865fcb3d8aadc53f10e78f2d8965dd24baac2f9b
[oota-llvm.git] / include / llvm / ADT / ilist.h
1 //==-- llvm/ADT/ilist.h - Intrusive Linked List Template ---------*- C++ -*-==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines classes to implement an intrusive doubly linked list class
11 // (i.e. each node of the list must contain a next and previous field for the
12 // list.
13 //
14 // The ilist_traits trait class is used to gain access to the next and previous
15 // fields of the node type that the list is instantiated with.  If it is not
16 // specialized, the list defaults to using the getPrev(), getNext() method calls
17 // to get the next and previous pointers.
18 //
19 // The ilist class itself, should be a plug in replacement for list, assuming
20 // that the nodes contain next/prev pointers.  This list replacement does not
21 // provide a constant time size() method, so be careful to use empty() when you
22 // really want to know if it's empty.
23 //
24 // The ilist class is implemented by allocating a 'tail' node when the list is
25 // created (using ilist_traits<>::createSentinel()).  This tail node is
26 // absolutely required because the user must be able to compute end()-1. Because
27 // of this, users of the direct next/prev links will see an extra link on the
28 // end of the list, which should be ignored.
29 //
30 // Requirements for a user of this list:
31 //
32 //   1. The user must provide {g|s}et{Next|Prev} methods, or specialize
33 //      ilist_traits to provide an alternate way of getting and setting next and
34 //      prev links.
35 //
36 //===----------------------------------------------------------------------===//
37
38 #ifndef LLVM_ADT_ILIST_H
39 #define LLVM_ADT_ILIST_H
40
41 #include <algorithm>
42 #include <cassert>
43 #include <cstddef>
44 #include <iterator>
45
46 namespace llvm {
47
48 template<typename NodeTy, typename Traits> class iplist;
49 template<typename NodeTy> class ilist_iterator;
50
51 /// ilist_nextprev_traits - A fragment for template traits for intrusive list
52 /// that provides default next/prev implementations for common operations.
53 ///
54 template<typename NodeTy>
55 struct ilist_nextprev_traits {
56   static NodeTy *getPrev(NodeTy *N) { return N->getPrev(); }
57   static NodeTy *getNext(NodeTy *N) { return N->getNext(); }
58   static const NodeTy *getPrev(const NodeTy *N) { return N->getPrev(); }
59   static const NodeTy *getNext(const NodeTy *N) { return N->getNext(); }
60
61   static void setPrev(NodeTy *N, NodeTy *Prev) { N->setPrev(Prev); }
62   static void setNext(NodeTy *N, NodeTy *Next) { N->setNext(Next); }
63 };
64
65 template<typename NodeTy>
66 struct ilist_traits;
67
68 /// ilist_sentinel_traits - A fragment for template traits for intrusive list
69 /// that provides default sentinel implementations for common operations.
70 ///
71 /// ilist_sentinel_traits implements a lazy dynamic sentinel allocation
72 /// strategy. The sentinel is stored in the prev field of ilist's Head.
73 ///
74 template<typename NodeTy>
75 struct ilist_sentinel_traits {
76   /// createSentinel - create the dynamic sentinel
77   static NodeTy *createSentinel() { return new NodeTy(); }
78
79   /// destroySentinel - deallocate the dynamic sentinel
80   static void destroySentinel(NodeTy *N) { delete N; }
81
82   /// provideInitialHead - when constructing an ilist, provide a starting
83   /// value for its Head
84   /// @return null node to indicate that it needs to be allocated later
85   static NodeTy *provideInitialHead() { return 0; }
86
87   /// ensureHead - make sure that Head is either already
88   /// initialized or assigned a fresh sentinel
89   /// @return the sentinel
90   static NodeTy *ensureHead(NodeTy *&Head) {
91     if (!Head) {
92       Head = ilist_traits<NodeTy>::createSentinel();
93       ilist_traits<NodeTy>::noteHead(Head, Head);
94       ilist_traits<NodeTy>::setNext(Head, 0);
95       return Head;
96     }
97     return ilist_traits<NodeTy>::getPrev(Head);
98   }
99
100   /// noteHead - stash the sentinel into its default location
101   static void noteHead(NodeTy *NewHead, NodeTy *Sentinel) {
102     ilist_traits<NodeTy>::setPrev(NewHead, Sentinel);
103   }
104 };
105
106 /// ilist_node_traits - A fragment for template traits for intrusive list
107 /// that provides default node related operations.
