7aa28f346c5292928408df7cd9ef203eb0a8954a
[oota-llvm.git] / docs / CodingStandards.rst
1 =====================
2 LLVM Coding Standards
3 =====================
4
5 .. contents::
6    :local:
7
8 Introduction
9 ============
10
11 This document attempts to describe a few coding standards that are being used in
12 the LLVM source tree.  Although no coding standards should be regarded as
13 absolute requirements to be followed in all instances, coding standards are
14 particularly important for large-scale code bases that follow a library-based
15 design (like LLVM).
16
17 While this document may provide guidance for some mechanical formatting issues,
18 whitespace, or other "microscopic details", these are not fixed standards.
19 Always follow the golden rule:
20
21 .. _Golden Rule:
22
23     **If you are extending, enhancing, or bug fixing already implemented code,
24     use the style that is already being used so that the source is uniform and
25     easy to follow.**
26
27 Note that some code bases (e.g. ``libc++``) have really good reasons to deviate
28 from the coding standards.  In the case of ``libc++``, this is because the
29 naming and other conventions are dictated by the C++ standard.  If you think
30 there is a specific good reason to deviate from the standards here, please bring
31 it up on the LLVMdev mailing list.
32
33 There are some conventions that are not uniformly followed in the code base
34 (e.g. the naming convention).  This is because they are relatively new, and a
35 lot of code was written before they were put in place.  Our long term goal is
36 for the entire codebase to follow the convention, but we explicitly *do not*
37 want patches that do large-scale reformating of existing code.  On the other
38 hand, it is reasonable to rename the methods of a class if you're about to
39 change it in some other way.  Just do the reformating as a separate commit from
40 the functionality change.
41   
42 The ultimate goal of these guidelines is the increase readability and
43 maintainability of our common source base. If you have suggestions for topics to
44 be included, please mail them to `Chris <mailto:sabre@nondot.org>`_.
45
46 Languages, Libraries, and Standards
47 ===================================
48
49 Most source code in LLVM and other LLVM projects using these coding standards
50 is C++ code. There are some places where C code is used either due to
51 environment restrictions, historical restrictions, or due to third-party source
52 code imported into the tree. Generally, our preference is for standards
53 conforming, modern, and portable C++ code as the implementation language of
54 choice.
55
56 C++ Standard Versions
57 ---------------------
58
59 LLVM, Clang, and LLD are currently written using C++11 conforming code,
60 although we restrict ourselves to features which are available in the major
61 toolchains supported as host compilers. The LLDB project is even more
62 aggressive in the set of host compilers supported and thus uses still more
63 features. Regardless of the supported features, code is expected to (when
64 reasonable) be standard, portable, and modern C++11 code. We avoid unnecessary
65 vendor-specific extensions, etc.
66
67 C++ Standard Library
68 --------------------
69
70 Use the C++ standard library facilities whenever they are available for
71 a particular task. LLVM and related projects emphasize and rely on the standard
72 library facilities for as much as possible. Common support libraries providing
73 functionality missing from the standard library for which there are standard
74 interfaces or active work on adding standard interfaces will often be
75 implemented in the LLVM namespace following the expected standard interface.
76
77 There are some exceptions such as the standard I/O streams library which are
78 avoided. Also, there is much more detailed information on these subjects in the
79 :doc:`ProgrammersManual`.
80
81 Supported C++11 Language and Library Features
82 ---------------------------------------------
83
84 While LLVM, Clang, and LLD use C++11, not all features are available in all of
85 the toolchains which we support. The set of features supported for use in LLVM
86 is the intersection of those supported in MSVC 2012, GCC 4.7, and Clang 3.1.
87 The ultimate definition of this set is what build bots with those respective
88 toolchains accept. Don't argue with the build bots. However, we have some
89 guidance below to help you know what to expect.
90
91 Each toolchain provides a good reference for what it accepts:
92
93 * Clang: http://clang.llvm.org/cxx_status.html
94 * GCC: http://gcc.gnu.org/projects/cxx0x.html
95 * MSVC: http://msdn.microsoft.com/en-us/library/hh567368.aspx
96
97 In most cases, the MSVC list will be the dominating factor. Here is a summary
98 of the features that are expected to work. Features not on this list are
99 unlikely to be supported by our host compilers.
100
101 * Rvalue references: N2118_
102
103   * But *not* Rvalue references for ``*this`` or member qualifiers (N2439_)
104
105 * Static assert: N1720_
106 * ``auto`` type deduction: N1984_, N1737_
107 * Trailing return types: N2541_
108 * Lambdas: N2927_
109
110   * But *not* lambdas with default arguments.
111
112 * ``decltype``: N2343_
113 * Nested closing right angle brackets: N1757_
114 * Extern templates: N1987_
115 * ``nullptr``: N2431_
116 * Strongly-typed and forward declarable enums: N2347_, N2764_
117 * Local and unnamed types as template arguments: N2657_
118 * Range-based for-loop: N2930_
119
120   * But ``{}`` are required around inner ``do {} while()`` loops.  As a result,
121     ``{}`` are required around function-like macros inside range-based for
122     loops.
123
124 * ``override`` and ``final``: N2928_, N3206_, N3272_
125 * Atomic operations and the C++11 memory model: N2429_
126
127 .. _N2118: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2118.html
128 .. _N2439: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2439.htm
129 .. _N1720: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1720.html
130 .. _N1984: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1984.pdf
131 .. _N1737: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1737.pdf
132 .. _N2541: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2541.htm
133 .. _N2927: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2927.pdf
134 .. _N2343: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2343.pdf
135 .. _N1757: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1757.html
136 .. _N1987: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1987.htm
137 .. _N2431: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2431.pdf
138 .. _N2347: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2347.pdf
139 .. _N2764: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2764.pdf
140 .. _N2657: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm
141 .. _N2930: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2930.html
142 .. _N2928: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2928.htm
143 .. _N3206: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3206.htm
144 .. _N3272: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3272.htm
145 .. _N2429: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2429.htm
146 .. _MSVC-compatible RTTI: http://llvm.org/PR18951
147
148 The supported features in the C++11 standard libraries are less well tracked,
149 but also much greater. Most of the standard libraries implement most of C++11's
150 library. The most likely lowest common denominator is Linux support. For
151 libc++, the support is just poorly tested and undocumented but expected to be
152 largely complete. YMMV. For libstdc++, the support is documented in detail in
153 `the libstdc++ manual`_. There are some very minor missing facilities that are
154 unlikely to be common problems, and there are a few larger gaps that are worth
155 being aware of:
156
157 * Not all of the type traits are implemented
158 * No regular expression library.
159 * While most of the atomics library is well implemented, the fences are
160   missing. Fortunately, they are rarely needed.
161 * The locale support is incomplete.
162 * ``std::initializer_list`` (and the constructors and functions that take it as
163   an argument) are not always available, so you cannot (for example) initialize
164   a ``std::vector`` with a braced initializer list.
165 * ``std::equal()`` (and other algorithms) incorrectly assert in MSVC when given
166   ``nullptr`` as an iterator.
167
168 Other than these areas you should assume the standard library is available and
169 working as expected until some build bot tells you otherwise. If you're in an
170 uncertain area of one of the above points, but you cannot test on a Linux
171 system, your best approach is to minimize your use of these features, and watch
172 the Linux build bots to find out if your usage triggered a bug. For example, if
173 you hit a type trait which doesn't work we can then add support to LLVM's
174 traits header to emulate it.
