ec17f47acb86246d8b6c86e7ff951c83750308a8
[oota-llvm.git] / lib / Analysis / Lint.cpp
1 //===-- Lint.cpp - Check for common errors in LLVM IR ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass statically checks for common and easily-identified constructs
11 // which produce undefined or likely unintended behavior in LLVM IR.
12 //
13 // It is not a guarantee of correctness, in two ways. First, it isn't
14 // comprehensive. There are checks which could be done statically which are
15 // not yet implemented. Some of these are indicated by TODO comments, but
16 // those aren't comprehensive either. Second, many conditions cannot be
17 // checked statically. This pass does no dynamic instrumentation, so it
18 // can't check for all possible problems.
19 // 
20 // Another limitation is that it assumes all code will be executed. A store
21 // through a null pointer in a basic block which is never reached is harmless,
22 // but this pass will warn about it anyway. This is the main reason why most
23 // of these checks live here instead of in the Verifier pass.
24 //
25 // Optimization passes may make conditions that this pass checks for more or
26 // less obvious. If an optimization pass appears to be introducing a warning,
27 // it may be that the optimization pass is merely exposing an existing
28 // condition in the code.
29 // 
30 // This code may be run before instcombine. In many cases, instcombine checks
31 // for the same kinds of things and turns instructions with undefined behavior
32 // into unreachable (or equivalent). Because of this, this pass makes some
33 // effort to look through bitcasts and so on.
34 // 
35 //===----------------------------------------------------------------------===//
36
37 #include "llvm/Analysis/Lint.h"
38 #include "llvm/ADT/STLExtras.h"
39 #include "llvm/Analysis/AliasAnalysis.h"
40 #include "llvm/Analysis/ConstantFolding.h"
41 #include "llvm/Analysis/Dominators.h"
42 #include "llvm/Analysis/InstructionSimplify.h"
43 #include "llvm/Analysis/Loads.h"
44 #include "llvm/Analysis/Passes.h"
45 #include "llvm/Analysis/ValueTracking.h"
46 #include "llvm/Assembly/Writer.h"
47 #include "llvm/IR/DataLayout.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/IR/IntrinsicInst.h"
50 #include "llvm/InstVisitor.h"
51 #include "llvm/Pass.h"
52 #include "llvm/PassManager.h"
53 #include "llvm/Support/CallSite.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/raw_ostream.h"
56 #include "llvm/Target/TargetLibraryInfo.h"
57 using namespace llvm;
58
59 namespace {
60   namespace MemRef {
61     static unsigned Read     = 1;
62     static unsigned Write    = 2;
63     static unsigned Callee   = 4;
64     static unsigned Branchee = 8;
65   }
66
67   class Lint : public FunctionPass, public InstVisitor<Lint> {
68     friend class InstVisitor<Lint>;
69
70     void visitFunction(Function &F);
71
72     void visitCallSite(CallSite CS);
73     void visitMemoryReference(Instruction &I, Value *Ptr,
74                               uint64_t Size, unsigned Align,
75                               Type *Ty, unsigned Flags);
76
77     void visitCallInst(CallInst &I);
78     void visitInvokeInst(InvokeInst &I);
79     void visitReturnInst(ReturnInst &I);
80     void visitLoadInst(LoadInst &I);
81     void visitStoreInst(StoreInst &I);
82     void visitXor(BinaryOperator &I);
83     void visitSub(BinaryOperator &I);
84     void visitLShr(BinaryOperator &I);
85     void visitAShr(BinaryOperator &I);
86     void visitShl(BinaryOperator &I);
87     void visitSDiv(BinaryOperator &I);
88     void visitUDiv(BinaryOperator &I);
89     void visitSRem(BinaryOperator &I);
90     void visitURem(BinaryOperator &I);
91     void visitAllocaInst(AllocaInst &I);
92     void visitVAArgInst(VAArgInst &I);
93     void visitIndirectBrInst(IndirectBrInst &I);
94     void visitExtractElementInst(ExtractElementInst &I);
95     void visitInsertElementInst(InsertElementInst &I);
96     void visitUnreachableInst(UnreachableInst &I);
97
98     Value *findValue(Value *V, bool OffsetOk) const;
99     Value *findValueImpl(Value *V, bool OffsetOk,
100                          SmallPtrSet<Value *, 4> &Visited) const;
101
102   public:
103     Module *Mod;
104     AliasAnalysis *AA;
105     DominatorTree *DT;
106     DataLayout *TD;
107     TargetLibraryInfo *TLI;
108
109     std::string Messages;
110     raw_string_ostream MessagesStr;
111
112     static char ID; // Pass identification, replacement for typeid
113     Lint() : FunctionPass(ID), MessagesStr(Messages) {
114       initializeLintPass(*PassRegistry::getPassRegistry());
115     }
116
117     virtual bool runOnFunction(Function &F);
118
119     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
120       AU.setPreservesAll();
121       AU.addRequired<AliasAnalysis>();
122       AU.addRequired<TargetLibraryInfo>();
123       AU.addRequired<DominatorTree>();
124     }
125     virtual void print(raw_ostream &O, const Module *M) const {}
126
127     void WriteValue(const Value *V) {
128       if (!V) return;
129       if (isa<Instruction>(V)) {
130         MessagesStr << *V << '\n';
131       } else {
132         WriteAsOperand(MessagesStr, V, true, Mod);
133         MessagesStr << '\n';
134       }
135     }
136
137     // CheckFailed - A check failed, so print out the condition and the message
138     // that failed.  This provides a nice place to put a breakpoint if you want
139     // to see why something is not correct.
