c3d88c838e090129d61d3a749eb3f4694836f07f
[oota-llvm.git] / examples / Kaleidoscope / MCJIT / lazy / toy-jit.cpp
1 #define MINIMAL_STDERR_OUTPUT
2
3 #include "llvm/Analysis/Passes.h"
4 #include "llvm/Analysis/Verifier.h"
5 #include "llvm/ExecutionEngine/ExecutionEngine.h"
6 #include "llvm/ExecutionEngine/JIT.h"
7 #include "llvm/IR/DataLayout.h"
8 #include "llvm/IR/DerivedTypes.h"
9 #include "llvm/IR/IRBuilder.h"
10 #include "llvm/IR/LLVMContext.h"
11 #include "llvm/IR/Module.h"
12 #include "llvm/PassManager.h"
13 #include "llvm/Support/TargetSelect.h"
14 #include "llvm/Transforms/Scalar.h"
15 #include <cctype>
16 #include <cstdio>
17 #include <map>
18 #include <string>
19 #include <vector>
20
21 using namespace llvm;
22
23 //===----------------------------------------------------------------------===//
24 // Lexer
25 //===----------------------------------------------------------------------===//
26
27 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
28 // of these for known things.
29 enum Token {
30   tok_eof = -1,
31
32   // commands
33   tok_def = -2, tok_extern = -3,
34
35   // primary
36   tok_identifier = -4, tok_number = -5,
37   
38   // control
39   tok_if = -6, tok_then = -7, tok_else = -8,
40   tok_for = -9, tok_in = -10,
41   
42   // operators
43   tok_binary = -11, tok_unary = -12,
44   
45   // var definition
46   tok_var = -13
47 };
48
49 static std::string IdentifierStr;  // Filled in if tok_identifier
50 static double NumVal;              // Filled in if tok_number
51
52 /// gettok - Return the next token from standard input.
53 static int gettok() {
54   static int LastChar = ' ';
55
56   // Skip any whitespace.
57   while (isspace(LastChar))
58     LastChar = getchar();
59
60   if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
61     IdentifierStr = LastChar;
62     while (isalnum((LastChar = getchar())))
63       IdentifierStr += LastChar;
64
65     if (IdentifierStr == "def") return tok_def;
66     if (IdentifierStr == "extern") return tok_extern;
67     if (IdentifierStr == "if") return tok_if;
68     if (IdentifierStr == "then") return tok_then;
69     if (IdentifierStr == "else") return tok_else;
70     if (IdentifierStr == "for") return tok_for;
71     if (IdentifierStr == "in") return tok_in;
72     if (IdentifierStr == "binary") return tok_binary;
73     if (IdentifierStr == "unary") return tok_unary;
74     if (IdentifierStr == "var") return tok_var;
75     return tok_identifier;
76   }
77
78   if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+
79     std::string NumStr;
80     do {
81       NumStr += LastChar;
82       LastChar = getchar();
83     } while (isdigit(LastChar) || LastChar == '.');
84
85     NumVal = strtod(NumStr.c_str(), 0);
86     return tok_number;
87   }
88
89   if (LastChar == '#') {
90     // Comment until end of line.
91     do LastChar = getchar();
92     while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
93     
94     if (LastChar != EOF)
95       return gettok();
96   }
97   
98   // Check for end of file.  Don't eat the EOF.
99   if (LastChar == EOF)
100     return tok_eof;
101
102   // Otherwise, just return the character as its ascii value.
103   int ThisChar = LastChar;
104   LastChar = getchar();
105   return ThisChar;
106 }
107
108 //===----------------------------------------------------------------------===//
109 // Abstract Syntax Tree (aka Parse Tree)
110 //===----------------------------------------------------------------------===//
111
112 /// ExprAST - Base class for all expression nodes.
113 class ExprAST {
114 public:
115   virtual ~ExprAST() {}
116   virtual Value *Codegen() = 0;
117 };
118
119 /// NumberExprAST - Expression class for numeric literals like "1.0".
120 class NumberExprAST : public ExprAST {
121   double Val;
122 public:
123   NumberExprAST(double val) : Val(val) {}
124   virtual Value *Codegen();
125 };
126
127 /// VariableExprAST - Expression class for referencing a variable, like "a".
128 class VariableExprAST : public ExprAST {
129   std::string Name;
130 public:
131   VariableExprAST(const std::string &name) : Name(name) {}
132   const std::string &getName() const { return Name; }
133   virtual Value *Codegen();
134 };
135
136 /// UnaryExprAST - Expression class for a unary operator.
137 class UnaryExprAST : public ExprAST {
138   char Opcode;
139   ExprAST *Operand;
140 public:
141   UnaryExprAST(char opcode, ExprAST *operand) 
142     : Opcode(opcode), Operand(operand) {}
143   virtual Value *Codegen();
144 };
145
146 /// BinaryExprAST - Expression class for a binary operator.
