a9adbd73c152e590894bb730533575864ddee28a
[oota-llvm.git] / include / llvm / Transforms / Utils / SSAUpdaterImpl.h
1 //===-- SSAUpdaterImpl.h - SSA Updater Implementation -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file provides a template that implements the core algorithm for the
11 // SSAUpdater and MachineSSAUpdater.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #ifndef LLVM_TRANSFORMS_UTILS_SSAUPDATERIMPL_H
16 #define LLVM_TRANSFORMS_UTILS_SSAUPDATERIMPL_H
17
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/Support/Allocator.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Support/ValueHandle.h"
23
24 namespace llvm {
25
26 class CastInst;
27 class PHINode;
28 template<typename T> class SSAUpdaterTraits;
29
30 template<typename UpdaterT>
31 class SSAUpdaterImpl {
32 private:
33   UpdaterT *Updater;
34
35   typedef SSAUpdaterTraits<UpdaterT> Traits;
36   typedef typename Traits::BlkT BlkT;
37   typedef typename Traits::ValT ValT;
38   typedef typename Traits::PhiT PhiT;
39
40   /// BBInfo - Per-basic block information used internally by SSAUpdaterImpl.
41   /// The predecessors of each block are cached here since pred_iterator is
42   /// slow and we need to iterate over the blocks at least a few times.
43   class BBInfo {
44   public:
45     BlkT *BB;          // Back-pointer to the corresponding block.
46     ValT AvailableVal; // Value to use in this block.
47     BBInfo *DefBB;     // Block that defines the available value.
48     int BlkNum;        // Postorder number.
49     BBInfo *IDom;      // Immediate dominator.
50     unsigned NumPreds; // Number of predecessor blocks.
51     BBInfo **Preds;    // Array[NumPreds] of predecessor blocks.
52     PhiT *PHITag;      // Marker for existing PHIs that match.
53
54     BBInfo(BlkT *ThisBB, ValT V)
55       : BB(ThisBB), AvailableVal(V), DefBB(V ? this : 0), BlkNum(0), IDom(0),
56       NumPreds(0), Preds(0), PHITag(0) { }
57   };
58
59   typedef DenseMap<BlkT*, ValT> AvailableValsTy;
60   AvailableValsTy *AvailableVals;
61
62   SmallVectorImpl<PhiT*> *InsertedPHIs;
63
64   typedef SmallVectorImpl<BBInfo*> BlockListTy;
65   typedef DenseMap<BlkT*, BBInfo*> BBMapTy;
66   BBMapTy BBMap;
67   BumpPtrAllocator Allocator;
68
69 public:
70   explicit SSAUpdaterImpl(UpdaterT *U, AvailableValsTy *A,
71                           SmallVectorImpl<PhiT*> *Ins) :
72     Updater(U), AvailableVals(A), InsertedPHIs(Ins) { }
73
74   /// GetValue - Check to see if AvailableVals has an entry for the specified
75   /// BB and if so, return it.  If not, construct SSA form by first
76   /// calculating the required placement of PHIs and then inserting new PHIs
77   /// where needed.
78   ValT GetValue(BlkT *BB) {
79     SmallVector<BBInfo*, 100> BlockList;
80     BBInfo *PseudoEntry = BuildBlockList(BB, &BlockList);
81
82     // Special case: bail out if BB is unreachable.
83     if (BlockList.size() == 0) {
84       ValT V = Traits::GetUndefVal(BB, Updater);
85       (*AvailableVals)[BB] = V;
86       return V;
87     }
88
89     FindDominators(&BlockList, PseudoEntry);
90     FindPHIPlacement(&BlockList);
91     FindAvailableVals(&BlockList);
92
93     return BBMap[BB]->DefBB->AvailableVal;
94   }
95
96   /// BuildBlockList - Starting from the specified basic block, traverse back
97   /// through its predecessors until reaching blocks with known values.
98   /// Create BBInfo structures for the blocks and append them to the block
99   /// list.
100   BBInfo *BuildBlockList(BlkT *BB, BlockListTy *BlockList) {
101     SmallVector<BBInfo*, 10> RootList;
102     SmallVector<BBInfo*, 64> WorkList;
103
104     BBInfo *Info = new (Allocator) BBInfo(BB, 0);
105     BBMap[BB] = Info;
106     WorkList.push_back(Info);
107
108     // Search backward from BB, creating BBInfos along the way and stopping
109     // when reaching blocks that define the value.  Record those defining
110     // blocks on the RootList.
