1 //===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This simple pass provides alias and mod/ref information for global values
11 // that do not have their address taken, and keeps track of whether functions
12 // read or write memory (are "pure"). For this simple (but very common) case,
13 // we can provide pretty accurate and useful information.
15 //===----------------------------------------------------------------------===//
17 #include "llvm/Analysis/Passes.h"
18 #include "llvm/ADT/SCCIterator.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/CallGraph.h"
23 #include "llvm/Analysis/MemoryBuiltins.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/InstIterator.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/IntrinsicInst.h"
30 #include "llvm/IR/Module.h"
31 #include "llvm/Pass.h"
32 #include "llvm/Support/CommandLine.h"
36 #define DEBUG_TYPE "globalsmodref-aa"
38 STATISTIC(NumNonAddrTakenGlobalVars,
39 "Number of global vars without address taken");
40 STATISTIC(NumNonAddrTakenFunctions,"Number of functions without address taken");
41 STATISTIC(NumNoMemFunctions, "Number of functions that do not access memory");
42 STATISTIC(NumReadMemFunctions, "Number of functions that only read memory");
43 STATISTIC(NumIndirectGlobalVars, "Number of indirect global objects");
45 // An option to enable unsafe alias results from the GlobalsModRef analysis.
46 // When enabled, GlobalsModRef will provide no-alias results which in extremely
47 // rare cases may not be conservatively correct. In particular, in the face of
48 // transforms which cause assymetry between how effective GetUnderlyingObject
49 // is for two pointers, it may produce incorrect results.
51 // These unsafe results have been returned by GMR for many years without
52 // causing significant issues in the wild and so we provide a mechanism to
53 // re-enable them for users of LLVM that have a particular performance
54 // sensitivity and no known issues. The option also makes it easy to evaluate
55 // the performance impact of these results.
56 static cl::opt<bool> EnableUnsafeGlobalsModRefAliasResults(
57 "enable-unsafe-globalsmodref-alias-results", cl::init(false), cl::Hidden);
60 /// The mod/ref information collected for a particular function.
62 /// We collect information about mod/ref behavior of a function here, both in
63 /// general and as pertains to specific globals. We only have this detailed
64 /// information when we know *something* useful about the behavior. If we
65 /// saturate to fully general mod/ref, we remove the info for the function.
67 typedef SmallDenseMap<const GlobalValue *, ModRefInfo, 16> GlobalInfoMapType;
69 /// Build a wrapper struct that has 8-byte alignment. All heap allocations
70 /// should provide this much alignment at least, but this makes it clear we
71 /// specifically rely on this amount of alignment.
72 struct LLVM_ALIGNAS(8) AlignedMap {
74 AlignedMap(const AlignedMap &Arg) : Map(Arg.Map) {}
75 GlobalInfoMapType Map;
78 /// Pointer traits for our aligned map.
79 struct AlignedMapPointerTraits {
80 static inline void *getAsVoidPointer(AlignedMap *P) { return P; }
81 static inline AlignedMap *getFromVoidPointer(void *P) {
82 return (AlignedMap *)P;
84 enum { NumLowBitsAvailable = 3 };
85 static_assert(AlignOf<AlignedMap>::Alignment >= (1 << NumLowBitsAvailable),
86 "AlignedMap insufficiently aligned to have enough low bits.");
89 /// The bit that flags that this function may read any global. This is
90 /// chosen to mix together with ModRefInfo bits.
91 enum { MayReadAnyGlobal = 4 };
93 /// Checks to document the invariants of the bit packing here.
94 static_assert((MayReadAnyGlobal & MRI_ModRef) == 0,
95 "ModRef and the MayReadAnyGlobal flag bits overlap.");
96 static_assert(((MayReadAnyGlobal | MRI_ModRef) >>
97 AlignedMapPointerTraits::NumLowBitsAvailable) == 0,
98 "Insufficient low bits to store our flag and ModRef info.");
101 FunctionInfo() : Info() {}
103 delete Info.getPointer();
105 // Spell out the copy ond move constructors and assignment operators to get
106 // deep copy semantics and correct move semantics in the face of the
108 FunctionInfo(const FunctionInfo &Arg)
109 : Info(nullptr, Arg.Info.getInt()) {
110 if (const auto *ArgPtr = Arg.Info.getPointer())
111 Info.setPointer(new AlignedMap(*ArgPtr));
113 FunctionInfo(FunctionInfo &&Arg)
114 : Info(Arg.Info.getPointer(), Arg.Info.getInt()) {
115 Arg.Info.setPointerAndInt(nullptr, 0);
117 FunctionInfo &operator=(const FunctionInfo &RHS) {
118 delete Info.getPointer();
119 Info.setPointerAndInt(nullptr, RHS.Info.getInt());
120 if (const auto *RHSPtr = RHS.Info.getPointer())
121 Info.setPointer(new AlignedMap(*RHSPtr));
124 FunctionInfo &operator=(FunctionInfo &&RHS) {
125 delete Info.getPointer();
126 Info.setPointerAndInt(RHS.Info.getPointer(), RHS.Info.getInt());
127 RHS.Info.setPointerAndInt(nullptr, 0);
131 /// Returns the \c ModRefInfo info for this function.