147 class BinaryExprAST : public ExprAST {
148   char Op;
149   ExprAST *LHS, *RHS;
150 public:
151   BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) 
152     : Op(op), LHS(lhs), RHS(rhs) {}
153   virtual Value *Codegen();
154 };
155
156 /// CallExprAST - Expression class for function calls.
157 class CallExprAST : public ExprAST {
158   std::string Callee;
159   std::vector<ExprAST*> Args;
160 public:
161   CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
162     : Callee(callee), Args(args) {}
163   virtual Value *Codegen();
164 };
165
166 /// IfExprAST - Expression class for if/then/else.
167 class IfExprAST : public ExprAST {
168   ExprAST *Cond, *Then, *Else;
169 public:
170   IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
171   : Cond(cond), Then(then), Else(_else) {}
172   virtual Value *Codegen();
173 };
174
175 /// ForExprAST - Expression class for for/in.
176 class ForExprAST : public ExprAST {
177   std::string VarName;
178   ExprAST *Start, *End, *Step, *Body;
179 public:
180   ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
181              ExprAST *step, ExprAST *body)
182     : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
183   virtual Value *Codegen();
184 };
185
186 /// VarExprAST - Expression class for var/in
187 class VarExprAST : public ExprAST {
188   std::vector<std::pair<std::string, ExprAST*> > VarNames;
189   ExprAST *Body;
190 public:
191   VarExprAST(const std::vector<std::pair<std::string, ExprAST*> > &varnames,
192              ExprAST *body)
193   : VarNames(varnames), Body(body) {}
194   
195   virtual Value *Codegen();
196 };
197
198 /// PrototypeAST - This class represents the "prototype" for a function,
199 /// which captures its argument names as well as if it is an operator.
200 class PrototypeAST {
201   std::string Name;
202   std::vector<std::string> Args;
203   bool isOperator;
204   unsigned Precedence;  // Precedence if a binary op.
205 public:
206   PrototypeAST(const std::string &name, const std::vector<std::string> &args,
207                bool isoperator = false, unsigned prec = 0)
208   : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {}
209   
210   bool isUnaryOp() const { return isOperator && Args.size() == 1; }
211   bool isBinaryOp() const { return isOperator && Args.size() == 2; }
212   
213   char getOperatorName() const {
214     assert(isUnaryOp() || isBinaryOp());
215     return Name[Name.size()-1];
216   }
217   
218   unsigned getBinaryPrecedence() const { return Precedence; }
219   
220   Function *Codegen();
221   
222   void CreateArgumentAllocas(Function *F);
223 };
224
225 /// FunctionAST - This class represents a function definition itself.
226 class FunctionAST {
227   PrototypeAST *Proto;
228   ExprAST *Body;
229 public:
230   FunctionAST(PrototypeAST *proto, ExprAST *body)
231     : Proto(proto), Body(body) {}
232   
233   Function *Codegen();
234 };
235
236 //===----------------------------------------------------------------------===//
237 // Parser
238 //===----------------------------------------------------------------------===//
239
240 /// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
241 /// token the parser is looking at.  getNextToken reads another token from the
242 /// lexer and updates CurTok with its results.
243 static int CurTok;
244 static int getNextToken() {
245   return CurTok = gettok();
246 }
247
248 /// BinopPrecedence - This holds the precedence for each binary operator that is
249 /// defined.
250 static std::map<char, int> BinopPrecedence;
251
252 /// GetTokPrecedence - Get the precedence of the pending binary operator token.
253 static int GetTokPrecedence() {
254   if (!isascii(CurTok))
255     return -1;
256   
257   // Make sure it's a declared binop.
258   int TokPrec = BinopPrecedence[CurTok];
259   if (TokPrec <= 0) return -1;
260   return TokPrec;
261 }
262
263 /// Error* - These are little helper functions for error handling.
264 ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
265 PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
266 FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
267
268 static ExprAST *ParseExpression();
269
270 /// identifierexpr
271 ///   ::= identifier
272 ///   ::= identifier '(' expression* ')'
273 static ExprAST *ParseIdentifierExpr() {
274   std::string IdName = IdentifierStr;
275   
276   getNextToken();  // eat identifier.
277   
278   if (CurTok != '(') // Simple variable ref.
279     return new VariableExprAST(IdName);
280   
281   // Call.
282   getNextToken();  // eat (
283   std::vector<ExprAST*> Args;
284   if (CurTok != ')') {
285     while (1) {
286       ExprAST *Arg = ParseExpression();
287       if (!Arg) return 0;
288       Args.push_back(Arg);
289
290       if (CurTok == ')') break;
291
292       if (CurTok != ',')
293         return Error("Expected ')' or ',' in argument list");
294       getNextToken();
295     }
296   }
297
298   // Eat the ')'.
