model: replace isfinalfeasible() with stronger check
[model-checker.git] / model.cc
1 #include <stdio.h>
2 #include <algorithm>
3 #include <mutex>
4
5 #include "model.h"
6 #include "action.h"
7 #include "nodestack.h"
8 #include "schedule.h"
9 #include "snapshot-interface.h"
10 #include "common.h"
11 #include "clockvector.h"
12 #include "cyclegraph.h"
13 #include "promise.h"
14 #include "datarace.h"
15 #include "threads-model.h"
16 #include "output.h"
17
18 #define INITIAL_THREAD_ID       0
19
20 ModelChecker *model;
21
22 struct bug_message {
23         bug_message(const char *str) {
24                 const char *fmt = "  [BUG] %s\n";
25                 msg = (char *)snapshot_malloc(strlen(fmt) + strlen(str));
26                 sprintf(msg, fmt, str);
27         }
28         ~bug_message() { if (msg) snapshot_free(msg); }
29
30         char *msg;
31         void print() { model_print("%s", msg); }
32
33         SNAPSHOTALLOC
34 };
35
36 /**
37  * Structure for holding small ModelChecker members that should be snapshotted
38  */
39 struct model_snapshot_members {
40         model_snapshot_members() :
41                 current_action(NULL),
42                 /* First thread created will have id INITIAL_THREAD_ID */
43                 next_thread_id(INITIAL_THREAD_ID),
44                 used_sequence_numbers(0),
45                 nextThread(NULL),
46                 next_backtrack(NULL),
47                 bugs(),
48                 stats(),
49                 failed_promise(false),
50                 too_many_reads(false),
51                 bad_synchronization(false),
52                 asserted(false)
53         { }
54
55         ~model_snapshot_members() {
56                 for (unsigned int i = 0; i < bugs.size(); i++)
57                         delete bugs[i];
58                 bugs.clear();
59         }
60
61         ModelAction *current_action;
62         unsigned int next_thread_id;
63         modelclock_t used_sequence_numbers;
64         Thread *nextThread;
65         ModelAction *next_backtrack;
66         std::vector< bug_message *, SnapshotAlloc<bug_message *> > bugs;
67         struct execution_stats stats;
68         bool failed_promise;
69         bool too_many_reads;
70         /** @brief Incorrectly-ordered synchronization was made */
71         bool bad_synchronization;
72         bool asserted;
73
74         SNAPSHOTALLOC
75 };
76
77 /** @brief Constructor */
78 ModelChecker::ModelChecker(struct model_params params) :
79         /* Initialize default scheduler */
80         params(params),
81         scheduler(new Scheduler()),
82         diverge(NULL),
83         earliest_diverge(NULL),
84         action_trace(new action_list_t()),
85         thread_map(new HashTable<int, Thread *, int>()),
86         obj_map(new HashTable<const void *, action_list_t *, uintptr_t, 4>()),
87         lock_waiters_map(new HashTable<const void *, action_list_t *, uintptr_t, 4>()),
88         condvar_waiters_map(new HashTable<const void *, action_list_t *, uintptr_t, 4>()),
89         obj_thrd_map(new HashTable<void *, std::vector<action_list_t> *, uintptr_t, 4 >()),
90         promises(new std::vector< Promise *, SnapshotAlloc<Promise *> >()),
91         futurevalues(new std::vector< struct PendingFutureValue, SnapshotAlloc<struct PendingFutureValue> >()),
92         pending_rel_seqs(new std::vector< struct release_seq *, SnapshotAlloc<struct release_seq *> >()),
93         thrd_last_action(new std::vector< ModelAction *, SnapshotAlloc<ModelAction *> >(1)),
94         node_stack(new NodeStack()),
95         priv(new struct model_snapshot_members()),
96         mo_graph(new CycleGraph())
97 {
98         /* Initialize a model-checker thread, for special ModelActions */
99         model_thread = new Thread(get_next_id());
100         thread_map->put(id_to_int(model_thread->get_id()), model_thread);
101 }
102
103 /** @brief Destructor */
104 ModelChecker::~ModelChecker()
105 {
106         for (unsigned int i = 0; i < get_num_threads(); i++)
107                 delete thread_map->get(i);
108         delete thread_map;
109
110         delete obj_thrd_map;
111         delete obj_map;
112         delete lock_waiters_map;
113         delete condvar_waiters_map;
114         delete action_trace;
115
116         for (unsigned int i = 0; i < promises->size(); i++)
117                 delete (*promises)[i];
118         delete promises;
119
120         delete pending_rel_seqs;
121
122         delete thrd_last_action;
123         delete node_stack;
124         delete scheduler;
125         delete mo_graph;
126         delete priv;
127 }
128
129 static action_list_t * get_safe_ptr_action(HashTable<const void *, action_list_t *, uintptr_t, 4> * hash, void * ptr) {
130         action_list_t * tmp=hash->get(ptr);
131         if (tmp==NULL) {
132                 tmp=new action_list_t();
133                 hash->put(ptr, tmp);
134         }
135         return tmp;
136 }
137
138 static std::vector<action_list_t> * get_safe_ptr_vect_action(HashTable<void *, std::vector<action_list_t> *, uintptr_t, 4> * hash, void * ptr) {
139         std::vector<action_list_t> * tmp=hash->get(ptr);
140         if (tmp==NULL) {
141                 tmp=new std::vector<action_list_t>();
142                 hash->put(ptr, tmp);
143         }
144         return tmp;
145 }
146
147 /**
148  * Restores user program to initial state and resets all model-checker data
149  * structures.
150  */
151 void ModelChecker::reset_to_initial_state()
152 {
153         DEBUG("+++ Resetting to initial state +++\n");
154         node_stack->reset_execution();
155
156         /* Print all model-checker output before rollback */
157         fflush(model_out);
158
159         snapshotObject->backTrackBeforeStep(0);
160 }
161
162 /** @return a thread ID for a new Thread */
163 thread_id_t ModelChecker::get_next_id()
164 {
165         return priv->next_thread_id++;
166 }
167
168 /** @return the number of user threads created during this execution */
169 unsigned int ModelChecker::get_num_threads() const
170 {
171         return priv->next_thread_id;
172 }
173
174 /** @return The currently executing Thread. */
175 Thread * ModelChecker::get_current_thread()
176 {
177         return scheduler->get_current_thread();
178 }
179
180 /** @return a sequence number for a new ModelAction */
181 modelclock_t ModelChecker::get_next_seq_num()
182 {
183         return ++priv->used_sequence_numbers;
184 }
185
186 Node * ModelChecker::get_curr_node() {
187         return node_stack->get_head();
188 }
189
190 /**
191  * @brief Choose the next thread to execute.
192  *
193  * This function chooses the next thread that should execute. It can force the
194  * adjacency of read/write portions of a RMW action, force THREAD_CREATE to be
195  * followed by a THREAD_START, or it can enforce execution replay/backtracking.
196  * The model-checker may have no preference regarding the next thread (i.e.,
197  * when exploring a new execution ordering), in which case this will return
198  * NULL.
199  * @param curr The current ModelAction. This action might guide the choice of
200  * next thread.
201  * @return The next thread to run. If the model-checker has no preference, NULL.
202  */
203 Thread * ModelChecker::get_next_thread(ModelAction *curr)
204 {
205         thread_id_t tid;
206
207         if (curr!=NULL) {
208                 /* Do not split atomic actions. */
209                 if (curr->is_rmwr())
210                         return thread_current();
211                 /* The THREAD_CREATE action points to the created Thread */
212                 else if (curr->get_type() == THREAD_CREATE)
213                         return (Thread *)curr->get_location();
214         }
215
216         /* Have we completed exploring the preselected path? */
217         if (diverge == NULL)
218                 return NULL;
219
220         /* Else, we are trying to replay an execution */
221         ModelAction *next = node_stack->get_next()->get_action();
222
223         if (next == diverge) {
224                 if (earliest_diverge == NULL || *diverge < *earliest_diverge)
225                         earliest_diverge=diverge;
226
227                 Node *nextnode = next->get_node();
228                 Node *prevnode = nextnode->get_parent();
229                 scheduler->update_sleep_set(prevnode);
230
231                 /* Reached divergence point */
232                 if (nextnode->increment_misc()) {
233                         /* The next node will try to satisfy a different misc_index values. */
234                         tid = next->get_tid();
235                         node_stack->pop_restofstack(2);
236                 } else if (nextnode->increment_promise()) {
237                         /* The next node will try to satisfy a different set of promises. */
238                         tid = next->get_tid();
239                         node_stack->pop_restofstack(2);
240                 } else if (nextnode->increment_read_from()) {
241                         /* The next node will read from a different value. */
242                         tid = next->get_tid();
243                         node_stack->pop_restofstack(2);
244                 } else if (nextnode->increment_future_value()) {
245                         /* The next node will try to read from a different future value. */
246                         tid = next->get_tid();
247                         node_stack->pop_restofstack(2);
248                 } else if (nextnode->increment_relseq_break()) {
249                         /* The next node will try to resolve a release sequence differently */
250                         tid = next->get_tid();
251                         node_stack->pop_restofstack(2);
252                 } else {
253                         /* Make a different thread execute for next step */
254                         scheduler->add_sleep(thread_map->get(id_to_int(next->get_tid())));
255                         tid = prevnode->get_next_backtrack();
256                         /* Make sure the backtracked thread isn't sleeping. */
257                         node_stack->pop_restofstack(1);
258                         if (diverge==earliest_diverge) {
259                                 earliest_diverge=prevnode->get_action();
260                         }
261                 }
262                 /* The correct sleep set is in the parent node. */
263                 execute_sleep_set();
264
265                 DEBUG("*** Divergence point ***\n");
266
267                 diverge = NULL;
268         } else {
269                 tid = next->get_tid();
270         }
271         DEBUG("*** ModelChecker chose next thread = %d ***\n", id_to_int(tid));
272         ASSERT(tid != THREAD_ID_T_NONE);
273         return thread_map->get(id_to_int(tid));
274 }
275
276 /**
277  * We need to know what the next actions of all threads in the sleep
278  * set will be.  This method computes them and stores the actions at
279  * the corresponding thread object's pending action.