175
176 .. _the libstdc++ manual:
177   http://gcc.gnu.org/onlinedocs/gcc-4.7.3/libstdc++/manual/manual/status.html#status.iso.2011
178
179 Mechanical Source Issues
180 ========================
181
182 Source Code Formatting
183 ----------------------
184
185 Commenting
186 ^^^^^^^^^^
187
188 Comments are one critical part of readability and maintainability.  Everyone
189 knows they should comment their code, and so should you.  When writing comments,
190 write them as English prose, which means they should use proper capitalization,
191 punctuation, etc.  Aim to describe what the code is trying to do and why, not
192 *how* it does it at a micro level. Here are a few critical things to document:
193
194 .. _header file comment:
195
196 File Headers
197 """"""""""""
198
199 Every source file should have a header on it that describes the basic purpose of
200 the file.  If a file does not have a header, it should not be checked into the
201 tree.  The standard header looks like this:
202
203 .. code-block:: c++
204
205   //===-- llvm/Instruction.h - Instruction class definition -------*- C++ -*-===//
206   //
207   //                     The LLVM Compiler Infrastructure
208   //
209   // This file is distributed under the University of Illinois Open Source
210   // License. See LICENSE.TXT for details.
211   //
212   //===----------------------------------------------------------------------===//
213   ///
214   /// \file
215   /// \brief This file contains the declaration of the Instruction class, which is
216   /// the base class for all of the VM instructions.
217   ///
218   //===----------------------------------------------------------------------===//
219
220 A few things to note about this particular format: The "``-*- C++ -*-``" string
221 on the first line is there to tell Emacs that the source file is a C++ file, not
222 a C file (Emacs assumes ``.h`` files are C files by default).
223
224 .. note::
225
226     This tag is not necessary in ``.cpp`` files.  The name of the file is also
227     on the first line, along with a very short description of the purpose of the
228     file.  This is important when printing out code and flipping though lots of
229     pages.
230
231 The next section in the file is a concise note that defines the license that the
232 file is released under.  This makes it perfectly clear what terms the source
233 code can be distributed under and should not be modified in any way.
234
235 The main body is a ``doxygen`` comment describing the purpose of the file.  It
236 should have a ``\brief`` command that describes the file in one or two
237 sentences.  Any additional information should be separated by a blank line.  If
238 an algorithm is being implemented or something tricky is going on, a reference
239 to the paper where it is published should be included, as well as any notes or
240 *gotchas* in the code to watch out for.
241
242 Class overviews
243 """""""""""""""
244
245 Classes are one fundamental part of a good object oriented design.  As such, a
246 class definition should have a comment block that explains what the class is
247 used for and how it works.  Every non-trivial class is expected to have a
248 ``doxygen`` comment block.
249
250 Method information
251 """"""""""""""""""
252
253 Methods defined in a class (as well as any global functions) should also be
254 documented properly.  A quick note about what it does and a description of the
255 borderline behaviour is all that is necessary here (unless something
256 particularly tricky or insidious is going on).  The hope is that people can
257 figure out how to use your interfaces without reading the code itself.
258
259 Good things to talk about here are what happens when something unexpected
260 happens: does the method return null?  Abort?  Format your hard disk?
261
262 Comment Formatting
263 ^^^^^^^^^^^^^^^^^^
264
265 In general, prefer C++ style (``//``) comments.  They take less space, require
266 less typing, don't have nesting problems, etc.  There are a few cases when it is
267 useful to use C style (``/* */``) comments however:
268
269 #. When writing C code: Obviously if you are writing C code, use C style
270    comments.
271
272 #. When writing a header file that may be ``#include``\d by a C source file.
273
274 #. When writing a source file that is used by a tool that only accepts C style
275    comments.
276
277 To comment out a large block of code, use ``#if 0`` and ``#endif``. These nest
278 properly and are better behaved in general than C style comments.
279
280 Doxygen Use in Documentation Comments
281 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
282
283 Use the ``\file`` command to turn the standard file header into a file-level
284 comment.
285
286 Include descriptive ``\brief`` paragraphs for all public interfaces (public
287 classes, member and non-member functions).  Explain API use and purpose in
288 ``\brief`` paragraphs, don't just restate the information that can be inferred
289 from the API name.  Put detailed discussion into separate paragraphs.
290
291 To refer to parameter names inside a paragraph, use the ``\p name`` command.
292 Don't use the ``\arg name`` command since it starts a new paragraph that
293 contains documentation for the parameter.
294
295 Wrap non-inline code examples in ``\code ... \endcode``.
296
297 To document a function parameter, start a new paragraph with the
298 ``\param name`` command.  If the parameter is used as an out or an in/out
299 parameter, use the ``\param [out] name`` or ``\param [in,out] name`` command,
300 respectively.
301
302 To describe function return value, start a new paragraph with the ``\returns``
303 command.
304
305 A minimal documentation comment:
306
307 .. code-block:: c++
308
309   /// \brief Does foo and bar.
310   void fooBar(bool Baz);
311
312 A documentation comment that uses all Doxygen features in a preferred way:
313
314 .. code-block:: c++
315
316   /// \brief Does foo and bar.
317   ///
318   /// Does not do foo the usual way if \p Baz is true.
319   ///
320   /// Typical usage:
321   /// \code
322   ///   fooBar(false, "quux", Res);
323   /// \endcode
324   ///
325   /// \param Quux kind of foo to do.
326   /// \param [out] Result filled with bar sequence on foo success.
327   ///
328   /// \returns true on success.
329   bool fooBar(bool Baz, StringRef Quux, std::vector<int> &Result);
330
331 Don't duplicate the documentation comment in the header file and in the
332 implementation file.  Put the documentation comments for public APIs into the
333 header file.  Documentation comments for private APIs can go to the
334 implementation file.  In any case, implementation files can include additional
335 comments (not necessarily in Doxygen markup) to explain implementation details
336 as needed.
337
338 Don't duplicate function or class name at the beginning of the comment.
339 For humans it is obvious which function or class is being documented;
340 automatic documentation processing tools are smart enough to bind the comment
341 to the correct declaration.
342
343 Wrong:
344
345 .. code-block:: c++
346
347   // In Something.h:
348
349   /// Something - An abstraction for some complicated thing.
350   class Something {
351   public:
352     /// fooBar - Does foo and bar.
353     void fooBar();
354   };
355
356   // In Something.cpp:
357
358   /// fooBar - Does foo and bar.
359   void Something::fooBar() { ... }
360
361 Correct:
362
363 .. code-block:: c++
364
365   // In Something.h:
366
367   /// \brief An abstraction for some complicated thing.
368   class Something {
369   public:
370     /// \brief Does foo and bar.
371     void fooBar();
372   };
373
374   // In Something.cpp:
375
376   // Builds a B-tree in order to do foo.  See paper by...
377   void Something::fooBar() { ... }
378
379 It is not required to use additional Doxygen features, but sometimes it might
380 be a good idea to do so.
381
382 Consider:
383
384 * adding comments to any narrow namespace containing a collection of
385   related functions or types;
386
387 * using top-level groups to organize a collection of related functions at
388   namespace scope where the grouping is smaller than the namespace;
389
390 * using member groups and additional comments attached to member
391   groups to organize within a class.
392
393 For example:
394
395 .. code-block:: c++
396
397   class Something {
398     /// \name Functions that do Foo.
399     /// @{
400     void fooBar();
401     void fooBaz();
402     /// @}
403     ...
404   };
405
406 ``#include`` Style
407 ^^^^^^^^^^^^^^^^^^
408
409 Immediately after the `header file comment`_ (and include guards if working on a
410 header file), the `minimal list of #includes`_ required by the file should be
411 listed.  We prefer these ``#include``\s to be listed in this order:
412
413 .. _Main Module Header:
414 .. _Local/Private Headers:
415
416 #. Main Module Header
417 #. Local/Private Headers
418 #. ``llvm/...``
419 #. System ``#include``\s
420
421 and each category should be sorted lexicographically by the full path.
