86e8f27877e2c11d5ecb149463d3eb52c79ec667
[oota-llvm.git] / include / llvm / CodeGen / MachineCodeEmitter.h
1 //===-- llvm/CodeGen/MachineCodeEmitter.h - Code emission -------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines an abstract interface that is used by the machine code
11 // emission framework to output the code.  This allows machine code emission to
12 // be separated from concerns such as resolution of call targets, and where the
13 // machine code will be written (memory or disk, f.e.).
14 //
15 //===----------------------------------------------------------------------===//
16
17 #ifndef LLVM_CODEGEN_MACHINECODEEMITTER_H
18 #define LLVM_CODEGEN_MACHINECODEEMITTER_H
19
20 #include "llvm/Support/DataTypes.h"
21 #include "llvm/Support/DebugLoc.h"
22
23 #include <string>
24
25 namespace llvm {
26
27 class MachineBasicBlock;
28 class MachineConstantPool;
29 class MachineJumpTableInfo;
30 class MachineFunction;
31 class MachineModuleInfo;
32 class MachineRelocation;
33 class Value;
34 class GlobalValue;
35 class Function;
36 class MCSymbol;
37
38 /// MachineCodeEmitter - This class defines two sorts of methods: those for
39 /// emitting the actual bytes of machine code, and those for emitting auxiliary
40 /// structures, such as jump tables, relocations, etc.
41 ///
42 /// Emission of machine code is complicated by the fact that we don't (in
43 /// general) know the size of the machine code that we're about to emit before
44 /// we emit it.  As such, we preallocate a certain amount of memory, and set the
45 /// BufferBegin/BufferEnd pointers to the start and end of the buffer.  As we
46 /// emit machine instructions, we advance the CurBufferPtr to indicate the
47 /// location of the next byte to emit.  In the case of a buffer overflow (we
48 /// need to emit more machine code than we have allocated space for), the
49 /// CurBufferPtr will saturate to BufferEnd and ignore stores.  Once the entire
50 /// function has been emitted, the overflow condition is checked, and if it has
51 /// occurred, more memory is allocated, and we reemit the code into it.
52 /// 
53 class MachineCodeEmitter {
54   virtual void anchor();
55 protected:
56   /// BufferBegin/BufferEnd - Pointers to the start and end of the memory
57   /// allocated for this code buffer.
58   uint8_t *BufferBegin, *BufferEnd;
59   /// CurBufferPtr - Pointer to the next byte of memory to fill when emitting
60   /// code.  This is guaranteed to be in the range [BufferBegin,BufferEnd].  If
61   /// this pointer is at BufferEnd, it will never move due to code emission, and
62   /// all code emission requests will be ignored (this is the buffer overflow
63   /// condition).
64   uint8_t *CurBufferPtr;
65
66 public:
67   virtual ~MachineCodeEmitter() {}
68
69   /// startFunction - This callback is invoked when the specified function is
70   /// about to be code generated.  This initializes the BufferBegin/End/Ptr
71   /// fields.
72   ///
73   virtual void startFunction(MachineFunction &F) = 0;
74
75   /// finishFunction - This callback is invoked when the specified function has
76   /// finished code generation.  If a buffer overflow has occurred, this method
77   /// returns true (the callee is required to try again), otherwise it returns
78   /// false.
79   ///
80   virtual bool finishFunction(MachineFunction &F) = 0;
81
82   /// emitByte - This callback is invoked when a byte needs to be written to the
83   /// output stream.
84   ///
85   void emitByte(uint8_t B) {
86     if (CurBufferPtr != BufferEnd)
87       *CurBufferPtr++ = B;
88   }
89
90   /// emitWordLE - This callback is invoked when a 32-bit word needs to be
91   /// written to the output stream in little-endian format.
92   ///
93   void emitWordLE(uint32_t W) {
94     if (4 <= BufferEnd-CurBufferPtr) {
95       emitWordLEInto(CurBufferPtr, W);
96     } else {
97       CurBufferPtr = BufferEnd;
98     }
99   }
100
101   /// emitWordLEInto - This callback is invoked when a 32-bit word needs to be
102   /// written to an arbitrary buffer in little-endian format.  Buf must have at
103   /// least 4 bytes of available space.
104   ///
105   static void emitWordLEInto(uint8_t *&Buf, uint32_t W) {
106     *Buf++ = (uint8_t)(W >>  0);
107     *Buf++ = (uint8_t)(W >>  8);
108     *Buf++ = (uint8_t)(W >> 16);
109     *Buf++ = (uint8_t)(W >> 24);
110   }
111
112   /// emitWordBE - This callback is invoked when a 32-bit word needs to be
113   /// written to the output stream in big-endian format.