280  */
281
282 void ModelChecker::execute_sleep_set() {
283         for(unsigned int i=0;i<get_num_threads();i++) {
284                 thread_id_t tid=int_to_id(i);
285                 Thread *thr=get_thread(tid);
286                 if ( scheduler->get_enabled(thr) == THREAD_SLEEP_SET &&
287                                  thr->get_pending() == NULL ) {
288                         thr->set_state(THREAD_RUNNING);
289                         scheduler->next_thread(thr);
290                         Thread::swap(&system_context, thr);
291                         priv->current_action->set_sleep_flag();
292                         thr->set_pending(priv->current_action);
293                 }
294         }
295         priv->current_action = NULL;
296 }
297
298 void ModelChecker::wake_up_sleeping_actions(ModelAction * curr) {
299         for(unsigned int i=0;i<get_num_threads();i++) {
300                 thread_id_t tid=int_to_id(i);
301                 Thread *thr=get_thread(tid);
302                 if ( scheduler->get_enabled(thr) == THREAD_SLEEP_SET ) {
303                         ModelAction *pending_act=thr->get_pending();
304                         if ((!curr->is_rmwr())&&pending_act->could_synchronize_with(curr)) {
305                                 //Remove this thread from sleep set
306                                 scheduler->remove_sleep(thr);
307                         }
308                 }
309         }
310 }
311
312 /** @brief Alert the model-checker that an incorrectly-ordered
313  * synchronization was made */
314 void ModelChecker::set_bad_synchronization()
315 {
316         priv->bad_synchronization = true;
317 }
318
319 bool ModelChecker::has_asserted() const
320 {
321         return priv->asserted;
322 }
323
324 void ModelChecker::set_assert()
325 {
326         priv->asserted = true;
327 }
328
329 /**
330  * Check if we are in a deadlock. Should only be called at the end of an
331  * execution, although it should not give false positives in the middle of an
332  * execution (there should be some ENABLED thread).
333  *
334  * @return True if program is in a deadlock; false otherwise
335  */
336 bool ModelChecker::is_deadlocked() const
337 {
338         bool blocking_threads = false;
339         for (unsigned int i = 0; i < get_num_threads(); i++) {
340                 thread_id_t tid = int_to_id(i);
341                 if (is_enabled(tid))
342                         return false;
343                 Thread *t = get_thread(tid);
344                 if (!t->is_model_thread() && t->get_pending())
345                         blocking_threads = true;
346         }
347         return blocking_threads;
348 }
349
350 /**
351  * Check if this is a complete execution. That is, have all thread completed
352  * execution (rather than exiting because sleep sets have forced a redundant
353  * execution).
354  *
355  * @return True if the execution is complete.
356  */
357 bool ModelChecker::is_complete_execution() const
358 {
359         for (unsigned int i = 0; i < get_num_threads(); i++)
360                 if (is_enabled(int_to_id(i)))
361                         return false;
362         return true;
363 }
364
365 /**
366  * @brief Assert a bug in the executing program.
367  *
368  * Use this function to assert any sort of bug in the user program. If the
369  * current trace is feasible (actually, a prefix of some feasible execution),
370  * then this execution will be aborted, printing the appropriate message. If
371  * the current trace is not yet feasible, the error message will be stashed and
372  * printed if the execution ever becomes feasible.
373  *
374  * @param msg Descriptive message for the bug (do not include newline char)
375  * @return True if bug is immediately-feasible
376  */
377 bool ModelChecker::assert_bug(const char *msg)
378 {
379         priv->bugs.push_back(new bug_message(msg));
380
381         if (isfeasibleprefix()) {
382                 set_assert();
383                 return true;
384         }
385         return false;
386 }
387
388 /**
389  * @brief Assert a bug in the executing program, asserted by a user thread
390  * @see ModelChecker::assert_bug
391  * @param msg Descriptive message for the bug (do not include newline char)
392  */
393 void ModelChecker::assert_user_bug(const char *msg)
394 {
395         /* If feasible bug, bail out now */
396         if (assert_bug(msg))
397                 switch_to_master(NULL);
398 }
399
400 /** @return True, if any bugs have been reported for this execution */
401 bool ModelChecker::have_bug_reports() const
402 {
403         return priv->bugs.size() != 0;
404 }
405
406 /** @brief Print bug report listing for this execution (if any bugs exist) */
407 void ModelChecker::print_bugs() const
408 {
409         if (have_bug_reports()) {
410                 model_print("Bug report: %zu bug%s detected\n",
411                                 priv->bugs.size(),
412                                 priv->bugs.size() > 1 ? "s" : "");
413                 for (unsigned int i = 0; i < priv->bugs.size(); i++)
414                         priv->bugs[i]->print();
415         }
416 }
417
418 /**
419  * @brief Record end-of-execution stats
420  *
421  * Must be run when exiting an execution. Records various stats.
422  * @see struct execution_stats
423  */
424 void ModelChecker::record_stats()
425 {
426         stats.num_total++;
427         if (!isfeasibleprefix())
428                 stats.num_infeasible++;
429         else if (have_bug_reports())
430                 stats.num_buggy_executions++;
431         else if (is_complete_execution())
432                 stats.num_complete++;
433         else
434                 stats.num_redundant++;
435 }
436
437 /** @brief Print execution stats */
438 void ModelChecker::print_stats() const
439 {
440         model_print("Number of complete, bug-free executions: %d\n", stats.num_complete);
441         model_print("Number of redundant executions: %d\n", stats.num_redundant);
442         model_print("Number of buggy executions: %d\n", stats.num_buggy_executions);
443         model_print("Number of infeasible executions: %d\n", stats.num_infeasible);
444         model_print("Total executions: %d\n", stats.num_total);
445         model_print("Total nodes created: %d\n", node_stack->get_total_nodes());
446 }
447
448 /**
449  * @brief End-of-exeuction print
450  * @param printbugs Should any existing bugs be printed?
451  */
452 void ModelChecker::print_execution(bool printbugs) const
453 {
454         print_program_output();
455
456         if (DBG_ENABLED() || params.verbose) {
457                 model_print("Earliest divergence point since last feasible execution:\n");
458                 if (earliest_diverge)
459                         earliest_diverge->print();
460                 else
461                         model_print("(Not set)\n");
462
463                 model_print("\n");
464                 print_stats();
465         }
466
467         /* Don't print invalid bugs */
468         if (printbugs)
469                 print_bugs();
470
471         model_print("\n");
472         print_summary();
473 }
474
475 /**
476  * Queries the model-checker for more executions to explore and, if one
477  * exists, resets the model-checker state to execute a new execution.
478  *
479  * @return If there are more executions to explore, return true. Otherwise,
480  * return false.
481  */
482 bool ModelChecker::next_execution()
483 {
484         DBG();
485         /* Is this execution a feasible execution that's worth bug-checking? */
486         bool complete = isfeasibleprefix() && (is_complete_execution() ||
487                         have_bug_reports());
488
489         /* End-of-execution bug checks */
490         if (complete) {
491                 if (is_deadlocked())
492                         assert_bug("Deadlock detected");
493
494                 checkDataRaces();
495         }
496
497         record_stats();
498
499         /* Output */
500         if (DBG_ENABLED() || params.verbose || have_bug_reports())
501                 print_execution(complete);
502         else
503                 clear_program_output();
504
505         if (complete)
506                 earliest_diverge = NULL;
507
508         if ((diverge = get_next_backtrack()) == NULL)
509                 return false;
510
511         if (DBG_ENABLED()) {
512                 model_print("Next execution will diverge at:\n");
513                 diverge->print();
514         }
515
516         reset_to_initial_state();
517         return true;
518 }
519
520 ModelAction * ModelChecker::get_last_conflict(ModelAction *act)
521 {
522         switch (act->get_type()) {
523         case ATOMIC_READ:
524         case ATOMIC_WRITE:
525         case ATOMIC_RMW: {
526                 /* Optimization: relaxed operations don't need backtracking */
527                 if (act->is_relaxed())
528                         return NULL;
529                 /* linear search: from most recent to oldest */
530                 action_list_t *list = get_safe_ptr_action(obj_map, act->get_location());
531                 action_list_t::reverse_iterator rit;
532                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
533                         ModelAction *prev = *rit;
534                         if (prev->could_synchronize_with(act))
535                                 return prev;
536                 }
537                 break;
538         }
539         case ATOMIC_LOCK:
540         case ATOMIC_TRYLOCK: {
541                 /* linear search: from most recent to oldest */
542                 action_list_t *list = get_safe_ptr_action(obj_map, act->get_location());
543                 action_list_t::reverse_iterator rit;
544                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
545                         ModelAction *prev = *rit;
546                         if (act->is_conflicting_lock(prev))
547                                 return prev;
548                 }
549                 break;
550         }
551         case ATOMIC_UNLOCK: {
552                 /* linear search: from most recent to oldest */
553                 action_list_t *list = get_safe_ptr_action(obj_map, act->get_location());
554                 action_list_t::reverse_iterator rit;
555                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
556                         ModelAction *prev = *rit;
557                         if (!act->same_thread(prev)&&prev->is_failed_trylock())
558                                 return prev;
559                 }
560                 break;
561         }
562         case ATOMIC_WAIT: {
563                 /* linear search: from most recent to oldest */
564                 action_list_t *list = get_safe_ptr_action(obj_map, act->get_location());
565                 action_list_t::reverse_iterator rit;
566                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
567                         ModelAction *prev = *rit;
568                         if (!act->same_thread(prev)&&prev->is_failed_trylock())
569                                 return prev;
570                         if (!act->same_thread(prev)&&prev->is_notify())
571                                 return prev;
572                 }
573                 break;
574         }
575
576         case ATOMIC_NOTIFY_ALL:
577         case ATOMIC_NOTIFY_ONE: {
578                 /* linear search: from most recent to oldest */
579                 action_list_t *list = get_safe_ptr_action(obj_map, act->get_location());
580                 action_list_t::reverse_iterator rit;
581                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
582                         ModelAction *prev = *rit;
583                         if (!act->same_thread(prev)&&prev->is_wait())
584                                 return prev;
585                 }
586                 break;
587         }
588         default:
589                 break;
590         }
591         return NULL;
592 }
593
594 /** This method finds backtracking points where we should try to
595  * reorder the parameter ModelAction against.
596  *
597  * @param the ModelAction to find backtracking points for.
