5f17c6154f3c6cc8c3b2aea91320606803986f7e
[oota-llvm.git] / docs / Atomics.rst
1 ==============================================
2 LLVM Atomic Instructions and Concurrency Guide
3 ==============================================
4
5 .. contents::
6    :local:
7
8 Introduction
9 ============
10
11 Historically, LLVM has not had very strong support for concurrency; some minimal
12 intrinsics were provided, and ``volatile`` was used in some cases to achieve
13 rough semantics in the presence of concurrency.  However, this is changing;
14 there are now new instructions which are well-defined in the presence of threads
15 and asynchronous signals, and the model for existing instructions has been
16 clarified in the IR.
17
18 The atomic instructions are designed specifically to provide readable IR and
19 optimized code generation for the following:
20
21 * The new C++0x ``<atomic>`` header.  (`C++0x draft available here
22   <http://www.open-std.org/jtc1/sc22/wg21/>`_.) (`C1x draft available here
23   <http://www.open-std.org/jtc1/sc22/wg14/>`_.)
24
25 * Proper semantics for Java-style memory, for both ``volatile`` and regular
26   shared variables. (`Java Specification
27   <http://java.sun.com/docs/books/jls/third_edition/html/memory.html>`_)
28
29 * gcc-compatible ``__sync_*`` builtins. (`Description
30   <http://gcc.gnu.org/onlinedocs/gcc/Atomic-Builtins.html>`_)
31
32 * Other scenarios with atomic semantics, including ``static`` variables with
33   non-trivial constructors in C++.
34
35 Atomic and volatile in the IR are orthogonal; "volatile" is the C/C++ volatile,
36 which ensures that every volatile load and store happens and is performed in the
37 stated order.  A couple examples: if a SequentiallyConsistent store is
38 immediately followed by another SequentiallyConsistent store to the same
39 address, the first store can be erased. This transformation is not allowed for a
40 pair of volatile stores. On the other hand, a non-volatile non-atomic load can
41 be moved across a volatile load freely, but not an Acquire load.
42
43 This document is intended to provide a guide to anyone either writing a frontend
44 for LLVM or working on optimization passes for LLVM with a guide for how to deal
45 with instructions with special semantics in the presence of concurrency.  This
46 is not intended to be a precise guide to the semantics; the details can get
47 extremely complicated and unreadable, and are not usually necessary.
48
49 .. _Optimization outside atomic:
50
51 Optimization outside atomic
52 ===========================
53
54 The basic ``'load'`` and ``'store'`` allow a variety of optimizations, but can
55 lead to undefined results in a concurrent environment; see `NotAtomic`_. This
56 section specifically goes into the one optimizer restriction which applies in
57 concurrent environments, which gets a bit more of an extended description
58 because any optimization dealing with stores needs to be aware of it.
59
60 From the optimizer's point of view, the rule is that if there are not any
61 instructions with atomic ordering involved, concurrency does not matter, with
62 one exception: if a variable might be visible to another thread or signal
63 handler, a store cannot be inserted along a path where it might not execute
64 otherwise.  Take the following example:
65
66 .. code-block:: c
67
68  /* C code, for readability; run through clang -O2 -S -emit-llvm to get
69      equivalent IR */
70   int x;
71   void f(int* a) {
72     for (int i = 0; i < 100; i++) {
73       if (a[i])
74         x += 1;
75     }
76   }
77
78 The following is equivalent in non-concurrent situations:
79
80 .. code-block:: c
81
82   int x;
83   void f(int* a) {
84     int xtemp = x;
85     for (int i = 0; i < 100; i++) {
86       if (a[i])
87         xtemp += 1;
88     }
89     x = xtemp;
90   }
91
92 However, LLVM is not allowed to transform the former to the latter: it could
93 indirectly introduce undefined behavior if another thread can access ``x`` at
94 the same time. (This example is particularly of interest because before the
95 concurrency model was implemented, LLVM would perform this transformation.)
96
97 Note that speculative loads are allowed; a load which is part of a race returns
98 ``undef``, but does not have undefined behavior.
99
100 Atomic instructions
101 ===================
102
103 For cases where simple loads and stores are not sufficient, LLVM provides
104 various atomic instructions. The exact guarantees provided depend on the
105 ordering; see `Atomic orderings`_.
106
107 ``load atomic`` and ``store atomic`` provide the same basic functionality as
108 non-atomic loads and stores, but provide additional guarantees in situations
109 where threads and signals are involved.
110
111 ``cmpxchg`` and ``atomicrmw`` are essentially like an atomic load followed by an
112 atomic store (where the store is conditional for ``cmpxchg``), but no other
113 memory operation can happen on any thread between the load and store.