114   ///
115   void emitWordBE(uint32_t W) {
116     if (4 <= BufferEnd-CurBufferPtr) {
117       *CurBufferPtr++ = (uint8_t)(W >> 24);
118       *CurBufferPtr++ = (uint8_t)(W >> 16);
119       *CurBufferPtr++ = (uint8_t)(W >>  8);
120       *CurBufferPtr++ = (uint8_t)(W >>  0);
121     } else {
122       CurBufferPtr = BufferEnd;
123     }
124   }
125
126   /// emitDWordLE - This callback is invoked when a 64-bit word needs to be
127   /// written to the output stream in little-endian format.
128   ///
129   void emitDWordLE(uint64_t W) {
130     if (8 <= BufferEnd-CurBufferPtr) {
131       *CurBufferPtr++ = (uint8_t)(W >>  0);
132       *CurBufferPtr++ = (uint8_t)(W >>  8);
133       *CurBufferPtr++ = (uint8_t)(W >> 16);
134       *CurBufferPtr++ = (uint8_t)(W >> 24);
135       *CurBufferPtr++ = (uint8_t)(W >> 32);
136       *CurBufferPtr++ = (uint8_t)(W >> 40);
137       *CurBufferPtr++ = (uint8_t)(W >> 48);
138       *CurBufferPtr++ = (uint8_t)(W >> 56);
139     } else {
140       CurBufferPtr = BufferEnd;
141     }
142   }
143   
144   /// emitDWordBE - This callback is invoked when a 64-bit word needs to be
145   /// written to the output stream in big-endian format.
146   ///
147   void emitDWordBE(uint64_t W) {
148     if (8 <= BufferEnd-CurBufferPtr) {
149       *CurBufferPtr++ = (uint8_t)(W >> 56);
150       *CurBufferPtr++ = (uint8_t)(W >> 48);
151       *CurBufferPtr++ = (uint8_t)(W >> 40);
152       *CurBufferPtr++ = (uint8_t)(W >> 32);
153       *CurBufferPtr++ = (uint8_t)(W >> 24);
154       *CurBufferPtr++ = (uint8_t)(W >> 16);
155       *CurBufferPtr++ = (uint8_t)(W >>  8);
156       *CurBufferPtr++ = (uint8_t)(W >>  0);
157     } else {
158       CurBufferPtr = BufferEnd;
159     }
160   }
161
162   /// emitAlignment - Move the CurBufferPtr pointer up to the specified
163   /// alignment (saturated to BufferEnd of course).
164   void emitAlignment(unsigned Alignment) {
165     if (Alignment == 0) Alignment = 1;
166
167     if(Alignment <= (uintptr_t)(BufferEnd-CurBufferPtr)) {
168       // Move the current buffer ptr up to the specified alignment.
169       CurBufferPtr =
170         (uint8_t*)(((uintptr_t)CurBufferPtr+Alignment-1) &
171                    ~(uintptr_t)(Alignment-1));
172     } else {
173       CurBufferPtr = BufferEnd;
174     }
175   }
176   
177
178   /// emitULEB128Bytes - This callback is invoked when a ULEB128 needs to be
179   /// written to the output stream.
180   void emitULEB128Bytes(uint64_t Value) {
181     do {
182       uint8_t Byte = Value & 0x7f;
183       Value >>= 7;
184       if (Value) Byte |= 0x80;
185       emitByte(Byte);
186     } while (Value);
187   }
188   
189   /// emitSLEB128Bytes - This callback is invoked when a SLEB128 needs to be
190   /// written to the output stream.
191   void emitSLEB128Bytes(uint64_t Value) {
192     uint64_t Sign = Value >> (8 * sizeof(Value) - 1);
193     bool IsMore;
194   
195     do {
196       uint8_t Byte = Value & 0x7f;
197       Value >>= 7;
198       IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0;
199       if (IsMore) Byte |= 0x80;
200       emitByte(Byte);
201     } while (IsMore);
202   }
203
204   /// emitString - This callback is invoked when a String needs to be
205   /// written to the output stream.
206   void emitString(const std::string &String) {
207     for (unsigned i = 0, N = static_cast<unsigned>(String.size());
208          i < N; ++i) {
209       uint8_t C = String[i];
210       emitByte(C);
211     }
212     emitByte(0);
213   }
214   
215   /// emitInt32 - Emit a int32 directive.
216   void emitInt32(int32_t Value) {
217     if (4 <= BufferEnd-CurBufferPtr) {
218       *((uint32_t*)CurBufferPtr) = Value;
219       CurBufferPtr += 4;
220     } else {
221       CurBufferPtr = BufferEnd;
222     }
223   }
224
225   /// emitInt64 - Emit a int64 directive.