598  */
599 void ModelChecker::set_backtracking(ModelAction *act)
600 {
601         Thread *t = get_thread(act);
602         ModelAction * prev = get_last_conflict(act);
603         if (prev == NULL)
604                 return;
605
606         Node * node = prev->get_node()->get_parent();
607
608         int low_tid, high_tid;
609         if (node->is_enabled(t)) {
610                 low_tid = id_to_int(act->get_tid());
611                 high_tid = low_tid+1;
612         } else {
613                 low_tid = 0;
614                 high_tid = get_num_threads();
615         }
616
617         for(int i = low_tid; i < high_tid; i++) {
618                 thread_id_t tid = int_to_id(i);
619
620                 /* Make sure this thread can be enabled here. */
621                 if (i >= node->get_num_threads())
622                         break;
623
624                 /* Don't backtrack into a point where the thread is disabled or sleeping. */
625                 if (node->enabled_status(tid)!=THREAD_ENABLED)
626                         continue;
627
628                 /* Check if this has been explored already */
629                 if (node->has_been_explored(tid))
630                         continue;
631
632                 /* See if fairness allows */
633                 if (model->params.fairwindow != 0 && !node->has_priority(tid)) {
634                         bool unfair=false;
635                         for(int t=0;t<node->get_num_threads();t++) {
636                                 thread_id_t tother=int_to_id(t);
637                                 if (node->is_enabled(tother) && node->has_priority(tother)) {
638                                         unfair=true;
639                                         break;
640                                 }
641                         }
642                         if (unfair)
643                                 continue;
644                 }
645                 /* Cache the latest backtracking point */
646                 if (!priv->next_backtrack || *prev > *priv->next_backtrack)
647                         priv->next_backtrack = prev;
648
649                 /* If this is a new backtracking point, mark the tree */
650                 if (!node->set_backtrack(tid))
651                         continue;
652                 DEBUG("Setting backtrack: conflict = %d, instead tid = %d\n",
653                                         id_to_int(prev->get_tid()),
654                                         id_to_int(t->get_id()));
655                 if (DBG_ENABLED()) {
656                         prev->print();
657                         act->print();
658                 }
659         }
660 }
661
662 /**
663  * Returns last backtracking point. The model checker will explore a different
664  * path for this point in the next execution.
665  * @return The ModelAction at which the next execution should diverge.
666  */
667 ModelAction * ModelChecker::get_next_backtrack()
668 {
669         ModelAction *next = priv->next_backtrack;
670         priv->next_backtrack = NULL;
671         return next;
672 }
673
674 /**
675  * Processes a read or rmw model action.
676  * @param curr is the read model action to process.
677  * @param second_part_of_rmw is boolean that is true is this is the second action of a rmw.
678  * @return True if processing this read updates the mo_graph.
679  */
680 bool ModelChecker::process_read(ModelAction *curr, bool second_part_of_rmw)
681 {
682         uint64_t value = VALUE_NONE;
683         bool updated = false;
684         while (true) {
685                 const ModelAction *reads_from = curr->get_node()->get_read_from();
686                 if (reads_from != NULL) {
687                         mo_graph->startChanges();
688
689                         value = reads_from->get_value();
690                         bool r_status = false;
691
692                         if (!second_part_of_rmw) {
693                                 check_recency(curr, reads_from);
694                                 r_status = r_modification_order(curr, reads_from);
695                         }
696
697
698                         if (!second_part_of_rmw&&is_infeasible()&&(curr->get_node()->increment_read_from()||curr->get_node()->increment_future_value())) {
699                                 mo_graph->rollbackChanges();
700                                 priv->too_many_reads = false;
701                                 continue;
702                         }
703
704                         curr->read_from(reads_from);
705                         mo_graph->commitChanges();
706                         mo_check_promises(curr->get_tid(), reads_from);
707
708                         updated |= r_status;
709                 } else if (!second_part_of_rmw) {
710                         /* Read from future value */
711                         value = curr->get_node()->get_future_value();
712                         modelclock_t expiration = curr->get_node()->get_future_value_expiration();
713                         curr->read_from(NULL);
714                         Promise *valuepromise = new Promise(curr, value, expiration);
715                         promises->push_back(valuepromise);
716                 }
717                 get_thread(curr)->set_return_value(value);
718                 return updated;
719         }
720 }
721
722 /**
723  * Processes a lock, trylock, or unlock model action.  @param curr is
724  * the read model action to process.
725  *
726  * The try lock operation checks whether the lock is taken.  If not,
727  * it falls to the normal lock operation case.  If so, it returns
728  * fail.
729  *
730  * The lock operation has already been checked that it is enabled, so
731  * it just grabs the lock and synchronizes with the previous unlock.
732  *
733  * The unlock operation has to re-enable all of the threads that are
734  * waiting on the lock.
735  *
736  * @return True if synchronization was updated; false otherwise
737  */
738 bool ModelChecker::process_mutex(ModelAction *curr) {
739         std::mutex *mutex=NULL;
740         struct std::mutex_state *state=NULL;
741
742         if (curr->is_trylock() || curr->is_lock() || curr->is_unlock()) {
743                 mutex = (std::mutex *)curr->get_location();
744                 state = mutex->get_state();
745         } else if(curr->is_wait()) {
746                 mutex = (std::mutex *)curr->get_value();
747                 state = mutex->get_state();
748         }
749
750         switch (curr->get_type()) {
751         case ATOMIC_TRYLOCK: {
752                 bool success = !state->islocked;
753                 curr->set_try_lock(success);
754                 if (!success) {
755                         get_thread(curr)->set_return_value(0);
756                         break;
757                 }
758                 get_thread(curr)->set_return_value(1);
759         }
760                 //otherwise fall into the lock case
761         case ATOMIC_LOCK: {
762                 if (curr->get_cv()->getClock(state->alloc_tid) <= state->alloc_clock)
763                         assert_bug("Lock access before initialization");
764                 state->islocked = true;
765                 ModelAction *unlock = get_last_unlock(curr);
766                 //synchronize with the previous unlock statement
767                 if (unlock != NULL) {
768                         curr->synchronize_with(unlock);
769                         return true;
770                 }
771                 break;
772         }
773         case ATOMIC_UNLOCK: {
774                 //unlock the lock
775                 state->islocked = false;
776                 //wake up the other threads
777                 action_list_t *waiters = get_safe_ptr_action(lock_waiters_map, curr->get_location());
778                 //activate all the waiting threads
779                 for (action_list_t::iterator rit = waiters->begin(); rit != waiters->end(); rit++) {
780                         scheduler->wake(get_thread(*rit));
781                 }
782                 waiters->clear();
783                 break;
784         }
785         case ATOMIC_WAIT: {
786                 //unlock the lock
787                 state->islocked = false;
788                 //wake up the other threads
789                 action_list_t *waiters = get_safe_ptr_action(lock_waiters_map, (void *) curr->get_value());
790                 //activate all the waiting threads
791                 for (action_list_t::iterator rit = waiters->begin(); rit != waiters->end(); rit++) {
792                         scheduler->wake(get_thread(*rit));
793                 }
794                 waiters->clear();
795                 //check whether we should go to sleep or not...simulate spurious failures
796                 if (curr->get_node()->get_misc()==0) {
797                         get_safe_ptr_action(condvar_waiters_map, curr->get_location())->push_back(curr);
798                         //disable us
799                         scheduler->sleep(get_current_thread());
800                 }
801                 break;
802         }
803         case ATOMIC_NOTIFY_ALL: {
804                 action_list_t *waiters = get_safe_ptr_action(condvar_waiters_map, curr->get_location());
805                 //activate all the waiting threads
806                 for (action_list_t::iterator rit = waiters->begin(); rit != waiters->end(); rit++) {
807                         scheduler->wake(get_thread(*rit));
808                 }
809                 waiters->clear();
810                 break;
811         }
812         case ATOMIC_NOTIFY_ONE: {
813                 action_list_t *waiters = get_safe_ptr_action(condvar_waiters_map, curr->get_location());
814                 int wakeupthread=curr->get_node()->get_misc();
815                 action_list_t::iterator it = waiters->begin();
816                 advance(it, wakeupthread);
817                 scheduler->wake(get_thread(*it));
818                 waiters->erase(it);
819                 break;
820         }
821
822         default:
823                 ASSERT(0);
824         }
825         return false;
826 }
827
828 /**
829  * Process a write ModelAction
830  * @param curr The ModelAction to process
831  * @return True if the mo_graph was updated or promises were resolved
832  */
833 bool ModelChecker::process_write(ModelAction *curr)
834 {
835         bool updated_mod_order = w_modification_order(curr);
836         bool updated_promises = resolve_promises(curr);
837
838         if (promises->size() == 0) {
839                 for (unsigned int i = 0; i < futurevalues->size(); i++) {
840                         struct PendingFutureValue pfv = (*futurevalues)[i];
841                         //Do more ambitious checks now that mo is more complete
842                         if (mo_may_allow(pfv.writer, pfv.act)&&
843                                         pfv.act->get_node()->add_future_value(pfv.writer->get_value(), pfv.writer->get_seq_number()+params.maxfuturedelay) &&
844                                         (!priv->next_backtrack || *pfv.act > *priv->next_backtrack))
845                                 priv->next_backtrack = pfv.act;
846                 }
847                 futurevalues->resize(0);
848         }
849
850         mo_graph->commitChanges();
851         mo_check_promises(curr->get_tid(), curr);
852
853         get_thread(curr)->set_return_value(VALUE_NONE);
854         return updated_mod_order || updated_promises;
855 }
856
857 /**
858  * @brief Process the current action for thread-related activity
859  *
860  * Performs current-action processing for a THREAD_* ModelAction. Proccesses
861  * may include setting Thread status, completing THREAD_FINISH/THREAD_JOIN
862  * synchronization, etc.  This function is a no-op for non-THREAD actions
863  * (e.g., ATOMIC_{READ,WRITE,RMW,LOCK}, etc.)
864  *
865  * @param curr The current action
866  * @return True if synchronization was updated or a thread completed
867  */
868 bool ModelChecker::process_thread_action(ModelAction *curr)
869 {
870         bool updated = false;
871
872         switch (curr->get_type()) {
873         case THREAD_CREATE: {
874                 Thread *th = (Thread *)curr->get_location();
875                 th->set_creation(curr);
876                 break;
877         }
878         case THREAD_JOIN: {
879                 Thread *blocking = (Thread *)curr->get_location();
880                 ModelAction *act = get_last_action(blocking->get_id());
881                 curr->synchronize_with(act);
882                 updated = true; /* trigger rel-seq checks */
883                 break;
884         }
885         case THREAD_FINISH: {
886                 Thread *th = get_thread(curr);
887                 while (!th->wait_list_empty()) {
888                         ModelAction *act = th->pop_wait_list();
889                         scheduler->wake(get_thread(act));
890                 }
891                 th->complete();
892                 updated = true; /* trigger rel-seq checks */
893                 break;
894         }
895         case THREAD_START: {
896                 check_promises(curr->get_tid(), NULL, curr->get_cv());
897                 break;
898         }
899         default:
900                 break;
901         }
902
903         return updated;
904 }
905
906 /**
907  * @brief Process the current action for release sequence fixup activity
908  *
909  * Performs model-checker release sequence fixups for the current action,
910  * forcing a single pending release sequence to break (with a given, potential
911  * "loose" write) or to complete (i.e., synchronize). If a pending release
912  * sequence forms a complete release sequence, then we must perform the fixup
913  * synchronization, mo_graph additions, etc.