299   getNextToken();
300   
301   return new CallExprAST(IdName, Args);
302 }
303
304 /// numberexpr ::= number
305 static ExprAST *ParseNumberExpr() {
306   ExprAST *Result = new NumberExprAST(NumVal);
307   getNextToken(); // consume the number
308   return Result;
309 }
310
311 /// parenexpr ::= '(' expression ')'
312 static ExprAST *ParseParenExpr() {
313   getNextToken();  // eat (.
314   ExprAST *V = ParseExpression();
315   if (!V) return 0;
316   
317   if (CurTok != ')')
318     return Error("expected ')'");
319   getNextToken();  // eat ).
320   return V;
321 }
322
323 /// ifexpr ::= 'if' expression 'then' expression 'else' expression
324 static ExprAST *ParseIfExpr() {
325   getNextToken();  // eat the if.
326   
327   // condition.
328   ExprAST *Cond = ParseExpression();
329   if (!Cond) return 0;
330   
331   if (CurTok != tok_then)
332     return Error("expected then");
333   getNextToken();  // eat the then
334   
335   ExprAST *Then = ParseExpression();
336   if (Then == 0) return 0;
337   
338   if (CurTok != tok_else)
339     return Error("expected else");
340   
341   getNextToken();
342   
343   ExprAST *Else = ParseExpression();
344   if (!Else) return 0;
345   
346   return new IfExprAST(Cond, Then, Else);
347 }
348
349 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
350 static ExprAST *ParseForExpr() {
351   getNextToken();  // eat the for.
352
353   if (CurTok != tok_identifier)
354     return Error("expected identifier after for");
355   
356   std::string IdName = IdentifierStr;
357   getNextToken();  // eat identifier.
358   
359   if (CurTok != '=')
360     return Error("expected '=' after for");
361   getNextToken();  // eat '='.
362   
363   
364   ExprAST *Start = ParseExpression();
365   if (Start == 0) return 0;
366   if (CurTok != ',')
367     return Error("expected ',' after for start value");
368   getNextToken();
369   
370   ExprAST *End = ParseExpression();
371   if (End == 0) return 0;
372   
373   // The step value is optional.
374   ExprAST *Step = 0;
375   if (CurTok == ',') {
376     getNextToken();
377     Step = ParseExpression();
378     if (Step == 0) return 0;
379   }
380   
381   if (CurTok != tok_in)
382     return Error("expected 'in' after for");
383   getNextToken();  // eat 'in'.
384   
385   ExprAST *Body = ParseExpression();
386   if (Body == 0) return 0;
387
388   return new ForExprAST(IdName, Start, End, Step, Body);
389 }
390
391 /// varexpr ::= 'var' identifier ('=' expression)? 
392 //                    (',' identifier ('=' expression)?)* 'in' expression
393 static ExprAST *ParseVarExpr() {
394   getNextToken();  // eat the var.
395
396   std::vector<std::pair<std::string, ExprAST*> > VarNames;
397
398   // At least one variable name is required.
399   if (CurTok != tok_identifier)
400     return Error("expected identifier after var");
401   
402   while (1) {
403     std::string Name = IdentifierStr;
404     getNextToken();  // eat identifier.
405
406     // Read the optional initializer.
407     ExprAST *Init = 0;
408     if (CurTok == '=') {
409       getNextToken(); // eat the '='.
410       
411       Init = ParseExpression();
412       if (Init == 0) return 0;
413     }
414     
415     VarNames.push_back(std::make_pair(Name, Init));
416     
417     // End of var list, exit loop.
418     if (CurTok != ',') break;
419     getNextToken(); // eat the ','.
420     
421     if (CurTok != tok_identifier)
422       return Error("expected identifier list after var");
423   }
424   
425   // At this point, we have to have 'in'.
426   if (CurTok != tok_in)
427     return Error("expected 'in' keyword after 'var'");
428   getNextToken();  // eat 'in'.
429   
430   ExprAST *Body = ParseExpression();
431   if (Body == 0) return 0;
432   
433   return new VarExprAST(VarNames, Body);
434 }
435
436 /// primary
437 ///   ::= identifierexpr
438 ///   ::= numberexpr
439 ///   ::= parenexpr
440 ///   ::= ifexpr
441 ///   ::= forexpr
442 ///   ::= varexpr
443 static ExprAST *ParsePrimary() {
444   switch (CurTok) {
445   default: return Error("unknown token when expecting an expression");
446   case tok_identifier: return ParseIdentifierExpr();
447   case tok_number:     return ParseNumberExpr();
448   case '(':            return ParseParenExpr();
449   case tok_if:         return ParseIfExpr();
450   case tok_for:        return ParseForExpr();
451   case tok_var:        return ParseVarExpr();
452   }
453 }
454
455 /// unary
456 ///   ::= primary
457 ///   ::= '!' unary
458 static ExprAST *ParseUnary() {
459   // If the current token is not an operator, it must be a primary expr.