132 ModRefInfo getModRefInfo() const {
133 return ModRefInfo(Info.getInt() & MRI_ModRef);
136 /// Adds new \c ModRefInfo for this function to its state.
137 void addModRefInfo(ModRefInfo NewMRI) {
138 Info.setInt(Info.getInt() | NewMRI);
141 /// Returns whether this function may read any global variable, and we don't
142 /// know which global.
143 bool mayReadAnyGlobal() const { return Info.getInt() & MayReadAnyGlobal; }
145 /// Sets this function as potentially reading from any global.
146 void setMayReadAnyGlobal() { Info.setInt(Info.getInt() | MayReadAnyGlobal); }
148 /// Returns the \c ModRefInfo info for this function w.r.t. a particular
149 /// global, which may be more precise than the general information above.
150 ModRefInfo getModRefInfoForGlobal(const GlobalValue &GV) const {
151 ModRefInfo GlobalMRI = mayReadAnyGlobal() ? MRI_Ref : MRI_NoModRef;
152 if (AlignedMap *P = Info.getPointer()) {
153 auto I = P->Map.find(&GV);
154 if (I != P->Map.end())
155 GlobalMRI = ModRefInfo(GlobalMRI | I->second);
160 /// Add mod/ref info from another function into ours, saturating towards
162 void addFunctionInfo(const FunctionInfo &FI) {
163 addModRefInfo(FI.getModRefInfo());
165 if (FI.mayReadAnyGlobal())
166 setMayReadAnyGlobal();
168 if (AlignedMap *P = FI.Info.getPointer())
169 for (const auto &G : P->Map)
170 addModRefInfoForGlobal(*G.first, G.second);
173 void addModRefInfoForGlobal(const GlobalValue &GV, ModRefInfo NewMRI) {
174 AlignedMap *P = Info.getPointer();
176 P = new AlignedMap();
179 auto &GlobalMRI = P->Map[&GV];
180 GlobalMRI = ModRefInfo(GlobalMRI | NewMRI);
183 /// Clear a global's ModRef info. Should be used when a global is being
185 void eraseModRefInfoForGlobal(const GlobalValue &GV) {
186 if (AlignedMap *P = Info.getPointer())
191 /// All of the information is encoded into a single pointer, with a three bit
192 /// integer in the low three bits. The high bit provides a flag for when this
193 /// function may read any global. The low two bits are the ModRefInfo. And
194 /// the pointer, when non-null, points to a map from GlobalValue to
195 /// ModRefInfo specific to that GlobalValue.
196 PointerIntPair<AlignedMap *, 3, unsigned, AlignedMapPointerTraits> Info;
199 /// GlobalsModRef - The actual analysis pass.
200 class GlobalsModRef : public ModulePass, public AliasAnalysis {
201 /// The globals that do not have their addresses taken.
202 SmallPtrSet<const GlobalValue *, 8> NonAddressTakenGlobals;
204 /// IndirectGlobals - The memory pointed to by this global is known to be
205 /// 'owned' by the global.
206 SmallPtrSet<const GlobalValue *, 8> IndirectGlobals;
208 /// AllocsForIndirectGlobals - If an instruction allocates memory for an
209 /// indirect global, this map indicates which one.
210 DenseMap<const Value *, const GlobalValue *> AllocsForIndirectGlobals;
212 /// For each function, keep track of what globals are modified or read.
213 DenseMap<const Function *, FunctionInfo> FunctionInfos;
215 /// Handle to clear this analysis on deletion of values.