108 ///
109 template<typename NodeTy>
110 struct ilist_node_traits {
111   static NodeTy *createNode(const NodeTy &V) { return new NodeTy(V); }
112   static void deleteNode(NodeTy *V) { delete V; }
113
114   void addNodeToList(NodeTy *) {}
115   void removeNodeFromList(NodeTy *) {}
116   void transferNodesFromList(ilist_node_traits &    /*SrcTraits*/,
117                              ilist_iterator<NodeTy> /*first*/,
118                              ilist_iterator<NodeTy> /*last*/) {}
119 };
120
121 /// ilist_default_traits - Default template traits for intrusive list.
122 /// By inheriting from this, you can easily use default implementations
123 /// for all common operations.
124 ///
125 template<typename NodeTy>
126 struct ilist_default_traits : public ilist_nextprev_traits<NodeTy>,
127                               public ilist_sentinel_traits<NodeTy>,
128                               public ilist_node_traits<NodeTy> {
129 };
130
131 // Template traits for intrusive list.  By specializing this template class, you
132 // can change what next/prev fields are used to store the links...
133 template<typename NodeTy>
134 struct ilist_traits : public ilist_default_traits<NodeTy> {};
135
136 // Const traits are the same as nonconst traits...
137 template<typename Ty>
138 struct ilist_traits<const Ty> : public ilist_traits<Ty> {};
139
140 //===----------------------------------------------------------------------===//
141 // ilist_iterator<Node> - Iterator for intrusive list.
142 //
143 template<typename NodeTy>
144 class ilist_iterator
145   : public std::iterator<std::bidirectional_iterator_tag, NodeTy, ptrdiff_t> {
146
147 public:
148   typedef ilist_traits<NodeTy> Traits;
149   typedef std::iterator<std::bidirectional_iterator_tag,
150                         NodeTy, ptrdiff_t> super;
151
152   typedef typename super::value_type value_type;
153   typedef typename super::difference_type difference_type;
154   typedef typename super::pointer pointer;
155   typedef typename super::reference reference;
156 private:
157   pointer NodePtr;
158
159   // ilist_iterator is not a random-access iterator, but it has an
160   // implicit conversion to pointer-type, which is. Declare (but
161   // don't define) these functions as private to help catch
162   // accidental misuse.
163   void operator[](difference_type) const;
164   void operator+(difference_type) const;
165   void operator-(difference_type) const;
166   void operator+=(difference_type) const;
167   void operator-=(difference_type) const;
168   template<class T> void operator<(T) const;
169   template<class T> void operator<=(T) const;
170   template<class T> void operator>(T) const;
171   template<class T> void operator>=(T) const;
172   template<class T> void operator-(T) const;
173 public:
174
175   ilist_iterator(pointer NP) : NodePtr(NP) {}
176   ilist_iterator(reference NR) : NodePtr(&NR) {}
177   ilist_iterator() : NodePtr(0) {}
178
179   // This is templated so that we can allow constructing a const iterator from
180   // a nonconst iterator...
181   template<class node_ty>
182   ilist_iterator(const ilist_iterator<node_ty> &RHS)
183     : NodePtr(RHS.getNodePtrUnchecked()) {}
184
185   // This is templated so that we can allow assigning to a const iterator from
186   // a nonconst iterator...
187   template<class node_ty>
188   const ilist_iterator &operator=(const ilist_iterator<node_ty> &RHS) {
189     NodePtr = RHS.getNodePtrUnchecked();
190     return *this;
191   }
192
193   // Accessors...
194   operator pointer() const {
195     return NodePtr;
196   }
197
198   reference operator*() const {
199     return *NodePtr;
200   }
201   pointer operator->() const { return &operator*(); }
202
203   // Comparison operators
204   bool operator==(const ilist_iterator &RHS) const {
205     return NodePtr == RHS.NodePtr;
206   }
207   bool operator!=(const ilist_iterator &RHS) const {
208     return NodePtr != RHS.NodePtr;
209   }
210
211   // Increment and decrement operators...
212   ilist_iterator &operator--() {      // predecrement - Back up
213     NodePtr = Traits::getPrev(NodePtr);
214     assert(NodePtr && "--'d off the beginning of an ilist!");
215     return *this;
216   }
217   ilist_iterator &operator++() {      // preincrement - Advance
218     NodePtr = Traits::getNext(NodePtr);
219     return *this;
220   }
221   ilist_iterator operator--(int) {    // postdecrement operators...
