2c7f5dd73547e993c7a9b5d77e79bc81aae4bcf0
[oota-llvm.git] / include / llvm / Analysis / SparsePropagation.h
1 //===- SparsePropagation.h - Sparse Conditional Property Propagation ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements an abstract sparse conditional propagation algorithm,
11 // modeled after SCCP, but with a customizable lattice function.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #ifndef LLVM_ANALYSIS_SPARSEPROPAGATION_H
16 #define LLVM_ANALYSIS_SPARSEPROPAGATION_H
17
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include <set>
21 #include <vector>
22
23 namespace llvm {
24 class Value;
25 class Constant;
26 class Argument;
27 class Instruction;
28 class PHINode;
29 class TerminatorInst;
30 class BasicBlock;
31 class Function;
32 class SparseSolver;
33 class raw_ostream;
34
35 template <typename T> class SmallVectorImpl;
36
37 /// AbstractLatticeFunction - This class is implemented by the dataflow instance
38 /// to specify what the lattice values are and how they handle merges etc.
39 /// This gives the client the power to compute lattice values from instructions,
40 /// constants, etc.  The requirement is that lattice values must all fit into
41 /// a void*.  If a void* is not sufficient, the implementation should use this
42 /// pointer to be a pointer into a uniquing set or something.
43 ///
44 class AbstractLatticeFunction {
45 public:
46   typedef void *LatticeVal;
47
48 private:
49   LatticeVal UndefVal, OverdefinedVal, UntrackedVal;
50
51 public:
52   AbstractLatticeFunction(LatticeVal undefVal, LatticeVal overdefinedVal,
53                           LatticeVal untrackedVal) {
54     UndefVal = undefVal;
55     OverdefinedVal = overdefinedVal;
56     UntrackedVal = untrackedVal;
57   }
58   virtual ~AbstractLatticeFunction();
59
60   LatticeVal getUndefVal()       const { return UndefVal; }
61   LatticeVal getOverdefinedVal() const { return OverdefinedVal; }
62   LatticeVal getUntrackedVal()   const { return UntrackedVal; }
63
64   /// IsUntrackedValue - If the specified Value is something that is obviously
65   /// uninteresting to the analysis (and would always return UntrackedVal),
66   /// this function can return true to avoid pointless work.
67   virtual bool IsUntrackedValue(Value *V) { return false; }
68
69   /// ComputeConstant - Given a constant value, compute and return a lattice
70   /// value corresponding to the specified constant.
71   virtual LatticeVal ComputeConstant(Constant *C) {
72     return getOverdefinedVal(); // always safe
73   }
74
75   /// IsSpecialCasedPHI - Given a PHI node, determine whether this PHI node is
76   /// one that the we want to handle through ComputeInstructionState.
77   virtual bool IsSpecialCasedPHI(PHINode *PN) { return false; }
78
79   /// GetConstant - If the specified lattice value is representable as an LLVM
80   /// constant value, return it.  Otherwise return null.  The returned value
81   /// must be in the same LLVM type as Val.
82   virtual Constant *GetConstant(LatticeVal LV, Value *Val, SparseSolver &SS) {
83     return nullptr;
84   }
85
86   /// ComputeArgument - Given a formal argument value, compute and return a
87   /// lattice value corresponding to the specified argument.
88   virtual LatticeVal ComputeArgument(Argument *I) {
89     return getOverdefinedVal(); // always safe
90   }
91
92   /// MergeValues - Compute and return the merge of the two specified lattice
93   /// values.  Merging should only move one direction down the lattice to
94   /// guarantee convergence (toward overdefined).
95   virtual LatticeVal MergeValues(LatticeVal X, LatticeVal Y) {
96     return getOverdefinedVal(); // always safe, never useful.
97   }
98
99   /// ComputeInstructionState - Given an instruction and a vector of its operand
100   /// values, compute the result value of the instruction.
101   virtual LatticeVal ComputeInstructionState(Instruction &I, SparseSolver &SS) {
102     return getOverdefinedVal(); // always safe, never useful.
103   }
104
105   /// PrintValue - Render the specified lattice value to the specified stream.
