65d1559ac66a38260b6c4659c7cac0ed2f61a757
[oota-llvm.git] / include / llvm / MC / MCInstrItineraries.h
1 //===-- llvm/MC/MCInstrItineraries.h - Scheduling ---------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file describes the structures used for instruction
11 // itineraries, stages, and operand reads/writes.  This is used by
12 // schedulers to determine instruction stages and latencies.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #ifndef LLVM_MC_MCINSTRITINERARIES_H
17 #define LLVM_MC_MCINSTRITINERARIES_H
18
19 #include "llvm/MC/MCSchedule.h"
20 #include <algorithm>
21
22 namespace llvm {
23
24 //===----------------------------------------------------------------------===//
25 /// Instruction stage - These values represent a non-pipelined step in
26 /// the execution of an instruction.  Cycles represents the number of
27 /// discrete time slots needed to complete the stage.  Units represent
28 /// the choice of functional units that can be used to complete the
29 /// stage.  Eg. IntUnit1, IntUnit2. NextCycles indicates how many
30 /// cycles should elapse from the start of this stage to the start of
31 /// the next stage in the itinerary. A value of -1 indicates that the
32 /// next stage should start immediately after the current one.
33 /// For example:
34 ///
35 ///   { 1, x, -1 }
36 ///      indicates that the stage occupies FU x for 1 cycle and that
37 ///      the next stage starts immediately after this one.
38 ///
39 ///   { 2, x|y, 1 }
40 ///      indicates that the stage occupies either FU x or FU y for 2
41 ///      consecuative cycles and that the next stage starts one cycle
42 ///      after this stage starts. That is, the stage requirements
43 ///      overlap in time.
44 ///
45 ///   { 1, x, 0 }
46 ///      indicates that the stage occupies FU x for 1 cycle and that
47 ///      the next stage starts in this same cycle. This can be used to
48 ///      indicate that the instruction requires multiple stages at the
49 ///      same time.
50 ///
51 /// FU reservation can be of two different kinds:
52 ///  - FUs which instruction actually requires
53 ///  - FUs which instruction just reserves. Reserved unit is not available for
54 ///    execution of other instruction. However, several instructions can reserve
55 ///    the same unit several times.
56 /// Such two types of units reservation is used to model instruction domain
57 /// change stalls, FUs using the same resource (e.g. same register file), etc.
58
59 struct InstrStage {
60   enum ReservationKinds {
61     Required = 0,
62     Reserved = 1
63   };
64
65   unsigned Cycles_;  ///< Length of stage in machine cycles
66   unsigned Units_;   ///< Choice of functional units
67   int NextCycles_;   ///< Number of machine cycles to next stage
68   ReservationKinds Kind_; ///< Kind of the FU reservation
69
70   /// getCycles - returns the number of cycles the stage is occupied
71   unsigned getCycles() const {
72     return Cycles_;
73   }
74
75   /// getUnits - returns the choice of FUs
76   unsigned getUnits() const {
77     return Units_;
78   }
79
80   ReservationKinds getReservationKind() const {
81     return Kind_;
82   }
83
84   /// getNextCycles - returns the number of cycles from the start of
85   /// this stage to the start of the next stage in the itinerary
86   unsigned getNextCycles() const {
87     return (NextCycles_ >= 0) ? (unsigned)NextCycles_ : Cycles_;
88   }
89 };
90
91
92 //===----------------------------------------------------------------------===//
93 /// Instruction itinerary - An itinerary represents the scheduling
94 /// information for an instruction. This includes a set of stages
95 /// occupies by the instruction, and the pipeline cycle in which
96 /// operands are read and written.
97 ///
98 struct InstrItinerary {
99   int      NumMicroOps;        ///< # of micro-ops, -1 means it's variable
100   unsigned FirstStage;         ///< Index of first stage in itinerary
101   unsigned LastStage;          ///< Index of last + 1 stage in itinerary
102   unsigned FirstOperandCycle;  ///< Index of first operand rd/wr
103   unsigned LastOperandCycle;   ///< Index of last + 1 operand rd/wr
104 };
105
106
107 //===----------------------------------------------------------------------===//
108 /// Instruction itinerary Data - Itinerary data supplied by a subtarget to be
109 /// used by a target.
110 ///
111 class InstrItineraryData {
112 public:
113   const MCSchedModel   *SchedModel;     ///< Basic machine properties.
114   const InstrStage     *Stages;         ///< Array of stages selected
115   const unsigned       *OperandCycles;  ///< Array of operand cycles selected
116   const unsigned       *Forwardings;    ///< Array of pipeline forwarding pathes
117   const InstrItinerary *Itineraries;    ///< Array of itineraries selected
118
119   /// Ctors.
120   ///
121   InstrItineraryData() : SchedModel(&MCSchedModel::DefaultSchedModel),
122                          Stages(0), OperandCycles(0),
123                          Forwardings(0), Itineraries(0) {}
124
125   InstrItineraryData(const MCSchedModel *SM, const InstrStage *S,
126                      const unsigned *OS, const unsigned *F)
127     : SchedModel(SM), Stages(S), OperandCycles(OS), Forwardings(F),
128       Itineraries(SchedModel->InstrItineraries) {}
129
130   /// isEmpty - Returns true if there are no itineraries.
131   ///
132   bool isEmpty() const { return Itineraries == 0; }
133
134   /// isEndMarker - Returns true if the index is for the end marker
135   /// itinerary.