422
423 The `Main Module Header`_ file applies to ``.cpp`` files which implement an
424 interface defined by a ``.h`` file.  This ``#include`` should always be included
425 **first** regardless of where it lives on the file system.  By including a
426 header file first in the ``.cpp`` files that implement the interfaces, we ensure
427 that the header does not have any hidden dependencies which are not explicitly
428 ``#include``\d in the header, but should be. It is also a form of documentation
429 in the ``.cpp`` file to indicate where the interfaces it implements are defined.
430
431 .. _fit into 80 columns:
432
433 Source Code Width
434 ^^^^^^^^^^^^^^^^^
435
436 Write your code to fit within 80 columns of text.  This helps those of us who
437 like to print out code and look at your code in an ``xterm`` without resizing
438 it.
439
440 The longer answer is that there must be some limit to the width of the code in
441 order to reasonably allow developers to have multiple files side-by-side in
442 windows on a modest display.  If you are going to pick a width limit, it is
443 somewhat arbitrary but you might as well pick something standard.  Going with 90
444 columns (for example) instead of 80 columns wouldn't add any significant value
445 and would be detrimental to printing out code.  Also many other projects have
446 standardized on 80 columns, so some people have already configured their editors
447 for it (vs something else, like 90 columns).
448
449 This is one of many contentious issues in coding standards, but it is not up for
450 debate.
451
452 Use Spaces Instead of Tabs
453 ^^^^^^^^^^^^^^^^^^^^^^^^^^
454
455 In all cases, prefer spaces to tabs in source files.  People have different
456 preferred indentation levels, and different styles of indentation that they
457 like; this is fine.  What isn't fine is that different editors/viewers expand
458 tabs out to different tab stops.  This can cause your code to look completely
459 unreadable, and it is not worth dealing with.
460
461 As always, follow the `Golden Rule`_ above: follow the style of
462 existing code if you are modifying and extending it.  If you like four spaces of
463 indentation, **DO NOT** do that in the middle of a chunk of code with two spaces
464 of indentation.  Also, do not reindent a whole source file: it makes for
465 incredible diffs that are absolutely worthless.
466
467 Indent Code Consistently
468 ^^^^^^^^^^^^^^^^^^^^^^^^
469
470 Okay, in your first year of programming you were told that indentation is
471 important. If you didn't believe and internalize this then, now is the time.
472 Just do it. With the introduction of C++11, there are some new formatting
473 challenges that merit some suggestions to help have consistent, maintainable,
474 and tool-friendly formatting and indentation.
475
476 Format Lambdas Like Blocks Of Code
477 """"""""""""""""""""""""""""""""""
478
479 When formatting a multi-line lambda, format it like a block of code, that's
480 what it is. If there is only one multi-line lambda in a statement, and there
481 are no expressions lexically after it in the statement, drop the indent to the
482 standard two space indent for a block of code, as if it were an if-block opened
483 by the preceding part of the statement:
484
485 .. code-block:: c++
486
487   std::sort(foo.begin(), foo.end(), [&](Foo a, Foo b) -> bool {
488     if (a.blah < b.blah)
489       return true;
490     if (a.baz < b.baz)
491       return true;
492     return a.bam < b.bam;
493   });
494
495 To take best advantage of this formatting, if you are designing an API which
496 accepts a continuation or single callable argument (be it a functor, or
497 a ``std::function``), it should be the last argument if at all possible.
498
499 If there are multiple multi-line lambdas in a statement, or there is anything
500 interesting after the lambda in the statement, indent the block two spaces from
501 the indent of the ``[]``:
502
503 .. code-block:: c++
504
505   dyn_switch(V->stripPointerCasts(),
506              [] (PHINode *PN) {
507                // process phis...
508              },
509              [] (SelectInst *SI) {
510                // process selects...
511              },
512              [] (LoadInst *LI) {
513                // process loads...
514              },
515              [] (AllocaInst *AI) {
516                // process allocas...
517              });
518
519 Braced Initializer Lists
520 """"""""""""""""""""""""
521
522 With C++11, there are significantly more uses of braced lists to perform
523 initialization. These allow you to easily construct aggregate temporaries in
524 expressions among other niceness. They now have a natural way of ending up
525 nested within each other and within function calls in order to build up
526 aggregates (such as option structs) from local variables. To make matters
527 worse, we also have many more uses of braces in an expression context that are
528 *not* performing initialization.
529
530 The historically common formatting of braced initialization of aggregate
531 variables does not mix cleanly with deep nesting, general expression contexts,
532 function arguments, and lambdas. We suggest new code use a simple rule for
533 formatting braced initialization lists: act as-if the braces were parentheses
534 in a function call. The formatting rules exactly match those already well
535 understood for formatting nested function calls. Examples:
536
537 .. code-block:: c++
538
539   foo({a, b, c}, {1, 2, 3});
540
541   llvm::Constant *Mask[] = {
542       llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 0),
543       llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 1),
544       llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 2)};
545
546 This formatting scheme also makes it particularly easy to get predictable,
547 consistent, and automatic formatting with tools like `Clang Format`_.
548
549 .. _Clang Format: http://clang.llvm.org/docs/ClangFormat.html
550
551 Language and Compiler Issues
552 ----------------------------
553
554 Treat Compiler Warnings Like Errors
555 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
556
557 If your code has compiler warnings in it, something is wrong --- you aren't
558 casting values correctly, you have "questionable" constructs in your code, or
559 you are doing something legitimately wrong.  Compiler warnings can cover up
560 legitimate errors in output and make dealing with a translation unit difficult.
561
562 It is not possible to prevent all warnings from all compilers, nor is it
563 desirable.  Instead, pick a standard compiler (like ``gcc``) that provides a
564 good thorough set of warnings, and stick to it.  At least in the case of
565 ``gcc``, it is possible to work around any spurious errors by changing the
566 syntax of the code slightly.  For example, a warning that annoys me occurs when
567 I write code like this:
568
569 .. code-block:: c++
570
571   if (V = getValue()) {
572     ...
573   }
574
575 ``gcc`` will warn me that I probably want to use the ``==`` operator, and that I
576 probably mistyped it.  In most cases, I haven't, and I really don't want the
577 spurious errors.  To fix this particular problem, I rewrite the code like
578 this:
579
580 .. code-block:: c++
581
582   if ((V = getValue())) {
583     ...
584   }
585
586 which shuts ``gcc`` up.  Any ``gcc`` warning that annoys you can be fixed by
587 massaging the code appropriately.
588
589 Write Portable Code
590 ^^^^^^^^^^^^^^^^^^^
591
592 In almost all cases, it is possible and within reason to write completely
593 portable code.  If there are cases where it isn't possible to write portable
594 code, isolate it behind a well defined (and well documented) interface.
595
596 In practice, this means that you shouldn't assume much about the host compiler
597 (and Visual Studio tends to be the lowest common denominator).  If advanced
598 features are used, they should only be an implementation detail of a library
599 which has a simple exposed API, and preferably be buried in ``libSystem``.
600
601 Do not use RTTI or Exceptions
602 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
603
604 In an effort to reduce code and executable size, LLVM does not use RTTI
605 (e.g. ``dynamic_cast<>;``) or exceptions.  These two language features violate
606 the general C++ principle of *"you only pay for what you use"*, causing
607 executable bloat even if exceptions are never used in the code base, or if RTTI
608 is never used for a class.  Because of this, we turn them off globally in the
609 code.
610
611 That said, LLVM does make extensive use of a hand-rolled form of RTTI that use
612 templates like :ref:`isa\<>, cast\<>, and dyn_cast\<> <isa>`.