106   virtual void PrintValue(LatticeVal V, raw_ostream &OS);
107 };
108
109 /// SparseSolver - This class is a general purpose solver for Sparse Conditional
110 /// Propagation with a programmable lattice function.
111 ///
112 class SparseSolver {
113   typedef AbstractLatticeFunction::LatticeVal LatticeVal;
114
115   /// LatticeFunc - This is the object that knows the lattice and how to do
116   /// compute transfer functions.
117   AbstractLatticeFunction *LatticeFunc;
118
119   DenseMap<Value *, LatticeVal> ValueState;   // The state each value is in.
120   SmallPtrSet<BasicBlock *, 16> BBExecutable; // The bbs that are executable.
121
122   std::vector<Instruction *> InstWorkList; // Worklist of insts to process.
123
124   std::vector<BasicBlock *> BBWorkList; // The BasicBlock work list
125
126   /// KnownFeasibleEdges - Entries in this set are edges which have already had
127   /// PHI nodes retriggered.
128   typedef std::pair<BasicBlock*,BasicBlock*> Edge;
129   std::set<Edge> KnownFeasibleEdges;
130
131   SparseSolver(const SparseSolver&) = delete;
132   void operator=(const SparseSolver&) = delete;
133
134 public:
135   explicit SparseSolver(AbstractLatticeFunction *Lattice)
136       : LatticeFunc(Lattice) {}
137   ~SparseSolver() { delete LatticeFunc; }
138
139   /// Solve - Solve for constants and executable blocks.
140   ///
141   void Solve(Function &F);
142
143   void Print(Function &F, raw_ostream &OS) const;
144
145   /// getLatticeState - Return the LatticeVal object that corresponds to the
146   /// value.  If an value is not in the map, it is returned as untracked,
147   /// unlike the getOrInitValueState method.
148   LatticeVal getLatticeState(Value *V) const {
149     DenseMap<Value*, LatticeVal>::const_iterator I = ValueState.find(V);
150     return I != ValueState.end() ? I->second : LatticeFunc->getUntrackedVal();
151   }
152
153   /// getOrInitValueState - Return the LatticeVal object that corresponds to the
154   /// value, initializing the value's state if it hasn't been entered into the
155   /// map yet.   This function is necessary because not all values should start
156   /// out in the underdefined state... Arguments should be overdefined, and
157   /// constants should be marked as constants.
158   ///
159   LatticeVal getOrInitValueState(Value *V);
160
161   /// isEdgeFeasible - Return true if the control flow edge from the 'From'
162   /// basic block to the 'To' basic block is currently feasible.  If
163   /// AggressiveUndef is true, then this treats values with unknown lattice
164   /// values as undefined.  This is generally only useful when solving the
165   /// lattice, not when querying it.
166   bool isEdgeFeasible(BasicBlock *From, BasicBlock *To,
167                       bool AggressiveUndef = false);
168
169   /// isBlockExecutable - Return true if there are any known feasible
170   /// edges into the basic block.  This is generally only useful when
171   /// querying the lattice.
172   bool isBlockExecutable(BasicBlock *BB) const {
173     return BBExecutable.count(BB);
174   }
175
176 private:
177   /// UpdateState - When the state for some instruction is potentially updated,
178   /// this function notices and adds I to the worklist if needed.
179   void UpdateState(Instruction &Inst, LatticeVal V);
180
181   /// MarkBlockExecutable - This method can be used by clients to mark all of
182   /// the blocks that are known to be intrinsically live in the processed unit.
183   void MarkBlockExecutable(BasicBlock *BB);
184
185   /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
186   /// work list if it is not already executable.
187   void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest);
188
189   /// getFeasibleSuccessors - Return a vector of booleans to indicate which
190   /// successors are reachable from a given terminator instruction.
191   void getFeasibleSuccessors(TerminatorInst &TI, SmallVectorImpl<bool> &Succs,
192                              bool AggressiveUndef);
193
194   void visitInst(Instruction &I);
195   void visitPHINode(PHINode &I);
196   void visitTerminatorInst(TerminatorInst &TI);
197 };
198
199 } // end namespace llvm
200
201 #endif // LLVM_ANALYSIS_SPARSEPROPAGATION_H