914  *
915  * @param curr The current action; must be a release sequence fixup action
916  * @param work_queue The work queue to which to add work items as they are
917  * generated
918  */
919 void ModelChecker::process_relseq_fixup(ModelAction *curr, work_queue_t *work_queue)
920 {
921         const ModelAction *write = curr->get_node()->get_relseq_break();
922         struct release_seq *sequence = pending_rel_seqs->back();
923         pending_rel_seqs->pop_back();
924         ASSERT(sequence);
925         ModelAction *acquire = sequence->acquire;
926         const ModelAction *rf = sequence->rf;
927         const ModelAction *release = sequence->release;
928         ASSERT(acquire);
929         ASSERT(release);
930         ASSERT(rf);
931         ASSERT(release->same_thread(rf));
932
933         if (write == NULL) {
934                 /**
935                  * @todo Forcing a synchronization requires that we set
936                  * modification order constraints. For instance, we can't allow
937                  * a fixup sequence in which two separate read-acquire
938                  * operations read from the same sequence, where the first one
939                  * synchronizes and the other doesn't. Essentially, we can't
940                  * allow any writes to insert themselves between 'release' and
941                  * 'rf'
942                  */
943
944                 /* Must synchronize */
945                 if (!acquire->synchronize_with(release)) {
946                         set_bad_synchronization();
947                         return;
948                 }
949                 /* Re-check all pending release sequences */
950                 work_queue->push_back(CheckRelSeqWorkEntry(NULL));
951                 /* Re-check act for mo_graph edges */
952                 work_queue->push_back(MOEdgeWorkEntry(acquire));
953
954                 /* propagate synchronization to later actions */
955                 action_list_t::reverse_iterator rit = action_trace->rbegin();
956                 for (; (*rit) != acquire; rit++) {
957                         ModelAction *propagate = *rit;
958                         if (acquire->happens_before(propagate)) {
959                                 propagate->synchronize_with(acquire);
960                                 /* Re-check 'propagate' for mo_graph edges */
961                                 work_queue->push_back(MOEdgeWorkEntry(propagate));
962                         }
963                 }
964         } else {
965                 /* Break release sequence with new edges:
966                  *   release --mo--> write --mo--> rf */
967                 mo_graph->addEdge(release, write);
968                 mo_graph->addEdge(write, rf);
969         }
970
971         /* See if we have realized a data race */
972         checkDataRaces();
973 }
974
975 /**
976  * Initialize the current action by performing one or more of the following
977  * actions, as appropriate: merging RMWR and RMWC/RMW actions, stepping forward
978  * in the NodeStack, manipulating backtracking sets, allocating and
979  * initializing clock vectors, and computing the promises to fulfill.
980  *
981  * @param curr The current action, as passed from the user context; may be
982  * freed/invalidated after the execution of this function, with a different
983  * action "returned" its place (pass-by-reference)
984  * @return True if curr is a newly-explored action; false otherwise
985  */
986 bool ModelChecker::initialize_curr_action(ModelAction **curr)
987 {
988         ModelAction *newcurr;
989
990         if ((*curr)->is_rmwc() || (*curr)->is_rmw()) {
991                 newcurr = process_rmw(*curr);
992                 delete *curr;
993
994                 if (newcurr->is_rmw())
995                         compute_promises(newcurr);
996
997                 *curr = newcurr;
998                 return false;
999         }
1000
1001         (*curr)->set_seq_number(get_next_seq_num());
1002
1003         newcurr = node_stack->explore_action(*curr, scheduler->get_enabled());
1004         if (newcurr) {
1005                 /* First restore type and order in case of RMW operation */
1006                 if ((*curr)->is_rmwr())
1007                         newcurr->copy_typeandorder(*curr);
1008
1009                 ASSERT((*curr)->get_location() == newcurr->get_location());
1010                 newcurr->copy_from_new(*curr);
1011
1012                 /* Discard duplicate ModelAction; use action from NodeStack */
1013                 delete *curr;
1014
1015                 /* Always compute new clock vector */
1016                 newcurr->create_cv(get_parent_action(newcurr->get_tid()));
1017
1018                 *curr = newcurr;
1019                 return false; /* Action was explored previously */
1020         } else {
1021                 newcurr = *curr;
1022
1023                 /* Always compute new clock vector */
1024                 newcurr->create_cv(get_parent_action(newcurr->get_tid()));
1025                 /*
1026                  * Perform one-time actions when pushing new ModelAction onto
1027                  * NodeStack
1028                  */
1029                 if (newcurr->is_write())
1030                         compute_promises(newcurr);
1031                 else if (newcurr->is_relseq_fixup())
1032                         compute_relseq_breakwrites(newcurr);
1033                 else if (newcurr->is_wait())
1034                         newcurr->get_node()->set_misc_max(2);
1035                 else if (newcurr->is_notify_one()) {
1036                         newcurr->get_node()->set_misc_max(get_safe_ptr_action(condvar_waiters_map, newcurr->get_location())->size());
1037                 }
1038                 return true; /* This was a new ModelAction */
1039         }
1040 }
1041
1042 /**
1043  * @brief Check whether a model action is enabled.
1044  *
1045  * Checks whether a lock or join operation would be successful (i.e., is the
1046  * lock already locked, or is the joined thread already complete). If not, put
1047  * the action in a waiter list.
1048  *
1049  * @param curr is the ModelAction to check whether it is enabled.
1050  * @return a bool that indicates whether the action is enabled.
1051  */
1052 bool ModelChecker::check_action_enabled(ModelAction *curr) {
1053         if (curr->is_lock()) {
1054                 std::mutex * lock = (std::mutex *)curr->get_location();
1055                 struct std::mutex_state * state = lock->get_state();
1056                 if (state->islocked) {
1057                         //Stick the action in the appropriate waiting queue
1058                         get_safe_ptr_action(lock_waiters_map, curr->get_location())->push_back(curr);
1059                         return false;
1060                 }
1061         } else if (curr->get_type() == THREAD_JOIN) {
1062                 Thread *blocking = (Thread *)curr->get_location();
1063                 if (!blocking->is_complete()) {
1064                         blocking->push_wait_list(curr);
1065                         return false;
1066                 }
1067         }
1068
1069         return true;
1070 }
1071
1072 /**
1073  * Stores the ModelAction for the current thread action.  Call this
1074  * immediately before switching from user- to system-context to pass
1075  * data between them.
1076  * @param act The ModelAction created by the user-thread action
1077  */
1078 void ModelChecker::set_current_action(ModelAction *act) {
1079         priv->current_action = act;
1080 }
1081
1082 /**
1083  * This is the heart of the model checker routine. It performs model-checking
1084  * actions corresponding to a given "current action." Among other processes, it
1085  * calculates reads-from relationships, updates synchronization clock vectors,
1086  * forms a memory_order constraints graph, and handles replay/backtrack
1087  * execution when running permutations of previously-observed executions.
1088  *
1089  * @param curr The current action to process
1090  * @return The next Thread that must be executed. May be NULL if ModelChecker
1091  * makes no choice (e.g., according to replay execution, combining RMW actions,
1092  * etc.)
1093  */
1094 Thread * ModelChecker::check_current_action(ModelAction *curr)
1095 {
1096         ASSERT(curr);
1097         bool second_part_of_rmw = curr->is_rmwc() || curr->is_rmw();
1098
1099         if (!check_action_enabled(curr)) {
1100                 /* Make the execution look like we chose to run this action
1101                  * much later, when a lock/join can succeed */
1102                 get_current_thread()->set_pending(curr);
1103                 scheduler->sleep(get_current_thread());
1104                 return get_next_thread(NULL);
1105         }
1106
1107         bool newly_explored = initialize_curr_action(&curr);
1108
1109         wake_up_sleeping_actions(curr);
1110
1111         /* Add the action to lists before any other model-checking tasks */
1112         if (!second_part_of_rmw)
1113                 add_action_to_lists(curr);
1114
1115         /* Build may_read_from set for newly-created actions */
1116         if (newly_explored && curr->is_read())
1117                 build_reads_from_past(curr);
1118
1119         /* Initialize work_queue with the "current action" work */
1120         work_queue_t work_queue(1, CheckCurrWorkEntry(curr));
1121         while (!work_queue.empty() && !has_asserted()) {
1122                 WorkQueueEntry work = work_queue.front();
1123                 work_queue.pop_front();
1124
1125                 switch (work.type) {
1126                 case WORK_CHECK_CURR_ACTION: {
1127                         ModelAction *act = work.action;
1128                         bool update = false; /* update this location's release seq's */
1129                         bool update_all = false; /* update all release seq's */
1130
1131                         if (process_thread_action(curr))
1132                                 update_all = true;
1133
1134                         if (act->is_read() && process_read(act, second_part_of_rmw))
1135                                 update = true;
1136
1137                         if (act->is_write() && process_write(act))
1138                                 update = true;
1139
1140                         if (act->is_mutex_op() && process_mutex(act))
1141                                 update_all = true;
1142
1143                         if (act->is_relseq_fixup())
1144                                 process_relseq_fixup(curr, &work_queue);
1145
1146                         if (update_all)
1147                                 work_queue.push_back(CheckRelSeqWorkEntry(NULL));
1148                         else if (update)
1149                                 work_queue.push_back(CheckRelSeqWorkEntry(act->get_location()));
1150                         break;
1151                 }
1152                 case WORK_CHECK_RELEASE_SEQ:
1153                         resolve_release_sequences(work.location, &work_queue);
1154                         break;
1155                 case WORK_CHECK_MO_EDGES: {
1156                         /** @todo Complete verification of work_queue */
1157                         ModelAction *act = work.action;
1158                         bool updated = false;
1159
1160                         if (act->is_read()) {
1161                                 const ModelAction *rf = act->get_reads_from();
1162                                 if (rf != NULL && r_modification_order(act, rf))
1163                                         updated = true;
1164                         }
1165                         if (act->is_write()) {
1166                                 if (w_modification_order(act))
1167                                         updated = true;
1168                         }
1169                         mo_graph->commitChanges();
1170
1171                         if (updated)
1172                                 work_queue.push_back(CheckRelSeqWorkEntry(act->get_location()));
1173                         break;
1174                 }
1175                 default:
1176                         ASSERT(false);
1177                         break;
1178                 }
1179         }
1180
1181         check_curr_backtracking(curr);
1182         set_backtracking(curr);
1183         return get_next_thread(curr);
1184 }
1185
1186 void ModelChecker::check_curr_backtracking(ModelAction * curr) {
1187         Node *currnode = curr->get_node();
1188         Node *parnode = currnode->get_parent();
1189
1190         if ((!parnode->backtrack_empty() ||
1191                          !currnode->misc_empty() ||
1192                          !currnode->read_from_empty() ||
1193                          !currnode->future_value_empty() ||
1194                          !currnode->promise_empty() ||
1195                          !currnode->relseq_break_empty())
1196                         && (!priv->next_backtrack ||
1197                                         *curr > *priv->next_backtrack)) {
1198                 priv->next_backtrack = curr;
1199         }
1200 }
1201
1202 bool ModelChecker::promises_expired() const
1203 {
1204         for (unsigned int promise_index = 0; promise_index < promises->size(); promise_index++) {
1205                 Promise *promise = (*promises)[promise_index];
1206                 if (promise->get_expiration()<priv->used_sequence_numbers) {
1207                         return true;
1208                 }
1209         }
1210         return false;
1211 }
1212
1213 /**
1214  * This is the strongest feasibility check available.