140     void CheckFailed(const Twine &Message,
141                      const Value *V1 = 0, const Value *V2 = 0,
142                      const Value *V3 = 0, const Value *V4 = 0) {
143       MessagesStr << Message.str() << "\n";
144       WriteValue(V1);
145       WriteValue(V2);
146       WriteValue(V3);
147       WriteValue(V4);
148     }
149   };
150 }
151
152 char Lint::ID = 0;
153 INITIALIZE_PASS_BEGIN(Lint, "lint", "Statically lint-checks LLVM IR",
154                       false, true)
155 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
156 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
157 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
158 INITIALIZE_PASS_END(Lint, "lint", "Statically lint-checks LLVM IR",
159                     false, true)
160
161 // Assert - We know that cond should be true, if not print an error message.
162 #define Assert(C, M) \
163     do { if (!(C)) { CheckFailed(M); return; } } while (0)
164 #define Assert1(C, M, V1) \
165     do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
166 #define Assert2(C, M, V1, V2) \
167     do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
168 #define Assert3(C, M, V1, V2, V3) \
169     do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
170 #define Assert4(C, M, V1, V2, V3, V4) \
171     do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)
172
173 // Lint::run - This is the main Analysis entry point for a
174 // function.
175 //
176 bool Lint::runOnFunction(Function &F) {
177   Mod = F.getParent();
178   AA = &getAnalysis<AliasAnalysis>();
179   DT = &getAnalysis<DominatorTree>();
180   TD = getAnalysisIfAvailable<DataLayout>();
181   TLI = &getAnalysis<TargetLibraryInfo>();
182   visit(F);
183   dbgs() << MessagesStr.str();
184   Messages.clear();
185   return false;
186 }
187
188 void Lint::visitFunction(Function &F) {
189   // This isn't undefined behavior, it's just a little unusual, and it's a
190   // fairly common mistake to neglect to name a function.
191   Assert1(F.hasName() || F.hasLocalLinkage(),
192           "Unusual: Unnamed function with non-local linkage", &F);
193
194   // TODO: Check for irreducible control flow.
195 }
196
197 void Lint::visitCallSite(CallSite CS) {
198   Instruction &I = *CS.getInstruction();
199   Value *Callee = CS.getCalledValue();
200
201   visitMemoryReference(I, Callee, AliasAnalysis::UnknownSize,
202                        0, 0, MemRef::Callee);
203
204   if (Function *F = dyn_cast<Function>(findValue(Callee, /*OffsetOk=*/false))) {
205     Assert1(CS.getCallingConv() == F->getCallingConv(),
206             "Undefined behavior: Caller and callee calling convention differ",
207             &I);
208
209     FunctionType *FT = F->getFunctionType();
210     unsigned NumActualArgs = CS.arg_size();
211
212     Assert1(FT->isVarArg() ?
213               FT->getNumParams() <= NumActualArgs :
214               FT->getNumParams() == NumActualArgs,
215             "Undefined behavior: Call argument count mismatches callee "
216             "argument count", &I);
217
218     Assert1(FT->getReturnType() == I.getType(),
219             "Undefined behavior: Call return type mismatches "
220             "callee return type", &I);
221
222     // Check argument types (in case the callee was casted) and attributes.