460   if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
461     return ParsePrimary();
462   
463   // If this is a unary operator, read it.
464   int Opc = CurTok;
465   getNextToken();
466   if (ExprAST *Operand = ParseUnary())
467     return new UnaryExprAST(Opc, Operand);
468   return 0;
469 }
470
471 /// binoprhs
472 ///   ::= ('+' unary)*
473 static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
474   // If this is a binop, find its precedence.
475   while (1) {
476     int TokPrec = GetTokPrecedence();
477     
478     // If this is a binop that binds at least as tightly as the current binop,
479     // consume it, otherwise we are done.
480     if (TokPrec < ExprPrec)
481       return LHS;
482     
483     // Okay, we know this is a binop.
484     int BinOp = CurTok;
485     getNextToken();  // eat binop
486     
487     // Parse the unary expression after the binary operator.
488     ExprAST *RHS = ParseUnary();
489     if (!RHS) return 0;
490     
491     // If BinOp binds less tightly with RHS than the operator after RHS, let
492     // the pending operator take RHS as its LHS.
493     int NextPrec = GetTokPrecedence();
494     if (TokPrec < NextPrec) {
495       RHS = ParseBinOpRHS(TokPrec+1, RHS);
496       if (RHS == 0) return 0;
497     }
498     
499     // Merge LHS/RHS.
500     LHS = new BinaryExprAST(BinOp, LHS, RHS);
501   }
502 }
503
504 /// expression
505 ///   ::= unary binoprhs
506 ///
507 static ExprAST *ParseExpression() {
508   ExprAST *LHS = ParseUnary();
509   if (!LHS) return 0;
510   
511   return ParseBinOpRHS(0, LHS);
512 }
513
514 /// prototype
515 ///   ::= id '(' id* ')'
516 ///   ::= binary LETTER number? (id, id)
517 ///   ::= unary LETTER (id)
518 static PrototypeAST *ParsePrototype() {
519   std::string FnName;
520   
521   unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
522   unsigned BinaryPrecedence = 30;
523   
524   switch (CurTok) {
525   default:
526     return ErrorP("Expected function name in prototype");
527   case tok_identifier:
528     FnName = IdentifierStr;
529     Kind = 0;
530     getNextToken();
531     break;
532   case tok_unary:
533     getNextToken();
534     if (!isascii(CurTok))
535       return ErrorP("Expected unary operator");
536     FnName = "unary";
537     FnName += (char)CurTok;
538     Kind = 1;
539     getNextToken();
540     break;
541   case tok_binary:
542     getNextToken();
543     if (!isascii(CurTok))
544       return ErrorP("Expected binary operator");
545     FnName = "binary";
546     FnName += (char)CurTok;
547     Kind = 2;
548     getNextToken();
549     
550     // Read the precedence if present.
551     if (CurTok == tok_number) {
552       if (NumVal < 1 || NumVal > 100)
553         return ErrorP("Invalid precedecnce: must be 1..100");
554       BinaryPrecedence = (unsigned)NumVal;
555       getNextToken();
556     }
557     break;
558   }
559   
560   if (CurTok != '(')
561     return ErrorP("Expected '(' in prototype");
562   
563   std::vector<std::string> ArgNames;
564   while (getNextToken() == tok_identifier)
565     ArgNames.push_back(IdentifierStr);
566   if (CurTok != ')')
567     return ErrorP("Expected ')' in prototype");
568   
569   // success.
570   getNextToken();  // eat ')'.
571   
572   // Verify right number of names for operator.
573   if (Kind && ArgNames.size() != Kind)
574     return ErrorP("Invalid number of operands for operator");
575   
576   return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence);
577 }
578
579 /// definition ::= 'def' prototype expression
580 static FunctionAST *ParseDefinition() {
581   getNextToken();  // eat def.
582   PrototypeAST *Proto = ParsePrototype();
583   if (Proto == 0) return 0;
584
585   if (ExprAST *E = ParseExpression())
586     return new FunctionAST(Proto, E);
587   return 0;
588 }
589
590 /// toplevelexpr ::= expression
591 static FunctionAST *ParseTopLevelExpr() {
592   if (ExprAST *E = ParseExpression()) {
593     // Make an anonymous proto.
594     PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
595     return new FunctionAST(Proto, E);
596   }
597   return 0;
598 }
599
600 /// external ::= 'extern' prototype
601 static PrototypeAST *ParseExtern() {
602   getNextToken();  // eat extern.