216 struct DeletionCallbackHandle final : CallbackVH {
218 std::list<DeletionCallbackHandle>::iterator I;
220 DeletionCallbackHandle(GlobalsModRef &GMR, Value *V)
221 : CallbackVH(V), GMR(GMR) {}
223 void deleted() override {
224 Value *V = getValPtr();
225 if (auto *F = dyn_cast<Function>(V))
226 GMR.FunctionInfos.erase(F);
228 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
229 if (GMR.NonAddressTakenGlobals.erase(GV)) {
230 // This global might be an indirect global. If so, remove it and
231 // remove any AllocRelatedValues for it.
232 if (GMR.IndirectGlobals.erase(GV)) {
233 // Remove any entries in AllocsForIndirectGlobals for this global.
234 for (auto I = GMR.AllocsForIndirectGlobals.begin(),
235 E = GMR.AllocsForIndirectGlobals.end();
238 GMR.AllocsForIndirectGlobals.erase(I);
241 // Scan the function info we have collected and remove this global
243 for (auto &FIPair : GMR.FunctionInfos)
244 FIPair.second.eraseModRefInfoForGlobal(*GV);
248 // If this is an allocation related to an indirect global, remove it.
249 GMR.AllocsForIndirectGlobals.erase(V);
251 // And clear out the handle.
253 GMR.Handles.erase(I);
254 // This object is now destroyed!
258 /// List of callbacks for globals being tracked by this analysis. Note that
259 /// these objects are quite large, but we only anticipate having one per
260 /// global tracked by this analysis. There are numerous optimizations we
261 /// could perform to the memory utilization here if this becomes a problem.
262 std::list<DeletionCallbackHandle> Handles;
266 GlobalsModRef() : ModulePass(ID) {
267 initializeGlobalsModRefPass(*PassRegistry::getPassRegistry());
270 bool runOnModule(Module &M) override {
271 InitializeAliasAnalysis(this, &M.getDataLayout());
273 // Find non-addr taken globals.
277 AnalyzeCallGraph(getAnalysis<CallGraphWrapperPass>().getCallGraph(), M);
281 void getAnalysisUsage(AnalysisUsage &AU) const override {
282 AliasAnalysis::getAnalysisUsage(AU);
283 AU.addRequired<CallGraphWrapperPass>();
284 AU.setPreservesAll(); // Does not transform code
287 /// getAdjustedAnalysisPointer - This method is used when a pass implements
288 /// an analysis interface through multiple inheritance. If needed, it
289 /// should override this to adjust the this pointer as needed for the
290 /// specified pass info.
291 void *getAdjustedAnalysisPointer(AnalysisID PI) override {
292 if (PI == &AliasAnalysis::ID)
293 return (AliasAnalysis *)this;
297 //------------------------------------------------
298 // Implement the AliasAnalysis API
300 AliasResult alias(const MemoryLocation &LocA,
301 const MemoryLocation &LocB) override;
302 ModRefInfo getModRefInfo(ImmutableCallSite CS,
303 const MemoryLocation &Loc) override;
304 ModRefInfo getModRefInfo(ImmutableCallSite CS1,
305 ImmutableCallSite CS2) override {
306 return AliasAnalysis::getModRefInfo(CS1, CS2);
309 /// getModRefBehavior - Return the behavior of the specified function if
310 /// called from the specified call site. The call site may be null in which
311 /// case the most generic behavior of this function should be returned.
312 FunctionModRefBehavior getModRefBehavior(const Function *F) override {
313 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
315 if (FunctionInfo *FI = getFunctionInfo(F)) {
316 if (FI->getModRefInfo() == MRI_NoModRef)
317 Min = FMRB_DoesNotAccessMemory;
318 else if ((FI->getModRefInfo() & MRI_Mod) == 0)
319 Min = FMRB_OnlyReadsMemory;
322 return FunctionModRefBehavior(AliasAnalysis::getModRefBehavior(F) & Min);
325 /// getModRefBehavior - Return the behavior of the specified function if
326 /// called from the specified call site. The call site may be null in which
327 /// case the most generic behavior of this function should be returned.
328 FunctionModRefBehavior getModRefBehavior(ImmutableCallSite CS) override {
329 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
331 if (const Function *F = CS.getCalledFunction())
332 if (FunctionInfo *FI = getFunctionInfo(F)) {
333 if (FI->getModRefInfo() == MRI_NoModRef)
334 Min = FMRB_DoesNotAccessMemory;
335 else if ((FI->getModRefInfo() & MRI_Mod) == 0)
336 Min = FMRB_OnlyReadsMemory;
339 return FunctionModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min);
343 /// Returns the function info for the function, or null if we don't have
344 /// anything useful to say about it.
