InsertRes.first->second == PredPtrVal)
1374           continue;
1375
1376         // Otherwise, the block was previously analyzed with a different
1377         // pointer.  We can't represent the result of this case, so we just
1378         // treat this as a phi translation failure.
1379
1380         // Make sure to clean up the Visited map before continuing on to
1381         // PredTranslationFailure.
1382         for (unsigned i = 0, n = PredList.size(); i < n; ++i)
1383           Visited.erase(PredList[i].first);
1384
1385         goto PredTranslationFailure;
1386       }
1387     }
1388
1389     // Actually process results here; this need to be a separate loop to avoid
1390     // calling getNonLocalPointerDepFromBB for blocks we don't want to return
1391     // any results for.  (getNonLocalPointerDepFromBB will modify our
1392     // datastructures in ways the code after the PredTranslationFailure label
1393     // doesn't expect.)
1394     for (unsigned i = 0, n = PredList.size(); i < n; ++i) {
1395       BasicBlock *Pred = PredList[i].first;
1396       PHITransAddr &PredPointer = PredList[i].second;
1397       Value *PredPtrVal = PredPointer.getAddr();
1398
1399       bool CanTranslate = true;
1400       // If PHI translation was unable to find an available pointer in this
1401       // predecessor, then we have to assume that the pointer is clobbered in
1402       // that predecessor.  We can still do PRE of the load, which would insert
1403       // a computation of the pointer in this predecessor.
1404       if (!PredPtrVal)
1405         CanTranslate = false;
1406
1407       // FIXME: it is entirely possible that PHI translating will end up with
1408       // the same value.  Consider PHI translating something like:
1409       // X = phi [x, bb1], [y, bb2].  PHI translating for bb1 doesn't *need*
1410       // to recurse here, pedantically speaking.
1411
1412       // If getNonLocalPointerDepFromBB fails here, that means the cached
1413       // result conflicted with the Visited list; we have to conservatively
1414       // assume it is unknown, but this also does not block PRE of the load.
1415       if (!CanTranslate ||
1416           getNonLocalPointerDepFromBB(QueryInst, PredPointer,
1417                                       Loc.getWithNewPtr(PredPtrVal),
1418                                       isLoad, Pred,
1419                                       Result, Visited)) {
1420         // Add the entry to the Result list.
1421         NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal);
1422         Result.push_back(Entry);
1423
1424         // Since we had a phi translation failure, the cache for CacheKey won't
1425         // include all of the entries that we need to immediately satisfy future
1426         // queries.  Mark this in NonLocalPointerDeps by setting the
1427         // BBSkipFirstBlockPair pointer to null.  This requires reuse of the
1428         // cached value to do more work but not miss the phi trans failure.
1429         NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey];
1430         NLPI.Pair = BBSkipFirstBlockPair();
1431         continue;
1432       }
1433     }
1434
1435     // Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
1436     CacheInfo = &NonLocalPointerDeps[CacheKey];
1437     Cache = &CacheInfo->NonLocalDeps;
1438     NumSortedEntries = Cache->size();
1439
1440     // Since we did phi translation, the "Cache" set won't contain all of the
1441     // results for the query.  This is ok (we can still use it to accelerate
1442     // specific block queries) but we can't do the fastpath "return all
1443     // results from the set"  Clear out the indicator for this.
1444     CacheInfo->Pair = BBSkipFirstBlockPair();
1445     SkipFirstBlock = false;
1446     continue;
1447
1448   PredTranslationFailure:
1449     // The following code is "failure"; we can't produce a sane translation
1450     // for the given block.  It assumes that we haven't modified any of
1451     // our datastructures while processing the current block.
1452
1453     if (!Cache) {
1454       // Refresh the CacheInfo/Cache pointer if it got invalidated.
1455       CacheInfo = &NonLocalPointerDeps[CacheKey];
1456       Cache = &CacheInfo->NonLocalDeps;
1457       NumSortedEntries = Cache->size();
1458     }
1459
1460     // Since we failed phi translation, the "Cache" set won't contain all of the
1461     // results for the query.  This is ok (we can still use it to accelerate
1462     // specific block queries) but we can't do the fastpath "return all
1463     // results from the set".  Clear out the indicator for this.