111     SmallVector<BlkT*, 10> Preds;
112     while (!WorkList.empty()) {
113       Info = WorkList.pop_back_val();
114       Preds.clear();
115       Traits::FindPredecessorBlocks(Info->BB, &Preds);
116       Info->NumPreds = Preds.size();
117       if (Info->NumPreds == 0)
118         Info->Preds = 0;
119       else
120         Info->Preds = static_cast<BBInfo**>
121           (Allocator.Allocate(Info->NumPreds * sizeof(BBInfo*),
122                               AlignOf<BBInfo*>::Alignment));
123
124       for (unsigned p = 0; p != Info->NumPreds; ++p) {
125         BlkT *Pred = Preds[p];
126         // Check if BBMap already has a BBInfo for the predecessor block.
127         typename BBMapTy::value_type &BBMapBucket =
128           BBMap.FindAndConstruct(Pred);
129         if (BBMapBucket.second) {
130           Info->Preds[p] = BBMapBucket.second;
131           continue;
132         }
133
134         // Create a new BBInfo for the predecessor.
135         ValT PredVal = AvailableVals->lookup(Pred);
136         BBInfo *PredInfo = new (Allocator) BBInfo(Pred, PredVal);
137         BBMapBucket.second = PredInfo;
138         Info->Preds[p] = PredInfo;
139
140         if (PredInfo->AvailableVal) {
141           RootList.push_back(PredInfo);
142           continue;
143         }
144         WorkList.push_back(PredInfo);
145       }
146     }
147
148     // Now that we know what blocks are backwards-reachable from the starting
149     // block, do a forward depth-first traversal to assign postorder numbers
150     // to those blocks.
151     BBInfo *PseudoEntry = new (Allocator) BBInfo(0, 0);
152     unsigned BlkNum = 1;
153
154     // Initialize the worklist with the roots from the backward traversal.
155     while (!RootList.empty()) {
156       Info = RootList.pop_back_val();
157       Info->IDom = PseudoEntry;
158       Info->BlkNum = -1;
159       WorkList.push_back(Info);
160     }
161
162     while (!WorkList.empty()) {
163       Info = WorkList.back();
164
165       if (Info->BlkNum == -2) {
166         // All the successors have been handled; assign the postorder number.
167         Info->BlkNum = BlkNum++;
168         // If not a root, put it on the BlockList.
169         if (!Info->AvailableVal)
170           BlockList->push_back(Info);
171         WorkList.pop_back();
172         continue;
173       }
174
175       // Leave this entry on the worklist, but set its BlkNum to mark that its
176       // successors have been put on the worklist.  When it returns to the top
177       // the list, after handling its successors, it will be assigned a
178       // number.
179       Info->BlkNum = -2;
180
181       // Add unvisited successors to the work list.
182       for (typename Traits::BlkSucc_iterator SI =
183              Traits::BlkSucc_begin(Info->BB),
184              E = Traits::BlkSucc_end(Info->BB); SI != E; ++SI) {
185         BBInfo *SuccInfo = BBMap[*SI];
186         if (!SuccInfo || SuccInfo->BlkNum)
187           continue;
188         SuccInfo->BlkNum = -1;
189         WorkList.push_back(SuccInfo);
190       }
191     }
192     PseudoEntry->BlkNum = BlkNum;
193     return PseudoEntry;
194   }
195
196   /// IntersectDominators - This is the dataflow lattice "meet" operation for
197   /// finding dominators.  Given two basic blocks, it walks up the dominator
198   /// tree until it finds a common dominator of both.  It uses the postorder
199   /// number of the blocks to determine how to do that.
200   BBInfo *IntersectDominators(BBInfo *Blk1, BBInfo *Blk2) {
201     while (Blk1 != Blk2) {
202       while (Blk1->BlkNum < Blk2->BlkNum) {
203         Blk1 = Blk1->IDom;
204         if (!Blk1)
205           return Blk2;
206       }
207       while (Blk2->BlkNum < Blk1->BlkNum) {
208         Blk2 = Blk2->IDom;
209         if (!Blk2)
210           return Blk1;
211       }
212     }
213     return Blk1;
214   }
215
216   /// FindDominators - Calculate the dominator tree for the subset of the CFG
217   /// corresponding to the basic blocks on the BlockList.  This uses the
218   /// algorithm from: "A Simple, Fast Dominance Algorithm" by Cooper, Harvey
219   /// and Kennedy, published in Software--Practice and Experience, 2001,
220   /// 4:1-10.  Because the CFG subset does not include any edges leading into
221   /// blocks that define the value, the results are not the usual dominator
222   /// tree.  The CFG subset has a single pseudo-entry node with edges to a set
223   /// of root nodes for blocks that define the value.  The dominators for this
224   /// subset CFG are not the standard dominators but they are adequate for
225   /// placing PHIs within the subset CFG.