136   ///
137   bool isEndMarker(unsigned ItinClassIndx) const {
138     return ((Itineraries[ItinClassIndx].FirstStage == ~0U) &&
139             (Itineraries[ItinClassIndx].LastStage == ~0U));
140   }
141
142   /// beginStage - Return the first stage of the itinerary.
143   ///
144   const InstrStage *beginStage(unsigned ItinClassIndx) const {
145     unsigned StageIdx = Itineraries[ItinClassIndx].FirstStage;
146     return Stages + StageIdx;
147   }
148
149   /// endStage - Return the last+1 stage of the itinerary.
150   ///
151   const InstrStage *endStage(unsigned ItinClassIndx) const {
152     unsigned StageIdx = Itineraries[ItinClassIndx].LastStage;
153     return Stages + StageIdx;
154   }
155
156   /// getStageLatency - Return the total stage latency of the given
157   /// class.  The latency is the maximum completion time for any stage
158   /// in the itinerary.
159   ///
160   /// InstrStages override the itinerary's MinLatency property. In fact, if the
161   /// stage latencies, which may be zero, are less than MinLatency,
162   /// getStageLatency returns a value less than MinLatency.
163   ///
164   /// If no stages exist, MinLatency is used. If MinLatency is invalid (<0),
165   /// then it defaults to one cycle.
166   unsigned getStageLatency(unsigned ItinClassIndx) const {
167     // If the target doesn't provide itinerary information, use a simple
168     // non-zero default value for all instructions.
169     if (isEmpty())
170       return SchedModel->MinLatency < 0 ? 1 : SchedModel->MinLatency;
171
172     // Calculate the maximum completion time for any stage.
173     unsigned Latency = 0, StartCycle = 0;
174     for (const InstrStage *IS = beginStage(ItinClassIndx),
175            *E = endStage(ItinClassIndx); IS != E; ++IS) {
176       Latency = std::max(Latency, StartCycle + IS->getCycles());
177       StartCycle += IS->getNextCycles();
178     }
179
180     return Latency;
181   }
182
183   /// getOperandCycle - Return the cycle for the given class and
184   /// operand. Return -1 if no cycle is specified for the operand.
185   ///
186   int getOperandCycle(unsigned ItinClassIndx, unsigned OperandIdx) const {
187     if (isEmpty())
188       return -1;
189
190     unsigned FirstIdx = Itineraries[ItinClassIndx].FirstOperandCycle;
191     unsigned LastIdx = Itineraries[ItinClassIndx].LastOperandCycle;
192     if ((FirstIdx + OperandIdx) >= LastIdx)
193       return -1;
194
195     return (int)OperandCycles[FirstIdx + OperandIdx];
196   }
197
198   /// hasPipelineForwarding - Return true if there is a pipeline forwarding
199   /// between instructions of itinerary classes DefClass and UseClasses so that
200   /// value produced by an instruction of itinerary class DefClass, operand
201   /// index DefIdx can be bypassed when it's read by an instruction of
202   /// itinerary class UseClass, operand index UseIdx.
203   bool hasPipelineForwarding(unsigned DefClass, unsigned DefIdx,
204                              unsigned UseClass, unsigned UseIdx) const {
205     unsigned FirstDefIdx = Itineraries[DefClass].FirstOperandCycle;
206     unsigned LastDefIdx = Itineraries[DefClass].LastOperandCycle;
207     if ((FirstDefIdx + DefIdx) >= LastDefIdx)
208       return false;
209     if (Forwardings[FirstDefIdx + DefIdx] == 0)
210       return false;
211
212     unsigned FirstUseIdx = Itineraries[UseClass].FirstOperandCycle;
213     unsigned LastUseIdx = Itineraries[UseClass].LastOperandCycle;
214     if ((FirstUseIdx + UseIdx) >= LastUseIdx)
215       return false;
216
217     return Forwardings[FirstDefIdx + DefIdx] ==
218       Forwardings[FirstUseIdx + UseIdx];
219   }
220
221   /// getOperandLatency - Compute and return the use operand latency of a given
222   /// itinerary class and operand index if the value is produced by an
223   /// instruction of the specified itinerary class and def operand index.
224   int getOperandLatency(unsigned DefClass, unsigned DefIdx,
225                         unsigned UseClass, unsigned UseIdx) const {
226     if (isEmpty())
227       return -1;
228
229     int DefCycle = getOperandCycle(DefClass, DefIdx);
230     if (DefCycle == -1)
231       return -1;
232
233     int UseCycle = getOperandCycle(UseClass, UseIdx);
234     if (UseCycle == -1)
235       return -1;
236
237     UseCycle = DefCycle - UseCycle + 1;
238     if (UseCycle > 0 &&
239         hasPipelineForwarding(DefClass, DefIdx, UseClass, UseIdx))
240       // FIXME: This assumes one cycle benefit for every pipeline forwarding.
241       --UseCycle;
242     return UseCycle;
243   }
244
245   /// getNumMicroOps - Return the number of micro-ops that the given class
246   /// decodes to. Return -1 for classes that require dynamic lookup via
247   /// TargetInstrInfo.
248   int getNumMicroOps(unsigned ItinClassIndx) const {
249     if (isEmpty())
250       return 1;
251     return Itineraries[ItinClassIndx].NumMicroOps;
252   }
253 };
254
255 } // End llvm namespace
256
257 #endif