1464     CacheInfo->Pair = BBSkipFirstBlockPair();
1465
1466     // If *nothing* works, mark the pointer as unknown.
1467     //
1468     // If this is the magic first block, return this as a clobber of the whole
1469     // incoming value.  Since we can't phi translate to one of the predecessors,
1470     // we have to bail out.
1471     if (SkipFirstBlock)
1472       return true;
1473
1474     for (NonLocalDepInfo::reverse_iterator I = Cache->rbegin(); ; ++I) {
1475       assert(I != Cache->rend() && "Didn't find current block??");
1476       if (I->getBB() != BB)
1477         continue;
1478
1479       assert((I->getResult().isNonLocal() || !DT->isReachableFromEntry(BB)) &&
1480              "Should only be here with transparent block");
1481       I->setResult(MemDepResult::getUnknown());
1482       Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(),
1483                                          Pointer.getAddr()));
1484       break;
1485     }
1486   }
1487
1488   // Okay, we're done now.  If we added new values to the cache, re-sort it.
1489   SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1490   DEBUG(AssertSorted(*Cache));
1491   return false;
1492 }
1493
1494 /// RemoveCachedNonLocalPointerDependencies - If P exists in
1495 /// CachedNonLocalPointerInfo, remove it.
1496 void MemoryDependenceAnalysis::
1497 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P) {
1498   CachedNonLocalPointerInfo::iterator It =
1499     NonLocalPointerDeps.find(P);
1500   if (It == NonLocalPointerDeps.end()) return;
1501
1502   // Remove all of the entries in the BB->val map.  This involves removing
1503   // instructions from the reverse map.
1504   NonLocalDepInfo &PInfo = It->second.NonLocalDeps;
1505
1506   for (unsigned i = 0, e = PInfo.size(); i != e; ++i) {
1507     Instruction *Target = PInfo[i].getResult().getInst();
1508     if (!Target) continue;  // Ignore non-local dep results.
1509     assert(Target->getParent() == PInfo[i].getBB());
1510
1511     // Eliminating the dirty entry from 'Cache', so update the reverse info.
1512     RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P);
1513   }
1514
1515   // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
1516   NonLocalPointerDeps.erase(It);
1517 }
1518
1519
1520 /// invalidateCachedPointerInfo - This method is used to invalidate cached
1521 /// information about the specified pointer, because it may be too
1522 /// conservative in memdep.  This is an optional call that can be used when
1523 /// the client detects an equivalence between the pointer and some other
1524 /// value and replaces the other value with ptr. This can make Ptr available
1525 /// in more places that cached info does not necessarily keep.
1526 void MemoryDependenceAnalysis::invalidateCachedPointerInfo(Value *Ptr) {
1527   // If Ptr isn't really a pointer, just ignore it.
1528   if (!Ptr->getType()->isPointerTy()) return;
1529   // Flush store info for the pointer.
1530   RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false));
1531   // Flush load info for the pointer.
1532   RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true));
1533 }
1534
1535 /// invalidateCachedPredecessors - Clear the PredIteratorCache info.
1536 /// This needs to be done when the CFG changes, e.g., due to splitting
1537 /// critical edges.
1538 void MemoryDependenceAnalysis::invalidateCachedPredecessors() {
1539   PredCache.clear();
1540 }
1541
1542 /// removeInstruction - Remove an instruction from the dependence analysis,
1543 /// updating the dependence of instructions that previously depended on it.
1544 /// This method attempts to keep the cache coherent using the reverse map.
1545 void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) {
1546   // Walk through the Non-local dependencies, removing this one as the value
1547   // for any cached queries.
1548   NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst);
1549   if (NLDI != NonLocalDeps.end()) {
1550     NonLocalDepInfo &BlockMap = NLDI->second.first;
1551     for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end();
1552          DI != DE; ++DI)
1553       if (Instruction *Inst = DI->getResult().getInst())
1554         RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
1555     NonLocalDeps.erase(NLDI);
1556   }
1557
1558   // If we have a cached local dependence query for this instruction, remove it.
1559   //
1560   LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
1561   if (LocalDepEntry != LocalDeps.end()) {
1562     // Remove us from DepInst's reverse set now that the local dep info is gone.
