b7bf044a3687f7519323360eda4d1d1b137ff1b3
[oota-llvm.git] / lib / Analysis / ConstantFolding.cpp
1 //===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines routines for folding instructions into constants.
11 //
12 // Also, to supplement the basic VMCore ConstantExpr simplifications,
13 // this file defines some additional folding routines that can make use of
14 // DataLayout information. These functions cannot go in VMCore due to library
15 // dependency issues.
16 //
17 //===----------------------------------------------------------------------===//
18
19 #include "llvm/Analysis/ConstantFolding.h"
20 #include "llvm/Constants.h"
21 #include "llvm/DerivedTypes.h"
22 #include "llvm/Function.h"
23 #include "llvm/GlobalVariable.h"
24 #include "llvm/Instructions.h"
25 #include "llvm/Intrinsics.h"
26 #include "llvm/Operator.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/DataLayout.h"
29 #include "llvm/Target/TargetLibraryInfo.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/StringMap.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/GetElementPtrTypeIterator.h"
34 #include "llvm/Support/MathExtras.h"
35 #include "llvm/Support/FEnv.h"
36 #include <cerrno>
37 #include <cmath>
38 using namespace llvm;
39
40 //===----------------------------------------------------------------------===//
41 // Constant Folding internal helper functions
42 //===----------------------------------------------------------------------===//
43
44 /// FoldBitCast - Constant fold bitcast, symbolically evaluating it with 
45 /// DataLayout.  This always returns a non-null constant, but it may be a
46 /// ConstantExpr if unfoldable.
47 static Constant *FoldBitCast(Constant *C, Type *DestTy,
48                              const DataLayout &TD) {
49   // Catch the obvious splat cases.
50   if (C->isNullValue() && !DestTy->isX86_MMXTy())
51     return Constant::getNullValue(DestTy);
52   if (C->isAllOnesValue() && !DestTy->isX86_MMXTy())
53     return Constant::getAllOnesValue(DestTy);
54
55   // Handle a vector->integer cast.
56   if (IntegerType *IT = dyn_cast<IntegerType>(DestTy)) {
57     ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C);
58     if (CDV == 0)
59       return ConstantExpr::getBitCast(C, DestTy);
60
61     unsigned NumSrcElts = CDV->getType()->getNumElements();
62     
63     Type *SrcEltTy = CDV->getType()->getElementType();
64     
65     // If the vector is a vector of floating point, convert it to vector of int
66     // to simplify things.
67     if (SrcEltTy->isFloatingPointTy()) {
68       unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
69       Type *SrcIVTy =
70         VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
71       // Ask VMCore to do the conversion now that #elts line up.
72       C = ConstantExpr::getBitCast(C, SrcIVTy);
73       CDV = cast<ConstantDataVector>(C);
74     }
75     
76     // Now that we know that the input value is a vector of integers, just shift
77     // and insert them into our result.
78     unsigned BitShift = TD.getTypeAllocSizeInBits(SrcEltTy);
79     APInt Result(IT->getBitWidth(), 0);
80     for (unsigned i = 0; i != NumSrcElts; ++i) {
81       Result <<= BitShift;
82       if (TD.isLittleEndian())
83         Result |= CDV->getElementAsInteger(NumSrcElts-i-1);
84       else
85         Result |= CDV->getElementAsInteger(i);
86     }
87    
88     return ConstantInt::get(IT, Result);
89   }
90   
91   // The code below only handles casts to vectors currently.
92   VectorType *DestVTy = dyn_cast<VectorType>(DestTy);
93   if (DestVTy == 0)
94     return ConstantExpr::getBitCast(C, DestTy);
95   
96   // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
97   // vector so the code below can handle it uniformly.
98   if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
99     Constant *Ops = C; // don't take the address of C!
100     return FoldBitCast(ConstantVector::get(Ops), DestTy, TD);
101   }
102   
103   // If this is a bitcast from constant vector -> vector, fold it.
104   if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C))
105     return ConstantExpr::getBitCast(C, DestTy);
106   
107   // If the element types match, VMCore can fold it.
108   unsigned NumDstElt = DestVTy->getNumElements();
109   unsigned NumSrcElt = C->getType()->getVectorNumElements();
110   if (NumDstElt == NumSrcElt)
111     return ConstantExpr::getBitCast(C, DestTy);
112   
113   Type *SrcEltTy = C->getType()->getVectorElementType();
114   Type *DstEltTy = DestVTy->getElementType();
115   
116   // Otherwise, we're changing the number of elements in a vector, which 
117   // requires endianness information to do the right thing.  For example,
118   //    bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
119   // folds to (little endian):
120   //    <4 x i32> <i32 0, i32 0, i32 1, i32 0>
121   // and to (big endian):
122   //    <4 x i32> <i32 0, i32 0, i32 0, i32 1>
123   
124   // First thing is first.  We only want to think about integer here, so if
125   // we have something in FP form, recast it as integer.
126   if (DstEltTy->isFloatingPointTy()) {
127     // Fold to an vector of integers with same size as our FP type.
128     unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
129     Type *DestIVTy =
130       VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumDstElt);
131     // Recursively handle this integer conversion, if possible.
132     C = FoldBitCast(C, DestIVTy, TD);
133     
134     // Finally, VMCore can handle this now that #elts line up.
135     return ConstantExpr::getBitCast(C, DestTy);
136   }
137   
138   // Okay, we know the destination is integer, if the input is FP, convert
139   // it to integer first.
140   if (SrcEltTy->isFloatingPointTy()) {
141     unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
142     Type *SrcIVTy =
143       VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
144     // Ask VMCore to do the conversion now that #elts line up.
145     C = ConstantExpr::getBitCast(C, SrcIVTy);
146     // If VMCore wasn't able to fold it, bail out.
147     if (!isa<ConstantVector>(C) &&  // FIXME: Remove ConstantVector.
148         !isa<ConstantDataVector>(C))
149       return C;
150   }
151   
152   // Now we know that the input and output vectors are both integer vectors
153   // of the same size, and that their #elements is not the same.  Do the
154   // conversion here, which depends on whether the input or output has
155   // more elements.
156   bool isLittleEndian = TD.isLittleEndian();
157   
158   SmallVector<Constant*, 32> Result;
159   if (NumDstElt < NumSrcElt) {
160     // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
161     Constant *Zero = Constant::getNullValue(DstEltTy);
162     unsigned Ratio = NumSrcElt/NumDstElt;
163     unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
164     unsigned SrcElt = 0;
165     for (unsigned i = 0; i != NumDstElt; ++i) {
166       // Build each element of the result.
167       Constant *Elt = Zero;
168       unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
169       for (unsigned j = 0; j != Ratio; ++j) {
170         Constant *Src =dyn_cast<ConstantInt>(C->getAggregateElement(SrcElt++));
171         if (!Src)  // Reject constantexpr elements.
172           return ConstantExpr::getBitCast(C, DestTy);
173         
174         // Zero extend the element to the right size.
175         Src = ConstantExpr::getZExt(Src, Elt->getType());
176         
177         // Shift it to the right place, depending on endianness.
178         Src = ConstantExpr::getShl(Src, 
179                                    ConstantInt::get(Src->getType(), ShiftAmt));
180         ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
181         
182         // Mix it in.
183         Elt = ConstantExpr::getOr(Elt, Src);
184       }
185       Result.push_back(Elt);
186     }
187     return ConstantVector::get(Result);
188   }
189   
190   // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
191   unsigned Ratio = NumDstElt/NumSrcElt;
192   unsigned DstBitSize = DstEltTy->getPrimitiveSizeInBits();
193   
194   // Loop over each source value, expanding into multiple results.