345 FunctionInfo *getFunctionInfo(const Function *F) {
346 auto I = FunctionInfos.find(F);
347 if (I != FunctionInfos.end())
352 void AnalyzeGlobals(Module &M);
353 void AnalyzeCallGraph(CallGraph &CG, Module &M);
354 bool AnalyzeUsesOfPointer(Value *V,
355 SmallPtrSetImpl<Function *> *Readers = nullptr,
356 SmallPtrSetImpl<Function *> *Writers = nullptr,
357 GlobalValue *OkayStoreDest = nullptr);
358 bool AnalyzeIndirectGlobalMemory(GlobalValue *GV);
360 bool isNonEscapingGlobalNoAlias(const GlobalValue *GV, const Value *V);
364 char GlobalsModRef::ID = 0;
365 INITIALIZE_AG_PASS_BEGIN(GlobalsModRef, AliasAnalysis, "globalsmodref-aa",
366 "Simple mod/ref analysis for globals", false, true,
368 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
369 INITIALIZE_AG_PASS_END(GlobalsModRef, AliasAnalysis, "globalsmodref-aa",
370 "Simple mod/ref analysis for globals", false, true,
373 Pass *llvm::createGlobalsModRefPass() { return new GlobalsModRef(); }
375 /// AnalyzeGlobals - Scan through the users of all of the internal
376 /// GlobalValue's in the program. If none of them have their "address taken"
377 /// (really, their address passed to something nontrivial), record this fact,
378 /// and record the functions that they are used directly in.
379 void GlobalsModRef::AnalyzeGlobals(Module &M) {
380 SmallPtrSet<Function *, 64> TrackedFunctions;
381 for (Function &F : M)
382 if (F.hasLocalLinkage())
383 if (!AnalyzeUsesOfPointer(&F)) {
384 // Remember that we are tracking this global.
385 NonAddressTakenGlobals.insert(&F);
386 TrackedFunctions.insert(&F);
387 Handles.emplace_front(*this, &F);
388 Handles.front().I = Handles.begin();
389 ++NumNonAddrTakenFunctions;
392 SmallPtrSet<Function *, 64> Readers, Writers;
393 for (GlobalVariable &GV : M.globals())
394 if (GV.hasLocalLinkage()) {
395 if (!AnalyzeUsesOfPointer(&GV, &Readers,
396 GV.isConstant() ? nullptr : &Writers)) {
397 // Remember that we are tracking this global, and the mod/ref fns
398 NonAddressTakenGlobals.insert(&GV);
399 Handles.emplace_front(*this, &GV);
400 Handles.front().I = Handles.begin();
402 for (Function *Reader : Readers) {
403 if (TrackedFunctions.insert(Reader).second) {
404 Handles.emplace_front(*this, Reader);
405 Handles.front().I = Handles.begin();
407 FunctionInfos[Reader].addModRefInfoForGlobal(GV, MRI_Ref);
410 if (!GV.isConstant()) // No need to keep track of writers to constants
411 for (Function *Writer : Writers) {
412 if (TrackedFunctions.insert(Writer).second) {
413 Handles.emplace_front(*this, Writer);
414 Handles.front().I = Handles.begin();
416 FunctionInfos[Writer].addModRefInfoForGlobal(GV, MRI_Mod);
418 ++NumNonAddrTakenGlobalVars;
420 // If this global holds a pointer type, see if it is an indirect global.
421 if (GV.getType()->getElementType()->isPointerTy() &&
422 AnalyzeIndirectGlobalMemory(&GV))
423 ++NumIndirectGlobalVars;
430 /// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer.
431 /// If this is used by anything complex (i.e., the address escapes), return
432 /// true. Also, while we are at it, keep track of those functions that read and
433 /// write to the value.
435 /// If OkayStoreDest is non-null, stores into this global are allowed.