1215  * @return whether the current trace (partial or complete) must be a prefix of
1216  * a feasible trace.
1217  * */
1218 bool ModelChecker::isfeasibleprefix() const
1219 {
1220         return promises->size() == 0 && pending_rel_seqs->size() == 0 && !is_infeasible();
1221 }
1222
1223 /** Returns whether the current completed trace is feasible. */
1224 bool ModelChecker::isfinalfeasible() const
1225 {
1226         if (DBG_ENABLED() && promises->size() != 0)
1227                 DEBUG("Infeasible: unrevolved promises\n");
1228
1229         return !is_infeasible() && promises->size() == 0;
1230 }
1231
1232 /**
1233  * Check if the current partial trace is infeasible. Does not check any
1234  * end-of-execution flags, which might rule out the execution. Thus, this is
1235  * useful only for ruling an execution as infeasible.
1236  * @return whether the current partial trace is infeasible.
1237  */
1238 bool ModelChecker::is_infeasible() const
1239 {
1240         if (DBG_ENABLED() && mo_graph->checkForRMWViolation())
1241                 DEBUG("Infeasible: RMW violation\n");
1242
1243         return mo_graph->checkForRMWViolation() || is_infeasible_ignoreRMW();
1244 }
1245
1246 /**
1247  * Check If the current partial trace is infeasible, while ignoring
1248  * infeasibility related to 2 RMW's reading from the same store. It does not
1249  * check end-of-execution feasibility.
1250  * @see ModelChecker::is_infeasible
1251  * @return whether the current partial trace is infeasible, ignoring multiple
1252  * RMWs reading from the same store.
1253  * */
1254 bool ModelChecker::is_infeasible_ignoreRMW() const
1255 {
1256         if (DBG_ENABLED()) {
1257                 if (mo_graph->checkForCycles())
1258                         DEBUG("Infeasible: modification order cycles\n");
1259                 if (priv->failed_promise)
1260                         DEBUG("Infeasible: failed promise\n");
1261                 if (priv->too_many_reads)
1262                         DEBUG("Infeasible: too many reads\n");
1263                 if (priv->bad_synchronization)
1264                         DEBUG("Infeasible: bad synchronization ordering\n");
1265                 if (promises_expired())
1266                         DEBUG("Infeasible: promises expired\n");
1267         }
1268         return mo_graph->checkForCycles() || priv->failed_promise ||
1269                 priv->too_many_reads || priv->bad_synchronization ||
1270                 promises_expired();
1271 }
1272
1273 /** Close out a RMWR by converting previous RMWR into a RMW or READ. */
1274 ModelAction * ModelChecker::process_rmw(ModelAction *act) {
1275         ModelAction *lastread = get_last_action(act->get_tid());
1276         lastread->process_rmw(act);
1277         if (act->is_rmw() && lastread->get_reads_from()!=NULL) {
1278                 mo_graph->addRMWEdge(lastread->get_reads_from(), lastread);
1279                 mo_graph->commitChanges();
1280         }
1281         return lastread;
1282 }
1283
1284 /**
1285  * Checks whether a thread has read from the same write for too many times
1286  * without seeing the effects of a later write.
1287  *
1288  * Basic idea:
1289  * 1) there must a different write that we could read from that would satisfy the modification order,
1290  * 2) we must have read from the same value in excess of maxreads times, and
1291  * 3) that other write must have been in the reads_from set for maxreads times.
1292  *
1293  * If so, we decide that the execution is no longer feasible.
1294  */
1295 void ModelChecker::check_recency(ModelAction *curr, const ModelAction *rf) {
1296         if (params.maxreads != 0) {
1297
1298                 if (curr->get_node()->get_read_from_size() <= 1)
1299                         return;
1300                 //Must make sure that execution is currently feasible...  We could
1301                 //accidentally clear by rolling back
1302                 if (is_infeasible())
1303                         return;
1304                 std::vector<action_list_t> *thrd_lists = get_safe_ptr_vect_action(obj_thrd_map, curr->get_location());
1305                 int tid = id_to_int(curr->get_tid());
1306
1307                 /* Skip checks */
1308                 if ((int)thrd_lists->size() <= tid)
1309                         return;
1310                 action_list_t *list = &(*thrd_lists)[tid];
1311
1312                 action_list_t::reverse_iterator rit = list->rbegin();
1313                 /* Skip past curr */
1314                 for (; (*rit) != curr; rit++)
1315                         ;
1316                 /* go past curr now */
1317                 rit++;
1318
1319                 action_list_t::reverse_iterator ritcopy = rit;
1320                 //See if we have enough reads from the same value
1321                 int count = 0;
1322                 for (; count < params.maxreads; rit++,count++) {
1323                         if (rit==list->rend())
1324                                 return;
1325                         ModelAction *act = *rit;
1326                         if (!act->is_read())
1327                                 return;
1328
1329                         if (act->get_reads_from() != rf)
1330                                 return;
1331                         if (act->get_node()->get_read_from_size() <= 1)
1332                                 return;
1333                 }
1334                 for (int i = 0; i<curr->get_node()->get_read_from_size(); i++) {
1335                         //Get write
1336                         const ModelAction * write = curr->get_node()->get_read_from_at(i);
1337
1338                         //Need a different write
1339                         if (write==rf)
1340                                 continue;
1341
1342                         /* Test to see whether this is a feasible write to read from*/
1343                         mo_graph->startChanges();
1344                         r_modification_order(curr, write);
1345                         bool feasiblereadfrom = !is_infeasible();
1346                         mo_graph->rollbackChanges();
1347
1348                         if (!feasiblereadfrom)
1349                                 continue;
1350                         rit = ritcopy;
1351
1352                         bool feasiblewrite = true;
1353                         //new we need to see if this write works for everyone
1354
1355                         for (int loop = count; loop>0; loop--,rit++) {
1356                                 ModelAction *act=*rit;
1357                                 bool foundvalue = false;
1358                                 for (int j = 0; j<act->get_node()->get_read_from_size(); j++) {
1359                                         if (act->get_node()->get_read_from_at(j)==write) {
1360                                                 foundvalue = true;
1361                                                 break;
1362                                         }
1363                                 }
1364                                 if (!foundvalue) {
1365                                         feasiblewrite = false;
1366                                         break;
1367                                 }
1368                         }
1369                         if (feasiblewrite) {
1370                                 priv->too_many_reads = true;
1371                                 return;
1372                         }
1373                 }
1374         }
1375 }
1376
1377 /**
1378  * Updates the mo_graph with the constraints imposed from the current
1379  * read.
1380  *
1381  * Basic idea is the following: Go through each other thread and find
1382  * the lastest action that happened before our read.  Two cases:
1383  *
1384  * (1) The action is a write => that write must either occur before
1385  * the write we read from or be the write we read from.
1386  *
1387  * (2) The action is a read => the write that that action read from
1388  * must occur before the write we read from or be the same write.
1389  *
1390  * @param curr The current action. Must be a read.
1391  * @param rf The action that curr reads from. Must be a write.
1392  * @return True if modification order edges were added; false otherwise
1393  */
1394 bool ModelChecker::r_modification_order(ModelAction *curr, const ModelAction *rf)
1395 {
1396         std::vector<action_list_t> *thrd_lists = get_safe_ptr_vect_action(obj_thrd_map, curr->get_location());
1397         unsigned int i;
1398         bool added = false;
1399         ASSERT(curr->is_read());
1400
1401         /* Iterate over all threads */
1402         for (i = 0; i < thrd_lists->size(); i++) {
1403                 /* Iterate over actions in thread, starting from most recent */
1404                 action_list_t *list = &(*thrd_lists)[i];
1405                 action_list_t::reverse_iterator rit;
1406                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
1407                         ModelAction *act = *rit;
1408
1409                         /*
1410                          * Include at most one act per-thread that "happens
1411                          * before" curr. Don't consider reflexively.
1412                          */
1413                         if (act->happens_before(curr) && act != curr) {
1414                                 if (act->is_write()) {
1415                                         if (rf != act) {
1416                                                 mo_graph->addEdge(act, rf);
1417                                                 added = true;
1418                                         }
1419                                 } else {
1420                                         const ModelAction *prevreadfrom = act->get_reads_from();
1421                                         //if the previous read is unresolved, keep going...
1422                                         if (prevreadfrom == NULL)
1423                                                 continue;
1424
1425                                         if (rf != prevreadfrom) {
1426                                                 mo_graph->addEdge(prevreadfrom, rf);
1427                                                 added = true;
1428                                         }
1429                                 }
1430                                 break;
1431                         }
1432                 }
1433         }
1434
1435         return added;
1436 }
1437
1438 /** This method fixes up the modification order when we resolve a
1439  *  promises.  The basic problem is that actions that occur after the
1440  *  read curr could not property add items to the modification order
1441  *  for our read.
1442  *
1443  *  So for each thread, we find the earliest item that happens after
1444  *  the read curr.  This is the item we have to fix up with additional
1445  *  constraints.  If that action is write, we add a MO edge between
1446  *  the Action rf and that action.  If the action is a read, we add a
1447  *  MO edge between the Action rf, and whatever the read accessed.
1448  *
1449  * @param curr is the read ModelAction that we are fixing up MO edges for.
1450  * @param rf is the write ModelAction that curr reads from.