195   for (unsigned i = 0; i != NumSrcElt; ++i) {
196     Constant *Src = dyn_cast<ConstantInt>(C->getAggregateElement(i));
197     if (!Src)  // Reject constantexpr elements.
198       return ConstantExpr::getBitCast(C, DestTy);
199     
200     unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
201     for (unsigned j = 0; j != Ratio; ++j) {
202       // Shift the piece of the value into the right place, depending on
203       // endianness.
204       Constant *Elt = ConstantExpr::getLShr(Src, 
205                                   ConstantInt::get(Src->getType(), ShiftAmt));
206       ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
207       
208       // Truncate and remember this piece.
209       Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
210     }
211   }
212   
213   return ConstantVector::get(Result);
214 }
215
216
217 /// IsConstantOffsetFromGlobal - If this constant is actually a constant offset
218 /// from a global, return the global and the constant.  Because of
219 /// constantexprs, this function is recursive.
220 static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
221                                        int64_t &Offset, const DataLayout &TD) {
222   // Trivial case, constant is the global.
223   if ((GV = dyn_cast<GlobalValue>(C))) {
224     Offset = 0;
225     return true;
226   }
227   
228   // Otherwise, if this isn't a constant expr, bail out.
229   ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
230   if (!CE) return false;
231   
232   // Look through ptr->int and ptr->ptr casts.
233   if (CE->getOpcode() == Instruction::PtrToInt ||
234       CE->getOpcode() == Instruction::BitCast)
235     return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD);
236   
237   // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)    
238   if (CE->getOpcode() == Instruction::GetElementPtr) {
239     // Cannot compute this if the element type of the pointer is missing size
240     // info.
241     if (!cast<PointerType>(CE->getOperand(0)->getType())
242                  ->getElementType()->isSized())
243       return false;
244     
245     // If the base isn't a global+constant, we aren't either.
246     if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD))
247       return false;
248     
249     // Otherwise, add any offset that our operands provide.
250     gep_type_iterator GTI = gep_type_begin(CE);
251     for (User::const_op_iterator i = CE->op_begin() + 1, e = CE->op_end();
252          i != e; ++i, ++GTI) {
253       ConstantInt *CI = dyn_cast<ConstantInt>(*i);
254       if (!CI) return false;  // Index isn't a simple constant?
255       if (CI->isZero()) continue;  // Not adding anything.
256       
257       if (StructType *ST = dyn_cast<StructType>(*GTI)) {
258         // N = N + Offset
259         Offset += TD.getStructLayout(ST)->getElementOffset(CI->getZExtValue());
260       } else {
261         SequentialType *SQT = cast<SequentialType>(*GTI);
262         Offset += TD.getTypeAllocSize(SQT->getElementType())*CI->getSExtValue();
263       }
264     }
265     return true;
266   }
267   
268   return false;
269 }
270
271 /// ReadDataFromGlobal - Recursive helper to read bits out of global.  C is the
272 /// constant being copied out of. ByteOffset is an offset into C.  CurPtr is the
273 /// pointer to copy results into and BytesLeft is the number of bytes left in
274 /// the CurPtr buffer.  TD is the target data.
275 static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset,
276                                unsigned char *CurPtr, unsigned BytesLeft,
277                                const DataLayout &TD) {
278   assert(ByteOffset <= TD.getTypeAllocSize(C->getType()) &&
279          "Out of range access");
280   
281   // If this element is zero or undefined, we can just return since *CurPtr is
282   // zero initialized.
283   if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
284     return true;
285   
286   if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
287     if (CI->getBitWidth() > 64 ||
288         (CI->getBitWidth() & 7) != 0)
289       return false;
290     
291     uint64_t Val = CI->getZExtValue();
292     unsigned IntBytes = unsigned(CI->getBitWidth()/8);
293     
294     for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
295       CurPtr[i] = (unsigned char)(Val >> (ByteOffset * 8));
296       ++ByteOffset;
297     }
298     return true;
299   }
300   
301   if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
302     if (CFP->getType()->isDoubleTy()) {
303       C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), TD);
304       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
305     }
306     if (CFP->getType()->isFloatTy()){
307       C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), TD);
308       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
309     }
310     return false;
311   }
312   
313   if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
314     const StructLayout *SL = TD.getStructLayout(CS->getType());
315     unsigned Index = SL->getElementContainingOffset(ByteOffset);
316     uint64_t CurEltOffset = SL->getElementOffset(Index);
317     ByteOffset -= CurEltOffset;
318     
319     while (1) {
320       // If the element access is to the element itself and not to tail padding,
321       // read the bytes from the element.
322       uint64_t EltSize = TD.getTypeAllocSize(CS->getOperand(Index)->getType());
323
324       if (ByteOffset < EltSize &&
325           !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
326                               BytesLeft, TD))
327         return false;
328       
329       ++Index;
330       
331       // Check to see if we read from the last struct element, if so we're done.
332       if (Index == CS->getType()->getNumElements())
333         return true;
334
335       // If we read all of the bytes we needed from this element we're done.
336       uint64_t NextEltOffset = SL->getElementOffset(Index);
337
338       if (BytesLeft <= NextEltOffset-CurEltOffset-ByteOffset)
339         return true;
340
341       // Move to the next element of the struct.
342       CurPtr += NextEltOffset-CurEltOffset-ByteOffset;
343       BytesLeft -= NextEltOffset-CurEltOffset-ByteOffset;
344       ByteOffset = 0;
345       CurEltOffset = NextEltOffset;
346     }
347     // not reached.
348   }
349
350   if (isa<ConstantArray>(C) || isa<ConstantVector>(C) ||
351       isa<ConstantDataSequential>(C)) {
352     Type *EltTy = cast<SequentialType>(C->getType())->getElementType();
353     uint64_t EltSize = TD.getTypeAllocSize(EltTy);
354     uint64_t Index = ByteOffset / EltSize;
355     uint64_t Offset = ByteOffset - Index * EltSize;
356     uint64_t NumElts;
357     if (ArrayType *AT = dyn_cast<ArrayType>(C->getType()))
358       NumElts = AT->getNumElements();
359     else
360       NumElts = cast<VectorType>(C->getType())->getNumElements();
361
362     for (; Index != NumElts; ++Index) {
363       if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
364                               BytesLeft, TD))
365         return false;
366
367       uint64_t BytesWritten = EltSize - Offset;
368       assert(BytesWritten <= EltSize && "Not indexing into this element?");
369       if (BytesWritten >= BytesLeft)
370         return true;
371
372       Offset = 0;
373       BytesLeft -= BytesWritten;
374       CurPtr += BytesWritten;
375     }
376     return true;
377   }
378       
379   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
380     if (CE->getOpcode() == Instruction::IntToPtr &&
381         CE->getOperand(0)->getType() == TD.getIntPtrType(CE->getContext())) 
382       return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr, 
383                                 BytesLeft, TD);
384   }
385
386   // Otherwise, unknown initializer type.
387   return false;
388 }
389
390 static Constant *FoldReinterpretLoadFromConstPtr(Constant *C,
391                                                  const DataLayout &TD) {
392   Type *LoadTy = cast<PointerType>(C->getType())->getElementType();
393   IntegerType *IntType = dyn_cast<IntegerType>(LoadTy);
394   
395   // If this isn't an integer load we can't fold it directly.
396   if (!IntType) {
397     // If this is a float/double load, we can try folding it as an int32/64 load
398     // and then bitcast the result.  This can be useful for union cases.  Note
399     // that address spaces don't matter here since we're not going to result in
400     // an actual new load.