613 This form of RTTI is opt-in and can be
614 :doc:`added to any class <HowToSetUpLLVMStyleRTTI>`. It is also
615 substantially more efficient than ``dynamic_cast<>``.
616
617 .. _static constructor:
618
619 Do not use Static Constructors
620 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
621
622 Static constructors and destructors (e.g. global variables whose types have a
623 constructor or destructor) should not be added to the code base, and should be
624 removed wherever possible.  Besides `well known problems
625 <http://yosefk.com/c++fqa/ctors.html#fqa-10.12>`_ where the order of
626 initialization is undefined between globals in different source files, the
627 entire concept of static constructors is at odds with the common use case of
628 LLVM as a library linked into a larger application.
629   
630 Consider the use of LLVM as a JIT linked into another application (perhaps for
631 `OpenGL, custom languages <http://llvm.org/Users.html>`_, `shaders in movies
632 <http://llvm.org/devmtg/2010-11/Gritz-OpenShadingLang.pdf>`_, etc). Due to the
633 design of static constructors, they must be executed at startup time of the
634 entire application, regardless of whether or how LLVM is used in that larger
635 application.  There are two problems with this:
636
637 * The time to run the static constructors impacts startup time of applications
638   --- a critical time for GUI apps, among others.
639   
640 * The static constructors cause the app to pull many extra pages of memory off
641   the disk: both the code for the constructor in each ``.o`` file and the small
642   amount of data that gets touched. In addition, touched/dirty pages put more
643   pressure on the VM system on low-memory machines.
644
645 We would really like for there to be zero cost for linking in an additional LLVM
646 target or other library into an application, but static constructors violate
647 this goal.
648   
649 That said, LLVM unfortunately does contain static constructors.  It would be a
650 `great project <http://llvm.org/PR11944>`_ for someone to purge all static
651 constructors from LLVM, and then enable the ``-Wglobal-constructors`` warning
652 flag (when building with Clang) to ensure we do not regress in the future.
653
654 Use of ``class`` and ``struct`` Keywords
655 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
656
657 In C++, the ``class`` and ``struct`` keywords can be used almost
658 interchangeably. The only difference is when they are used to declare a class:
659 ``class`` makes all members private by default while ``struct`` makes all
660 members public by default.
661
662 Unfortunately, not all compilers follow the rules and some will generate
663 different symbols based on whether ``class`` or ``struct`` was used to declare
664 the symbol (e.g., MSVC).  This can lead to problems at link time.
665
666 * All declarations and definitions of a given ``class`` or ``struct`` must use
667   the same keyword.  For example:
668
669 .. code-block:: c++
670
671   class Foo;
672
673   // Breaks mangling in MSVC.
674   struct Foo { int Data; };
675
676 * As a rule of thumb, ``struct`` should be kept to structures where *all*
677   members are declared public.
678
679 .. code-block:: c++
680
681   // Foo feels like a class... this is strange.
682   struct Foo {
683   private:
684     int Data;
685   public:
686     Foo() : Data(0) { }
687     int getData() const { return Data; }
688     void setData(int D) { Data = D; }
689   };
690
691   // Bar isn't POD, but it does look like a struct.
692   struct Bar {
693     int Data;
694     Foo() : Data(0) { }
695   };
696
697 Do not use Braced Initializer Lists to Call a Constructor
698 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
699
700 In C++11 there is a "generalized initialization syntax" which allows calling
701 constructors using braced initializer lists. Do not use these to call
702 constructors with any interesting logic or if you care that you're calling some
703 *particular* constructor. Those should look like function calls using
704 parentheses rather than like aggregate initialization. Similarly, if you need
705 to explicitly name the type and call its constructor to create a temporary,
706 don't use a braced initializer list. Instead, use a braced initializer list
707 (without any type for temporaries) when doing aggregate initialization or
708 something notionally equivalent. Examples:
709
710 .. code-block:: c++
711
712   class Foo {
713   public:
714     // Construct a Foo by reading data from the disk in the whizbang format, ...
715     Foo(std::string filename);
716
717     // Construct a Foo by looking up the Nth element of some global data ...
718     Foo(int N);
719
720     // ...
721   };
722
723   // The Foo constructor call is very deliberate, no braces.
724   std::fill(foo.begin(), foo.end(), Foo("name"));
725
726   // The pair is just being constructed like an aggregate, use braces.
727   bar_map.insert({my_key, my_value});
728
729 If you use a braced initializer list when initializing a variable, use an equals before the open curly brace:
730
731 .. code-block:: c++
732
733   int data[] = {0, 1, 2, 3};
734
735 Use ``auto`` Type Deduction to Make Code More Readable
736 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
737
738 Some are advocating a policy of "almost always ``auto``" in C++11, however LLVM
739 uses a more moderate stance. Use ``auto`` if and only if it makes the code more
740 readable or easier to maintain. Don't "almost always" use ``auto``, but do use
741 ``auto`` with initializers like ``cast<Foo>(...)`` or other places where the
742 type is already obvious from the context. Another time when ``auto`` works well
743 for these purposes is when the type would have been abstracted away anyways,
744 often behind a container's typedef such as ``std::vector<T>::iterator``.
745
746 Beware unnecessary copies with ``auto``
747 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
748
749 The convenience of ``auto`` makes it easy to forget that its default behavior
750 is a copy.  Particularly in range-based ``for`` loops, careless copies are
751 expensive.
752
753 As a rule of thumb, use ``auto &`` unless you need to copy the result, and use
754 ``auto *`` when copying pointers.
755
756 .. code-block:: c++
757
758   // Typically there's no reason to copy.
759   for (const auto &Val : Container) { observe(Val); }
760   for (auto &Val : Container) { Val.change(); }
761
762   // Remove the reference if you really want a new copy.
763   for (auto Val : Container) { Val.change(); saveSomewhere(Val); }
764
765   // Copy pointers, but make it clear that they're pointers.
766   for (const auto *Ptr : Container) { observe(*Ptr); }
767   for (auto *Ptr : Container) { Ptr->change(); }
768
769 Style Issues
770 ============
771
772 The High-Level Issues
773 ---------------------
774
775 A Public Header File **is** a Module
776 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
777
778 C++ doesn't do too well in the modularity department.  There is no real
779 encapsulation or data hiding (unless you use expensive protocol classes), but it
780 is what we have to work with.  When you write a public header file (in the LLVM
781 source tree, they live in the top level "``include``" directory), you are
782 defining a module of functionality.
783
784 Ideally, modules should be completely independent of each other, and their
785 header files should only ``#include`` the absolute minimum number of headers
786 possible. A module is not just a class, a function, or a namespace: it's a
787 collection of these that defines an interface.  This interface may be several
788 functions, classes, or data structures, but the important issue is how they work
789 together.
790
791 In general, a module should be implemented by one or more ``.cpp`` files.  Each
792 of these ``.cpp`` files should include the header that defines their interface
793 first.  This ensures that all of the dependences of the module header have been
794 properly added to the module header itself, and are not implicit.  System
795 headers should be included after user headers for a translation unit.
796
797 .. _minimal list of #includes:
798
799 ``#include`` as Little as Possible
800 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
801
802 ``#include`` hurts compile time performance.  Don't do it unless you have to,
803 especially in header files.
804
805 But wait! Sometimes you need to have the definition of a class to use it, or to
806 inherit from it.  In these cases go ahead and ``#include`` that header file.  Be
807 aware however that there are many cases where you don't need to have the full
808 definition of a class.  If you are using a pointer or reference to a class, you
809 don't need the header file.  If you are simply returning a class instance from a
810 prototyped function or method, you don't need it.  In fact, for most cases, you
811 simply don't need the definition of a class. And not ``#include``\ing speeds up
812 compilation.