226   void emitInt64(uint64_t Value) {
227     if (8 <= BufferEnd-CurBufferPtr) {
228       *((uint64_t*)CurBufferPtr) = Value;
229       CurBufferPtr += 8;
230     } else {
231       CurBufferPtr = BufferEnd;
232     }
233   }
234   
235   /// emitInt32At - Emit the Int32 Value in Addr.
236   void emitInt32At(uintptr_t *Addr, uintptr_t Value) {
237     if (Addr >= (uintptr_t*)BufferBegin && Addr < (uintptr_t*)BufferEnd)
238       (*(uint32_t*)Addr) = (uint32_t)Value;
239   }
240   
241   /// emitInt64At - Emit the Int64 Value in Addr.
242   void emitInt64At(uintptr_t *Addr, uintptr_t Value) {
243     if (Addr >= (uintptr_t*)BufferBegin && Addr < (uintptr_t*)BufferEnd)
244       (*(uint64_t*)Addr) = (uint64_t)Value;
245   }
246   
247   /// processDebugLoc - Records debug location information about a
248   /// MachineInstruction.  This is called before emitting any bytes associated
249   /// with the instruction.  Even if successive instructions have the same debug
250   /// location, this method will be called for each one.
251   virtual void processDebugLoc(DebugLoc DL, bool BeforePrintintInsn) {}
252
253   /// emitLabel - Emits a label
254   virtual void emitLabel(MCSymbol *Label) = 0;
255
256   /// allocateSpace - Allocate a block of space in the current output buffer,
257   /// returning null (and setting conditions to indicate buffer overflow) on
258   /// failure.  Alignment is the alignment in bytes of the buffer desired.
259   virtual void *allocateSpace(uintptr_t Size, unsigned Alignment) {
260     emitAlignment(Alignment);
261     void *Result;
262     
263     // Check for buffer overflow.
264     if (Size >= (uintptr_t)(BufferEnd-CurBufferPtr)) {
265       CurBufferPtr = BufferEnd;
266       Result = 0;
267     } else {
268       // Allocate the space.
269       Result = CurBufferPtr;
270       CurBufferPtr += Size;
271     }
272     
273     return Result;
274   }
275
276   /// StartMachineBasicBlock - This should be called by the target when a new
277   /// basic block is about to be emitted.  This way the MCE knows where the
278   /// start of the block is, and can implement getMachineBasicBlockAddress.
279   virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) = 0;
280   
281   /// getCurrentPCValue - This returns the address that the next emitted byte
282   /// will be output to.
283   ///
284   virtual uintptr_t getCurrentPCValue() const {
285     return (uintptr_t)CurBufferPtr;
286   }
287
288   /// getCurrentPCOffset - Return the offset from the start of the emitted
289   /// buffer that we are currently writing to.
290   virtual uintptr_t getCurrentPCOffset() const {
291     return CurBufferPtr-BufferBegin;
292   }
293
294   /// earlyResolveAddresses - True if the code emitter can use symbol addresses 
295   /// during code emission time. The JIT is capable of doing this because it
296   /// creates jump tables or constant pools in memory on the fly while the
297   /// object code emitters rely on a linker to have real addresses and should
298   /// use relocations instead.
299   virtual bool earlyResolveAddresses() const = 0;
300
301   /// addRelocation - Whenever a relocatable address is needed, it should be
302   /// noted with this interface.
303   virtual void addRelocation(const MachineRelocation &MR) = 0;
304   
305   /// FIXME: These should all be handled with relocations!
306   
307   /// getConstantPoolEntryAddress - Return the address of the 'Index' entry in
308   /// the constant pool that was last emitted with the emitConstantPool method.
309   ///
310   virtual uintptr_t getConstantPoolEntryAddress(unsigned Index) const = 0;
311
312   /// getJumpTableEntryAddress - Return the address of the jump table with index
313   /// 'Index' in the function that last called initJumpTableInfo.
314   ///
315   virtual uintptr_t getJumpTableEntryAddress(unsigned Index) const = 0;
316   
317   /// getMachineBasicBlockAddress - Return the address of the specified
318   /// MachineBasicBlock, only usable after the label for the MBB has been
319   /// emitted.
320   ///
321   virtual uintptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const= 0;
322
323   /// getLabelAddress - Return the address of the specified Label, only usable
324   /// after the LabelID has been emitted.
325   ///
326   virtual uintptr_t getLabelAddress(MCSymbol *Label) const = 0;
327   
328   /// Specifies the MachineModuleInfo object. This is used for exception handling
329   /// purposes.
330   virtual void setModuleInfo(MachineModuleInfo* Info) = 0;
331 };
332
333 } // End llvm namespace
334
335 #endif