1451  *
1452  */
1453 void ModelChecker::post_r_modification_order(ModelAction *curr, const ModelAction *rf)
1454 {
1455         std::vector<action_list_t> *thrd_lists = get_safe_ptr_vect_action(obj_thrd_map, curr->get_location());
1456         unsigned int i;
1457         ASSERT(curr->is_read());
1458
1459         /* Iterate over all threads */
1460         for (i = 0; i < thrd_lists->size(); i++) {
1461                 /* Iterate over actions in thread, starting from most recent */
1462                 action_list_t *list = &(*thrd_lists)[i];
1463                 action_list_t::reverse_iterator rit;
1464                 ModelAction *lastact = NULL;
1465
1466                 /* Find last action that happens after curr that is either not curr or a rmw */
1467                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
1468                         ModelAction *act = *rit;
1469                         if (curr->happens_before(act) && (curr != act || curr->is_rmw())) {
1470                                 lastact = act;
1471                         } else
1472                                 break;
1473                 }
1474
1475                         /* Include at most one act per-thread that "happens before" curr */
1476                 if (lastact != NULL) {
1477                         if (lastact==curr) {
1478                                 //Case 1: The resolved read is a RMW, and we need to make sure
1479                                 //that the write portion of the RMW mod order after rf
1480
1481                                 mo_graph->addEdge(rf, lastact);
1482                         } else if (lastact->is_read()) {
1483                                 //Case 2: The resolved read is a normal read and the next
1484                                 //operation is a read, and we need to make sure the value read
1485                                 //is mod ordered after rf
1486
1487                                 const ModelAction *postreadfrom = lastact->get_reads_from();
1488                                 if (postreadfrom != NULL&&rf != postreadfrom)
1489                                         mo_graph->addEdge(rf, postreadfrom);
1490                         } else {
1491                                 //Case 3: The resolved read is a normal read and the next
1492                                 //operation is a write, and we need to make sure that the
1493                                 //write is mod ordered after rf
1494                                 if (lastact!=rf)
1495                                         mo_graph->addEdge(rf, lastact);
1496                         }
1497                         break;
1498                 }
1499         }
1500 }
1501
1502 /**
1503  * Updates the mo_graph with the constraints imposed from the current write.
1504  *
1505  * Basic idea is the following: Go through each other thread and find
1506  * the lastest action that happened before our write.  Two cases:
1507  *
1508  * (1) The action is a write => that write must occur before
1509  * the current write
1510  *
1511  * (2) The action is a read => the write that that action read from
1512  * must occur before the current write.
1513  *
1514  * This method also handles two other issues:
1515  *
1516  * (I) Sequential Consistency: Making sure that if the current write is
1517  * seq_cst, that it occurs after the previous seq_cst write.
1518  *
1519  * (II) Sending the write back to non-synchronizing reads.
1520  *
1521  * @param curr The current action. Must be a write.
1522  * @return True if modification order edges were added; false otherwise
1523  */
1524 bool ModelChecker::w_modification_order(ModelAction *curr)
1525 {
1526         std::vector<action_list_t> *thrd_lists = get_safe_ptr_vect_action(obj_thrd_map, curr->get_location());
1527         unsigned int i;
1528         bool added = false;
1529         ASSERT(curr->is_write());
1530
1531         if (curr->is_seqcst()) {
1532                 /* We have to at least see the last sequentially consistent write,
1533                          so we are initialized. */
1534                 ModelAction *last_seq_cst = get_last_seq_cst(curr);
1535                 if (last_seq_cst != NULL) {
1536                         mo_graph->addEdge(last_seq_cst, curr);
1537                         added = true;
1538                 }
1539         }
1540
1541         /* Iterate over all threads */
1542         for (i = 0; i < thrd_lists->size(); i++) {
1543                 /* Iterate over actions in thread, starting from most recent */
1544                 action_list_t *list = &(*thrd_lists)[i];
1545                 action_list_t::reverse_iterator rit;
1546                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
1547                         ModelAction *act = *rit;
1548                         if (act == curr) {
1549                                 /*
1550                                  * 1) If RMW and it actually read from something, then we
1551                                  * already have all relevant edges, so just skip to next
1552                                  * thread.
1553                                  *
1554                                  * 2) If RMW and it didn't read from anything, we should
1555                                  * whatever edge we can get to speed up convergence.
1556                                  *
1557                                  * 3) If normal write, we need to look at earlier actions, so
1558                                  * continue processing list.
1559                                  */
1560                                 if (curr->is_rmw()) {
1561                                         if (curr->get_reads_from()!=NULL)
1562                                                 break;
1563                                         else
1564                                                 continue;
1565                                 } else
1566                                         continue;
1567                         }
1568
1569                         /*
1570                          * Include at most one act per-thread that "happens
1571                          * before" curr
1572                          */
1573                         if (act->happens_before(curr)) {
1574                                 /*
1575                                  * Note: if act is RMW, just add edge:
1576                                  *   act --mo--> curr
1577                                  * The following edge should be handled elsewhere:
1578                                  *   readfrom(act) --mo--> act
1579                                  */
1580                                 if (act->is_write())
1581                                         mo_graph->addEdge(act, curr);
1582                                 else if (act->is_read()) {
1583                                         //if previous read accessed a null, just keep going
1584                                         if (act->get_reads_from() == NULL)
1585                                                 continue;
1586                                         mo_graph->addEdge(act->get_reads_from(), curr);
1587                                 }
1588                                 added = true;
1589                                 break;
1590                         } else if (act->is_read() && !act->could_synchronize_with(curr) &&
1591                                                      !act->same_thread(curr)) {
1592                                 /* We have an action that:
1593                                    (1) did not happen before us
1594                                    (2) is a read and we are a write
1595                                    (3) cannot synchronize with us
1596                                    (4) is in a different thread
1597                                    =>
1598                                    that read could potentially read from our write.  Note that
1599                                    these checks are overly conservative at this point, we'll
1600                                    do more checks before actually removing the
1601                                    pendingfuturevalue.
1602
1603                                  */
1604                                 if (thin_air_constraint_may_allow(curr, act)) {
1605                                         if (!is_infeasible() ||
1606                                                         (curr->is_rmw() && act->is_rmw() && curr->get_reads_from() == act->get_reads_from() && !is_infeasible_ignoreRMW())) {
1607                                                 struct PendingFutureValue pfv = {curr,act};
1608                                                 futurevalues->push_back(pfv);
1609                                         }
1610                                 }
1611                         }
1612                 }
1613         }
1614
1615         return added;
1616 }
1617
1618 /** Arbitrary reads from the future are not allowed.  Section 29.3
1619  * part 9 places some constraints.  This method checks one result of constraint
1620  * constraint.  Others require compiler support. */
1621 bool ModelChecker::thin_air_constraint_may_allow(const ModelAction * writer, const ModelAction *reader) {
1622         if (!writer->is_rmw())
1623                 return true;
1624
1625         if (!reader->is_rmw())
1626                 return true;
1627
1628         for (const ModelAction *search = writer->get_reads_from(); search != NULL; search = search->get_reads_from()) {
1629                 if (search == reader)
1630                         return false;
1631                 if (search->get_tid() == reader->get_tid() &&
1632                                 search->happens_before(reader))
1633                         break;
1634         }
1635
1636         return true;
1637 }
1638
1639 /**
1640  * Arbitrary reads from the future are not allowed. Section 29.3 part 9 places
1641  * some constraints. This method checks one the following constraint (others
1642  * require compiler support):
1643  *
1644  *   If X --hb-> Y --mo-> Z, then X should not read from Z.
1645  */
1646 bool ModelChecker::mo_may_allow(const ModelAction *writer, const ModelAction *reader)
1647 {
1648         std::vector<action_list_t> *thrd_lists = get_safe_ptr_vect_action(obj_thrd_map, reader->get_location());
1649         unsigned int i;
1650         /* Iterate over all threads */
1651         for (i = 0; i < thrd_lists->size(); i++) {
1652                 const ModelAction *write_after_read = NULL;
1653
1654                 /* Iterate over actions in thread, starting from most recent */
1655                 action_list_t *list = &(*thrd_lists)[i];
1656                 action_list_t::reverse_iterator rit;
1657                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
1658                         ModelAction *act = *rit;
1659
1660                         if (!reader->happens_before(act))
1661                                 break;
1662                         else if (act->is_write())
1663                                 write_after_read = act;
1664                         else if (act->is_read() && act->get_reads_from() != NULL && act != reader) {
1665                                 write_after_read = act->get_reads_from();
1666                         }
1667                 }
1668
1669                 if (write_after_read && write_after_read!=writer && mo_graph->checkReachable(write_after_read, writer))
1670                         return false;
1671         }
1672         return true;
1673 }
1674
1675 /**
1676  * Finds the head(s) of the release sequence(s) containing a given ModelAction.
1677  * The ModelAction under consideration is expected to be taking part in
1678  * release/acquire synchronization as an object of the "reads from" relation.
1679  * Note that this can only provide release sequence support for RMW chains
1680  * which do not read from the future, as those actions cannot be traced until
1681  * their "promise" is fulfilled. Similarly, we may not even establish the
1682  * presence of a release sequence with certainty, as some modification order
1683  * constraints may be decided further in the future. Thus, this function
1684  * "returns" two pieces of data: a pass-by-reference vector of @a release_heads
1685  * and a boolean representing certainty.
1686  *
1687  * @param rf The action that might be part of a release sequence. Must be a
1688  * write.
1689  * @param release_heads A pass-by-reference style return parameter. After
1690  * execution of this function, release_heads will contain the heads of all the
1691  * relevant release sequences, if any exists with certainty
1692  * @param pending A pass-by-reference style return parameter which is only used
1693  * when returning false (i.e., uncertain). Returns most information regarding
1694  * an uncertain release sequence, including any write operations that might
1695  * break the sequence.