401     Type *MapTy;
402     if (LoadTy->isFloatTy())
403       MapTy = Type::getInt32PtrTy(C->getContext());
404     else if (LoadTy->isDoubleTy())
405       MapTy = Type::getInt64PtrTy(C->getContext());
406     else if (LoadTy->isVectorTy()) {
407       MapTy = IntegerType::get(C->getContext(),
408                                TD.getTypeAllocSizeInBits(LoadTy));
409       MapTy = PointerType::getUnqual(MapTy);
410     } else
411       return 0;
412
413     C = FoldBitCast(C, MapTy, TD);
414     if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, TD))
415       return FoldBitCast(Res, LoadTy, TD);
416     return 0;
417   }
418   
419   unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
420   if (BytesLoaded > 32 || BytesLoaded == 0) return 0;
421   
422   GlobalValue *GVal;
423   int64_t Offset;
424   if (!IsConstantOffsetFromGlobal(C, GVal, Offset, TD))
425     return 0;
426   
427   GlobalVariable *GV = dyn_cast<GlobalVariable>(GVal);
428   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
429       !GV->getInitializer()->getType()->isSized())
430     return 0;
431
432   // If we're loading off the beginning of the global, some bytes may be valid,
433   // but we don't try to handle this.
434   if (Offset < 0) return 0;
435   
436   // If we're not accessing anything in this constant, the result is undefined.
437   if (uint64_t(Offset) >= TD.getTypeAllocSize(GV->getInitializer()->getType()))
438     return UndefValue::get(IntType);
439   
440   unsigned char RawBytes[32] = {0};
441   if (!ReadDataFromGlobal(GV->getInitializer(), Offset, RawBytes,
442                           BytesLoaded, TD))
443     return 0;
444
445   APInt ResultVal = APInt(IntType->getBitWidth(), RawBytes[BytesLoaded-1]);
446   for (unsigned i = 1; i != BytesLoaded; ++i) {
447     ResultVal <<= 8;
448     ResultVal |= RawBytes[BytesLoaded-1-i];
449   }
450
451   return ConstantInt::get(IntType->getContext(), ResultVal);
452 }
453
454 /// ConstantFoldLoadFromConstPtr - Return the value that a load from C would
455 /// produce if it is constant and determinable.  If this is not determinable,
456 /// return null.
457 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C,
458                                              const DataLayout *TD) {
459   // First, try the easy cases:
460   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
461     if (GV->isConstant() && GV->hasDefinitiveInitializer())
462       return GV->getInitializer();
463
464   // If the loaded value isn't a constant expr, we can't handle it.
465   ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
466   if (!CE) return 0;
467   
468   if (CE->getOpcode() == Instruction::GetElementPtr) {
469     if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
470       if (GV->isConstant() && GV->hasDefinitiveInitializer())
471         if (Constant *V = 
472              ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
473           return V;
474   }
475   
476   // Instead of loading constant c string, use corresponding integer value
477   // directly if string length is small enough.
478   StringRef Str;
479   if (TD && getConstantStringInfo(CE, Str) && !Str.empty()) {
480     unsigned StrLen = Str.size();
481     Type *Ty = cast<PointerType>(CE->getType())->getElementType();
482     unsigned NumBits = Ty->getPrimitiveSizeInBits();
483     // Replace load with immediate integer if the result is an integer or fp
484     // value.
485     if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 &&
486         (isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) {
487       APInt StrVal(NumBits, 0);
488       APInt SingleChar(NumBits, 0);
489       if (TD->isLittleEndian()) {
490         for (signed i = StrLen-1; i >= 0; i--) {
491           SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
492           StrVal = (StrVal << 8) | SingleChar;
493         }
494       } else {
495         for (unsigned i = 0; i < StrLen; i++) {
496           SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
497           StrVal = (StrVal << 8) | SingleChar;
498         }
499         // Append NULL at the end.
500         SingleChar = 0;
501         StrVal = (StrVal << 8) | SingleChar;
502       }
503       
504       Constant *Res = ConstantInt::get(CE->getContext(), StrVal);
505       if (Ty->isFloatingPointTy())
506         Res = ConstantExpr::getBitCast(Res, Ty);
507       return Res;
508     }
509   }
510   
511   // If this load comes from anywhere in a constant global, and if the global
512   // is all undef or zero, we know what it loads.
513   if (GlobalVariable *GV =
514         dyn_cast<GlobalVariable>(GetUnderlyingObject(CE, TD))) {
515     if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
516       Type *ResTy = cast<PointerType>(C->getType())->getElementType();
517       if (GV->getInitializer()->isNullValue())
518         return Constant::getNullValue(ResTy);
519       if (isa<UndefValue>(GV->getInitializer()))
520         return UndefValue::get(ResTy);
521     }
522   }
523   
524   // Try hard to fold loads from bitcasted strange and non-type-safe things.  We
525   // currently don't do any of this for big endian systems.  It can be
526   // generalized in the future if someone is interested.
527   if (TD && TD->isLittleEndian())
528     return FoldReinterpretLoadFromConstPtr(CE, *TD);
529   return 0;
530 }
531
532 static Constant *ConstantFoldLoadInst(const LoadInst *LI, const DataLayout *TD){
533   if (LI->isVolatile()) return 0;
534   
535   if (Constant *C = dyn_cast<Constant>(LI->getOperand(0)))
536     return ConstantFoldLoadFromConstPtr(C, TD);
537
538   return 0;
539 }
540
541 /// SymbolicallyEvaluateBinop - One of Op0/Op1 is a constant expression.
542 /// Attempt to symbolically evaluate the result of a binary operator merging
543 /// these together.  If target data info is available, it is provided as TD, 
544 /// otherwise TD is null.
545 static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
546                                            Constant *Op1, const DataLayout *TD){
547   // SROA
548   
549   // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
550   // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
551   // bits.
552   
553   
554   // If the constant expr is something like &A[123] - &A[4].f, fold this into a
555   // constant.  This happens frequently when iterating over a global array.
556   if (Opc == Instruction::Sub && TD) {
557     GlobalValue *GV1, *GV2;
558     int64_t Offs1, Offs2;
559     
560     if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, *TD))
561       if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, *TD) &&
562           GV1 == GV2) {
563         // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
564         return ConstantInt::get(Op0->getType(), Offs1-Offs2);
565       }
566   }
567     
568   return 0;
569 }
570
571 /// CastGEPIndices - If array indices are not pointer-sized integers,
572 /// explicitly cast them so that they aren't implicitly casted by the
573 /// getelementptr.
574 static Constant *CastGEPIndices(ArrayRef<Constant *> Ops,
575                                 Type *ResultTy, const DataLayout *TD,
576                                 const TargetLibraryInfo *TLI) {
577   if (!TD) return 0;
578   Type *IntPtrTy = TD->getIntPtrType(ResultTy->getContext());
579
580   bool Any = false;
581   SmallVector<Constant*, 32> NewIdxs;
582   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
583     if ((i == 1 ||
584          !isa<StructType>(GetElementPtrInst::getIndexedType(Ops[0]->getType(),
585                                                         Ops.slice(1, i-1)))) &&
586         Ops[i]->getType() != IntPtrTy) {
587       Any = true;
588       NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
589                                                                       true,
590                                                                       IntPtrTy,
591                                                                       true),
592                                               Ops[i], IntPtrTy));
593     } else
594       NewIdxs.push_back(Ops[i]);
595   }
596   if (!Any) return 0;
597
598   Constant *C =
599     ConstantExpr::getGetElementPtr(Ops[0], NewIdxs);
600   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
601     if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
602       C = Folded;
603   return C;
604 }
605
606 /// Strip the pointer casts, but preserve the address space information.