223     // TODO: Verify that caller and callee attributes are compatible.
224     Function::arg_iterator PI = F->arg_begin(), PE = F->arg_end();
225     CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
226     for (; AI != AE; ++AI) {
227       Value *Actual = *AI;
228       if (PI != PE) {
229         Argument *Formal = PI++;
230         Assert1(Formal->getType() == Actual->getType(),
231                 "Undefined behavior: Call argument type mismatches "
232                 "callee parameter type", &I);
233
234         // Check that noalias arguments don't alias other arguments. This is
235         // not fully precise because we don't know the sizes of the dereferenced
236         // memory regions.
237         if (Formal->hasNoAliasAttr() && Actual->getType()->isPointerTy())
238           for (CallSite::arg_iterator BI = CS.arg_begin(); BI != AE; ++BI)
239             if (AI != BI && (*BI)->getType()->isPointerTy()) {
240               AliasAnalysis::AliasResult Result = AA->alias(*AI, *BI);
241               Assert1(Result != AliasAnalysis::MustAlias &&
242                       Result != AliasAnalysis::PartialAlias,
243                       "Unusual: noalias argument aliases another argument", &I);
244             }
245
246         // Check that an sret argument points to valid memory.
247         if (Formal->hasStructRetAttr() && Actual->getType()->isPointerTy()) {
248           Type *Ty =
249             cast<PointerType>(Formal->getType())->getElementType();
250           visitMemoryReference(I, Actual, AA->getTypeStoreSize(Ty),
251                                TD ? TD->getABITypeAlignment(Ty) : 0,
252                                Ty, MemRef::Read | MemRef::Write);
253         }
254       }
255     }
256   }
257
258   if (CS.isCall() && cast<CallInst>(CS.getInstruction())->isTailCall())
259     for (CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
260          AI != AE; ++AI) {
261       Value *Obj = findValue(*AI, /*OffsetOk=*/true);
262       Assert1(!isa<AllocaInst>(Obj),
263               "Undefined behavior: Call with \"tail\" keyword references "
264               "alloca", &I);
265     }
266
267
268   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I))
269     switch (II->getIntrinsicID()) {
270     default: break;
271
272     // TODO: Check more intrinsics
273
274     case Intrinsic::memcpy: {
275       MemCpyInst *MCI = cast<MemCpyInst>(&I);
276       // TODO: If the size is known, use it.
277       visitMemoryReference(I, MCI->getDest(), AliasAnalysis::UnknownSize,
278                            MCI->getAlignment(), 0,
279                            MemRef::Write);
280       visitMemoryReference(I, MCI->getSource(), AliasAnalysis::UnknownSize,
281                            MCI->getAlignment(), 0,
282                            MemRef::Read);
283
284       // Check that the memcpy arguments don't overlap. The AliasAnalysis API
285       // isn't expressive enough for what we really want to do. Known partial
286       // overlap is not distinguished from the case where nothing is known.
287       uint64_t Size = 0;
288       if (const ConstantInt *Len =
289             dyn_cast<ConstantInt>(findValue(MCI->getLength(),
290                                             /*OffsetOk=*/false)))
291         if (Len->getValue().isIntN(32))
292           Size = Len->getValue().getZExtValue();
293       Assert1(AA->alias(MCI->getSource(), Size, MCI->getDest(), Size) !=
294               AliasAnalysis::MustAlias,
295               "Undefined behavior: memcpy source and destination overlap", &I);
296       break;
297     }
298     case Intrinsic::memmove: {
299       MemMoveInst *MMI = cast<MemMoveInst>(&I);
300       // TODO: If the size is known, use it.
301       visitMemoryReference(I, MMI->getDest(), AliasAnalysis::UnknownSize,
302                            MMI->getAlignment(), 0,
303                            MemRef::Write);
304       visitMemoryReference(I, MMI->getSource(), AliasAnalysis::UnknownSize,
305                            MMI->getAlignment(), 0,
306                            MemRef::Read);
307       break;
308     }
309     case Intrinsic::memset: {
310       MemSetInst *MSI = cast<MemSetInst>(&I);
311       // TODO: If the size is known, use it.