222     ilist_iterator tmp = *this;
223     --*this;
224     return tmp;
225   }
226   ilist_iterator operator++(int) {    // postincrement operators...
227     ilist_iterator tmp = *this;
228     ++*this;
229     return tmp;
230   }
231
232   // Internal interface, do not use...
233   pointer getNodePtrUnchecked() const { return NodePtr; }
234 };
235
236 // do not implement. this is to catch errors when people try to use
237 // them as random access iterators
238 template<typename T>
239 void operator-(int, ilist_iterator<T>);
240 template<typename T>
241 void operator-(ilist_iterator<T>,int);
242
243 template<typename T>
244 void operator+(int, ilist_iterator<T>);
245 template<typename T>
246 void operator+(ilist_iterator<T>,int);
247
248 // operator!=/operator== - Allow mixed comparisons without dereferencing
249 // the iterator, which could very likely be pointing to end().
250 template<typename T>
251 bool operator!=(const T* LHS, const ilist_iterator<const T> &RHS) {
252   return LHS != RHS.getNodePtrUnchecked();
253 }
254 template<typename T>
255 bool operator==(const T* LHS, const ilist_iterator<const T> &RHS) {
256   return LHS == RHS.getNodePtrUnchecked();
257 }
258 template<typename T>
259 bool operator!=(T* LHS, const ilist_iterator<T> &RHS) {
260   return LHS != RHS.getNodePtrUnchecked();
261 }
262 template<typename T>
263 bool operator==(T* LHS, const ilist_iterator<T> &RHS) {
264   return LHS == RHS.getNodePtrUnchecked();
265 }
266
267
268 // Allow ilist_iterators to convert into pointers to a node automatically when
269 // used by the dyn_cast, cast, isa mechanisms...
270
271 template<typename From> struct simplify_type;
272
273 template<typename NodeTy> struct simplify_type<ilist_iterator<NodeTy> > {
274   typedef NodeTy* SimpleType;
275
276   static SimpleType getSimplifiedValue(const ilist_iterator<NodeTy> &Node) {
277     return &*Node;
278   }
279 };
280 template<typename NodeTy> struct simplify_type<const ilist_iterator<NodeTy> > {
281   typedef NodeTy* SimpleType;
282
283   static SimpleType getSimplifiedValue(const ilist_iterator<NodeTy> &Node) {
284     return &*Node;
285   }
286 };
287
288
289 //===----------------------------------------------------------------------===//
290 //
291 /// iplist - The subset of list functionality that can safely be used on nodes
292 /// of polymorphic types, i.e. a heterogenous list with a common base class that
293 /// holds the next/prev pointers.  The only state of the list itself is a single
294 /// pointer to the head of the list.
295 ///
296 /// This list can be in one of three interesting states:
297 /// 1. The list may be completely unconstructed.  In this case, the head
298 ///    pointer is null.  When in this form, any query for an iterator (e.g.
299 ///    begin() or end()) causes the list to transparently change to state #2.
300 /// 2. The list may be empty, but contain a sentinel for the end iterator. This
301 ///    sentinel is created by the Traits::createSentinel method and is a link
302 ///    in the list.  When the list is empty, the pointer in the iplist points
303 ///    to the sentinel.  Once the sentinel is constructed, it
304 ///    is not destroyed until the list is.
305 /// 3. The list may contain actual objects in it, which are stored as a doubly
306 ///    linked list of nodes.  One invariant of the list is that the predecessor
307 ///    of the first node in the list always points to the last node in the list,
308 ///    and the successor pointer for the sentinel (which always stays at the
309 ///    end of the list) is always null.
310 ///
311 template<typename NodeTy, typename Traits=ilist_traits<NodeTy> >
312 class iplist : public Traits {
313   mutable NodeTy *Head;
314
315   // Use the prev node pointer of 'head' as the tail pointer.  This is really a
316   // circularly linked list where we snip the 'next' link from the sentinel node
317   // back to the first node in the list (to preserve assertions about going off
318   // the end of the list).
319   NodeTy *getTail() { return this->ensureHead(Head); }
320   const NodeTy *getTail() const { return this->ensureHead(Head); }
321   void setTail(NodeTy *N) const { this->noteHead(Head, N); }
322
323   /// CreateLazySentinel - This method verifies whether the sentinel for the
324   /// list has been created and lazily makes it if not.