1563     if (Instruction *Inst = LocalDepEntry->second.getInst())
1564       RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst);
1565
1566     // Remove this local dependency info.
1567     LocalDeps.erase(LocalDepEntry);
1568   }
1569
1570   // If we have any cached pointer dependencies on this instruction, remove
1571   // them.  If the instruction has non-pointer type, then it can't be a pointer
1572   // base.
1573
1574   // Remove it from both the load info and the store info.  The instruction
1575   // can't be in either of these maps if it is non-pointer.
1576   if (RemInst->getType()->isPointerTy()) {
1577     RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false));
1578     RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true));
1579   }
1580
1581   // Loop over all of the things that depend on the instruction we're removing.
1582   //
1583   SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd;
1584
1585   // If we find RemInst as a clobber or Def in any of the maps for other values,
1586   // we need to replace its entry with a dirty version of the instruction after
1587   // it.  If RemInst is a terminator, we use a null dirty value.
1588   //
1589   // Using a dirty version of the instruction after RemInst saves having to scan
1590   // the entire block to get to this point.
1591   MemDepResult NewDirtyVal;
1592   if (!RemInst->isTerminator())
1593     NewDirtyVal = MemDepResult::getDirty(&*++RemInst->getIterator());
1594
1595   ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
1596   if (ReverseDepIt != ReverseLocalDeps.end()) {
1597     // RemInst can't be the terminator if it has local stuff depending on it.
1598     assert(!ReverseDepIt->second.empty() && !isa<TerminatorInst>(RemInst) &&
1599            "Nothing can locally depend on a terminator");
1600
1601     for (Instruction *InstDependingOnRemInst : ReverseDepIt->second) {
1602       assert(InstDependingOnRemInst != RemInst &&
1603              "Already removed our local dep info");
1604
1605       LocalDeps[InstDependingOnRemInst] = NewDirtyVal;
1606
1607       // Make sure to remember that new things depend on NewDepInst.
1608       assert(NewDirtyVal.getInst() && "There is no way something else can have "
1609              "a local dep on this if it is a terminator!");
1610       ReverseDepsToAdd.push_back(std::make_pair(NewDirtyVal.getInst(),
1611                                                 InstDependingOnRemInst));
1612     }
1613
1614     ReverseLocalDeps.erase(ReverseDepIt);
1615
1616     // Add new reverse deps after scanning the set, to avoid invalidating the
1617     // 'ReverseDeps' reference.
1618     while (!ReverseDepsToAdd.empty()) {
1619       ReverseLocalDeps[ReverseDepsToAdd.back().first]
1620         .insert(ReverseDepsToAdd.back().second);
1621       ReverseDepsToAdd.pop_back();
1622     }
1623   }
1624
1625   ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
1626   if (ReverseDepIt != ReverseNonLocalDeps.end()) {
1627     for (Instruction *I : ReverseDepIt->second) {
1628       assert(I != RemInst && "Already removed NonLocalDep info for RemInst");
1629
1630       PerInstNLInfo &INLD = NonLocalDeps[I];
1631       // The information is now dirty!
1632       INLD.second = true;
1633
1634       for (NonLocalDepInfo::iterator DI = INLD.first.begin(),
1635            DE = INLD.first.end(); DI != DE; ++DI) {
1636         if (DI->getResult().getInst() != RemInst) continue;
1637
1638         // Convert to a dirty entry for the subsequent instruction.
1639         DI->setResult(NewDirtyVal);
1640
1641         if (Instruction *NextI = NewDirtyVal.getInst())
1642           ReverseDepsToAdd.push_back(std::make_pair(NextI, I));
1643       }
1644     }
1645
1646     ReverseNonLocalDeps.erase(ReverseDepIt);
1647
1648     // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
1649     while (!ReverseDepsToAdd.empty()) {
1650       ReverseNonLocalDeps[ReverseDepsToAdd.back().first]
1651         .insert(ReverseDepsToAdd.back().second);
1652       ReverseDepsToAdd.pop_back();
1653     }
1654   }
1655
1656   // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
1657   // value in the NonLocalPointerDeps info.