436 bool GlobalsModRef::AnalyzeUsesOfPointer(Value *V,
437 SmallPtrSetImpl<Function *> *Readers,
438 SmallPtrSetImpl<Function *> *Writers,
439 GlobalValue *OkayStoreDest) {
440 if (!V->getType()->isPointerTy())
443 for (Use &U : V->uses()) {
444 User *I = U.getUser();
445 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
447 Readers->insert(LI->getParent()->getParent());
448 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
449 if (V == SI->getOperand(1)) {
451 Writers->insert(SI->getParent()->getParent());
452 } else if (SI->getOperand(1) != OkayStoreDest) {
453 return true; // Storing the pointer
455 } else if (Operator::getOpcode(I) == Instruction::GetElementPtr) {
456 if (AnalyzeUsesOfPointer(I, Readers, Writers))
458 } else if (Operator::getOpcode(I) == Instruction::BitCast) {
459 if (AnalyzeUsesOfPointer(I, Readers, Writers, OkayStoreDest))
461 } else if (auto CS = CallSite(I)) {
462 // Make sure that this is just the function being called, not that it is
463 // passing into the function.
464 if (!CS.isCallee(&U)) {
465 // Detect calls to free.
466 if (isFreeCall(I, TLI)) {
468 Writers->insert(CS->getParent()->getParent());
470 return true; // Argument of an unknown call.
473 } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) {
474 if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
475 return true; // Allow comparison against null.
484 /// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable
485 /// which holds a pointer type. See if the global always points to non-aliased
486 /// heap memory: that is, all initializers of the globals are allocations, and
487 /// those allocations have no use other than initialization of the global.
488 /// Further, all loads out of GV must directly use the memory, not store the
489 /// pointer somewhere. If this is true, we consider the memory pointed to by
490 /// GV to be owned by GV and can disambiguate other pointers from it.
491 bool GlobalsModRef::AnalyzeIndirectGlobalMemory(GlobalValue *GV) {
492 // Keep track of values related to the allocation of the memory, f.e. the
493 // value produced by the malloc call and any casts.
494 std::vector<Value *> AllocRelatedValues;
496 // Walk the user list of the global. If we find anything other than a direct
497 // load or store, bail out.
498 for (User *U : GV->users()) {
499 if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
500 // The pointer loaded from the global can only be used in simple ways:
501 // we allow addressing of it and loading storing to it. We do *not* allow
502 // storing the loaded pointer somewhere else or passing to a function.
503 if (AnalyzeUsesOfPointer(LI))
504 return false; // Loaded pointer escapes.
505 // TODO: Could try some IP mod/ref of the loaded pointer.
506 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
507 // Storing the global itself.
508 if (SI->getOperand(0) == GV)
511 // If storing the null pointer, ignore it.
512 if (isa<ConstantPointerNull>(SI->getOperand(0)))
515 // Check the value being stored.
516 Value *Ptr = GetUnderlyingObject(SI->getOperand(0),
517 GV->getParent()->getDataLayout());
519 if (!isAllocLikeFn(Ptr, TLI))
520 return false; // Too hard to analyze.
522 // Analyze all uses of the allocation. If any of them are used in a
523 // non-simple way (e.g. stored to another global) bail out.
524 if (AnalyzeUsesOfPointer(Ptr, /*Readers*/ nullptr, /*Writers*/ nullptr,
526 return false; // Loaded pointer escapes.
528 // Remember that this allocation is related to the indirect global.
529 AllocRelatedValues.push_back(Ptr);
531 // Something complex, bail out.
536 // Okay, this is an indirect global. Remember all of the allocations for
537 // this global in AllocsForIndirectGlobals.
538 while (!AllocRelatedValues.empty()) {
539 AllocsForIndirectGlobals[AllocRelatedValues.back()] = GV;
540 Handles.emplace_front(*this, AllocRelatedValues.back());
541 Handles.front().I = Handles.begin();
542 AllocRelatedValues.pop_back();
544 IndirectGlobals.insert(GV);
545 Handles.emplace_front(*this, GV);
546 Handles.front().I = Handles.begin();
550 /// AnalyzeCallGraph - At this point, we know the functions where globals are
551 /// immediately stored to and read from. Propagate this information up the call
552 /// graph to all callers and compute the mod/ref info for all memory for each
554 void GlobalsModRef::AnalyzeCallGraph(CallGraph &CG, Module &M) {
555 // We do a bottom-up SCC traversal of the call graph. In other words, we
556 // visit all callees before callers (leaf-first).
557 for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
558 const std::vector<CallGraphNode *> &SCC = *I;
559 assert(!SCC.empty() && "SCC with no functions?");
561 if (!SCC[0]->getFunction()) {
562 // Calls externally - can't say anything useful. Remove any existing
563 // function records (may have been created when scanning globals).