1696  * @return true, if the ModelChecker is certain that release_heads is complete;
1697  * false otherwise
1698  */
1699 bool ModelChecker::release_seq_heads(const ModelAction *rf,
1700                 rel_heads_list_t *release_heads,
1701                 struct release_seq *pending) const
1702 {
1703         /* Only check for release sequences if there are no cycles */
1704         if (mo_graph->checkForCycles())
1705                 return false;
1706
1707         while (rf) {
1708                 ASSERT(rf->is_write());
1709
1710                 if (rf->is_release())
1711                         release_heads->push_back(rf);
1712                 if (!rf->is_rmw())
1713                         break; /* End of RMW chain */
1714
1715                 /** @todo Need to be smarter here...  In the linux lock
1716                  * example, this will run to the beginning of the program for
1717                  * every acquire. */
1718                 /** @todo The way to be smarter here is to keep going until 1
1719                  * thread has a release preceded by an acquire and you've seen
1720                  *       both. */
1721
1722                 /* acq_rel RMW is a sufficient stopping condition */
1723                 if (rf->is_acquire() && rf->is_release())
1724                         return true; /* complete */
1725
1726                 rf = rf->get_reads_from();
1727         };
1728         if (!rf) {
1729                 /* read from future: need to settle this later */
1730                 pending->rf = NULL;
1731                 return false; /* incomplete */
1732         }
1733
1734         if (rf->is_release())
1735                 return true; /* complete */
1736
1737         /* else relaxed write; check modification order for contiguous subsequence
1738          * -> rf must be same thread as release */
1739         int tid = id_to_int(rf->get_tid());
1740         std::vector<action_list_t> *thrd_lists = get_safe_ptr_vect_action(obj_thrd_map, rf->get_location());
1741         action_list_t *list = &(*thrd_lists)[tid];
1742         action_list_t::const_reverse_iterator rit;
1743
1744         /* Find rf in the thread list */
1745         rit = std::find(list->rbegin(), list->rend(), rf);
1746         ASSERT(rit != list->rend());
1747
1748         /* Find the last write/release */
1749         for (; rit != list->rend(); rit++)
1750                 if ((*rit)->is_release())
1751                         break;
1752         if (rit == list->rend()) {
1753                 /* No write-release in this thread */
1754                 return true; /* complete */
1755         }
1756         ModelAction *release = *rit;
1757
1758         ASSERT(rf->same_thread(release));
1759
1760         pending->writes.clear();
1761
1762         bool certain = true;
1763         for (unsigned int i = 0; i < thrd_lists->size(); i++) {
1764                 if (id_to_int(rf->get_tid()) == (int)i)
1765                         continue;
1766                 list = &(*thrd_lists)[i];
1767
1768                 /* Can we ensure no future writes from this thread may break
1769                  * the release seq? */
1770                 bool future_ordered = false;
1771
1772                 ModelAction *last = get_last_action(int_to_id(i));
1773                 Thread *th = get_thread(int_to_id(i));
1774                 if ((last && rf->happens_before(last)) ||
1775                                 !is_enabled(th) ||
1776                                 th->is_complete())
1777                         future_ordered = true;
1778
1779                 ASSERT(!th->is_model_thread() || future_ordered);
1780
1781                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
1782                         const ModelAction *act = *rit;
1783                         /* Reach synchronization -> this thread is complete */
1784                         if (act->happens_before(release))
1785                                 break;
1786                         if (rf->happens_before(act)) {
1787                                 future_ordered = true;
1788                                 continue;
1789                         }
1790
1791                         /* Only non-RMW writes can break release sequences */
1792                         if (!act->is_write() || act->is_rmw())
1793                                 continue;
1794
1795                         /* Check modification order */
1796                         if (mo_graph->checkReachable(rf, act)) {
1797                                 /* rf --mo--> act */
1798                                 future_ordered = true;
1799                                 continue;
1800                         }
1801                         if (mo_graph->checkReachable(act, release))
1802                                 /* act --mo--> release */
1803                                 break;
1804                         if (mo_graph->checkReachable(release, act) &&
1805                                       mo_graph->checkReachable(act, rf)) {
1806                                 /* release --mo-> act --mo--> rf */
1807                                 return true; /* complete */
1808                         }
1809                         /* act may break release sequence */
1810                         pending->writes.push_back(act);
1811                         certain = false;
1812                 }
1813                 if (!future_ordered)
1814                         certain = false; /* This thread is uncertain */
1815         }
1816
1817         if (certain) {
1818                 release_heads->push_back(release);
1819                 pending->writes.clear();
1820         } else {
1821                 pending->release = release;
1822                 pending->rf = rf;
1823         }
1824         return certain;
1825 }
1826
1827 /**
1828  * A public interface for getting the release sequence head(s) with which a
1829  * given ModelAction must synchronize. This function only returns a non-empty
1830  * result when it can locate a release sequence head with certainty. Otherwise,
1831  * it may mark the internal state of the ModelChecker so that it will handle
1832  * the release sequence at a later time, causing @a act to update its
1833  * synchronization at some later point in execution.
1834  * @param act The 'acquire' action that may read from a release sequence
1835  * @param release_heads A pass-by-reference return parameter. Will be filled
1836  * with the head(s) of the release sequence(s), if they exists with certainty.
1837  * @see ModelChecker::release_seq_heads
1838  */
1839 void ModelChecker::get_release_seq_heads(ModelAction *act, rel_heads_list_t *release_heads)
1840 {
1841         const ModelAction *rf = act->get_reads_from();
1842         struct release_seq *sequence = (struct release_seq *)snapshot_calloc(1, sizeof(struct release_seq));
1843         sequence->acquire = act;
1844
1845         if (!release_seq_heads(rf, release_heads, sequence)) {
1846                 /* add act to 'lazy checking' list */
1847                 pending_rel_seqs->push_back(sequence);
1848         } else {
1849                 snapshot_free(sequence);
1850         }
1851 }
1852
1853 /**
1854  * Attempt to resolve all stashed operations that might synchronize with a
1855  * release sequence for a given location. This implements the "lazy" portion of
1856  * determining whether or not a release sequence was contiguous, since not all
1857  * modification order information is present at the time an action occurs.
1858  *
1859  * @param location The location/object that should be checked for release
1860  * sequence resolutions. A NULL value means to check all locations.
1861  * @param work_queue The work queue to which to add work items as they are
1862  * generated
1863  * @return True if any updates occurred (new synchronization, new mo_graph
1864  * edges)
1865  */
1866 bool ModelChecker::resolve_release_sequences(void *location, work_queue_t *work_queue)
1867 {
1868         bool updated = false;
1869         std::vector< struct release_seq *, SnapshotAlloc<struct release_seq *> >::iterator it = pending_rel_seqs->begin();
1870         while (it != pending_rel_seqs->end()) {
1871                 struct release_seq *pending = *it;
1872                 ModelAction *act = pending->acquire;
1873
1874                 /* Only resolve sequences on the given location, if provided */
1875                 if (location && act->get_location() != location) {
1876                         it++;
1877                         continue;
1878                 }
1879
1880                 const ModelAction *rf = act->get_reads_from();
1881                 rel_heads_list_t release_heads;
1882                 bool complete;
1883                 complete = release_seq_heads(rf, &release_heads, pending);
1884                 for (unsigned int i = 0; i < release_heads.size(); i++) {
1885                         if (!act->has_synchronized_with(release_heads[i])) {
1886                                 if (act->synchronize_with(release_heads[i]))
1887                                         updated = true;
1888                                 else
1889                                         set_bad_synchronization();
1890                         }
1891                 }
1892
1893                 if (updated) {
1894                         /* Re-check all pending release sequences */
1895                         work_queue->push_back(CheckRelSeqWorkEntry(NULL));
1896                         /* Re-check act for mo_graph edges */
1897                         work_queue->push_back(MOEdgeWorkEntry(act));
1898
1899                         /* propagate synchronization to later actions */
1900                         action_list_t::reverse_iterator rit = action_trace->rbegin();
1901                         for (; (*rit) != act; rit++) {
1902                                 ModelAction *propagate = *rit;
1903                                 if (act->happens_before(propagate)) {
1904                                         propagate->synchronize_with(act);
1905                                         /* Re-check 'propagate' for mo_graph edges */
1906                                         work_queue->push_back(MOEdgeWorkEntry(propagate));
1907                                 }
1908                         }
1909                 }
1910                 if (complete) {
1911                         it = pending_rel_seqs->erase(it);
1912                         snapshot_free(pending);
1913                 } else {
1914                         it++;
1915                 }
1916         }
1917
1918         // If we resolved promises or data races, see if we have realized a data race.
1919         checkDataRaces();
1920
1921         return updated;
1922 }
1923
1924 /**
1925  * Performs various bookkeeping operations for the current ModelAction. For
1926  * instance, adds action to the per-object, per-thread action vector and to the
1927  * action trace list of all thread actions.
1928  *
1929  * @param act is the ModelAction to add.
1930  */
1931 void ModelChecker::add_action_to_lists(ModelAction *act)
1932 {
1933         int tid = id_to_int(act->get_tid());
1934         action_trace->push_back(act);
1935
1936         get_safe_ptr_action(obj_map, act->get_location())->push_back(act);
1937
1938         std::vector<action_list_t> *vec = get_safe_ptr_vect_action(obj_thrd_map, act->get_location());
1939         if (tid >= (int)vec->size())
1940                 vec->resize(priv->next_thread_id);
1941         (*vec)[tid].push_back(act);
1942
1943         if ((int)thrd_last_action->size() <= tid)
1944                 thrd_last_action->resize(get_num_threads());
1945         (*thrd_last_action)[tid] = act;
1946
1947         if (act->is_wait()) {
1948                 void *mutex_loc=(void *) act->get_value();
1949                 get_safe_ptr_action(obj_map, mutex_loc)->push_back(act);
1950
1951                 std::vector<action_list_t> *vec = get_safe_ptr_vect_action(obj_thrd_map, mutex_loc);
1952                 if (tid >= (int)vec->size())
1953                         vec->resize(priv->next_thread_id);
1954                 (*vec)[tid].push_back(act);
1955
1956                 if ((int)thrd_last_action->size() <= tid)
1957                         thrd_last_action->resize(get_num_threads());
1958                 (*thrd_last_action)[tid] = act;
1959         }
1960 }
1961
1962 /**
1963  * @brief Get the last action performed by a particular Thread
1964  * @param tid The thread ID of the Thread in question
1965  * @return The last action in the thread
1966  */
1967 ModelAction * ModelChecker::get_last_action(thread_id_t tid) const
1968 {
1969         int threadid = id_to_int(tid);
1970         if (threadid < (int)thrd_last_action->size())
1971                 return (*thrd_last_action)[id_to_int(tid)];
1972         else
1973                 return NULL;
1974 }
1975
1976 /**
1977  * Gets the last memory_order_seq_cst write (in the total global sequence)
1978  * performed on a particular object (i.e., memory location), not including the
1979  * current action.
1980  * @param curr The current ModelAction; also denotes the object location to
1981  * check
1982  * @return The last seq_cst write
1983  */
1984 ModelAction * ModelChecker::get_last_seq_cst(ModelAction *curr) const
1985 {
1986         void *location = curr->get_location();
1987         action_list_t *list = get_safe_ptr_action(obj_map, location);
1988         /* Find: max({i in dom(S) | seq_cst(t_i) && isWrite(t_i) && samevar(t_i, t)}) */
1989         action_list_t::reverse_iterator rit;
1990         for (rit = list->rbegin(); rit != list->rend(); rit++)
1991                 if ((*rit)->is_write() && (*rit)->is_seqcst() && (*rit) != curr)
1992                         return *rit;
1993         return NULL;
1994 }
1995
1996 /**
1997  * Gets the last unlock operation performed on a particular mutex (i.e., memory
1998  * location). This function identifies the mutex according to the current
1999  * action, which is presumed to perform on the same mutex.
2000  * @param curr The current ModelAction; also denotes the object location to
2001  * check
2002  * @return The last unlock operation
2003  */
2004 ModelAction * ModelChecker::get_last_unlock(ModelAction *curr) const
2005 {
2006         void *location = curr->get_location();
2007         action_list_t *list = get_safe_ptr_action(obj_map, location);
2008         /* Find: max({i in dom(S) | isUnlock(t_i) && samevar(t_i, t)}) */
2009         action_list_t::reverse_iterator rit;
2010         for (rit = list->rbegin(); rit != list->rend(); rit++)
2011                 if ((*rit)->is_unlock() || (*rit)->is_wait())
2012                         return *rit;
2013         return NULL;
2014 }
2015
2016 ModelAction * ModelChecker::get_parent_action(thread_id_t tid)
2017 {
2018         ModelAction *parent = get_last_action(tid);
2019         if (!parent)
2020                 parent = get_thread(tid)->get_creation();
2021         return parent;
2022 }
2023
2024 /**
2025  * Returns the clock vector for a given thread.