813
814 It is easy to try to go too overboard on this recommendation, however.  You
815 **must** include all of the header files that you are using --- you can include
816 them either directly or indirectly through another header file.  To make sure
817 that you don't accidentally forget to include a header file in your module
818 header, make sure to include your module header **first** in the implementation
819 file (as mentioned above).  This way there won't be any hidden dependencies that
820 you'll find out about later.
821
822 Keep "Internal" Headers Private
823 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
824
825 Many modules have a complex implementation that causes them to use more than one
826 implementation (``.cpp``) file.  It is often tempting to put the internal
827 communication interface (helper classes, extra functions, etc) in the public
828 module header file.  Don't do this!
829
830 If you really need to do something like this, put a private header file in the
831 same directory as the source files, and include it locally.  This ensures that
832 your private interface remains private and undisturbed by outsiders.
833
834 .. note::
835
836     It's okay to put extra implementation methods in a public class itself. Just
837     make them private (or protected) and all is well.
838
839 .. _early exits:
840
841 Use Early Exits and ``continue`` to Simplify Code
842 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
843
844 When reading code, keep in mind how much state and how many previous decisions
845 have to be remembered by the reader to understand a block of code.  Aim to
846 reduce indentation where possible when it doesn't make it more difficult to
847 understand the code.  One great way to do this is by making use of early exits
848 and the ``continue`` keyword in long loops.  As an example of using an early
849 exit from a function, consider this "bad" code:
850
851 .. code-block:: c++
852
853   Value *doSomething(Instruction *I) {
854     if (!isa<TerminatorInst>(I) &&
855         I->hasOneUse() && doOtherThing(I)) {
856       ... some long code ....
857     }
858
859     return 0;
860   }
861
862 This code has several problems if the body of the ``'if'`` is large.  When
863 you're looking at the top of the function, it isn't immediately clear that this
864 *only* does interesting things with non-terminator instructions, and only
865 applies to things with the other predicates.  Second, it is relatively difficult
866 to describe (in comments) why these predicates are important because the ``if``
867 statement makes it difficult to lay out the comments.  Third, when you're deep
868 within the body of the code, it is indented an extra level.  Finally, when
869 reading the top of the function, it isn't clear what the result is if the
870 predicate isn't true; you have to read to the end of the function to know that
871 it returns null.
872
873 It is much preferred to format the code like this:
874
875 .. code-block:: c++
876
877   Value *doSomething(Instruction *I) {
878     // Terminators never need 'something' done to them because ... 
879     if (isa<TerminatorInst>(I))
880       return 0;
881
882     // We conservatively avoid transforming instructions with multiple uses
883     // because goats like cheese.
884     if (!I->hasOneUse())
885       return 0;
886
887     // This is really just here for example.
888     if (!doOtherThing(I))
889       return 0;
890     
891     ... some long code ....
892   }
893
894 This fixes these problems.  A similar problem frequently happens in ``for``
895 loops.  A silly example is something like this:
896
897 .. code-block:: c++
898
899   for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) {
900     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(II)) {
901       Value *LHS = BO->getOperand(0);
902       Value *RHS = BO->getOperand(1);
903       if (LHS != RHS) {
904         ...
905       }
906     }
907   }
908
909 When you have very, very small loops, this sort of structure is fine. But if it
910 exceeds more than 10-15 lines, it becomes difficult for people to read and
911 understand at a glance. The problem with this sort of code is that it gets very
912 nested very quickly. Meaning that the reader of the code has to keep a lot of
913 context in their brain to remember what is going immediately on in the loop,
914 because they don't know if/when the ``if`` conditions will have ``else``\s etc.
915 It is strongly preferred to structure the loop like this:
916
917 .. code-block:: c++
918
919   for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) {
920     BinaryOperator *BO = dyn_cast<BinaryOperator>(II);
921     if (!BO) continue;
922
923     Value *LHS = BO->getOperand(0);
924     Value *RHS = BO->getOperand(1);
925     if (LHS == RHS) continue;
926
927     ...
928   }
929
930 This has all the benefits of using early exits for functions: it reduces nesting
931 of the loop, it makes it easier to describe why the conditions are true, and it
932 makes it obvious to the reader that there is no ``else`` coming up that they
933 have to push context into their brain for.  If a loop is large, this can be a
934 big understandability win.
935
936 Don't use ``else`` after a ``return``
937 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
938
939 For similar reasons above (reduction of indentation and easier reading), please
940 do not use ``'else'`` or ``'else if'`` after something that interrupts control
941 flow --- like ``return``, ``break``, ``continue``, ``goto``, etc. For
942 example, this is *bad*:
943
944 .. code-block:: c++
945
946   case 'J': {
947     if (Signed) {
948       Type = Context.getsigjmp_bufType();
949       if (Type.isNull()) {
950         Error = ASTContext::GE_Missing_sigjmp_buf;
951         return QualType();
952       } else {
953         break;
954       }
955     } else {
956       Type = Context.getjmp_bufType();
957       if (Type.isNull()) {
958         Error = ASTContext::GE_Missing_jmp_buf;
959         return QualType();
960       } else {
961         break;
962       }
963     }
964   }
965
966 It is better to write it like this:
967
968 .. code-block:: c++
969
970   case 'J':
971     if (Signed) {
972       Type = Context.getsigjmp_bufType();
973       if (Type.isNull()) {
974         Error = ASTContext::GE_Missing_sigjmp_buf;
975         return QualType();
976       }
977     } else {
978       Type = Context.getjmp_bufType();
979       if (Type.isNull()) {
980         Error = ASTContext::GE_Missing_jmp_buf;
981         return QualType();
982       }
983     }
984     break;
985
986 Or better yet (in this case) as:
987
988 .. code-block:: c++
989
990   case 'J':
991     if (Signed)
992       Type = Context.getsigjmp_bufType();
993     else
994       Type = Context.getjmp_bufType();
995     
996     if (Type.isNull()) {
997       Error = Signed ? ASTContext::GE_Missing_sigjmp_buf :
998                        ASTContext::GE_Missing_jmp_buf;
999       return QualType();
1000     }
1001     break;
1002
1003 The idea is to reduce indentation and the amount of code you have to keep track
1004 of when reading the code.
1005               
1006 Turn Predicate Loops into Predicate Functions
1007 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1008
1009 It is very common to write small loops that just compute a boolean value.  There
1010 are a number of ways that people commonly write these, but an example of this
1011 sort of thing is:
1012
1013 .. code-block:: c++
1014
1015   bool FoundFoo = false;
1016   for (unsigned I = 0, E = BarList.size(); I != E; ++I)
1017     if (BarList[I]->isFoo()) {
1018       FoundFoo = true;
1019       break;
1020     }
1021
1022   if (FoundFoo) {
1023     ...
1024   }
1025
1026 This sort of code is awkward to write, and is almost always a bad sign.  Instead
1027 of this sort of loop, we strongly prefer to use a predicate function (which may
1028 be `static`_) that uses `early exits`_ to compute the predicate.  We prefer the
1029 code to be structured like this:
1030
1031 .. code-block:: c++
1032
1033   /// \returns true if the specified list has an element that is a foo.
1034   static bool containsFoo(const std::vector<Bar*> &List) {
1035     for (unsigned I = 0, E = List.size(); I != E; ++I)
1036       if (List[I]->isFoo())
1037         return true;
1038     return false;
1039   }
1040   ...
1041
1042   if (containsFoo(BarList)) {
1043     ...
1044   }
1045
1046 There are many reasons for doing this: it reduces indentation and factors out
1047 code which can often be shared by other code that checks for the same predicate.