564 for (auto *Node : SCC)
565 FunctionInfos.erase(Node->getFunction());
569 FunctionInfo &FI = FunctionInfos[SCC[0]->getFunction()];
570 bool KnowNothing = false;
572 // Collect the mod/ref properties due to called functions. We only compute
574 for (unsigned i = 0, e = SCC.size(); i != e && !KnowNothing; ++i) {
575 Function *F = SCC[i]->getFunction();
581 if (F->isDeclaration()) {
582 // Try to get mod/ref behaviour from function attributes.
583 if (F->doesNotAccessMemory()) {
584 // Can't do better than that!
585 } else if (F->onlyReadsMemory()) {
586 FI.addModRefInfo(MRI_Ref);
587 if (!F->isIntrinsic())
588 // This function might call back into the module and read a global -
589 // consider every global as possibly being read by this function.
590 FI.setMayReadAnyGlobal();
592 FI.addModRefInfo(MRI_ModRef);
593 // Can't say anything useful unless it's an intrinsic - they don't
594 // read or write global variables of the kind considered here.
595 KnowNothing = !F->isIntrinsic();
600 for (CallGraphNode::iterator CI = SCC[i]->begin(), E = SCC[i]->end();
601 CI != E && !KnowNothing; ++CI)
602 if (Function *Callee = CI->second->getFunction()) {
603 if (FunctionInfo *CalleeFI = getFunctionInfo(Callee)) {
604 // Propagate function effect up.
605 FI.addFunctionInfo(*CalleeFI);
607 // Can't say anything about it. However, if it is inside our SCC,
608 // then nothing needs to be done.
609 CallGraphNode *CalleeNode = CG[Callee];
610 if (std::find(SCC.begin(), SCC.end(), CalleeNode) == SCC.end())
618 // If we can't say anything useful about this SCC, remove all SCC functions
619 // from the FunctionInfos map.
621 for (auto *Node : SCC)
622 FunctionInfos.erase(Node->getFunction());
626 // Scan the function bodies for explicit loads or stores.
627 for (auto *Node : SCC) {
628 if (FI.getModRefInfo() == MRI_ModRef)
629 break; // The mod/ref lattice saturates here.
630 for (Instruction &I : instructions(Node->getFunction())) {
631 if (FI.getModRefInfo() == MRI_ModRef)
632 break; // The mod/ref lattice saturates here.
634 // We handle calls specially because the graph-relevant aspects are
636 if (auto CS = CallSite(&I)) {
637 if (isAllocationFn(&I, TLI) || isFreeCall(&I, TLI)) {
638 // FIXME: It is completely unclear why this is necessary and not
639 // handled by the above graph code.
640 FI.addModRefInfo(MRI_ModRef);
641 } else if (Function *Callee = CS.getCalledFunction()) {
642 // The callgraph doesn't include intrinsic calls.
643 if (Callee->isIntrinsic()) {
644 FunctionModRefBehavior Behaviour =
645 AliasAnalysis::getModRefBehavior(Callee);
646 FI.addModRefInfo(ModRefInfo(Behaviour & MRI_ModRef));
652 // All non-call instructions we use the primary predicates for whether
653 // thay read or write memory.
654 if (I.mayReadFromMemory())
655 FI.addModRefInfo(MRI_Ref);
656 if (I.mayWriteToMemory())
657 FI.addModRefInfo(MRI_Mod);
661 if ((FI.getModRefInfo() & MRI_Mod) == 0)
662 ++NumReadMemFunctions;
663 if (FI.getModRefInfo() == MRI_NoModRef)
666 // Finally, now that we know the full effect on this SCC, clone the
667 // information to each function in the SCC.
668 for (unsigned i = 1, e = SCC.size(); i != e; ++i)
669 FunctionInfos[SCC[i]->getFunction()] = FI;
673 // There are particular cases where we can conclude no-alias between
674 // a non-addr-taken global and some other underlying object. Specifically,
675 // a non-addr-taken global is known to not be escaped from any function. It is
676 // also incorrect for a transformation to introduce an escape of a global in
677 // a way that is observable when it was not there previously. One function
678 // being transformed to introduce an escape which could possibly be observed
679 // (via loading from a global or the return value for example) within another
680 // function is never safe. If the observation is made through non-atomic
681 // operations on different threads, it is a data-race and UB. If the
682 // observation is well defined, by being observed the transformation would have
683 // changed program behavior by introducing the observed escape, making it an
684 // invalid transform.