114
115 A ``fence`` provides Acquire and/or Release ordering which is not part of
116 another operation; it is normally used along with Monotonic memory operations.
117 A Monotonic load followed by an Acquire fence is roughly equivalent to an
118 Acquire load.
119
120 Frontends generating atomic instructions generally need to be aware of the
121 target to some degree; atomic instructions are guaranteed to be lock-free, and
122 therefore an instruction which is wider than the target natively supports can be
123 impossible to generate.
124
125 .. _Atomic orderings:
126
127 Atomic orderings
128 ================
129
130 In order to achieve a balance between performance and necessary guarantees,
131 there are six levels of atomicity. They are listed in order of strength; each
132 level includes all the guarantees of the previous level except for
133 Acquire/Release. (See also `LangRef Ordering <LangRef.html#ordering>`_.)
134
135 .. _NotAtomic:
136
137 NotAtomic
138 ---------
139
140 NotAtomic is the obvious, a load or store which is not atomic. (This isn't
141 really a level of atomicity, but is listed here for comparison.) This is
142 essentially a regular load or store. If there is a race on a given memory
143 location, loads from that location return undef.
144
145 Relevant standard
146   This is intended to match shared variables in C/C++, and to be used in any
147   other context where memory access is necessary, and a race is impossible. (The
148   precise definition is in `LangRef Memory Model <LangRef.html#memmodel>`_.)
149
150 Notes for frontends
151   The rule is essentially that all memory accessed with basic loads and stores
152   by multiple threads should be protected by a lock or other synchronization;
153   otherwise, you are likely to run into undefined behavior. If your frontend is
154   for a "safe" language like Java, use Unordered to load and store any shared
155   variable.  Note that NotAtomic volatile loads and stores are not properly
156   atomic; do not try to use them as a substitute. (Per the C/C++ standards,
157   volatile does provide some limited guarantees around asynchronous signals, but
158   atomics are generally a better solution.)
159
160 Notes for optimizers
161   Introducing loads to shared variables along a codepath where they would not
162   otherwise exist is allowed; introducing stores to shared variables is not. See
163   `Optimization outside atomic`_.
164
165 Notes for code generation
166   The one interesting restriction here is that it is not allowed to write to
167   bytes outside of the bytes relevant to a store.  This is mostly relevant to
168   unaligned stores: it is not allowed in general to convert an unaligned store
169   into two aligned stores of the same width as the unaligned store. Backends are
170   also expected to generate an i8 store as an i8 store, and not an instruction
171   which writes to surrounding bytes.  (If you are writing a backend for an
172   architecture which cannot satisfy these restrictions and cares about
173   concurrency, please send an email to llvmdev.)
174
175 Unordered
176 ---------
177
178 Unordered is the lowest level of atomicity. It essentially guarantees that races
179 produce somewhat sane results instead of having undefined behavior.  It also
180 guarantees the operation to be lock-free, so it do not depend on the data being
181 part of a special atomic structure or depend on a separate per-process global
182 lock.  Note that code generation will fail for unsupported atomic operations; if
183 you need such an operation, use explicit locking.
184
185 Relevant standard
186   This is intended to match the Java memory model for shared variables.
187
188 Notes for frontends
189   This cannot be used for synchronization, but is useful for Java and other
190   "safe" languages which need to guarantee that the generated code never
191   exhibits undefined behavior. Note that this guarantee is cheap on common
192   platforms for loads of a native width, but can be expensive or unavailable for
193   wider loads, like a 64-bit store on ARM. (A frontend for Java or other "safe"
194   languages would normally split a 64-bit store on ARM into two 32-bit unordered
195   stores.)
196
197 Notes for optimizers
198   In terms of the optimizer, this prohibits any transformation that transforms a
199   single load into multiple loads, transforms a store into multiple stores,
200   narrows a store, or stores a value which would not be stored otherwise.  Some
201   examples of unsafe optimizations are narrowing an assignment into a bitfield,
202   rematerializing a load, and turning loads and stores into a memcpy
203   call. Reordering unordered operations is safe, though, and optimizers should
204   take advantage of that because unordered operations are common in languages
205   that need them.
206
207 Notes for code generation
208   These operations are required to be atomic in the sense that if you use
209   unordered loads and unordered stores, a load cannot see a value which was
210   never stored.  A normal load or store instruction is usually sufficient, but
211   note that an unordered load or store cannot be split into multiple
212   instructions (or an instruction which does multiple memory operations, like
213   ``LDRD`` on ARM without LPAE, or not naturally-aligned ``LDRD`` on LPAE ARM).
214
215 Monotonic
216 ---------
217
218 Monotonic is the weakest level of atomicity that can be used in synchronization
219 primitives, although it does not provide any general synchronization. It
220 essentially guarantees that if you take all the operations affecting a specific
221 address, a consistent ordering exists.