226   void FindDominators(BlockListTy *BlockList, BBInfo *PseudoEntry) {
227     bool Changed;
228     do {
229       Changed = false;
230       // Iterate over the list in reverse order, i.e., forward on CFG edges.
231       for (typename BlockListTy::reverse_iterator I = BlockList->rbegin(),
232              E = BlockList->rend(); I != E; ++I) {
233         BBInfo *Info = *I;
234         BBInfo *NewIDom = 0;
235
236         // Iterate through the block's predecessors.
237         for (unsigned p = 0; p != Info->NumPreds; ++p) {
238           BBInfo *Pred = Info->Preds[p];
239
240           // Treat an unreachable predecessor as a definition with 'undef'.
241           if (Pred->BlkNum == 0) {
242             Pred->AvailableVal = Traits::GetUndefVal(Pred->BB, Updater);
243             (*AvailableVals)[Pred->BB] = Pred->AvailableVal;
244             Pred->DefBB = Pred;
245             Pred->BlkNum = PseudoEntry->BlkNum;
246             PseudoEntry->BlkNum++;
247           }
248
249           if (!NewIDom)
250             NewIDom = Pred;
251           else
252             NewIDom = IntersectDominators(NewIDom, Pred);
253         }
254
255         // Check if the IDom value has changed.
256         if (NewIDom && NewIDom != Info->IDom) {
257           Info->IDom = NewIDom;
258           Changed = true;
259         }
260       }
261     } while (Changed);
262   }
263
264   /// IsDefInDomFrontier - Search up the dominator tree from Pred to IDom for
265   /// any blocks containing definitions of the value.  If one is found, then
266   /// the successor of Pred is in the dominance frontier for the definition,
267   /// and this function returns true.
268   bool IsDefInDomFrontier(const BBInfo *Pred, const BBInfo *IDom) {
269     for (; Pred != IDom; Pred = Pred->IDom) {
270       if (Pred->DefBB == Pred)
271         return true;
272     }
273     return false;
274   }
275
276   /// FindPHIPlacement - PHIs are needed in the iterated dominance frontiers
277   /// of the known definitions.  Iteratively add PHIs in the dom frontiers
278   /// until nothing changes.  Along the way, keep track of the nearest
279   /// dominating definitions for non-PHI blocks.
280   void FindPHIPlacement(BlockListTy *BlockList) {
281     bool Changed;
282     do {
283       Changed = false;
284       // Iterate over the list in reverse order, i.e., forward on CFG edges.
285       for (typename BlockListTy::reverse_iterator I = BlockList->rbegin(),
286              E = BlockList->rend(); I != E; ++I) {
287         BBInfo *Info = *I;
288
289         // If this block already needs a PHI, there is nothing to do here.
290         if (Info->DefBB == Info)
291           continue;
292
293         // Default to use the same def as the immediate dominator.
294         BBInfo *NewDefBB = Info->IDom->DefBB;
295         for (unsigned p = 0; p != Info->NumPreds; ++p) {
296           if (IsDefInDomFrontier(Info->Preds[p], Info->IDom)) {
297             // Need a PHI here.
298             NewDefBB = Info;
299             break;
300           }
301         }
302
303         // Check if anything changed.
304         if (NewDefBB != Info->DefBB) {
305           Info->DefBB = NewDefBB;
306           Changed = true;
307         }
308       }
309     } while (Changed);
310   }
311
312   /// FindAvailableVal - If this block requires a PHI, first check if an
313   /// existing PHI matches the PHI placement and reaching definitions computed
314   /// earlier, and if not, create a new PHI.  Visit all the block's
315   /// predecessors to calculate the available value for each one and fill in
316   /// the incoming values for a new PHI.
317   void FindAvailableVals(BlockListTy *BlockList) {
318     // Go through the worklist in forward order (i.e., backward through the CFG)
319     // and check if existing PHIs can be used.  If not, create empty PHIs where
320     // they are needed.
321     for (typename BlockListTy::iterator I = BlockList->begin(),
322            E = BlockList->end(); I != E; ++I) {
323       BBInfo *Info = *I;
324       // Check if there needs to be a PHI in BB.
325       if (Info->DefBB != Info)
326         continue;
327
328       // Look for an existing PHI.
329       FindExistingPHI(Info->BB, BlockList);
330       if (Info->AvailableVal)
331         continue;
332
333       ValT PHI = Traits::CreateEmptyPHI(Info->BB, Info->NumPreds, Updater);
334       Info->AvailableVal = PHI;
335       (*AvailableVals)[Info->BB] = PHI;
336     }
337
338     // Now go back through the worklist in reverse order to fill in the
339     // arguments for any new PHIs added in the forward traversal.