1048 More importantly, it *forces you to pick a name* for the function, and forces
1049 you to write a comment for it.  In this silly example, this doesn't add much
1050 value.  However, if the condition is complex, this can make it a lot easier for
1051 the reader to understand the code that queries for this predicate.  Instead of
1052 being faced with the in-line details of how we check to see if the BarList
1053 contains a foo, we can trust the function name and continue reading with better
1054 locality.
1055
1056 The Low-Level Issues
1057 --------------------
1058
1059 Name Types, Functions, Variables, and Enumerators Properly
1060 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1061
1062 Poorly-chosen names can mislead the reader and cause bugs. We cannot stress
1063 enough how important it is to use *descriptive* names.  Pick names that match
1064 the semantics and role of the underlying entities, within reason.  Avoid
1065 abbreviations unless they are well known.  After picking a good name, make sure
1066 to use consistent capitalization for the name, as inconsistency requires clients
1067 to either memorize the APIs or to look it up to find the exact spelling.
1068
1069 In general, names should be in camel case (e.g. ``TextFileReader`` and
1070 ``isLValue()``).  Different kinds of declarations have different rules:
1071
1072 * **Type names** (including classes, structs, enums, typedefs, etc) should be
1073   nouns and start with an upper-case letter (e.g. ``TextFileReader``).
1074
1075 * **Variable names** should be nouns (as they represent state).  The name should
1076   be camel case, and start with an upper case letter (e.g. ``Leader`` or
1077   ``Boats``).
1078   
1079 * **Function names** should be verb phrases (as they represent actions), and
1080   command-like function should be imperative.  The name should be camel case,
1081   and start with a lower case letter (e.g. ``openFile()`` or ``isFoo()``).
1082
1083 * **Enum declarations** (e.g. ``enum Foo {...}``) are types, so they should
1084   follow the naming conventions for types.  A common use for enums is as a
1085   discriminator for a union, or an indicator of a subclass.  When an enum is
1086   used for something like this, it should have a ``Kind`` suffix
1087   (e.g. ``ValueKind``).
1088   
1089 * **Enumerators** (e.g. ``enum { Foo, Bar }``) and **public member variables**
1090   should start with an upper-case letter, just like types.  Unless the
1091   enumerators are defined in their own small namespace or inside a class,
1092   enumerators should have a prefix corresponding to the enum declaration name.
1093   For example, ``enum ValueKind { ... };`` may contain enumerators like
1094   ``VK_Argument``, ``VK_BasicBlock``, etc.  Enumerators that are just
1095   convenience constants are exempt from the requirement for a prefix.  For
1096   instance:
1097
1098   .. code-block:: c++
1099
1100       enum {
1101         MaxSize = 42,
1102         Density = 12
1103       };
1104   
1105 As an exception, classes that mimic STL classes can have member names in STL's
1106 style of lower-case words separated by underscores (e.g. ``begin()``,
1107 ``push_back()``, and ``empty()``). Classes that provide multiple
1108 iterators should add a singular prefix to ``begin()`` and ``end()``
1109 (e.g. ``global_begin()`` and ``use_begin()``).
1110
1111 Here are some examples of good and bad names:
1112
1113 .. code-block:: c++
1114
1115   class VehicleMaker {
1116     ...
1117     Factory<Tire> F;            // Bad -- abbreviation and non-descriptive.
1118     Factory<Tire> Factory;      // Better.
1119     Factory<Tire> TireFactory;  // Even better -- if VehicleMaker has more than one
1120                                 // kind of factories.
1121   };
1122
1123   Vehicle MakeVehicle(VehicleType Type) {
1124     VehicleMaker M;                         // Might be OK if having a short life-span.
1125     Tire Tmp1 = M.makeTire();               // Bad -- 'Tmp1' provides no information.
1126     Light Headlight = M.makeLight("head");  // Good -- descriptive.
1127     ...
1128   }
1129
1130 Assert Liberally
1131 ^^^^^^^^^^^^^^^^
1132
1133 Use the "``assert``" macro to its fullest.  Check all of your preconditions and
1134 assumptions, you never know when a bug (not necessarily even yours) might be
1135 caught early by an assertion, which reduces debugging time dramatically.  The
1136 "``<cassert>``" header file is probably already included by the header files you
1137 are using, so it doesn't cost anything to use it.
1138
1139 To further assist with debugging, make sure to put some kind of error message in
1140 the assertion statement, which is printed if the assertion is tripped. This
1141 helps the poor debugger make sense of why an assertion is being made and
1142 enforced, and hopefully what to do about it.  Here is one complete example:
1143
1144 .. code-block:: c++
1145
1146   inline Value *getOperand(unsigned I) {
1147     assert(I < Operands.size() && "getOperand() out of range!");
1148     return Operands[I];
1149   }
1150
1151 Here are more examples:
1152
1153 .. code-block:: c++
1154
1155   assert(Ty->isPointerType() && "Can't allocate a non-pointer type!");
1156
1157   assert((Opcode == Shl || Opcode == Shr) && "ShiftInst Opcode invalid!");
1158
1159   assert(idx < getNumSuccessors() && "Successor # out of range!");
1160
1161   assert(V1.getType() == V2.getType() && "Constant types must be identical!");
1162
1163   assert(isa<PHINode>(Succ->front()) && "Only works on PHId BBs!");
1164
1165 You get the idea.
1166
1167 In the past, asserts were used to indicate a piece of code that should not be
1168 reached.  These were typically of the form:
1169
1170 .. code-block:: c++
1171
1172   assert(0 && "Invalid radix for integer literal");
1173
1174 This has a few issues, the main one being that some compilers might not
1175 understand the assertion, or warn about a missing return in builds where
1176 assertions are compiled out.
1177
1178 Today, we have something much better: ``llvm_unreachable``:
1179
1180 .. code-block:: c++
1181
1182   llvm_unreachable("Invalid radix for integer literal");
1183
1184 When assertions are enabled, this will print the message if it's ever reached
1185 and then exit the program. When assertions are disabled (i.e. in release
1186 builds), ``llvm_unreachable`` becomes a hint to compilers to skip generating
1187 code for this branch. If the compiler does not support this, it will fall back
1188 to the "abort" implementation.
1189
1190 Another issue is that values used only by assertions will produce an "unused
1191 value" warning when assertions are disabled.  For example, this code will warn:
1192
1193 .. code-block:: c++
1194
1195   unsigned Size = V.size();
1196   assert(Size > 42 && "Vector smaller than it should be");
1197
1198   bool NewToSet = Myset.insert(Value);
1199   assert(NewToSet && "The value shouldn't be in the set yet");
1200
1201 These are two interesting different cases. In the first case, the call to
1202 ``V.size()`` is only useful for the assert, and we don't want it executed when
1203 assertions are disabled.  Code like this should move the call into the assert
1204 itself.  In the second case, the side effects of the call must happen whether
1205 the assert is enabled or not.  In this case, the value should be cast to void to
1206 disable the warning.  To be specific, it is preferred to write the code like
1207 this:
1208
1209 .. code-block:: c++
1210
1211   assert(V.size() > 42 && "Vector smaller than it should be");
1212
1213   bool NewToSet = Myset.insert(Value); (void)NewToSet;
1214   assert(NewToSet && "The value shouldn't be in the set yet");
1215
1216 Do Not Use ``using namespace std``
1217 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1218
1219 In LLVM, we prefer to explicitly prefix all identifiers from the standard
1220 namespace with an "``std::``" prefix, rather than rely on "``using namespace
1221 std;``".
1222
1223 In header files, adding a ``'using namespace XXX'`` directive pollutes the
1224 namespace of any source file that ``#include``\s the header.  This is clearly a
1225 bad thing.