222
223 Relevant standard
224   This corresponds to the C++0x/C1x ``memory_order_relaxed``; see those
225   standards for the exact definition.
226
227 Notes for frontends
228   If you are writing a frontend which uses this directly, use with caution.  The
229   guarantees in terms of synchronization are very weak, so make sure these are
230   only used in a pattern which you know is correct.  Generally, these would
231   either be used for atomic operations which do not protect other memory (like
232   an atomic counter), or along with a ``fence``.
233
234 Notes for optimizers
235   In terms of the optimizer, this can be treated as a read+write on the relevant
236   memory location (and alias analysis will take advantage of that). In addition,
237   it is legal to reorder non-atomic and Unordered loads around Monotonic
238   loads. CSE/DSE and a few other optimizations are allowed, but Monotonic
239   operations are unlikely to be used in ways which would make those
240   optimizations useful.
241
242 Notes for code generation
243   Code generation is essentially the same as that for unordered for loads and
244   stores.  No fences are required.  ``cmpxchg`` and ``atomicrmw`` are required
245   to appear as a single operation.
246
247 Acquire
248 -------
249
250 Acquire provides a barrier of the sort necessary to acquire a lock to access
251 other memory with normal loads and stores.
252
253 Relevant standard
254   This corresponds to the C++0x/C1x ``memory_order_acquire``. It should also be
255   used for C++0x/C1x ``memory_order_consume``.
256
257 Notes for frontends
258   If you are writing a frontend which uses this directly, use with caution.
259   Acquire only provides a semantic guarantee when paired with a Release
260   operation.
261
262 Notes for optimizers
263   Optimizers not aware of atomics can treat this like a nothrow call.  It is
264   also possible to move stores from before an Acquire load or read-modify-write
265   operation to after it, and move non-Acquire loads from before an Acquire
266   operation to after it.
267
268 Notes for code generation
269   Architectures with weak memory ordering (essentially everything relevant today
270   except x86 and SPARC) require some sort of fence to maintain the Acquire
271   semantics.  The precise fences required varies widely by architecture, but for
272   a simple implementation, most architectures provide a barrier which is strong
273   enough for everything (``dmb`` on ARM, ``sync`` on PowerPC, etc.).  Putting
274   such a fence after the equivalent Monotonic operation is sufficient to
275   maintain Acquire semantics for a memory operation.
276
277 Release
278 -------
279
280 Release is similar to Acquire, but with a barrier of the sort necessary to
281 release a lock.
282
283 Relevant standard
284   This corresponds to the C++0x/C1x ``memory_order_release``.
285
286 Notes for frontends
287   If you are writing a frontend which uses this directly, use with caution.
288   Release only provides a semantic guarantee when paired with a Acquire
289   operation.
290
291 Notes for optimizers
292   Optimizers not aware of atomics can treat this like a nothrow call.  It is
293   also possible to move loads from after a Release store or read-modify-write
294   operation to before it, and move non-Release stores from after an Release
295   operation to before it.
296
297 Notes for code generation
298   See the section on Acquire; a fence before the relevant operation is usually
299   sufficient for Release. Note that a store-store fence is not sufficient to
300   implement Release semantics; store-store fences are generally not exposed to
301   IR because they are extremely difficult to use correctly.
302
303 AcquireRelease
304 --------------
305
306 AcquireRelease (``acq_rel`` in IR) provides both an Acquire and a Release
307 barrier (for fences and operations which both read and write memory).
308
309 Relevant standard
310   This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
311
312 Notes for frontends
313   If you are writing a frontend which uses this directly, use with caution.
314   Acquire only provides a semantic guarantee when paired with a Release
315   operation, and vice versa.
316
317 Notes for optimizers
318   In general, optimizers should treat this like a nothrow call; the possible
319   optimizations are usually not interesting.
320
321 Notes for code generation
322   This operation has Acquire and Release semantics; see the sections on Acquire
323   and Release.
324
325 SequentiallyConsistent
326 ----------------------
327
328 SequentiallyConsistent (``seq_cst`` in IR) provides Acquire semantics for loads
329 and Release semantics for stores. Additionally, it guarantees that a total
330 ordering exists between all SequentiallyConsistent operations.
331
332 Relevant standard
333   This corresponds to the C++0x/C1x ``memory_order_seq_cst``, Java volatile, and
334   the gcc-compatible ``__sync_*`` builtins which do not specify otherwise.
335
336 Notes for frontends
337   If a frontend is exposing atomic operations, these are much easier to reason
338   about for the programmer than other kinds of operations, and using them is
339   generally a practical performance tradeoff.