340     for (typename BlockListTy::reverse_iterator I = BlockList->rbegin(),
341            E = BlockList->rend(); I != E; ++I) {
342       BBInfo *Info = *I;
343
344       if (Info->DefBB != Info) {
345         // Record the available value at join nodes to speed up subsequent
346         // uses of this SSAUpdater for the same value.
347         if (Info->NumPreds > 1)
348           (*AvailableVals)[Info->BB] = Info->DefBB->AvailableVal;
349         continue;
350       }
351
352       // Check if this block contains a newly added PHI.
353       PhiT *PHI = Traits::ValueIsNewPHI(Info->AvailableVal, Updater);
354       if (!PHI)
355         continue;
356
357       // Iterate through the block's predecessors.
358       for (unsigned p = 0; p != Info->NumPreds; ++p) {
359         BBInfo *PredInfo = Info->Preds[p];
360         BlkT *Pred = PredInfo->BB;
361         // Skip to the nearest preceding definition.
362         if (PredInfo->DefBB != PredInfo)
363           PredInfo = PredInfo->DefBB;
364         Traits::AddPHIOperand(PHI, PredInfo->AvailableVal, Pred);
365       }
366
367       DEBUG(dbgs() << "  Inserted PHI: " << *PHI << "\n");
368
369       // If the client wants to know about all new instructions, tell it.
370       if (InsertedPHIs) InsertedPHIs->push_back(PHI);
371     }
372   }
373
374   /// FindExistingPHI - Look through the PHI nodes in a block to see if any of
375   /// them match what is needed.
376   void FindExistingPHI(BlkT *BB, BlockListTy *BlockList) {
377     for (typename BlkT::iterator BBI = BB->begin(), BBE = BB->end();
378          BBI != BBE; ++BBI) {
379       PhiT *SomePHI = Traits::InstrIsPHI(BBI);
380       if (!SomePHI)
381         break;
382       if (CheckIfPHIMatches(SomePHI)) {
383         RecordMatchingPHIs(BlockList);
384         break;
385       }
386       // Match failed: clear all the PHITag values.
387       for (typename BlockListTy::iterator I = BlockList->begin(),
388              E = BlockList->end(); I != E; ++I)
389         (*I)->PHITag = 0;
390     }
391   }
392
393   /// CheckIfPHIMatches - Check if a PHI node matches the placement and values
394   /// in the BBMap.
395   bool CheckIfPHIMatches(PhiT *PHI) {
396     SmallVector<PhiT*, 20> WorkList;
397     WorkList.push_back(PHI);
398
399     // Mark that the block containing this PHI has been visited.
400     BBMap[PHI->getParent()]->PHITag = PHI;
401
402     while (!WorkList.empty()) {
403       PHI = WorkList.pop_back_val();
404
405       // Iterate through the PHI's incoming values.
406       for (typename Traits::PHI_iterator I = Traits::PHI_begin(PHI),
407              E = Traits::PHI_end(PHI); I != E; ++I) {
408         ValT IncomingVal = I.getIncomingValue();
409         BBInfo *PredInfo = BBMap[I.getIncomingBlock()];
410         // Skip to the nearest preceding definition.
411         if (PredInfo->DefBB != PredInfo)
412           PredInfo = PredInfo->DefBB;
413
414         // Check if it matches the expected value.
415         if (PredInfo->AvailableVal) {
416           if (IncomingVal == PredInfo->AvailableVal)
417             continue;
418           return false;
419         }
420
421         // Check if the value is a PHI in the correct block.
422         PhiT *IncomingPHIVal = Traits::ValueIsPHI(IncomingVal, Updater);
423         if (!IncomingPHIVal || IncomingPHIVal->getParent() != PredInfo->BB)
424           return false;
425
426         // If this block has already been visited, check if this PHI matches.
427         if (PredInfo->PHITag) {
428           if (IncomingPHIVal == PredInfo->PHITag)
429             continue;
430           return false;
431         }
432         PredInfo->PHITag = IncomingPHIVal;
433
434         WorkList.push_back(IncomingPHIVal);
435       }
436     }
437     return true;
438   }
439
440   /// RecordMatchingPHIs - For each PHI node that matches, record it in both
441   /// the BBMap and the AvailableVals mapping.
442   void RecordMatchingPHIs(BlockListTy *BlockList) {
443     for (typename BlockListTy::iterator I = BlockList->begin(),
444            E = BlockList->end(); I != E; ++I)
445       if (PhiT *PHI = (*I)->PHITag) {
446         BlkT *BB = PHI->getParent();
447         ValT PHIVal = Traits::GetPHIValue(PHI);
448         (*AvailableVals)[BB] = PHIVal;
449         BBMap[BB]->AvailableVal = PHIVal;
450       }
451   }
452 };
453
454 } // End llvm namespace
455
456 #endif