312       visitMemoryReference(I, MSI->getDest(), AliasAnalysis::UnknownSize,
313                            MSI->getAlignment(), 0,
314                            MemRef::Write);
315       break;
316     }
317
318     case Intrinsic::vastart:
319       Assert1(I.getParent()->getParent()->isVarArg(),
320               "Undefined behavior: va_start called in a non-varargs function",
321               &I);
322
323       visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize,
324                            0, 0, MemRef::Read | MemRef::Write);
325       break;
326     case Intrinsic::vacopy:
327       visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize,
328                            0, 0, MemRef::Write);
329       visitMemoryReference(I, CS.getArgument(1), AliasAnalysis::UnknownSize,
330                            0, 0, MemRef::Read);
331       break;
332     case Intrinsic::vaend:
333       visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize,
334                            0, 0, MemRef::Read | MemRef::Write);
335       break;
336
337     case Intrinsic::stackrestore:
338       // Stackrestore doesn't read or write memory, but it sets the
339       // stack pointer, which the compiler may read from or write to
340       // at any time, so check it for both readability and writeability.
341       visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize,
342                            0, 0, MemRef::Read | MemRef::Write);
343       break;
344     }
345 }
346
347 void Lint::visitCallInst(CallInst &I) {
348   return visitCallSite(&I);
349 }
350
351 void Lint::visitInvokeInst(InvokeInst &I) {
352   return visitCallSite(&I);
353 }
354
355 void Lint::visitReturnInst(ReturnInst &I) {
356   Function *F = I.getParent()->getParent();
357   Assert1(!F->doesNotReturn(),
358           "Unusual: Return statement in function with noreturn attribute",
359           &I);
360
361   if (Value *V = I.getReturnValue()) {
362     Value *Obj = findValue(V, /*OffsetOk=*/true);
363     Assert1(!isa<AllocaInst>(Obj),
364             "Unusual: Returning alloca value", &I);
365   }
366 }
367
368 // TODO: Check that the reference is in bounds.
369 // TODO: Check readnone/readonly function attributes.
370 void Lint::visitMemoryReference(Instruction &I,
371                                 Value *Ptr, uint64_t Size, unsigned Align,
372                                 Type *Ty, unsigned Flags) {
373   // If no memory is being referenced, it doesn't matter if the pointer
374   // is valid.
375   if (Size == 0)
376     return;
377
378   Value *UnderlyingObject = findValue(Ptr, /*OffsetOk=*/true);
379   Assert1(!isa<ConstantPointerNull>(UnderlyingObject),
380           "Undefined behavior: Null pointer dereference", &I);
381   Assert1(!isa<UndefValue>(UnderlyingObject),
382           "Undefined behavior: Undef pointer dereference", &I);
383   Assert1(!isa<ConstantInt>(UnderlyingObject) ||
384           !cast<ConstantInt>(UnderlyingObject)->isAllOnesValue(),
385           "Unusual: All-ones pointer dereference", &I);
386   Assert1(!isa<ConstantInt>(UnderlyingObject) ||
387           !cast<ConstantInt>(UnderlyingObject)->isOne(),
388           "Unusual: Address one pointer dereference", &I);
389
390   if (Flags & MemRef::Write) {
391     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(UnderlyingObject))
392       Assert1(!GV->isConstant(),
393               "Undefined behavior: Write to read-only memory", &I);
394     Assert1(!isa<Function>(UnderlyingObject) &&
395             !isa<BlockAddress>(UnderlyingObject),
396             "Undefined behavior: Write to text section", &I);
397   }
398   if (Flags & MemRef::Read) {
399     Assert1(!isa<Function>(UnderlyingObject),
400             "Unusual: Load from function body", &I);
401     Assert1(!isa<BlockAddress>(UnderlyingObject),
402             "Undefined behavior: Load from block address", &I);
403   }
404   if (Flags & MemRef::Callee) {
405     Assert1(!isa<BlockAddress>(UnderlyingObject),
406             "Undefined behavior: Call to block address", &I);
407   }
408   if (Flags & MemRef::Branchee) {
409     Assert1(!isa<Constant>(UnderlyingObject) ||
410             isa<BlockAddress>(UnderlyingObject),
411             "Undefined behavior: Branch to non-blockaddress", &I);
412   }
413
414   // Check for buffer overflows and misalignment.
415   // Only handles memory references that read/write something simple like an
416   // alloca instruction or a global variable.