325   void CreateLazySentinel() const {
326     this->ensureHead(Head);
327   }
328
329   static bool op_less(NodeTy &L, NodeTy &R) { return L < R; }
330   static bool op_equal(NodeTy &L, NodeTy &R) { return L == R; }
331
332   // No fundamental reason why iplist can't be copyable, but the default
333   // copy/copy-assign won't do.
334   iplist(const iplist &);         // do not implement
335   void operator=(const iplist &); // do not implement
336
337 public:
338   typedef NodeTy *pointer;
339   typedef const NodeTy *const_pointer;
340   typedef NodeTy &reference;
341   typedef const NodeTy &const_reference;
342   typedef NodeTy value_type;
343   typedef ilist_iterator<NodeTy> iterator;
344   typedef ilist_iterator<const NodeTy> const_iterator;
345   typedef size_t size_type;
346   typedef ptrdiff_t difference_type;
347   typedef std::reverse_iterator<const_iterator>  const_reverse_iterator;
348   typedef std::reverse_iterator<iterator>  reverse_iterator;
349
350   iplist() : Head(this->provideInitialHead()) {}
351   ~iplist() {
352     if (!Head) return;
353     clear();
354     Traits::destroySentinel(getTail());
355   }
356
357   // Iterator creation methods.
358   iterator begin() {
359     CreateLazySentinel();
360     return iterator(Head);
361   }
362   const_iterator begin() const {
363     CreateLazySentinel();
364     return const_iterator(Head);
365   }
366   iterator end() {
367     CreateLazySentinel();
368     return iterator(getTail());
369   }
370   const_iterator end() const {
371     CreateLazySentinel();
372     return const_iterator(getTail());
373   }
374
375   // reverse iterator creation methods.
376   reverse_iterator rbegin()            { return reverse_iterator(end()); }
377   const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); }
378   reverse_iterator rend()              { return reverse_iterator(begin()); }
379   const_reverse_iterator rend() const { return const_reverse_iterator(begin());}
380
381
382   // Miscellaneous inspection routines.
383   size_type max_size() const { return size_type(-1); }
384   bool empty() const { return Head == 0 || Head == getTail(); }
385
386   // Front and back accessor functions...
387   reference front() {
388     assert(!empty() && "Called front() on empty list!");
389     return *Head;
390   }
391   const_reference front() const {
392     assert(!empty() && "Called front() on empty list!");
393     return *Head;
394   }
395   reference back() {
396     assert(!empty() && "Called back() on empty list!");
397     return *this->getPrev(getTail());
398   }
399   const_reference back() const {
400     assert(!empty() && "Called back() on empty list!");
401     return *this->getPrev(getTail());
402   }
403
404   void swap(iplist &RHS) {
405     assert(0 && "Swap does not use list traits callback correctly yet!");
406     std::swap(Head, RHS.Head);
407   }
408
409   iterator insert(iterator where, NodeTy *New) {
410     NodeTy *CurNode = where.getNodePtrUnchecked();
411     NodeTy *PrevNode = this->getPrev(CurNode);
412     this->setNext(New, CurNode);
413     this->setPrev(New, PrevNode);
414
415     if (CurNode != Head)  // Is PrevNode off the beginning of the list?
416       this->setNext(PrevNode, New);
417     else
418       Head = New;
419     this->setPrev(CurNode, New);
420
421     this->addNodeToList(New);  // Notify traits that we added a node...
422     return New;
423   }
424
425   iterator insertAfter(iterator where, NodeTy *New) {
426     if (empty())
427       return insert(begin(), New);
428     else
429       return insert(++where, New);
430   }
431
432   NodeTy *remove(iterator &IT) {
433     assert(IT != end() && "Cannot remove end of list!");
434     NodeTy *Node = &*IT;
435     NodeTy *NextNode = this->getNext(Node);
436     NodeTy *PrevNode = this->getPrev(Node);
437
438     if (Node != Head)  // Is PrevNode off the beginning of the list?
439       this->setNext(PrevNode, NextNode);
440     else
441       Head = NextNode;
442     this->setPrev(NextNode, PrevNode);
443     IT = NextNode;
444     this->removeNodeFromList(Node);  // Notify traits that we removed a node...