607 static Constant* StripPtrCastKeepAS(Constant* Ptr) {
608   assert(Ptr->getType()->isPointerTy() && "Not a pointer type");
609   PointerType *OldPtrTy = cast<PointerType>(Ptr->getType());
610   Ptr = cast<Constant>(Ptr->stripPointerCasts());
611   PointerType *NewPtrTy = cast<PointerType>(Ptr->getType());
612
613   // Preserve the address space number of the pointer.
614   if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) {
615     NewPtrTy = NewPtrTy->getElementType()->getPointerTo(
616       OldPtrTy->getAddressSpace());
617     Ptr = ConstantExpr::getBitCast(Ptr, NewPtrTy);
618   }
619   return Ptr;
620 }
621
622 /// SymbolicallyEvaluateGEP - If we can symbolically evaluate the specified GEP
623 /// constant expression, do so.
624 static Constant *SymbolicallyEvaluateGEP(ArrayRef<Constant *> Ops,
625                                          Type *ResultTy, const DataLayout *TD,
626                                          const TargetLibraryInfo *TLI) {
627   Constant *Ptr = Ops[0];
628   if (!TD || !cast<PointerType>(Ptr->getType())->getElementType()->isSized() ||
629       !Ptr->getType()->isPointerTy())
630     return 0;
631   
632   Type *IntPtrTy = TD->getIntPtrType(Ptr->getContext());
633
634   // If this is a constant expr gep that is effectively computing an
635   // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
636   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
637     if (!isa<ConstantInt>(Ops[i])) {
638       
639       // If this is "gep i8* Ptr, (sub 0, V)", fold this as:
640       // "inttoptr (sub (ptrtoint Ptr), V)"
641       if (Ops.size() == 2 &&
642           cast<PointerType>(ResultTy)->getElementType()->isIntegerTy(8)) {
643         ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[1]);
644         assert((CE == 0 || CE->getType() == IntPtrTy) &&
645                "CastGEPIndices didn't canonicalize index types!");
646         if (CE && CE->getOpcode() == Instruction::Sub &&
647             CE->getOperand(0)->isNullValue()) {
648           Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType());
649           Res = ConstantExpr::getSub(Res, CE->getOperand(1));
650           Res = ConstantExpr::getIntToPtr(Res, ResultTy);
651           if (ConstantExpr *ResCE = dyn_cast<ConstantExpr>(Res))
652             Res = ConstantFoldConstantExpression(ResCE, TD, TLI);
653           return Res;
654         }
655       }
656       return 0;
657     }
658
659   unsigned BitWidth = TD->getTypeSizeInBits(IntPtrTy);
660   APInt Offset =
661     APInt(BitWidth, TD->getIndexedOffset(Ptr->getType(),
662                                          makeArrayRef((Value *const*)
663                                                         Ops.data() + 1,
664                                                       Ops.size() - 1)));
665   Ptr = StripPtrCastKeepAS(Ptr);
666
667   // If this is a GEP of a GEP, fold it all into a single GEP.
668   while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
669     SmallVector<Value *, 4> NestedOps(GEP->op_begin()+1, GEP->op_end());
670
671     // Do not try the incorporate the sub-GEP if some index is not a number.
672     bool AllConstantInt = true;
673     for (unsigned i = 0, e = NestedOps.size(); i != e; ++i)
674       if (!isa<ConstantInt>(NestedOps[i])) {
675         AllConstantInt = false;
676         break;
677       }
678     if (!AllConstantInt)
679       break;
680
681     Ptr = cast<Constant>(GEP->getOperand(0));
682     Offset += APInt(BitWidth,
683                     TD->getIndexedOffset(Ptr->getType(), NestedOps));
684     Ptr = StripPtrCastKeepAS(Ptr);
685   }
686
687   // If the base value for this address is a literal integer value, fold the
688   // getelementptr to the resulting integer value casted to the pointer type.
689   APInt BasePtr(BitWidth, 0);
690   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
691     if (CE->getOpcode() == Instruction::IntToPtr)
692       if (ConstantInt *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
693         BasePtr = Base->getValue().zextOrTrunc(BitWidth);
694   if (Ptr->isNullValue() || BasePtr != 0) {
695     Constant *C = ConstantInt::get(Ptr->getContext(), Offset+BasePtr);
696     return ConstantExpr::getIntToPtr(C, ResultTy);
697   }
698
699   // Otherwise form a regular getelementptr. Recompute the indices so that
700   // we eliminate over-indexing of the notional static type array bounds.
701   // This makes it easy to determine if the getelementptr is "inbounds".
702   // Also, this helps GlobalOpt do SROA on GlobalVariables.
703   Type *Ty = Ptr->getType();
704   assert(Ty->isPointerTy() && "Forming regular GEP of non-pointer type");
705   SmallVector<Constant*, 32> NewIdxs;
706   do {
707     if (SequentialType *ATy = dyn_cast<SequentialType>(Ty)) {
708       if (ATy->isPointerTy()) {
709         // The only pointer indexing we'll do is on the first index of the GEP.
710         if (!NewIdxs.empty())
711           break;
712        
713         // Only handle pointers to sized types, not pointers to functions.
714         if (!ATy->getElementType()->isSized())
715           return 0;
716       }
717         
718       // Determine which element of the array the offset points into.
719       APInt ElemSize(BitWidth, TD->getTypeAllocSize(ATy->getElementType()));
720       IntegerType *IntPtrTy = TD->getIntPtrType(Ty->getContext());
721       if (ElemSize == 0)
722         // The element size is 0. This may be [0 x Ty]*, so just use a zero
723         // index for this level and proceed to the next level to see if it can
724         // accommodate the offset.
725         NewIdxs.push_back(ConstantInt::get(IntPtrTy, 0));
726       else {
727         // The element size is non-zero divide the offset by the element
728         // size (rounding down), to compute the index at this level.
729         APInt NewIdx = Offset.udiv(ElemSize);
730         Offset -= NewIdx * ElemSize;
731         NewIdxs.push_back(ConstantInt::get(IntPtrTy, NewIdx));
732       }
733       Ty = ATy->getElementType();
734     } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
735       // If we end up with an offset that isn't valid for this struct type, we
736       // can't re-form this GEP in a regular form, so bail out. The pointer
737       // operand likely went through casts that are necessary to make the GEP
738       // sensible.
739       const StructLayout &SL = *TD->getStructLayout(STy);
740       if (Offset.uge(SL.getSizeInBytes()))
741         break;
742
743       // Determine which field of the struct the offset points into. The
744       // getZExtValue is fine as we've already ensured that the offset is
745       // within the range representable by the StructLayout API.
746       unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue());
747       NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
748                                          ElIdx));
749       Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx));
750       Ty = STy->getTypeAtIndex(ElIdx);
751     } else {
752       // We've reached some non-indexable type.
753       break;
754     }
755   } while (Ty != cast<PointerType>(ResultTy)->getElementType());
756
757   // If we haven't used up the entire offset by descending the static
758   // type, then the offset is pointing into the middle of an indivisible
759   // member, so we can't simplify it.
760   if (Offset != 0)
761     return 0;
762
763   // Create a GEP.
764   Constant *C =
765     ConstantExpr::getGetElementPtr(Ptr, NewIdxs);
766   assert(cast<PointerType>(C->getType())->getElementType() == Ty &&
767          "Computed GetElementPtr has unexpected type!");
768
769   // If we ended up indexing a member with a type that doesn't match
770   // the type of what the original indices indexed, add a cast.