417   int64_t Offset = 0;
418   if (Value *Base = GetPointerBaseWithConstantOffset(Ptr, Offset, TD)) {
419     // OK, so the access is to a constant offset from Ptr.  Check that Ptr is
420     // something we can handle and if so extract the size of this base object
421     // along with its alignment.
422     uint64_t BaseSize = AliasAnalysis::UnknownSize;
423     unsigned BaseAlign = 0;
424
425     if (AllocaInst *AI = dyn_cast<AllocaInst>(Base)) {
426       Type *ATy = AI->getAllocatedType();
427       if (TD && !AI->isArrayAllocation() && ATy->isSized())
428         BaseSize = TD->getTypeAllocSize(ATy);
429       BaseAlign = AI->getAlignment();
430       if (TD && BaseAlign == 0 && ATy->isSized())
431         BaseAlign = TD->getABITypeAlignment(ATy);
432     } else if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Base)) {
433       // If the global may be defined differently in another compilation unit
434       // then don't warn about funky memory accesses.
435       if (GV->hasDefinitiveInitializer()) {
436         Type *GTy = GV->getType()->getElementType();
437         if (TD && GTy->isSized())
438           BaseSize = TD->getTypeAllocSize(GTy);
439         BaseAlign = GV->getAlignment();
440         if (TD && BaseAlign == 0 && GTy->isSized())
441           BaseAlign = TD->getABITypeAlignment(GTy);
442       }
443     }
444
445     // Accesses from before the start or after the end of the object are not
446     // defined.
447     Assert1(Size == AliasAnalysis::UnknownSize ||
448             BaseSize == AliasAnalysis::UnknownSize ||
449             (Offset >= 0 && Offset + Size <= BaseSize),
450             "Undefined behavior: Buffer overflow", &I);
451
452     // Accesses that say that the memory is more aligned than it is are not
453     // defined.
454     if (TD && Align == 0 && Ty && Ty->isSized())
455       Align = TD->getABITypeAlignment(Ty);
456     Assert1(!BaseAlign || Align <= MinAlign(BaseAlign, Offset),
457             "Undefined behavior: Memory reference address is misaligned", &I);
458   }
459 }
460
461 void Lint::visitLoadInst(LoadInst &I) {
462   visitMemoryReference(I, I.getPointerOperand(),
463                        AA->getTypeStoreSize(I.getType()), I.getAlignment(),
464                        I.getType(), MemRef::Read);
465 }
466
467 void Lint::visitStoreInst(StoreInst &I) {
468   visitMemoryReference(I, I.getPointerOperand(),
469                        AA->getTypeStoreSize(I.getOperand(0)->getType()),
470                        I.getAlignment(),
471                        I.getOperand(0)->getType(), MemRef::Write);
472 }
473
474 void Lint::visitXor(BinaryOperator &I) {
475   Assert1(!isa<UndefValue>(I.getOperand(0)) ||
476           !isa<UndefValue>(I.getOperand(1)),
477           "Undefined result: xor(undef, undef)", &I);
478 }
479
480 void Lint::visitSub(BinaryOperator &I) {
481   Assert1(!isa<UndefValue>(I.getOperand(0)) ||
482           !isa<UndefValue>(I.getOperand(1)),
483           "Undefined result: sub(undef, undef)", &I);
484 }
485
486 void Lint::visitLShr(BinaryOperator &I) {
487   if (ConstantInt *CI =
488         dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
489     Assert1(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
490             "Undefined result: Shift count out of range", &I);
491 }
492
493 void Lint::visitAShr(BinaryOperator &I) {
494   if (ConstantInt *CI =
495         dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
496     Assert1(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
497             "Undefined result: Shift count out of range", &I);
498 }
499
500 void Lint::visitShl(BinaryOperator &I) {
501   if (ConstantInt *CI =
502         dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
503     Assert1(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
504             "Undefined result: Shift count out of range", &I);
505 }
506
507 static bool isZero(Value *V, DataLayout *DL) {
508   // Assume undef could be zero.