445
446     // Set the next/prev pointers of the current node to null.  This isn't
447     // strictly required, but this catches errors where a node is removed from
448     // an ilist (and potentially deleted) with iterators still pointing at it.
449     // When those iterators are incremented or decremented, they will assert on
450     // the null next/prev pointer instead of "usually working".
451     this->setNext(Node, 0);
452     this->setPrev(Node, 0);
453     return Node;
454   }
455
456   NodeTy *remove(const iterator &IT) {
457     iterator MutIt = IT;
458     return remove(MutIt);
459   }
460
461   // erase - remove a node from the controlled sequence... and delete it.
462   iterator erase(iterator where) {
463     this->deleteNode(remove(where));
464     return where;
465   }
466
467
468 private:
469   // transfer - The heart of the splice function.  Move linked list nodes from
470   // [first, last) into position.
471   //
472   void transfer(iterator position, iplist &L2, iterator first, iterator last) {
473     assert(first != last && "Should be checked by callers");
474
475     if (position != last) {
476       // Note: we have to be careful about the case when we move the first node
477       // in the list.  This node is the list sentinel node and we can't move it.
478       NodeTy *ThisSentinel = getTail();
479       setTail(0);
480       NodeTy *L2Sentinel = L2.getTail();
481       L2.setTail(0);
482
483       // Remove [first, last) from its old position.
484       NodeTy *First = &*first, *Prev = this->getPrev(First);
485       NodeTy *Next = last.getNodePtrUnchecked(), *Last = this->getPrev(Next);
486       if (Prev)
487         this->setNext(Prev, Next);
488       else
489         L2.Head = Next;
490       this->setPrev(Next, Prev);
491
492       // Splice [first, last) into its new position.
493       NodeTy *PosNext = position.getNodePtrUnchecked();
494       NodeTy *PosPrev = this->getPrev(PosNext);
495
496       // Fix head of list...
497       if (PosPrev)
498         this->setNext(PosPrev, First);
499       else
500         Head = First;
501       this->setPrev(First, PosPrev);
502
503       // Fix end of list...
504       this->setNext(Last, PosNext);
505       this->setPrev(PosNext, Last);
506
507       this->transferNodesFromList(L2, First, PosNext);
508
509       // Now that everything is set, restore the pointers to the list sentinels.
510       L2.setTail(L2Sentinel);
511       setTail(ThisSentinel);
512     }
513   }
514
515 public:
516
517   //===----------------------------------------------------------------------===
518   // Functionality derived from other functions defined above...
519   //
520
521   size_type size() const {
522     if (Head == 0) return 0; // Don't require construction of sentinel if empty.
523     return std::distance(begin(), end());
524   }
525
526   iterator erase(iterator first, iterator last) {
527     while (first != last)
528       first = erase(first);
529     return last;
530   }
531
532   void clear() { if (Head) erase(begin(), end()); }
533
534   // Front and back inserters...
535   void push_front(NodeTy *val) { insert(begin(), val); }
536   void push_back(NodeTy *val) { insert(end(), val); }
537   void pop_front() {
538     assert(!empty() && "pop_front() on empty list!");
539     erase(begin());
540   }
541   void pop_back() {
542     assert(!empty() && "pop_back() on empty list!");
543     iterator t = end(); erase(--t);
544   }
545
546   // Special forms of insert...
547   template<class InIt> void insert(iterator where, InIt first, InIt last) {
548     for (; first != last; ++first) insert(where, *first);
549   }
550
551   // Splice members - defined in terms of transfer...
552   void splice(iterator where, iplist &L2) {
553     if (!L2.empty())
554       transfer(where, L2, L2.begin(), L2.end());
555   }
556   void splice(iterator where, iplist &L2, iterator first) {
557     iterator last = first; ++last;
558     if (where == first || where == last) return; // No change
559     transfer(where, L2, first, last);
560   }
561   void splice(iterator where, iplist &L2, iterator first, iterator last) {
562     if (first != last) transfer(where, L2, first, last);
563   }
564
565
566
567   //===----------------------------------------------------------------------===
568   // High-Level Functionality that shouldn't really be here, but is part of list
569   //
570
571   // These two functions are actually called remove/remove_if in list<>, but
572   // they actually do the job of erase, rename them accordingly.