771   if (Ty != cast<PointerType>(ResultTy)->getElementType())
772     C = FoldBitCast(C, ResultTy, *TD);
773
774   return C;
775 }
776
777
778
779 //===----------------------------------------------------------------------===//
780 // Constant Folding public APIs
781 //===----------------------------------------------------------------------===//
782
783 /// ConstantFoldInstruction - Try to constant fold the specified instruction.
784 /// If successful, the constant result is returned, if not, null is returned.
785 /// Note that this fails if not all of the operands are constant.  Otherwise,
786 /// this function can only fail when attempting to fold instructions like loads
787 /// and stores, which have no constant expression form.
788 Constant *llvm::ConstantFoldInstruction(Instruction *I,
789                                         const DataLayout *TD,
790                                         const TargetLibraryInfo *TLI) {
791   // Handle PHI nodes quickly here...
792   if (PHINode *PN = dyn_cast<PHINode>(I)) {
793     Constant *CommonValue = 0;
794
795     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
796       Value *Incoming = PN->getIncomingValue(i);
797       // If the incoming value is undef then skip it.  Note that while we could
798       // skip the value if it is equal to the phi node itself we choose not to
799       // because that would break the rule that constant folding only applies if
800       // all operands are constants.
801       if (isa<UndefValue>(Incoming))
802         continue;
803       // If the incoming value is not a constant, then give up.
804       Constant *C = dyn_cast<Constant>(Incoming);
805       if (!C)
806         return 0;
807       // Fold the PHI's operands.
808       if (ConstantExpr *NewC = dyn_cast<ConstantExpr>(C))
809         C = ConstantFoldConstantExpression(NewC, TD, TLI);
810       // If the incoming value is a different constant to
811       // the one we saw previously, then give up.
812       if (CommonValue && C != CommonValue)
813         return 0;
814       CommonValue = C;
815     }
816
817
818     // If we reach here, all incoming values are the same constant or undef.
819     return CommonValue ? CommonValue : UndefValue::get(PN->getType());
820   }
821
822   // Scan the operand list, checking to see if they are all constants, if so,
823   // hand off to ConstantFoldInstOperands.
824   SmallVector<Constant*, 8> Ops;
825   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
826     Constant *Op = dyn_cast<Constant>(*i);
827     if (!Op)
828       return 0;  // All operands not constant!
829
830     // Fold the Instruction's operands.
831     if (ConstantExpr *NewCE = dyn_cast<ConstantExpr>(Op))
832       Op = ConstantFoldConstantExpression(NewCE, TD, TLI);
833
834     Ops.push_back(Op);
835   }
836
837   if (const CmpInst *CI = dyn_cast<CmpInst>(I))
838     return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
839                                            TD, TLI);
840   
841   if (const LoadInst *LI = dyn_cast<LoadInst>(I))
842     return ConstantFoldLoadInst(LI, TD);
843
844   if (InsertValueInst *IVI = dyn_cast<InsertValueInst>(I))
845     return ConstantExpr::getInsertValue(
846                                 cast<Constant>(IVI->getAggregateOperand()),
847                                 cast<Constant>(IVI->getInsertedValueOperand()),
848                                 IVI->getIndices());
849
850   if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I))
851     return ConstantExpr::getExtractValue(
852                                     cast<Constant>(EVI->getAggregateOperand()),
853                                     EVI->getIndices());
854
855   return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Ops, TD, TLI);
856 }
857
858 /// ConstantFoldConstantExpression - Attempt to fold the constant expression
859 /// using the specified DataLayout.  If successful, the constant result is
860 /// result is returned, if not, null is returned.
861 Constant *llvm::ConstantFoldConstantExpression(const ConstantExpr *CE,
862                                                const DataLayout *TD,
863                                                const TargetLibraryInfo *TLI) {
864   SmallVector<Constant*, 8> Ops;
865   for (User::const_op_iterator i = CE->op_begin(), e = CE->op_end();
866        i != e; ++i) {
867     Constant *NewC = cast<Constant>(*i);
868     // Recursively fold the ConstantExpr's operands.
869     if (ConstantExpr *NewCE = dyn_cast<ConstantExpr>(NewC))
870       NewC = ConstantFoldConstantExpression(NewCE, TD, TLI);
871     Ops.push_back(NewC);
872   }
873
874   if (CE->isCompare())
875     return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
876                                            TD, TLI);
877   return ConstantFoldInstOperands(CE->getOpcode(), CE->getType(), Ops, TD, TLI);
878 }
879
880 /// ConstantFoldInstOperands - Attempt to constant fold an instruction with the
881 /// specified opcode and operands.  If successful, the constant result is
882 /// returned, if not, null is returned.  Note that this function can fail when
883 /// attempting to fold instructions like loads and stores, which have no
884 /// constant expression form.
885 ///
886 /// TODO: This function neither utilizes nor preserves nsw/nuw/inbounds/etc
887 /// information, due to only being passed an opcode and operands. Constant
888 /// folding using this function strips this information.
889 ///
890 Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, Type *DestTy, 
891                                          ArrayRef<Constant *> Ops,
892                                          const DataLayout *TD,
893                                          const TargetLibraryInfo *TLI) {                                         
894   // Handle easy binops first.
895   if (Instruction::isBinaryOp(Opcode)) {
896     if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1]))
897       if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], TD))
898         return C;
899     
900     return ConstantExpr::get(Opcode, Ops[0], Ops[1]);
901   }
902   
903   switch (Opcode) {
904   default: return 0;
905   case Instruction::ICmp:
906   case Instruction::FCmp: llvm_unreachable("Invalid for compares");
907   case Instruction::Call:
908     if (Function *F = dyn_cast<Function>(Ops.back()))
909       if (canConstantFoldCallTo(F))
910         return ConstantFoldCall(F, Ops.slice(0, Ops.size() - 1), TLI);
911     return 0;
912   case Instruction::PtrToInt:
913     // If the input is a inttoptr, eliminate the pair.  This requires knowing
914     // the width of a pointer, so it can't be done in ConstantExpr::getCast.
915     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
916       if (TD && CE->getOpcode() == Instruction::IntToPtr) {
917         Constant *Input = CE->getOperand(0);
918         unsigned InWidth = Input->getType()->getScalarSizeInBits();
919         if (TD->getPointerSizeInBits() < InWidth) {
920           Constant *Mask = 
921             ConstantInt::get(CE->getContext(), APInt::getLowBitsSet(InWidth,
922                                                   TD->getPointerSizeInBits()));
923           Input = ConstantExpr::getAnd(Input, Mask);
924         }
925         // Do a zext or trunc to get to the dest size.
926         return ConstantExpr::getIntegerCast(Input, DestTy, false);
927       }
928     }
929     return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
930   case Instruction::IntToPtr:
931     // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
932     // the int size is >= the ptr size.  This requires knowing the width of a
933     // pointer, so it can't be done in ConstantExpr::getCast.