686 // This property does require that transformations which *temporarily* escape
687 // a global that was not previously escaped, prior to restoring it, cannot rely
688 // on the results of GMR::alias. This seems a reasonable restriction, although
689 // currently there is no way to enforce it. There is also no realistic
690 // optimization pass that would make this mistake. The closest example is
691 // a transformation pass which does reg2mem of SSA values but stores them into
692 // global variables temporarily before restoring the global variable's value.
693 // This could be useful to expose "benign" races for example. However, it seems
694 // reasonable to require that a pass which introduces escapes of global
695 // variables in this way to either not trust AA results while the escape is
696 // active, or to be forced to operate as a module pass that cannot co-exist
697 // with an alias analysis such as GMR.
698 bool GlobalsModRef::isNonEscapingGlobalNoAlias(const GlobalValue *GV,
700 // In order to know that the underlying object cannot alias the
701 // non-addr-taken global, we must know that it would have to be an escape.
702 // Thus if the underlying object is a function argument, a load from
703 // a global, or the return of a function, it cannot alias. We can also
704 // recurse through PHI nodes and select nodes provided all of their inputs
705 // resolve to one of these known-escaping roots.
706 SmallPtrSet<const Value *, 8> Visited;
707 SmallVector<const Value *, 8> Inputs;
712 const Value *Input = Inputs.pop_back_val();
714 if (auto *InputGV = dyn_cast<GlobalValue>(Input)) {
715 // If one input is the very global we're querying against, then we can't
716 // conclude no-alias.
720 // Distinct GlobalVariables never alias, unless overriden or zero-sized.
721 // FIXME: The condition can be refined, but be conservative for now.
722 auto *GVar = dyn_cast<GlobalVariable>(GV);
723 auto *InputGVar = dyn_cast<GlobalVariable>(InputGV);
724 if (GVar && InputGVar &&
725 !GVar->isDeclaration() && !InputGVar->isDeclaration() &&
726 !GVar->mayBeOverridden() && !InputGVar->mayBeOverridden()) {
727 Type *GVType = GVar->getInitializer()->getType();
728 Type *InputGVType = InputGVar->getInitializer()->getType();
729 if (GVType->isSized() && InputGVType->isSized() &&
730 (DL->getTypeAllocSize(GVType) > 0) &&
731 (DL->getTypeAllocSize(InputGVType) > 0))
735 // Conservatively return false, even though we could be smarter
736 // (e.g. look through GlobalAliases).
740 if (isa<Argument>(Input) || isa<CallInst>(Input) ||
741 isa<InvokeInst>(Input)) {
742 // Arguments to functions or returns from functions are inherently
743 // escaping, so we can immediately classify those as not aliasing any
744 // non-addr-taken globals.
747 if (auto *LI = dyn_cast<LoadInst>(Input)) {
748 // A pointer loaded from a global would have been captured, and we know
749 // that the global is non-escaping, so no alias.
750 if (isa<GlobalValue>(LI->getPointerOperand()))
753 // Otherwise, a load could come from anywhere, so bail.
757 // Recurse through a limited number of selects and PHIs. This is an
758 // arbitrary depth of 4, lower numbers could be used to fix compile time
759 // issues if needed, but this is generally expected to be only be important
763 if (auto *SI = dyn_cast<SelectInst>(Input)) {
764 const Value *LHS = GetUnderlyingObject(SI->getTrueValue(), *DL);
765 const Value *RHS = GetUnderlyingObject(SI->getFalseValue(), *DL);
766 if (Visited.insert(LHS).second)
767 Inputs.push_back(LHS);
768 if (Visited.insert(RHS).second)
769 Inputs.push_back(RHS);
772 if (auto *PN = dyn_cast<PHINode>(Input)) {
773 for (const Value *Op : PN->incoming_values()) {
774 Op = GetUnderlyingObject(Op, *DL);
775 if (Visited.insert(Op).second)
776 Inputs.push_back(Op);
781 // FIXME: It would be good to handle other obvious no-alias cases here, but
782 // it isn't clear how to do so reasonbly without building a small version
783 // of BasicAA into this code. We could recurse into AliasAnalysis::alias
784 // here but that seems likely to go poorly as we're inside the
785 // implementation of such a query. Until then, just conservatievly retun
788 } while (!Inputs.empty());
790 // If all the inputs to V were definitively no-alias, then V is no-alias.