1658   ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
1659     ReverseNonLocalPtrDeps.find(RemInst);
1660   if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
1661     SmallVector<std::pair<Instruction*, ValueIsLoadPair>,8> ReversePtrDepsToAdd;
1662
1663     for (ValueIsLoadPair P : ReversePtrDepIt->second) {
1664       assert(P.getPointer() != RemInst &&
1665              "Already removed NonLocalPointerDeps info for RemInst");
1666
1667       NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps;
1668
1669       // The cache is not valid for any specific block anymore.
1670       NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair();
1671
1672       // Update any entries for RemInst to use the instruction after it.
1673       for (NonLocalDepInfo::iterator DI = NLPDI.begin(), DE = NLPDI.end();
1674            DI != DE; ++DI) {
1675         if (DI->getResult().getInst() != RemInst) continue;
1676
1677         // Convert to a dirty entry for the subsequent instruction.
1678         DI->setResult(NewDirtyVal);
1679
1680         if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
1681           ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
1682       }
1683
1684       // Re-sort the NonLocalDepInfo.  Changing the dirty entry to its
1685       // subsequent value may invalidate the sortedness.
1686       std::sort(NLPDI.begin(), NLPDI.end());
1687     }
1688
1689     ReverseNonLocalPtrDeps.erase(ReversePtrDepIt);
1690
1691     while (!ReversePtrDepsToAdd.empty()) {
1692       ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first]
1693         .insert(ReversePtrDepsToAdd.back().second);
1694       ReversePtrDepsToAdd.pop_back();
1695     }
1696   }
1697
1698
1699   assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?");
1700   DEBUG(verifyRemoved(RemInst));
1701 }
1702 /// verifyRemoved - Verify that the specified instruction does not occur
1703 /// in our internal data structures. This function verifies by asserting in
1704 /// debug builds.
1705 void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const {
1706 #ifndef NDEBUG
1707   for (LocalDepMapType::const_iterator I = LocalDeps.begin(),
1708        E = LocalDeps.end(); I != E; ++I) {
1709     assert(I->first != D && "Inst occurs in data structures");
1710     assert(I->second.getInst() != D &&
1711            "Inst occurs in data structures");
1712   }
1713
1714   for (CachedNonLocalPointerInfo::const_iterator I =NonLocalPointerDeps.begin(),
1715        E = NonLocalPointerDeps.end(); I != E; ++I) {
1716     assert(I->first.getPointer() != D && "Inst occurs in NLPD map key");
1717     const NonLocalDepInfo &Val = I->second.NonLocalDeps;
1718     for (NonLocalDepInfo::const_iterator II = Val.begin(), E = Val.end();
1719          II != E; ++II)
1720       assert(II->getResult().getInst() != D && "Inst occurs as NLPD value");
1721   }
1722
1723   for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(),
1724        E = NonLocalDeps.end(); I != E; ++I) {
1725     assert(I->first != D && "Inst occurs in data structures");
1726     const PerInstNLInfo &INLD = I->second;
1727     for (NonLocalDepInfo::const_iterator II = INLD.first.begin(),
1728          EE = INLD.first.end(); II  != EE; ++II)
1729       assert(II->getResult().getInst() != D && "Inst occurs in data structures");
1730   }
1731
1732   for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(),
1733        E = ReverseLocalDeps.end(); I != E; ++I) {
1734     assert(I->first != D && "Inst occurs in data structures");
1735     for (Instruction *Inst : I->second)
1736       assert(Inst != D && "Inst occurs in data structures");
1737   }
1738
1739   for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(),
1740        E = ReverseNonLocalDeps.end();
1741        I != E; ++I) {
1742     assert(I->first != D && "Inst occurs in data structures");
1743     for (Instruction *Inst : I->second)
1744       assert(Inst != D && "Inst occurs in data structures");
1745   }
1746
1747   for (ReverseNonLocalPtrDepTy::const_iterator
1748        I = ReverseNonLocalPtrDeps.begin(),
1749        E = ReverseNonLocalPtrDeps.end(); I != E; ++I) {
1750     assert(I->first != D && "Inst occurs in rev NLPD map");
1751
1752     for (ValueIsLoadPair P : I->second)
1753       assert(P != ValueIsLoadPair(D, false) &&
1754              P != ValueIsLoadPair(D, true) &&
1755              "Inst occurs in ReverseNonLocalPtrDeps map");
1756   }
1757 #endif
1758 }