934     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0]))
935       if (TD &&
936           TD->getPointerSizeInBits() <= CE->getType()->getScalarSizeInBits() &&
937           CE->getOpcode() == Instruction::PtrToInt)
938         return FoldBitCast(CE->getOperand(0), DestTy, *TD);
939
940     return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
941   case Instruction::Trunc:
942   case Instruction::ZExt:
943   case Instruction::SExt:
944   case Instruction::FPTrunc:
945   case Instruction::FPExt:
946   case Instruction::UIToFP:
947   case Instruction::SIToFP:
948   case Instruction::FPToUI:
949   case Instruction::FPToSI:
950       return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
951   case Instruction::BitCast:
952     if (TD)
953       return FoldBitCast(Ops[0], DestTy, *TD);
954     return ConstantExpr::getBitCast(Ops[0], DestTy);
955   case Instruction::Select:
956     return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
957   case Instruction::ExtractElement:
958     return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
959   case Instruction::InsertElement:
960     return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
961   case Instruction::ShuffleVector:
962     return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
963   case Instruction::GetElementPtr:
964     if (Constant *C = CastGEPIndices(Ops, DestTy, TD, TLI))
965       return C;
966     if (Constant *C = SymbolicallyEvaluateGEP(Ops, DestTy, TD, TLI))
967       return C;
968     
969     return ConstantExpr::getGetElementPtr(Ops[0], Ops.slice(1));
970   }
971 }
972
973 /// ConstantFoldCompareInstOperands - Attempt to constant fold a compare
974 /// instruction (icmp/fcmp) with the specified operands.  If it fails, it
975 /// returns a constant expression of the specified operands.
976 ///
977 Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
978                                                 Constant *Ops0, Constant *Ops1, 
979                                                 const DataLayout *TD,
980                                                 const TargetLibraryInfo *TLI) {
981   // fold: icmp (inttoptr x), null         -> icmp x, 0
982   // fold: icmp (ptrtoint x), 0            -> icmp x, null
983   // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
984   // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
985   //
986   // ConstantExpr::getCompare cannot do this, because it doesn't have TD
987   // around to know if bit truncation is happening.
988   if (ConstantExpr *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
989     if (TD && Ops1->isNullValue()) {
990       Type *IntPtrTy = TD->getIntPtrType(CE0->getContext());
991       if (CE0->getOpcode() == Instruction::IntToPtr) {
992         // Convert the integer value to the right size to ensure we get the
993         // proper extension or truncation.
994         Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
995                                                    IntPtrTy, false);
996         Constant *Null = Constant::getNullValue(C->getType());
997         return ConstantFoldCompareInstOperands(Predicate, C, Null, TD, TLI);
998       }
999       
1000       // Only do this transformation if the int is intptrty in size, otherwise
1001       // there is a truncation or extension that we aren't modeling.
1002       if (CE0->getOpcode() == Instruction::PtrToInt && 
1003           CE0->getType() == IntPtrTy) {
1004         Constant *C = CE0->getOperand(0);
1005         Constant *Null = Constant::getNullValue(C->getType());
1006         return ConstantFoldCompareInstOperands(Predicate, C, Null, TD, TLI);
1007       }
1008     }
1009     
1010     if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
1011       if (TD && CE0->getOpcode() == CE1->getOpcode()) {
1012         Type *IntPtrTy = TD->getIntPtrType(CE0->getContext());
1013
1014         if (CE0->getOpcode() == Instruction::IntToPtr) {
1015           // Convert the integer value to the right size to ensure we get the
1016           // proper extension or truncation.
1017           Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
1018                                                       IntPtrTy, false);
1019           Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
1020                                                       IntPtrTy, false);
1021           return ConstantFoldCompareInstOperands(Predicate, C0, C1, TD, TLI);
1022         }
1023
1024         // Only do this transformation if the int is intptrty in size, otherwise
1025         // there is a truncation or extension that we aren't modeling.
1026         if ((CE0->getOpcode() == Instruction::PtrToInt &&
1027              CE0->getType() == IntPtrTy &&
1028              CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()))
1029           return ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(0),
1030                                                  CE1->getOperand(0), TD, TLI);
1031       }
1032     }
1033     
1034     // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
1035     // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
1036     if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
1037         CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
1038       Constant *LHS = 
1039         ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(0), Ops1,
1040                                         TD, TLI);
1041       Constant *RHS = 
1042         ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(1), Ops1,
1043                                         TD, TLI);
1044       unsigned OpC = 
1045         Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1046       Constant *Ops[] = { LHS, RHS };
1047       return ConstantFoldInstOperands(OpC, LHS->getType(), Ops, TD, TLI);
1048     }
1049   }
1050   
1051   return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
1052 }
1053
1054
1055 /// ConstantFoldLoadThroughGEPConstantExpr - Given a constant and a
1056 /// getelementptr constantexpr, return the constant value being addressed by the
1057 /// constant expression, or null if something is funny and we can't decide.
1058 Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C, 
1059                                                        ConstantExpr *CE) {
1060   if (!CE->getOperand(1)->isNullValue())
1061     return 0;  // Do not allow stepping over the value!
1062
1063   // Loop over all of the operands, tracking down which value we are
1064   // addressing.
1065   for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) {
1066     C = C->getAggregateElement(CE->getOperand(i));
1067     if (C == 0) return 0;
1068   }
1069   return C;
1070 }
1071
1072 /// ConstantFoldLoadThroughGEPIndices - Given a constant and getelementptr
1073 /// indices (with an *implied* zero pointer index that is not in the list),
1074 /// return the constant value being addressed by a virtual load, or null if
1075 /// something is funny and we can't decide.
1076 Constant *llvm::ConstantFoldLoadThroughGEPIndices(Constant *C,
1077                                                   ArrayRef<Constant*> Indices) {
1078   // Loop over all of the operands, tracking down which value we are
1079   // addressing.
1080   for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
1081     C = C->getAggregateElement(Indices[i]);
1082     if (C == 0) return 0;
1083   }
1084   return C;
1085 }
1086
1087
1088 //===----------------------------------------------------------------------===//
1089 //  Constant Folding for Calls
1090 //
1091
1092 /// canConstantFoldCallTo - Return true if its even possible to fold a call to
1093 /// the specified function.
1094 bool
1095 llvm::canConstantFoldCallTo(const Function *F) {
1096   switch (F->getIntrinsicID()) {
1097   case Intrinsic::sqrt:
1098   case Intrinsic::pow:
1099   case Intrinsic::powi:
1100   case Intrinsic::bswap:
1101   case Intrinsic::ctpop:
1102   case Intrinsic::ctlz:
1103   case Intrinsic::cttz:
1104   case Intrinsic::sadd_with_overflow:
1105   case Intrinsic::uadd_with_overflow:
1106   case Intrinsic::ssub_with_overflow:
1107   case Intrinsic::usub_with_overflow:
1108   case Intrinsic::smul_with_overflow:
1109   case Intrinsic::umul_with_overflow:
1110   case Intrinsic::convert_from_fp16:
1111   case Intrinsic::convert_to_fp16:
1112   case Intrinsic::x86_sse_cvtss2si:
1113   case Intrinsic::x86_sse_cvtss2si64:
1114   case Intrinsic::x86_sse_cvttss2si:
1115   case Intrinsic::x86_sse_cvttss2si64:
1116   case Intrinsic::x86_sse2_cvtsd2si:
1117   case Intrinsic::x86_sse2_cvtsd2si64:
1118   case Intrinsic::x86_sse2_cvttsd2si:
1119   case Intrinsic::x86_sse2_cvttsd2si64:
1120     return true;
1121   default:
1122     return false;
1123   case 0: break;
1124   }
1125
1126   if (!F->hasName()) return false;
1127   StringRef Name = F->getName();
1128   
1129   // In these cases, the check of the length is required.  We don't want to
1130   // return true for a name like "cos\0blah" which strcmp would return equal to
1131   // "cos", but has length 8.