794 /// alias - If one of the pointers is to a global that we are tracking, and the
795 /// other is some random pointer, we know there cannot be an alias, because the
796 /// address of the global isn't taken.
797 AliasResult GlobalsModRef::alias(const MemoryLocation &LocA,
798 const MemoryLocation &LocB) {
799 // Get the base object these pointers point to.
800 const Value *UV1 = GetUnderlyingObject(LocA.Ptr, *DL);
801 const Value *UV2 = GetUnderlyingObject(LocB.Ptr, *DL);
803 // If either of the underlying values is a global, they may be non-addr-taken
804 // globals, which we can answer queries about.
805 const GlobalValue *GV1 = dyn_cast<GlobalValue>(UV1);
806 const GlobalValue *GV2 = dyn_cast<GlobalValue>(UV2);
808 // If the global's address is taken, pretend we don't know it's a pointer to
810 if (GV1 && !NonAddressTakenGlobals.count(GV1))
812 if (GV2 && !NonAddressTakenGlobals.count(GV2))
815 // If the two pointers are derived from two different non-addr-taken
816 // globals we know these can't alias.
817 if (GV1 && GV2 && GV1 != GV2)
820 // If one is and the other isn't, it isn't strictly safe but we can fake
821 // this result if necessary for performance. This does not appear to be
822 // a common problem in practice.
823 if (EnableUnsafeGlobalsModRefAliasResults)
824 if ((GV1 || GV2) && GV1 != GV2)
827 // Check for a special case where a non-escaping global can be used to
828 // conclude no-alias.
829 if ((GV1 || GV2) && GV1 != GV2) {
830 const GlobalValue *GV = GV1 ? GV1 : GV2;
831 const Value *UV = GV1 ? UV2 : UV1;
832 if (isNonEscapingGlobalNoAlias(GV, UV))
836 // Otherwise if they are both derived from the same addr-taken global, we
837 // can't know the two accesses don't overlap.
840 // These pointers may be based on the memory owned by an indirect global. If
841 // so, we may be able to handle this. First check to see if the base pointer
842 // is a direct load from an indirect global.
844 if (const LoadInst *LI = dyn_cast<LoadInst>(UV1))
845 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
846 if (IndirectGlobals.count(GV))
848 if (const LoadInst *LI = dyn_cast<LoadInst>(UV2))
849 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
850 if (IndirectGlobals.count(GV))
853 // These pointers may also be from an allocation for the indirect global. If
854 // so, also handle them.
856 GV1 = AllocsForIndirectGlobals.lookup(UV1);
858 GV2 = AllocsForIndirectGlobals.lookup(UV2);
860 // Now that we know whether the two pointers are related to indirect globals,
861 // use this to disambiguate the pointers. If the pointers are based on
862 // different indirect globals they cannot alias.
863 if (GV1 && GV2 && GV1 != GV2)
866 // If one is based on an indirect global and the other isn't, it isn't
867 // strictly safe but we can fake this result if necessary for performance.
868 // This does not appear to be a common problem in practice.
869 if (EnableUnsafeGlobalsModRefAliasResults)
870 if ((GV1 || GV2) && GV1 != GV2)
873 return AliasAnalysis::alias(LocA, LocB);
876 ModRefInfo GlobalsModRef::getModRefInfo(ImmutableCallSite CS,
877 const MemoryLocation &Loc) {
878 unsigned Known = MRI_ModRef;
880 // If we are asking for mod/ref info of a direct call with a pointer to a
881 // global we are tracking, return information if we have it.
882 const DataLayout &DL = CS.getCaller()->getParent()->getDataLayout();
883 if (const GlobalValue *GV =
884 dyn_cast<GlobalValue>(GetUnderlyingObject(Loc.Ptr, DL)))
885 if (GV->hasLocalLinkage())
886 if (const Function *F = CS.getCalledFunction())
887 if (NonAddressTakenGlobals.count(GV))
888 if (const FunctionInfo *FI = getFunctionInfo(F))
889 Known = FI->getModRefInfoForGlobal(*GV);
891 if (Known == MRI_NoModRef)
892 return MRI_NoModRef; // No need to query other mod/ref analyses
893 return ModRefInfo(Known & AliasAnalysis::getModRefInfo(CS, Loc));