603   return ParsePrototype();
604 }
605
606 //===----------------------------------------------------------------------===//
607 // Code Generation
608 //===----------------------------------------------------------------------===//
609
610 static Module *TheModule;
611 static FunctionPassManager *TheFPM;
612 static IRBuilder<> Builder(getGlobalContext());
613 static std::map<std::string, AllocaInst*> NamedValues;
614
615 Value *ErrorV(const char *Str) { Error(Str); return 0; }
616
617 /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
618 /// the function.  This is used for mutable variables etc.
619 static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
620                                           const std::string &VarName) {
621   IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
622                  TheFunction->getEntryBlock().begin());
623   return TmpB.CreateAlloca(Type::getDoubleTy(getGlobalContext()), 0,
624                            VarName.c_str());
625 }
626
627 Value *NumberExprAST::Codegen() {
628   return ConstantFP::get(getGlobalContext(), APFloat(Val));
629 }
630
631 Value *VariableExprAST::Codegen() {
632   // Look this variable up in the function.
633   Value *V = NamedValues[Name];
634   if (V == 0) return ErrorV("Unknown variable name");
635
636   // Load the value.
637   return Builder.CreateLoad(V, Name.c_str());
638 }
639
640 Value *UnaryExprAST::Codegen() {
641   Value *OperandV = Operand->Codegen();
642   if (OperandV == 0) return 0;
643 #ifdef USE_MCJIT
644   Function *F = TheHelper->getFunction(MakeLegalFunctionName(std::string("unary")+Opcode));
645 #else
646   Function *F = TheModule->getFunction(std::string("unary")+Opcode);
647 #endif
648   if (F == 0)
649     return ErrorV("Unknown unary operator");
650   
651   return Builder.CreateCall(F, OperandV, "unop");
652 }
653
654 Value *BinaryExprAST::Codegen() {
655   // Special case '=' because we don't want to emit the LHS as an expression.
656   if (Op == '=') {
657     // Assignment requires the LHS to be an identifier.
658     VariableExprAST *LHSE = dynamic_cast<VariableExprAST*>(LHS);
659     if (!LHSE)
660       return ErrorV("destination of '=' must be a variable");
661     // Codegen the RHS.
662     Value *Val = RHS->Codegen();
663     if (Val == 0) return 0;
664
665     // Look up the name.
666     Value *Variable = NamedValues[LHSE->getName()];
667     if (Variable == 0) return ErrorV("Unknown variable name");
668
669     Builder.CreateStore(Val, Variable);
670     return Val;
671   }
672   
673   Value *L = LHS->Codegen();
674   Value *R = RHS->Codegen();
675   if (L == 0 || R == 0) return 0;
676   
677   switch (Op) {
678   case '+': return Builder.CreateFAdd(L, R, "addtmp");
679   case '-': return Builder.CreateFSub(L, R, "subtmp");
680   case '*': return Builder.CreateFMul(L, R, "multmp");
681   case '/': return Builder.CreateFDiv(L, R, "divtmp");
682   case '<':
683     L = Builder.CreateFCmpULT(L, R, "cmptmp");
684     // Convert bool 0/1 to double 0.0 or 1.0
685     return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
686                                 "booltmp");
687   default: break;
688   }
689   
690   // If it wasn't a builtin binary operator, it must be a user defined one. Emit
691   // a call to it.
692   Function *F = TheModule->getFunction(std::string("binary")+Op);
693   assert(F && "binary operator not found!");
694   
695   Value *Ops[] = { L, R };
696   return Builder.CreateCall(F, Ops, "binop");
697 }
698
699 Value *CallExprAST::Codegen() {
700   // Look up the name in the global module table.
701   Function *CalleeF = TheModule->getFunction(Callee);
702   if (CalleeF == 0) {
703     char error_str[64];
704     sprintf(error_str, "Unknown function referenced %s", Callee.c_str()); 
705     return ErrorV(error_str);
706   }
707   
708   // If argument mismatch error.
709   if (CalleeF->arg_size() != Args.size())
710     return ErrorV("Incorrect # arguments passed");
711
712   std::vector<Value*> ArgsV;
713   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
714     ArgsV.push_back(Args[i]->Codegen());
715     if (ArgsV.back() == 0) return 0;
716   }
717   
718   return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
719 }
720
721 Value *IfExprAST::Codegen() {
722   Value *CondV = Cond->Codegen();
723   if (CondV == 0) return 0;
724   
725   // Convert condition to a bool by comparing equal to 0.0.
726   CondV = Builder.CreateFCmpONE(CondV, 
727                               ConstantFP::get(getGlobalContext(), APFloat(0.0)),
728                                 "ifcond");
729   
730   Function *TheFunction = Builder.GetInsertBlock()->getParent();
731   
732   // Create blocks for the then and else cases.  Insert the 'then' block at the
733   // end of the function.