1132   switch (Name[0]) {
1133   default: return false;
1134   case 'a':
1135     return Name == "acos" || Name == "asin" || 
1136       Name == "atan" || Name == "atan2";
1137   case 'c':
1138     return Name == "cos" || Name == "ceil" || Name == "cosf" || Name == "cosh";
1139   case 'e':
1140     return Name == "exp" || Name == "exp2";
1141   case 'f':
1142     return Name == "fabs" || Name == "fmod" || Name == "floor";
1143   case 'l':
1144     return Name == "log" || Name == "log10";
1145   case 'p':
1146     return Name == "pow";
1147   case 's':
1148     return Name == "sin" || Name == "sinh" || Name == "sqrt" ||
1149       Name == "sinf" || Name == "sqrtf";
1150   case 't':
1151     return Name == "tan" || Name == "tanh";
1152   }
1153 }
1154
1155 static Constant *ConstantFoldFP(double (*NativeFP)(double), double V, 
1156                                 Type *Ty) {
1157   sys::llvm_fenv_clearexcept();
1158   V = NativeFP(V);
1159   if (sys::llvm_fenv_testexcept()) {
1160     sys::llvm_fenv_clearexcept();
1161     return 0;
1162   }
1163   
1164   if (Ty->isFloatTy())
1165     return ConstantFP::get(Ty->getContext(), APFloat((float)V));
1166   if (Ty->isDoubleTy())
1167     return ConstantFP::get(Ty->getContext(), APFloat(V));
1168   llvm_unreachable("Can only constant fold float/double");
1169 }
1170
1171 static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
1172                                       double V, double W, Type *Ty) {
1173   sys::llvm_fenv_clearexcept();
1174   V = NativeFP(V, W);
1175   if (sys::llvm_fenv_testexcept()) {
1176     sys::llvm_fenv_clearexcept();
1177     return 0;
1178   }
1179   
1180   if (Ty->isFloatTy())
1181     return ConstantFP::get(Ty->getContext(), APFloat((float)V));
1182   if (Ty->isDoubleTy())
1183     return ConstantFP::get(Ty->getContext(), APFloat(V));
1184   llvm_unreachable("Can only constant fold float/double");
1185 }
1186
1187 /// ConstantFoldConvertToInt - Attempt to an SSE floating point to integer
1188 /// conversion of a constant floating point. If roundTowardZero is false, the
1189 /// default IEEE rounding is used (toward nearest, ties to even). This matches
1190 /// the behavior of the non-truncating SSE instructions in the default rounding
1191 /// mode. The desired integer type Ty is used to select how many bits are
1192 /// available for the result. Returns null if the conversion cannot be
1193 /// performed, otherwise returns the Constant value resulting from the
1194 /// conversion.
1195 static Constant *ConstantFoldConvertToInt(const APFloat &Val,
1196                                           bool roundTowardZero, Type *Ty) {
1197   // All of these conversion intrinsics form an integer of at most 64bits.
1198   unsigned ResultWidth = cast<IntegerType>(Ty)->getBitWidth();
1199   assert(ResultWidth <= 64 &&
1200          "Can only constant fold conversions to 64 and 32 bit ints");
1201
1202   uint64_t UIntVal;
1203   bool isExact = false;
1204   APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
1205                                               : APFloat::rmNearestTiesToEven;
1206   APFloat::opStatus status = Val.convertToInteger(&UIntVal, ResultWidth,
1207                                                   /*isSigned=*/true, mode,
1208                                                   &isExact);
1209   if (status != APFloat::opOK && status != APFloat::opInexact)
1210     return 0;
1211   return ConstantInt::get(Ty, UIntVal, /*isSigned=*/true);
1212 }
1213
1214 /// ConstantFoldCall - Attempt to constant fold a call to the specified function
1215 /// with the specified arguments, returning null if unsuccessful.
1216 Constant *
1217 llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
1218                        const TargetLibraryInfo *TLI) {
1219   if (!F->hasName()) return 0;
1220   StringRef Name = F->getName();
1221
1222   Type *Ty = F->getReturnType();
1223   if (Operands.size() == 1) {
1224     if (ConstantFP *Op = dyn_cast<ConstantFP>(Operands[0])) {
1225       if (F->getIntrinsicID() == Intrinsic::convert_to_fp16) {
1226         APFloat Val(Op->getValueAPF());
1227
1228         bool lost = false;
1229         Val.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &lost);
1230
1231         return ConstantInt::get(F->getContext(), Val.bitcastToAPInt());
1232       }
1233       if (!TLI)
1234         return 0;
1235
1236       if (!Ty->isFloatTy() && !Ty->isDoubleTy())
1237         return 0;
1238
1239       /// We only fold functions with finite arguments. Folding NaN and inf is
1240       /// likely to be aborted with an exception anyway, and some host libms
1241       /// have known errors raising exceptions.
1242       if (Op->getValueAPF().isNaN() || Op->getValueAPF().isInfinity())
1243         return 0;
1244
1245       /// Currently APFloat versions of these functions do not exist, so we use
1246       /// the host native double versions.  Float versions are not called
1247       /// directly but for all these it is true (float)(f((double)arg)) ==
1248       /// f(arg).  Long double not supported yet.
1249       double V = Ty->isFloatTy() ? (double)Op->getValueAPF().convertToFloat() :
1250                                      Op->getValueAPF().convertToDouble();
1251       switch (Name[0]) {
1252       case 'a':
1253         if (Name == "acos" && TLI->has(LibFunc::acos))
1254           return ConstantFoldFP(acos, V, Ty);
1255         else if (Name == "asin" && TLI->has(LibFunc::asin))
1256           return ConstantFoldFP(asin, V, Ty);
1257         else if (Name == "atan" && TLI->has(LibFunc::atan))
1258           return ConstantFoldFP(atan, V, Ty);
1259         break;
1260       case 'c':
1261         if (Name == "ceil" && TLI->has(LibFunc::ceil))
1262           return ConstantFoldFP(ceil, V, Ty);
1263         else if (Name == "cos" && TLI->has(LibFunc::cos))
1264           return ConstantFoldFP(cos, V, Ty);
1265         else if (Name == "cosh" && TLI->has(LibFunc::cosh))
1266           return ConstantFoldFP(cosh, V, Ty);
1267         else if (Name == "cosf" && TLI->has(LibFunc::cosf))
1268           return ConstantFoldFP(cos, V, Ty);
1269         break;
1270       case 'e':
1271         if (Name == "exp" && TLI->has(LibFunc::exp))
1272           return ConstantFoldFP(exp, V, Ty);
1273   
1274         if (Name == "exp2" && TLI->has(LibFunc::exp2)) {
1275           // Constant fold exp2(x) as pow(2,x) in case the host doesn't have a
1276           // C99 library.