509   if (isa<UndefValue>(V))
510     return true;
511
512   VectorType *VecTy = dyn_cast<VectorType>(V->getType());
513   if (!VecTy) {
514     unsigned BitWidth = V->getType()->getIntegerBitWidth();
515     APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
516     ComputeMaskedBits(V, KnownZero, KnownOne, DL);
517     return KnownZero.isAllOnesValue();
518   }
519
520   // Per-component check doesn't work with zeroinitializer
521   Constant *C = dyn_cast<Constant>(V);
522   if (!C)
523     return false;
524
525   if (C->isZeroValue())
526     return true;
527
528   // For a vector, KnownZero will only be true if all values are zero, so check
529   // this per component
530   unsigned BitWidth = VecTy->getElementType()->getIntegerBitWidth();
531   for (unsigned I = 0, N = VecTy->getNumElements(); I != N; ++I) {
532     Constant *Elem = C->getAggregateElement(I);
533     if (isa<UndefValue>(Elem))
534       return true;
535
536     APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
537     ComputeMaskedBits(Elem, KnownZero, KnownOne, DL);
538     if (KnownZero.isAllOnesValue())
539       return true;
540   }
541
542   return false;
543 }
544
545 void Lint::visitSDiv(BinaryOperator &I) {
546   Assert1(!isZero(I.getOperand(1), TD),
547           "Undefined behavior: Division by zero", &I);
548 }
549
550 void Lint::visitUDiv(BinaryOperator &I) {
551   Assert1(!isZero(I.getOperand(1), TD),
552           "Undefined behavior: Division by zero", &I);
553 }
554
555 void Lint::visitSRem(BinaryOperator &I) {
556   Assert1(!isZero(I.getOperand(1), TD),
557           "Undefined behavior: Division by zero", &I);
558 }
559
560 void Lint::visitURem(BinaryOperator &I) {
561   Assert1(!isZero(I.getOperand(1), TD),
562           "Undefined behavior: Division by zero", &I);
563 }
564
565 void Lint::visitAllocaInst(AllocaInst &I) {
566   if (isa<ConstantInt>(I.getArraySize()))
567     // This isn't undefined behavior, it's just an obvious pessimization.
568     Assert1(&I.getParent()->getParent()->getEntryBlock() == I.getParent(),
569             "Pessimization: Static alloca outside of entry block", &I);
570
571   // TODO: Check for an unusual size (MSB set?)
572 }
573
574 void Lint::visitVAArgInst(VAArgInst &I) {
575   visitMemoryReference(I, I.getOperand(0), AliasAnalysis::UnknownSize, 0, 0,
576                        MemRef::Read | MemRef::Write);
577 }
578
579 void Lint::visitIndirectBrInst(IndirectBrInst &I) {
580   visitMemoryReference(I, I.getAddress(), AliasAnalysis::UnknownSize, 0, 0,
581                        MemRef::Branchee);
582
583   Assert1(I.getNumDestinations() != 0,
584           "Undefined behavior: indirectbr with no destinations", &I);
585 }
586
587 void Lint::visitExtractElementInst(ExtractElementInst &I) {
588   if (ConstantInt *CI =
589         dyn_cast<ConstantInt>(findValue(I.getIndexOperand(),
590                                         /*OffsetOk=*/false)))
591     Assert1(CI->getValue().ult(I.getVectorOperandType()->getNumElements()),
592             "Undefined result: extractelement index out of range", &I);
593 }
594
595 void Lint::visitInsertElementInst(InsertElementInst &I) {
596   if (ConstantInt *CI =
597         dyn_cast<ConstantInt>(findValue(I.getOperand(2),
598                                         /*OffsetOk=*/false)))
599     Assert1(CI->getValue().ult(I.getType()->getNumElements()),
600             "Undefined result: insertelement index out of range", &I);
601 }
602
603 void Lint::visitUnreachableInst(UnreachableInst &I) {
604   // This isn't undefined behavior, it's merely suspicious.
605   Assert1(&I == I.getParent()->begin() ||
606           prior(BasicBlock::iterator(&I))->mayHaveSideEffects(),
607           "Unusual: unreachable immediately preceded by instruction without "
608           "side effects", &I);
609 }
610
611 /// findValue - Look through bitcasts and simple memory reference patterns
612 /// to identify an equivalent, but more informative, value.  If OffsetOk
613 /// is true, look through getelementptrs with non-zero offsets too.
614 ///
615 /// Most analysis passes don't require this logic, because instcombine
616 /// will simplify most of these kinds of things away. But it's a goal of
617 /// this Lint pass to be useful even on non-optimized IR.
618 Value *Lint::findValue(Value *V, bool OffsetOk) const {
619   SmallPtrSet<Value *, 4> Visited;
620   return findValueImpl(V, OffsetOk, Visited);
621 }
622
623 /// findValueImpl - Implementation helper for findValue.