1226
1227 In implementation files (e.g. ``.cpp`` files), the rule is more of a stylistic
1228 rule, but is still important.  Basically, using explicit namespace prefixes
1229 makes the code **clearer**, because it is immediately obvious what facilities
1230 are being used and where they are coming from. And **more portable**, because
1231 namespace clashes cannot occur between LLVM code and other namespaces.  The
1232 portability rule is important because different standard library implementations
1233 expose different symbols (potentially ones they shouldn't), and future revisions
1234 to the C++ standard will add more symbols to the ``std`` namespace.  As such, we
1235 never use ``'using namespace std;'`` in LLVM.
1236
1237 The exception to the general rule (i.e. it's not an exception for the ``std``
1238 namespace) is for implementation files.  For example, all of the code in the
1239 LLVM project implements code that lives in the 'llvm' namespace.  As such, it is
1240 ok, and actually clearer, for the ``.cpp`` files to have a ``'using namespace
1241 llvm;'`` directive at the top, after the ``#include``\s.  This reduces
1242 indentation in the body of the file for source editors that indent based on
1243 braces, and keeps the conceptual context cleaner.  The general form of this rule
1244 is that any ``.cpp`` file that implements code in any namespace may use that
1245 namespace (and its parents'), but should not use any others.
1246
1247 Provide a Virtual Method Anchor for Classes in Headers
1248 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1249
1250 If a class is defined in a header file and has a vtable (either it has virtual
1251 methods or it derives from classes with virtual methods), it must always have at
1252 least one out-of-line virtual method in the class.  Without this, the compiler
1253 will copy the vtable and RTTI into every ``.o`` file that ``#include``\s the
1254 header, bloating ``.o`` file sizes and increasing link times.
1255
1256 Don't use default labels in fully covered switches over enumerations
1257 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1258
1259 ``-Wswitch`` warns if a switch, without a default label, over an enumeration
1260 does not cover every enumeration value. If you write a default label on a fully
1261 covered switch over an enumeration then the ``-Wswitch`` warning won't fire
1262 when new elements are added to that enumeration. To help avoid adding these
1263 kinds of defaults, Clang has the warning ``-Wcovered-switch-default`` which is
1264 off by default but turned on when building LLVM with a version of Clang that
1265 supports the warning.
1266
1267 A knock-on effect of this stylistic requirement is that when building LLVM with
1268 GCC you may get warnings related to "control may reach end of non-void function"
1269 if you return from each case of a covered switch-over-enum because GCC assumes
1270 that the enum expression may take any representable value, not just those of
1271 individual enumerators. To suppress this warning, use ``llvm_unreachable`` after
1272 the switch.
1273
1274 Use ``LLVM_DELETED_FUNCTION`` to mark uncallable methods
1275 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1276
1277 Prior to C++11, a common pattern to make a class uncopyable was to declare an
1278 unimplemented copy constructor and copy assignment operator and make them
1279 private. This would give a compiler error for accessing a private method or a
1280 linker error because it wasn't implemented.
1281
1282 With C++11, we can mark methods that won't be implemented with ``= delete``.
1283 This will trigger a much better error message and tell the compiler that the
1284 method will never be implemented. This enables other checks like
1285 ``-Wunused-private-field`` to run correctly on classes that contain these
1286 methods.
1287
1288 For compatibility with MSVC, ``LLVM_DELETED_FUNCTION`` should be used which
1289 will expand to ``= delete`` on compilers that support it. These methods should
1290 still be declared private. Example of the uncopyable pattern:
1291
1292 .. code-block:: c++
1293
1294   class DontCopy {
1295   private:
1296     DontCopy(const DontCopy&) LLVM_DELETED_FUNCTION;
1297     DontCopy &operator =(const DontCopy&) LLVM_DELETED_FUNCTION;
1298   public:
1299     ...
1300   };
1301
1302 Don't evaluate ``end()`` every time through a loop
1303 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1304
1305 Because C++ doesn't have a standard "``foreach``" loop (though it can be
1306 emulated with macros and may be coming in C++'0x) we end up writing a lot of
1307 loops that manually iterate from begin to end on a variety of containers or
1308 through other data structures.  One common mistake is to write a loop in this
1309 style:
1310
1311 .. code-block:: c++
1312
1313   BasicBlock *BB = ...
1314   for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I)
1315     ... use I ...
1316
1317 The problem with this construct is that it evaluates "``BB->end()``" every time
1318 through the loop.  Instead of writing the loop like this, we strongly prefer
1319 loops to be written so that they evaluate it once before the loop starts.  A
1320 convenient way to do this is like so:
1321
1322 .. code-block:: c++
1323
1324   BasicBlock *BB = ...
1325   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
1326     ... use I ...
1327
1328 The observant may quickly point out that these two loops may have different
1329 semantics: if the container (a basic block in this case) is being mutated, then
1330 "``BB->end()``" may change its value every time through the loop and the second
1331 loop may not in fact be correct.  If you actually do depend on this behavior,
1332 please write the loop in the first form and add a comment indicating that you
1333 did it intentionally.
1334
1335 Why do we prefer the second form (when correct)?  Writing the loop in the first
1336 form has two problems. First it may be less efficient than evaluating it at the
1337 start of the loop.  In this case, the cost is probably minor --- a few extra
1338 loads every time through the loop.  However, if the base expression is more
1339 complex, then the cost can rise quickly.  I've seen loops where the end
1340 expression was actually something like: "``SomeMap[X]->end()``" and map lookups
1341 really aren't cheap.  By writing it in the second form consistently, you
1342 eliminate the issue entirely and don't even have to think about it.
1343
1344 The second (even bigger) issue is that writing the loop in the first form hints
1345 to the reader that the loop is mutating the container (a fact that a comment
1346 would handily confirm!).  If you write the loop in the second form, it is
1347 immediately obvious without even looking at the body of the loop that the
1348 container isn't being modified, which makes it easier to read the code and
1349 understand what it does.
1350
1351 While the second form of the loop is a few extra keystrokes, we do strongly
1352 prefer it.
1353
1354 ``#include <iostream>`` is Forbidden
1355 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1356
1357 The use of ``#include <iostream>`` in library files is hereby **forbidden**,
1358 because many common implementations transparently inject a `static constructor`_
1359 into every translation unit that includes it.
1360   
1361 Note that using the other stream headers (``<sstream>`` for example) is not
1362 problematic in this regard --- just ``<iostream>``. However, ``raw_ostream``
1363 provides various APIs that are better performing for almost every use than
1364 ``std::ostream`` style APIs.
1365
1366 .. note::
1367
1368   New code should always use `raw_ostream`_ for writing, or the
1369   ``llvm::MemoryBuffer`` API for reading files.
1370
1371 .. _raw_ostream:
1372
1373 Use ``raw_ostream``
1374 ^^^^^^^^^^^^^^^^^^^
1375
1376 LLVM includes a lightweight, simple, and efficient stream implementation in
1377 ``llvm/Support/raw_ostream.h``, which provides all of the common features of
1378 ``std::ostream``.  All new code should use ``raw_ostream`` instead of
1379 ``ostream``.
1380
1381 Unlike ``std::ostream``, ``raw_ostream`` is not a template and can be forward
1382 declared as ``class raw_ostream``.  Public headers should generally not include
1383 the ``raw_ostream`` header, but use forward declarations and constant references
1384 to ``raw_ostream`` instances.