734   BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction);
735   BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else");
736   BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont");
737   
738   Builder.CreateCondBr(CondV, ThenBB, ElseBB);
739   
740   // Emit then value.
741   Builder.SetInsertPoint(ThenBB);
742   
743   Value *ThenV = Then->Codegen();
744   if (ThenV == 0) return 0;
745   
746   Builder.CreateBr(MergeBB);
747   // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
748   ThenBB = Builder.GetInsertBlock();
749   
750   // Emit else block.
751   TheFunction->getBasicBlockList().push_back(ElseBB);
752   Builder.SetInsertPoint(ElseBB);
753   
754   Value *ElseV = Else->Codegen();
755   if (ElseV == 0) return 0;
756   
757   Builder.CreateBr(MergeBB);
758   // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
759   ElseBB = Builder.GetInsertBlock();
760   
761   // Emit merge block.
762   TheFunction->getBasicBlockList().push_back(MergeBB);
763   Builder.SetInsertPoint(MergeBB);
764   PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2,
765                                   "iftmp");
766   
767   PN->addIncoming(ThenV, ThenBB);
768   PN->addIncoming(ElseV, ElseBB);
769   return PN;
770 }
771
772 Value *ForExprAST::Codegen() {
773   // Output this as:
774   //   var = alloca double
775   //   ...
776   //   start = startexpr
777   //   store start -> var
778   //   goto loop
779   // loop: 
780   //   ...
781   //   bodyexpr
782   //   ...
783   // loopend:
784   //   step = stepexpr
785   //   endcond = endexpr
786   //
787   //   curvar = load var
788   //   nextvar = curvar + step
789   //   store nextvar -> var
790   //   br endcond, loop, endloop
791   // outloop:
792   
793   Function *TheFunction = Builder.GetInsertBlock()->getParent();
794
795   // Create an alloca for the variable in the entry block.
796   AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
797   
798   // Emit the start code first, without 'variable' in scope.
799   Value *StartVal = Start->Codegen();
800   if (StartVal == 0) return 0;
801   
802   // Store the value into the alloca.
803   Builder.CreateStore(StartVal, Alloca);
804   
805   // Make the new basic block for the loop header, inserting after current
806   // block.
807   BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
808   
809   // Insert an explicit fall through from the current block to the LoopBB.
810   Builder.CreateBr(LoopBB);
811
812   // Start insertion in LoopBB.
813   Builder.SetInsertPoint(LoopBB);
814   
815   // Within the loop, the variable is defined equal to the PHI node.  If it
816   // shadows an existing variable, we have to restore it, so save it now.
817   AllocaInst *OldVal = NamedValues[VarName];
818   NamedValues[VarName] = Alloca;
819   
820   // Emit the body of the loop.  This, like any other expr, can change the
821   // current BB.  Note that we ignore the value computed by the body, but don't
822   // allow an error.
823   if (Body->Codegen() == 0)
824     return 0;
825   
826   // Emit the step value.
827   Value *StepVal;
828   if (Step) {
829     StepVal = Step->Codegen();
830     if (StepVal == 0) return 0;
831   } else {
832     // If not specified, use 1.0.
833     StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
834   }
835   
836   // Compute the end condition.
837   Value *EndCond = End->Codegen();
838   if (EndCond == 0) return EndCond;
839   
840   // Reload, increment, and restore the alloca.  This handles the case where
841   // the body of the loop mutates the variable.
842   Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str());
843   Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar");
844   Builder.CreateStore(NextVar, Alloca);
845   
846   // Convert condition to a bool by comparing equal to 0.0.
847   EndCond = Builder.CreateFCmpONE(EndCond, 
848                               ConstantFP::get(getGlobalContext(), APFloat(0.0)),
849                                   "loopcond");
850   
851   // Create the "after loop" block and insert it.
852   BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
853   
854   // Insert the conditional branch into the end of LoopEndBB.
855   Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
856   
857   // Any new code will be inserted in AfterBB.
858   Builder.SetInsertPoint(AfterBB);
859   
860   // Restore the unshadowed variable.
861   if (OldVal)
862     NamedValues[VarName] = OldVal;
863   else
864     NamedValues.erase(VarName);
865
866   
867   // for expr always returns 0.0.
868   return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
869 }
870
871 Value *VarExprAST::Codegen() {
872   std::vector<AllocaInst *> OldBindings;
873   
874   Function *TheFunction = Builder.GetInsertBlock()->getParent();
875
876   // Register all variables and emit their initializer.
877   for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
878     const std::string &VarName = VarNames[i].first;
879     ExprAST *Init = VarNames[i].second;
880     
881     // Emit the initializer before adding the variable to scope, this prevents
882     // the initializer from referencing the variable itself, and permits stuff
883     // like this:
884     //  var a = 1 in
885     //    var a = a in ...   # refers to outer 'a'.