573   //
574   void erase(const NodeTy &val) {
575     for (iterator I = begin(), E = end(); I != E; ) {
576       iterator next = I; ++next;
577       if (*I == val) erase(I);
578       I = next;
579     }
580   }
581   template<class Pr1> void erase_if(Pr1 pred) {
582     for (iterator I = begin(), E = end(); I != E; ) {
583       iterator next = I; ++next;
584       if (pred(*I)) erase(I);
585       I = next;
586     }
587   }
588
589   template<class Pr2> void unique(Pr2 pred) {
590     if (empty()) return;
591     for (iterator I = begin(), E = end(), Next = begin(); ++Next != E;) {
592       if (pred(*I))
593         erase(Next);
594       else
595         I = Next;
596       Next = I;
597     }
598   }
599   void unique() { unique(op_equal); }
600
601   template<class Pr3> void merge(iplist &right, Pr3 pred) {
602     iterator first1 = begin(), last1 = end();
603     iterator first2 = right.begin(), last2 = right.end();
604     while (first1 != last1 && first2 != last2)
605       if (pred(*first2, *first1)) {
606         iterator next = first2;
607         transfer(first1, right, first2, ++next);
608         first2 = next;
609       } else {
610         ++first1;
611       }
612     if (first2 != last2) transfer(last1, right, first2, last2);
613   }
614   void merge(iplist &right) { return merge(right, op_less); }
615
616   template<class Pr3> void sort(Pr3 pred);
617   void sort() { sort(op_less); }
618 };
619
620
621 template<typename NodeTy>
622 struct ilist : public iplist<NodeTy> {
623   typedef typename iplist<NodeTy>::size_type size_type;
624   typedef typename iplist<NodeTy>::iterator iterator;
625
626   ilist() {}
627   ilist(const ilist &right) {
628     insert(this->begin(), right.begin(), right.end());
629   }
630   explicit ilist(size_type count) {
631     insert(this->begin(), count, NodeTy());
632   }
633   ilist(size_type count, const NodeTy &val) {
634     insert(this->begin(), count, val);
635   }
636   template<class InIt> ilist(InIt first, InIt last) {
637     insert(this->begin(), first, last);
638   }
639
640   // bring hidden functions into scope
641   using iplist<NodeTy>::insert;
642   using iplist<NodeTy>::push_front;
643   using iplist<NodeTy>::push_back;
644
645   // Main implementation here - Insert for a node passed by value...
646   iterator insert(iterator where, const NodeTy &val) {
647     return insert(where, this->createNode(val));
648   }
649
650
651   // Front and back inserters...
652   void push_front(const NodeTy &val) { insert(this->begin(), val); }
653   void push_back(const NodeTy &val) { insert(this->end(), val); }
654
655   // Special forms of insert...
656   template<class InIt> void insert(iterator where, InIt first, InIt last) {
657     for (; first != last; ++first) insert(where, *first);
658   }
659   void insert(iterator where, size_type count, const NodeTy &val) {
660     for (; count != 0; --count) insert(where, val);
661   }
662
663   // Assign special forms...
664   void assign(size_type count, const NodeTy &val) {
665     iterator I = this->begin();
666     for (; I != this->end() && count != 0; ++I, --count)
667       *I = val;
668     if (count != 0)
669       insert(this->end(), val, val);
670     else
671       erase(I, this->end());
672   }
673   template<class InIt> void assign(InIt first1, InIt last1) {
674     iterator first2 = this->begin(), last2 = this->end();
675     for ( ; first1 != last1 && first2 != last2; ++first1, ++first2)
676       *first1 = *first2;
677     if (first2 == last2)
678       erase(first1, last1);
679     else
680       insert(last1, first2, last2);
681   }
682
683
684   // Resize members...
685   void resize(size_type newsize, NodeTy val) {
686     iterator i = this->begin();
687     size_type len = 0;
688     for ( ; i != this->end() && len < newsize; ++i, ++len) /* empty*/ ;
689
690     if (len == newsize)
691       erase(i, this->end());
692     else                                          // i == end()
693       insert(this->end(), newsize - len, val);
694   }
695   void resize(size_type newsize) { resize(newsize, NodeTy()); }
696 };
697
698 } // End llvm namespace
699
700 namespace std {
701   // Ensure that swap uses the fast list swap...
702   template<class Ty>
703   void swap(llvm::iplist<Ty> &Left, llvm::iplist<Ty> &Right) {
704     Left.swap(Right);
705   }
706 }  // End 'std' extensions...
707
708 #endif // LLVM_ADT_ILIST_H