1277           return ConstantFoldBinaryFP(pow, 2.0, V, Ty);
1278         }
1279         break;
1280       case 'f':
1281         if (Name == "fabs" && TLI->has(LibFunc::fabs))
1282           return ConstantFoldFP(fabs, V, Ty);
1283         else if (Name == "floor" && TLI->has(LibFunc::floor))
1284           return ConstantFoldFP(floor, V, Ty);
1285         break;
1286       case 'l':
1287         if (Name == "log" && V > 0 && TLI->has(LibFunc::log))
1288           return ConstantFoldFP(log, V, Ty);
1289         else if (Name == "log10" && V > 0 && TLI->has(LibFunc::log10))
1290           return ConstantFoldFP(log10, V, Ty);
1291         else if (F->getIntrinsicID() == Intrinsic::sqrt &&
1292                  (Ty->isFloatTy() || Ty->isDoubleTy())) {
1293           if (V >= -0.0)
1294             return ConstantFoldFP(sqrt, V, Ty);
1295           else // Undefined
1296             return Constant::getNullValue(Ty);
1297         }
1298         break;
1299       case 's':
1300         if (Name == "sin" && TLI->has(LibFunc::sin))
1301           return ConstantFoldFP(sin, V, Ty);
1302         else if (Name == "sinh" && TLI->has(LibFunc::sinh))
1303           return ConstantFoldFP(sinh, V, Ty);
1304         else if (Name == "sqrt" && V >= 0 && TLI->has(LibFunc::sqrt))
1305           return ConstantFoldFP(sqrt, V, Ty);
1306         else if (Name == "sqrtf" && V >= 0 && TLI->has(LibFunc::sqrtf))
1307           return ConstantFoldFP(sqrt, V, Ty);
1308         else if (Name == "sinf" && TLI->has(LibFunc::sinf))
1309           return ConstantFoldFP(sin, V, Ty);
1310         break;
1311       case 't':
1312         if (Name == "tan" && TLI->has(LibFunc::tan))
1313           return ConstantFoldFP(tan, V, Ty);
1314         else if (Name == "tanh" && TLI->has(LibFunc::tanh))
1315           return ConstantFoldFP(tanh, V, Ty);
1316         break;
1317       default:
1318         break;
1319       }
1320       return 0;
1321     }
1322
1323     if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) {
1324       switch (F->getIntrinsicID()) {
1325       case Intrinsic::bswap:
1326         return ConstantInt::get(F->getContext(), Op->getValue().byteSwap());
1327       case Intrinsic::ctpop:
1328         return ConstantInt::get(Ty, Op->getValue().countPopulation());
1329       case Intrinsic::convert_from_fp16: {
1330         APFloat Val(Op->getValue());
1331
1332         bool lost = false;
1333         APFloat::opStatus status =
1334           Val.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &lost);
1335
1336         // Conversion is always precise.
1337         (void)status;
1338         assert(status == APFloat::opOK && !lost &&
1339                "Precision lost during fp16 constfolding");
1340
1341         return ConstantFP::get(F->getContext(), Val);
1342       }
1343       default:
1344         return 0;
1345       }
1346     }
1347
1348     // Support ConstantVector in case we have an Undef in the top.
1349     if (isa<ConstantVector>(Operands[0]) || 
1350         isa<ConstantDataVector>(Operands[0])) {
1351       Constant *Op = cast<Constant>(Operands[0]);
1352       switch (F->getIntrinsicID()) {
1353       default: break;
1354       case Intrinsic::x86_sse_cvtss2si:
1355       case Intrinsic::x86_sse_cvtss2si64:
1356       case Intrinsic::x86_sse2_cvtsd2si:
1357       case Intrinsic::x86_sse2_cvtsd2si64:
1358         if (ConstantFP *FPOp =
1359               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
1360           return ConstantFoldConvertToInt(FPOp->getValueAPF(),
1361                                           /*roundTowardZero=*/false, Ty);
1362       case Intrinsic::x86_sse_cvttss2si:
1363       case Intrinsic::x86_sse_cvttss2si64:
1364       case Intrinsic::x86_sse2_cvttsd2si:
1365       case Intrinsic::x86_sse2_cvttsd2si64:
1366         if (ConstantFP *FPOp =
1367               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
1368           return ConstantFoldConvertToInt(FPOp->getValueAPF(), 
1369                                           /*roundTowardZero=*/true, Ty);
1370       }
1371     }
1372   
1373     if (isa<UndefValue>(Operands[0])) {
1374       if (F->getIntrinsicID() == Intrinsic::bswap)
1375         return Operands[0];
1376       return 0;
1377     }
1378
1379     return 0;
1380   }
1381
1382   if (Operands.size() == 2) {
1383     if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
1384       if (!Ty->isFloatTy() && !Ty->isDoubleTy())
1385         return 0;
1386       double Op1V = Ty->isFloatTy() ? 
1387                       (double)Op1->getValueAPF().convertToFloat() :
1388                       Op1->getValueAPF().convertToDouble();
1389       if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
1390         if (Op2->getType() != Op1->getType())
1391           return 0;
1392
1393         double Op2V = Ty->isFloatTy() ? 
1394                       (double)Op2->getValueAPF().convertToFloat():
1395                       Op2->getValueAPF().convertToDouble();
1396
1397         if (F->getIntrinsicID() == Intrinsic::pow) {
1398           return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
1399         }
1400         if (!TLI)
1401           return 0;
1402         if (Name == "pow" && TLI->has(LibFunc::pow))
1403           return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
1404         if (Name == "fmod" && TLI->has(LibFunc::fmod))
1405           return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty);
1406         if (Name == "atan2" && TLI->has(LibFunc::atan2))
1407           return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
1408       } else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
1409         if (F->getIntrinsicID() == Intrinsic::powi && Ty->isFloatTy())
1410           return ConstantFP::get(F->getContext(),
1411                                  APFloat((float)std::pow((float)Op1V,
1412                                                  (int)Op2C->getZExtValue())));
1413         if (F->getIntrinsicID() == Intrinsic::powi && Ty->isDoubleTy())
1414           return ConstantFP::get(F->getContext(),
1415                                  APFloat((double)std::pow((double)Op1V,
1416                                                    (int)Op2C->getZExtValue())));
1417       }
1418       return 0;
1419     }
1420     
1421     if (ConstantInt *Op1 = dyn_cast<ConstantInt>(Operands[0])) {
1422       if (ConstantInt *Op2 = dyn_cast<ConstantInt>(Operands[1])) {
1423         switch (F->getIntrinsicID()) {
1424         default: break;
1425         case Intrinsic::sadd_with_overflow:
1426         case Intrinsic::uadd_with_overflow:
1427         case Intrinsic::ssub_with_overflow:
1428         case Intrinsic::usub_with_overflow:
1429         case Intrinsic::smul_with_overflow:
1430         case Intrinsic::umul_with_overflow: {
1431           APInt Res;
1432           bool Overflow;
1433           switch (F->getIntrinsicID()) {
1434           default: llvm_unreachable("Invalid case");
1435           case Intrinsic::sadd_with_overflow:
1436             Res = Op1->getValue().sadd_ov(Op2->getValue(), Overflow);
1437             break;
1438           case Intrinsic::uadd_with_overflow:
1439             Res = Op1->getValue().uadd_ov(Op2->getValue(), Overflow);
1440             break;
1441           case Intrinsic::ssub_with_overflow:
1442             Res = Op1->getValue().ssub_ov(Op2->getValue(), Overflow);
1443             break;
1444           case Intrinsic::usub_with_overflow:
1445             Res = Op1->getValue().usub_ov(Op2->getValue(), Overflow);
1446             break;
1447           case Intrinsic::smul_with_overflow:
1448             Res = Op1->getValue().smul_ov(Op2->getValue(), Overflow);
1449             break;
1450           case Intrinsic::umul_with_overflow:
1451             Res = Op1->getValue().umul_ov(Op2->getValue(), Overflow);
1452             break;
1453           }
1454           Constant *Ops[] = {
1455             ConstantInt::get(F->getContext(), Res),
1456             ConstantInt::get(Type::getInt1Ty(F->getContext()), Overflow)
1457           };
1458           return ConstantStruct::get(cast<StructType>(F->getReturnType()), Ops);
1459         }
1460         case Intrinsic::cttz:
1461           // FIXME: This should check for Op2 == 1, and become unreachable if
1462           // Op1 == 0.
1463           return ConstantInt::get(Ty, Op1->getValue().countTrailingZeros());
1464         case Intrinsic::ctlz:
1465           // FIXME: This should check for Op2 == 1, and become unreachable if
1466           // Op1 == 0.
1467           return ConstantInt::get(Ty, Op1->getValue().countLeadingZeros());
1468         }
1469       }
1470       
1471       return 0;
1472     }
1473     return 0;
1474   }
1475   return 0;
1476 }