886     Value *InitVal;
887     if (Init) {
888       InitVal = Init->Codegen();
889       if (InitVal == 0) return 0;
890     } else { // If not specified, use 0.0.
891       InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0));
892     }
893     
894     AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
895     Builder.CreateStore(InitVal, Alloca);
896
897     // Remember the old variable binding so that we can restore the binding when
898     // we unrecurse.
899     OldBindings.push_back(NamedValues[VarName]);
900     
901     // Remember this binding.
902     NamedValues[VarName] = Alloca;
903   }
904   
905   // Codegen the body, now that all vars are in scope.
906   Value *BodyVal = Body->Codegen();
907   if (BodyVal == 0) return 0;
908   
909   // Pop all our variables from scope.
910   for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
911     NamedValues[VarNames[i].first] = OldBindings[i];
912
913   // Return the body computation.
914   return BodyVal;
915 }
916
917 Function *PrototypeAST::Codegen() {
918   // Make the function type:  double(double,double) etc.
919   std::vector<Type*> Doubles(Args.size(), 
920                              Type::getDoubleTy(getGlobalContext()));
921   FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
922                                        Doubles, false);
923
924   Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
925   // If F conflicted, there was already something named 'Name'.  If it has a
926   // body, don't allow redefinition or reextern.
927   if (F->getName() != Name) {
928     // Delete the one we just made and get the existing one.
929     F->eraseFromParent();
930     F = TheModule->getFunction(Name);
931     // If F already has a body, reject this.
932     if (!F->empty()) {
933       ErrorF("redefinition of function");
934       return 0;
935     }
936     // If F took a different number of args, reject.
937     if (F->arg_size() != Args.size()) {
938       ErrorF("redefinition of function with different # args");
939       return 0;
940     }
941   }
942
943   // Set names for all arguments.
944   unsigned Idx = 0;
945   for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
946        ++AI, ++Idx)
947     AI->setName(Args[Idx]);
948     
949   return F;
950 }
951
952 /// CreateArgumentAllocas - Create an alloca for each argument and register the
953 /// argument in the symbol table so that references to it will succeed.
954 void PrototypeAST::CreateArgumentAllocas(Function *F) {
955   Function::arg_iterator AI = F->arg_begin();
956   for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
957     // Create an alloca for this variable.
958     AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);
959
960     // Store the initial value into the alloca.
961     Builder.CreateStore(AI, Alloca);
962
963     // Add arguments to variable symbol table.
964     NamedValues[Args[Idx]] = Alloca;
965   }
966 }
967
968 Function *FunctionAST::Codegen() {
969   NamedValues.clear();
970   
971   Function *TheFunction = Proto->Codegen();
972   if (TheFunction == 0)
973     return 0;
974
975   // If this is an operator, install it.
976   if (Proto->isBinaryOp())
977     BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence();
978
979   // Create a new basic block to start insertion into.
980   BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
981   Builder.SetInsertPoint(BB);
982   
983   // Add all arguments to the symbol table and create their allocas.
984   Proto->CreateArgumentAllocas(TheFunction);
985
986   if (Value *RetVal = Body->Codegen()) {
987     // Finish off the function.
988     Builder.CreateRet(RetVal);
989
990     // Validate the generated code, checking for consistency.
991     verifyFunction(*TheFunction);
992
993     // Optimize the function.
994     TheFPM->run(*TheFunction);
995
996     return TheFunction;
997   }
998   
999   // Error reading body, remove function.
1000   TheFunction->eraseFromParent();
1001
1002   if (Proto->isBinaryOp())
1003     BinopPrecedence.erase(Proto->getOperatorName());
1004   return 0;
1005 }
1006
1007 //===----------------------------------------------------------------------===//
1008 // Top-Level parsing and JIT Driver
1009 //===----------------------------------------------------------------------===//
1010
1011 static ExecutionEngine *TheExecutionEngine;
1012
1013 static void HandleDefinition() {
1014   if (FunctionAST *F = ParseDefinition()) {
1015     if (Function *LF = F->Codegen()) {
1016 #ifndef MINIMAL_STDERR_OUTPUT
1017       fprintf(stderr, "Read function definition:");
1018       LF->dump();
1019 #endif
1020     }
1021   } else {
1022     // Skip token for error recovery.
1023     getNextToken();
1024   }
1025 }
1026
1027 static void HandleExtern() {
1028   if (PrototypeAST *P = ParseExtern()) {
1029     if (Function *F = P->Codegen()) {
1030 #ifndef MINIMAL_STDERR_OUTPUT
1031       fprintf(stderr, "Read extern: ");
1032       F->dump();
1033 #endif
1034     }
1035   } else {
1036     // Skip token for error recovery.