340
341 Notes for optimizers
342   Optimizers not aware of atomics can treat this like a nothrow call.  For
343   SequentiallyConsistent loads and stores, the same reorderings are allowed as
344   for Acquire loads and Release stores, except that SequentiallyConsistent
345   operations may not be reordered.
346
347 Notes for code generation
348   SequentiallyConsistent loads minimally require the same barriers as Acquire
349   operations and SequentiallyConsistent stores require Release
350   barriers. Additionally, the code generator must enforce ordering between
351   SequentiallyConsistent stores followed by SequentiallyConsistent loads. This
352   is usually done by emitting either a full fence before the loads or a full
353   fence after the stores; which is preferred varies by architecture.
354
355 Atomics and IR optimization
356 ===========================
357
358 Predicates for optimizer writers to query:
359
360 * ``isSimple()``: A load or store which is not volatile or atomic.  This is
361   what, for example, memcpyopt would check for operations it might transform.
362
363 * ``isUnordered()``: A load or store which is not volatile and at most
364   Unordered. This would be checked, for example, by LICM before hoisting an
365   operation.
366
367 * ``mayReadFromMemory()``/``mayWriteToMemory()``: Existing predicate, but note
368   that they return true for any operation which is volatile or at least
369   Monotonic.
370
371 * Alias analysis: Note that AA will return ModRef for anything Acquire or
372   Release, and for the address accessed by any Monotonic operation.
373
374 To support optimizing around atomic operations, make sure you are using the
375 right predicates; everything should work if that is done.  If your pass should
376 optimize some atomic operations (Unordered operations in particular), make sure
377 it doesn't replace an atomic load or store with a non-atomic operation.
378
379 Some examples of how optimizations interact with various kinds of atomic
380 operations:
381
382 * ``memcpyopt``: An atomic operation cannot be optimized into part of a
383   memcpy/memset, including unordered loads/stores.  It can pull operations
384   across some atomic operations.
385
386 * LICM: Unordered loads/stores can be moved out of a loop.  It just treats
387   monotonic operations like a read+write to a memory location, and anything
388   stricter than that like a nothrow call.
389
390 * DSE: Unordered stores can be DSE'ed like normal stores.  Monotonic stores can
391   be DSE'ed in some cases, but it's tricky to reason about, and not especially
392   important.
393
394 * Folding a load: Any atomic load from a constant global can be constant-folded,
395   because it cannot be observed.  Similar reasoning allows scalarrepl with
396   atomic loads and stores.
397
398 Atomics and Codegen
399 ===================
400
401 Atomic operations are represented in the SelectionDAG with ``ATOMIC_*`` opcodes.
402 On architectures which use barrier instructions for all atomic ordering (like
403 ARM), appropriate fences are split out as the DAG is built.
404
405 The MachineMemOperand for all atomic operations is currently marked as volatile;
406 this is not correct in the IR sense of volatile, but CodeGen handles anything
407 marked volatile very conservatively.  This should get fixed at some point.
408
409 Common architectures have some way of representing at least a pointer-sized
410 lock-free ``cmpxchg``; such an operation can be used to implement all the other
411 atomic operations which can be represented in IR up to that size.  Backends are
412 expected to implement all those operations, but not operations which cannot be
413 implemented in a lock-free manner.  It is expected that backends will give an
414 error when given an operation which cannot be implemented.  (The LLVM code
415 generator is not very helpful here at the moment, but hopefully that will
416 change.)
417
418 The implementation of atomics on LL/SC architectures (like ARM) is currently a
419 bit of a mess; there is a lot of copy-pasted code across targets, and the
420 representation is relatively unsuited to optimization (it would be nice to be
421 able to optimize loops involving cmpxchg etc.).
422
423 On x86, all atomic loads generate a ``MOV``. SequentiallyConsistent stores
424 generate an ``XCHG``, other stores generate a ``MOV``. SequentiallyConsistent
425 fences generate an ``MFENCE``, other fences do not cause any code to be
426 generated.  cmpxchg uses the ``LOCK CMPXCHG`` instruction.  ``atomicrmw xchg``
427 uses ``XCHG``, ``atomicrmw add`` and ``atomicrmw sub`` use ``XADD``, and all
428 other ``atomicrmw`` operations generate a loop with ``LOCK CMPXCHG``.  Depending
429 on the users of the result, some ``atomicrmw`` operations can be translated into
430 operations like ``LOCK AND``, but that does not work in general.
431
432 On ARM (before v8), MIPS, and many other RISC architectures, Acquire, Release,
433 and SequentiallyConsistent semantics require barrier instructions for every such
434 operation. Loads and stores generate normal instructions.  ``cmpxchg`` and
435 ``atomicrmw`` can be represented using a loop with LL/SC-style instructions
436 which take some sort of exclusive lock on a cache line (``LDREX`` and ``STREX``
437 on ARM, etc.).