624 Value *Lint::findValueImpl(Value *V, bool OffsetOk,
625                            SmallPtrSet<Value *, 4> &Visited) const {
626   // Detect self-referential values.
627   if (!Visited.insert(V))
628     return UndefValue::get(V->getType());
629
630   // TODO: Look through sext or zext cast, when the result is known to
631   // be interpreted as signed or unsigned, respectively.
632   // TODO: Look through eliminable cast pairs.
633   // TODO: Look through calls with unique return values.
634   // TODO: Look through vector insert/extract/shuffle.
635   V = OffsetOk ? GetUnderlyingObject(V, TD) : V->stripPointerCasts();
636   if (LoadInst *L = dyn_cast<LoadInst>(V)) {
637     BasicBlock::iterator BBI = L;
638     BasicBlock *BB = L->getParent();
639     SmallPtrSet<BasicBlock *, 4> VisitedBlocks;
640     for (;;) {
641       if (!VisitedBlocks.insert(BB)) break;
642       if (Value *U = FindAvailableLoadedValue(L->getPointerOperand(),
643                                               BB, BBI, 6, AA))
644         return findValueImpl(U, OffsetOk, Visited);
645       if (BBI != BB->begin()) break;
646       BB = BB->getUniquePredecessor();
647       if (!BB) break;
648       BBI = BB->end();
649     }
650   } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
651     if (Value *W = PN->hasConstantValue())
652       if (W != V)
653         return findValueImpl(W, OffsetOk, Visited);
654   } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
655     if (CI->isNoopCast(TD ? TD->getIntPtrType(V->getContext()) :
656                             Type::getInt64Ty(V->getContext())))
657       return findValueImpl(CI->getOperand(0), OffsetOk, Visited);
658   } else if (ExtractValueInst *Ex = dyn_cast<ExtractValueInst>(V)) {
659     if (Value *W = FindInsertedValue(Ex->getAggregateOperand(),
660                                      Ex->getIndices()))
661       if (W != V)
662         return findValueImpl(W, OffsetOk, Visited);
663   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
664     // Same as above, but for ConstantExpr instead of Instruction.
665     if (Instruction::isCast(CE->getOpcode())) {
666       if (CastInst::isNoopCast(Instruction::CastOps(CE->getOpcode()),
667                                CE->getOperand(0)->getType(),
668                                CE->getType(),
669                                TD ? TD->getIntPtrType(V->getContext()) :
670                                     Type::getInt64Ty(V->getContext())))
671         return findValueImpl(CE->getOperand(0), OffsetOk, Visited);
672     } else if (CE->getOpcode() == Instruction::ExtractValue) {
673       ArrayRef<unsigned> Indices = CE->getIndices();
674       if (Value *W = FindInsertedValue(CE->getOperand(0), Indices))
675         if (W != V)
676           return findValueImpl(W, OffsetOk, Visited);
677     }
678   }
679
680   // As a last resort, try SimplifyInstruction or constant folding.
681   if (Instruction *Inst = dyn_cast<Instruction>(V)) {
682     if (Value *W = SimplifyInstruction(Inst, TD, TLI, DT))
683       return findValueImpl(W, OffsetOk, Visited);
684   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
685     if (Value *W = ConstantFoldConstantExpression(CE, TD, TLI))
686       if (W != V)
687         return findValueImpl(W, OffsetOk, Visited);
688   }
689
690   return V;
691 }
692
693 //===----------------------------------------------------------------------===//
694 //  Implement the public interfaces to this file...
695 //===----------------------------------------------------------------------===//
696
697 FunctionPass *llvm::createLintPass() {
698   return new Lint();
699 }
700
701 /// lintFunction - Check a function for errors, printing messages on stderr.
702 ///
703 void llvm::lintFunction(const Function &f) {
704   Function &F = const_cast<Function&>(f);
705   assert(!F.isDeclaration() && "Cannot lint external functions");
706
707   FunctionPassManager FPM(F.getParent());
708   Lint *V = new Lint();
709   FPM.add(V);
710   FPM.run(F);
711 }
712
713 /// lintModule - Check a module for errors, printing messages on stderr.
714 ///
715 void llvm::lintModule(const Module &M) {
716   PassManager PM;
717   Lint *V = new Lint();
718   PM.add(V);
719   PM.run(const_cast<Module&>(M));
720 }