1037     getNextToken();
1038   }
1039 }
1040
1041 static void HandleTopLevelExpression() {
1042   // Evaluate a top-level expression into an anonymous function.
1043   if (FunctionAST *F = ParseTopLevelExpr()) {
1044     if (Function *LF = F->Codegen()) {
1045       // JIT the function, returning a function pointer.
1046       void *FPtr = TheExecutionEngine->getPointerToFunction(LF);
1047       // Cast it to the right type (takes no arguments, returns a double) so we
1048       // can call it as a native function.
1049       double (*FP)() = (double (*)())(intptr_t)FPtr;
1050 #ifdef MINIMAL_STDERR_OUTPUT
1051       FP();
1052 #else
1053       fprintf(stderr, "Evaluated to %f\n", FP());
1054 #endif
1055     }
1056   } else {
1057     // Skip token for error recovery.
1058     getNextToken();
1059   }
1060 }
1061
1062 /// top ::= definition | external | expression | ';'
1063 static void MainLoop() {
1064   while (1) {
1065 #ifndef MINIMAL_STDERR_OUTPUT
1066     fprintf(stderr, "ready> ");
1067 #endif
1068     switch (CurTok) {
1069     case tok_eof:    return;
1070     case ';':        getNextToken(); break;  // ignore top-level semicolons.
1071     case tok_def:    HandleDefinition(); break;
1072     case tok_extern: HandleExtern(); break;
1073     default:         HandleTopLevelExpression(); break;
1074     }
1075   }
1076 }
1077
1078 //===----------------------------------------------------------------------===//
1079 // "Library" functions that can be "extern'd" from user code.
1080 //===----------------------------------------------------------------------===//
1081
1082 /// putchard - putchar that takes a double and returns 0.
1083 extern "C" 
1084 double putchard(double X) {
1085   putchar((char)X);
1086   return 0;
1087 }
1088
1089 /// printd - printf that takes a double prints it as "%f\n", returning 0.
1090 extern "C" 
1091 double printd(double X) {
1092   printf("%f", X);
1093   return 0;
1094 }
1095
1096 extern "C" 
1097 double printlf() {
1098   printf("\n");
1099   return 0;
1100 }
1101
1102 //===----------------------------------------------------------------------===//
1103 // Main driver code.
1104 //===----------------------------------------------------------------------===//
1105
1106 int main(int argc, char **argv) {
1107   InitializeNativeTarget();
1108   LLVMContext &Context = getGlobalContext();
1109
1110   // Install standard binary operators.
1111   // 1 is lowest precedence.
1112   BinopPrecedence['='] = 2;
1113   BinopPrecedence['<'] = 10;
1114   BinopPrecedence['+'] = 20;
1115   BinopPrecedence['-'] = 20;
1116   BinopPrecedence['/'] = 40;
1117   BinopPrecedence['*'] = 40;  // highest.
1118
1119   // Make the module, which holds all the code.
1120   TheModule = new Module("my cool jit", Context);
1121
1122   // Create the JIT.  This takes ownership of the module.
1123   std::string ErrStr;
1124   TheExecutionEngine = EngineBuilder(TheModule).setErrorStr(&ErrStr).create();
1125   if (!TheExecutionEngine) {
1126     fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
1127     exit(1);
1128   }
1129
1130   FunctionPassManager OurFPM(TheModule);
1131
1132   // Set up the optimizer pipeline.  Start with registering info about how the
1133   // target lays out data structures.
1134   OurFPM.add(new DataLayout(*TheExecutionEngine->getDataLayout()));
1135   // Provide basic AliasAnalysis support for GVN.
1136   OurFPM.add(createBasicAliasAnalysisPass());
1137   // Promote allocas to registers.
1138   OurFPM.add(createPromoteMemoryToRegisterPass());
1139   // Do simple "peephole" optimizations and bit-twiddling optzns.
1140   OurFPM.add(createInstructionCombiningPass());
1141   // Reassociate expressions.
1142   OurFPM.add(createReassociatePass());
1143   // Eliminate Common SubExpressions.
1144   OurFPM.add(createGVNPass());
1145   // Simplify the control flow graph (deleting unreachable blocks, etc).
1146   OurFPM.add(createCFGSimplificationPass());
1147
1148   OurFPM.doInitialization();
1149
1150   // Set the global so the code gen can use this.
1151   TheFPM = &OurFPM;
1152
1153   // Prime the first token.
1154 #ifndef MINIMAL_STDERR_OUTPUT
1155   fprintf(stderr, "ready> ");
1156 #endif
1157   getNextToken();
1158
1159   // Run the main "interpreter loop" now.
1160   MainLoop();
1161
1162   // Print out all of the generated code.
1163   TheFPM = 0;
1164 #ifndef MINIMAL_STDERR_OUTPUT
1165   TheModule->dump();
1166 #endif
1167   return 0;
1168 }