1385
1386 Avoid ``std::endl``
1387 ^^^^^^^^^^^^^^^^^^^
1388
1389 The ``std::endl`` modifier, when used with ``iostreams`` outputs a newline to
1390 the output stream specified.  In addition to doing this, however, it also
1391 flushes the output stream.  In other words, these are equivalent:
1392
1393 .. code-block:: c++
1394
1395   std::cout << std::endl;
1396   std::cout << '\n' << std::flush;
1397
1398 Most of the time, you probably have no reason to flush the output stream, so
1399 it's better to use a literal ``'\n'``.
1400
1401 Don't use ``inline`` when defining a function in a class definition
1402 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1403
1404 A member function defined in a class definition is implicitly inline, so don't
1405 put the ``inline`` keyword in this case.
1406
1407 Don't:
1408
1409 .. code-block:: c++
1410
1411   class Foo {
1412   public:
1413     inline void bar() {
1414       // ...
1415     }
1416   };
1417
1418 Do:
1419
1420 .. code-block:: c++
1421
1422   class Foo {
1423   public:
1424     void bar() {
1425       // ...
1426     }
1427   };
1428
1429 Microscopic Details
1430 -------------------
1431
1432 This section describes preferred low-level formatting guidelines along with
1433 reasoning on why we prefer them.
1434
1435 Spaces Before Parentheses
1436 ^^^^^^^^^^^^^^^^^^^^^^^^^
1437
1438 We prefer to put a space before an open parenthesis only in control flow
1439 statements, but not in normal function call expressions and function-like
1440 macros.  For example, this is good:
1441
1442 .. code-block:: c++
1443
1444   if (X) ...
1445   for (I = 0; I != 100; ++I) ...
1446   while (LLVMRocks) ...
1447
1448   somefunc(42);
1449   assert(3 != 4 && "laws of math are failing me");
1450   
1451   A = foo(42, 92) + bar(X);
1452
1453 and this is bad:
1454
1455 .. code-block:: c++
1456
1457   if(X) ...
1458   for(I = 0; I != 100; ++I) ...
1459   while(LLVMRocks) ...
1460
1461   somefunc (42);
1462   assert (3 != 4 && "laws of math are failing me");
1463   
1464   A = foo (42, 92) + bar (X);
1465
1466 The reason for doing this is not completely arbitrary.  This style makes control
1467 flow operators stand out more, and makes expressions flow better. The function
1468 call operator binds very tightly as a postfix operator.  Putting a space after a
1469 function name (as in the last example) makes it appear that the code might bind
1470 the arguments of the left-hand-side of a binary operator with the argument list
1471 of a function and the name of the right side.  More specifically, it is easy to
1472 misread the "``A``" example as:
1473
1474 .. code-block:: c++
1475
1476   A = foo ((42, 92) + bar) (X);
1477
1478 when skimming through the code.  By avoiding a space in a function, we avoid
1479 this misinterpretation.
1480
1481 Prefer Preincrement
1482 ^^^^^^^^^^^^^^^^^^^
1483
1484 Hard fast rule: Preincrement (``++X``) may be no slower than postincrement
1485 (``X++``) and could very well be a lot faster than it.  Use preincrementation
1486 whenever possible.
1487
1488 The semantics of postincrement include making a copy of the value being
1489 incremented, returning it, and then preincrementing the "work value".  For
1490 primitive types, this isn't a big deal. But for iterators, it can be a huge
1491 issue (for example, some iterators contains stack and set objects in them...
1492 copying an iterator could invoke the copy ctor's of these as well).  In general,
1493 get in the habit of always using preincrement, and you won't have a problem.
1494
1495
1496 Namespace Indentation
1497 ^^^^^^^^^^^^^^^^^^^^^
1498
1499 In general, we strive to reduce indentation wherever possible.  This is useful
1500 because we want code to `fit into 80 columns`_ without wrapping horribly, but
1501 also because it makes it easier to understand the code. To facilitate this and
1502 avoid some insanely deep nesting on occasion, don't indent namespaces. If it
1503 helps readability, feel free to add a comment indicating what namespace is
1504 being closed by a ``}``.  For example:
1505
1506 .. code-block:: c++
1507
1508   namespace llvm {
1509   namespace knowledge {
1510
1511   /// This class represents things that Smith can have an intimate
1512   /// understanding of and contains the data associated with it.
1513   class Grokable {
1514   ...
1515   public:
1516     explicit Grokable() { ... }
1517     virtual ~Grokable() = 0;
1518   
1519     ...
1520
1521   };
1522
1523   } // end namespace knowledge
1524   } // end namespace llvm
1525
1526
1527 Feel free to skip the closing comment when the namespace being closed is
1528 obvious for any reason. For example, the outer-most namespace in a header file
1529 is rarely a source of confusion. But namespaces both anonymous and named in
1530 source files that are being closed half way through the file probably could use
1531 clarification.
1532
1533 .. _static:
1534
1535 Anonymous Namespaces
1536 ^^^^^^^^^^^^^^^^^^^^
1537
1538 After talking about namespaces in general, you may be wondering about anonymous
1539 namespaces in particular.  Anonymous namespaces are a great language feature
1540 that tells the C++ compiler that the contents of the namespace are only visible
1541 within the current translation unit, allowing more aggressive optimization and
1542 eliminating the possibility of symbol name collisions.  Anonymous namespaces are
1543 to C++ as "static" is to C functions and global variables.  While "``static``"
1544 is available in C++, anonymous namespaces are more general: they can make entire
1545 classes private to a file.
1546
1547 The problem with anonymous namespaces is that they naturally want to encourage
1548 indentation of their body, and they reduce locality of reference: if you see a
1549 random function definition in a C++ file, it is easy to see if it is marked
1550 static, but seeing if it is in an anonymous namespace requires scanning a big
1551 chunk of the file.
1552
1553 Because of this, we have a simple guideline: make anonymous namespaces as small
1554 as possible, and only use them for class declarations.  For example, this is
1555 good:
1556
1557 .. code-block:: c++
1558
1559   namespace {
1560   class StringSort {
1561   ...
1562   public:
1563     StringSort(...)
1564     bool operator<(const char *RHS) const;
1565   };
1566   } // end anonymous namespace
1567
1568   static void runHelper() { 
1569     ... 
1570   }
1571
1572   bool StringSort::operator<(const char *RHS) const {
1573     ...
1574   }
1575
1576 This is bad:
1577
1578 .. code-block:: c++
1579
1580   namespace {
1581
1582   class StringSort {
1583   ...
1584   public:
1585     StringSort(...)
1586     bool operator<(const char *RHS) const;
1587   };
1588
1589   void runHelper() { 
1590     ... 
1591   }
1592
1593   bool StringSort::operator<(const char *RHS) const {
1594     ...
1595   }
1596
1597   } // end anonymous namespace
1598
1599 This is bad specifically because if you're looking at "``runHelper``" in the middle
1600 of a large C++ file, that you have no immediate way to tell if it is local to
1601 the file.  When it is marked static explicitly, this is immediately obvious.
1602 Also, there is no reason to enclose the definition of "``operator<``" in the
1603 namespace just because it was declared there.
1604
1605 See Also
1606 ========
1607
1608 A lot of these comments and recommendations have been culled from other sources.
1609 Two particularly important books for our work are:
1610
1611 #. `Effective C++
1612    <http://www.amazon.com/Effective-Specific-Addison-Wesley-Professional-Computing/dp/0321334876>`_
1613    by Scott Meyers.  Also interesting and useful are "More Effective C++" and
1614    "Effective STL" by the same author.
1615
1616 #. `Large-Scale C++ Software Design
1617    <http://www.amazon.com/Large-Scale-Software-Design-John-Lakos/dp/0201633620/ref=sr_1_1>`_
1618    by John Lakos
1619
1620 If you get some free time, and you haven't read them: do so, you might learn
1621 something.