2026  * @param tid The thread whose clock vector we want
2027  * @return Desired clock vector
2028  */
2029 ClockVector * ModelChecker::get_cv(thread_id_t tid)
2030 {
2031         return get_parent_action(tid)->get_cv();
2032 }
2033
2034 /**
2035  * Resolve a set of Promises with a current write. The set is provided in the
2036  * Node corresponding to @a write.
2037  * @param write The ModelAction that is fulfilling Promises
2038  * @return True if promises were resolved; false otherwise
2039  */
2040 bool ModelChecker::resolve_promises(ModelAction *write)
2041 {
2042         bool resolved = false;
2043         std::vector< thread_id_t, ModelAlloc<thread_id_t> > threads_to_check;
2044
2045         for (unsigned int i = 0, promise_index = 0; promise_index < promises->size(); i++) {
2046                 Promise *promise = (*promises)[promise_index];
2047                 if (write->get_node()->get_promise(i)) {
2048                         ModelAction *read = promise->get_action();
2049                         if (read->is_rmw()) {
2050                                 mo_graph->addRMWEdge(write, read);
2051                         }
2052                         read->read_from(write);
2053                         //First fix up the modification order for actions that happened
2054                         //before the read
2055                         r_modification_order(read, write);
2056                         //Next fix up the modification order for actions that happened
2057                         //after the read.
2058                         post_r_modification_order(read, write);
2059                         //Make sure the promise's value matches the write's value
2060                         ASSERT(promise->get_value() == write->get_value());
2061                         delete(promise);
2062
2063                         promises->erase(promises->begin() + promise_index);
2064                         threads_to_check.push_back(read->get_tid());
2065
2066                         resolved = true;
2067                 } else
2068                         promise_index++;
2069         }
2070
2071         //Check whether reading these writes has made threads unable to
2072         //resolve promises
2073
2074         for(unsigned int i=0;i<threads_to_check.size();i++)
2075                 mo_check_promises(threads_to_check[i], write);
2076
2077         return resolved;
2078 }
2079
2080 /**
2081  * Compute the set of promises that could potentially be satisfied by this
2082  * action. Note that the set computation actually appears in the Node, not in
2083  * ModelChecker.
2084  * @param curr The ModelAction that may satisfy promises
2085  */
2086 void ModelChecker::compute_promises(ModelAction *curr)
2087 {
2088         for (unsigned int i = 0; i < promises->size(); i++) {
2089                 Promise *promise = (*promises)[i];
2090                 const ModelAction *act = promise->get_action();
2091                 if (!act->happens_before(curr) &&
2092                                 act->is_read() &&
2093                                 !act->could_synchronize_with(curr) &&
2094                                 !act->same_thread(curr) &&
2095                                 act->get_location() == curr->get_location() &&
2096                                 promise->get_value() == curr->get_value()) {
2097                         curr->get_node()->set_promise(i, act->is_rmw());
2098                 }
2099         }
2100 }
2101
2102 /** Checks promises in response to change in ClockVector Threads. */
2103 void ModelChecker::check_promises(thread_id_t tid, ClockVector *old_cv, ClockVector *merge_cv)
2104 {
2105         for (unsigned int i = 0; i < promises->size(); i++) {
2106                 Promise *promise = (*promises)[i];
2107                 const ModelAction *act = promise->get_action();
2108                 if ((old_cv == NULL || !old_cv->synchronized_since(act)) &&
2109                                 merge_cv->synchronized_since(act)) {
2110                         if (promise->increment_threads(tid)) {
2111                                 //Promise has failed
2112                                 priv->failed_promise = true;
2113                                 return;
2114                         }
2115                 }
2116         }
2117 }
2118
2119 void ModelChecker::check_promises_thread_disabled() {
2120         for (unsigned int i = 0; i < promises->size(); i++) {
2121                 Promise *promise = (*promises)[i];
2122                 if (promise->check_promise()) {
2123                         priv->failed_promise = true;
2124                         return;
2125                 }
2126         }
2127 }
2128
2129 /** Checks promises in response to addition to modification order for threads.
2130  * Definitions:
2131  * pthread is the thread that performed the read that created the promise
2132  *
2133  * pread is the read that created the promise
2134  *
2135  * pwrite is either the first write to same location as pread by
2136  * pthread that is sequenced after pread or the value read by the
2137  * first read to the same lcoation as pread by pthread that is
2138  * sequenced after pread..
2139  *
2140  *      1. If tid=pthread, then we check what other threads are reachable
2141  * through the mode order starting with pwrite.  Those threads cannot
2142  * perform a write that will resolve the promise due to modification
2143  * order constraints.
2144  *
2145  * 2. If the tid is not pthread, we check whether pwrite can reach the
2146  * action write through the modification order.  If so, that thread
2147  * cannot perform a future write that will resolve the promise due to
2148  * modificatin order constraints.
2149  *
2150  *      @parem tid The thread that either read from the model action
2151  *      write, or actually did the model action write.
2152  *
2153  *      @parem write The ModelAction representing the relevant write.
2154  */
2155
2156 void ModelChecker::mo_check_promises(thread_id_t tid, const ModelAction *write) {
2157         void * location = write->get_location();
2158         for (unsigned int i = 0; i < promises->size(); i++) {
2159                 Promise *promise = (*promises)[i];
2160                 const ModelAction *act = promise->get_action();
2161
2162                 //Is this promise on the same location?
2163                 if ( act->get_location() != location )
2164                         continue;
2165
2166                 //same thread as the promise
2167                 if ( act->get_tid()==tid ) {
2168
2169                         //do we have a pwrite for the promise, if not, set it
2170                         if (promise->get_write() == NULL ) {
2171                                 promise->set_write(write);
2172                                 //The pwrite cannot happen before the promise
2173                                 if (write->happens_before(act) && (write != act)) {
2174                                         priv->failed_promise = true;
2175                                         return;
2176                                 }
2177                         }
2178                         if (mo_graph->checkPromise(write, promise)) {
2179                                 priv->failed_promise = true;
2180                                 return;
2181                         }
2182                 }
2183
2184                 //Don't do any lookups twice for the same thread
2185                 if (promise->has_sync_thread(tid))
2186                         continue;
2187
2188                 if (promise->get_write()&&mo_graph->checkReachable(promise->get_write(), write)) {
2189                         if (promise->increment_threads(tid)) {
2190                                 priv->failed_promise = true;
2191                                 return;
2192                         }
2193                 }
2194         }
2195 }
2196
2197 /**
2198  * Compute the set of writes that may break the current pending release
2199  * sequence. This information is extracted from previou release sequence
2200  * calculations.
2201  *
2202  * @param curr The current ModelAction. Must be a release sequence fixup
2203  * action.
2204  */
2205 void ModelChecker::compute_relseq_breakwrites(ModelAction *curr)
2206 {
2207         if (pending_rel_seqs->empty())
2208                 return;
2209
2210         struct release_seq *pending = pending_rel_seqs->back();
2211         for (unsigned int i = 0; i < pending->writes.size(); i++) {
2212                 const ModelAction *write = pending->writes[i];
2213                 curr->get_node()->add_relseq_break(write);
2214         }
2215
2216         /* NULL means don't break the sequence; just synchronize */
2217         curr->get_node()->add_relseq_break(NULL);
2218 }
2219
2220 /**
2221  * Build up an initial set of all past writes that this 'read' action may read
2222  * from. This set is determined by the clock vector's "happens before"
2223  * relationship.
2224  * @param curr is the current ModelAction that we are exploring; it must be a
2225  * 'read' operation.
2226  */
2227 void ModelChecker::build_reads_from_past(ModelAction *curr)
2228 {
2229         std::vector<action_list_t> *thrd_lists = get_safe_ptr_vect_action(obj_thrd_map, curr->get_location());
2230         unsigned int i;
2231         ASSERT(curr->is_read());
2232
2233         ModelAction *last_seq_cst = NULL;
2234
2235         /* Track whether this object has been initialized */
2236         bool initialized = false;
2237
2238         if (curr->is_seqcst()) {
2239                 last_seq_cst = get_last_seq_cst(curr);
2240                 /* We have to at least see the last sequentially consistent write,
2241                          so we are initialized. */
2242                 if (last_seq_cst != NULL)
2243                         initialized = true;
2244         }
2245
2246         /* Iterate over all threads */
2247         for (i = 0; i < thrd_lists->size(); i++) {
2248                 /* Iterate over actions in thread, starting from most recent */
2249                 action_list_t *list = &(*thrd_lists)[i];
2250                 action_list_t::reverse_iterator rit;
2251                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
2252                         ModelAction *act = *rit;
2253
2254                         /* Only consider 'write' actions */
2255                         if (!act->is_write() || act == curr)
2256                                 continue;
2257
2258                         /* Don't consider more than one seq_cst write if we are a seq_cst read. */
2259                         if (!curr->is_seqcst() || (!act->is_seqcst() && (last_seq_cst == NULL || !act->happens_before(last_seq_cst))) || act == last_seq_cst) {
2260                                 if (!curr->get_sleep_flag() || curr->is_seqcst() || sleep_can_read_from(curr, act)) {
2261                                         DEBUG("Adding action to may_read_from:\n");
2262                                         if (DBG_ENABLED()) {
2263                                                 act->print();
2264                                                 curr->print();
2265                                         }
2266                                         curr->get_node()->add_read_from(act);
2267                                 }
2268                         }
2269
2270                         /* Include at most one act per-thread that "happens before" curr */
2271                         if (act->happens_before(curr)) {
2272                                 initialized = true;
2273                                 break;
2274                         }
2275                 }
2276         }
2277
2278         if (!initialized)
2279                 assert_bug("May read from uninitialized atomic");
2280
2281         if (DBG_ENABLED() || !initialized) {
2282                 model_print("Reached read action:\n");
2283                 curr->print();
2284                 model_print("Printing may_read_from\n");
2285                 curr->get_node()->print_may_read_from();
2286                 model_print("End printing may_read_from\n");
2287         }
2288 }
2289
2290 bool ModelChecker::sleep_can_read_from(ModelAction * curr, const ModelAction *write) {
2291         while(true) {
2292                 Node *prevnode=write->get_node()->get_parent();
2293
2294                 bool thread_sleep=prevnode->enabled_status(curr->get_tid())==THREAD_SLEEP_SET;
2295                 if (write->is_release()&&thread_sleep)
2296                         return true;
2297                 if (!write->is_rmw()) {
2298                         return false;
2299                 }
2300                 if (write->get_reads_from()==NULL)
2301                         return true;
2302                 write=write->get_reads_from();
2303         }
2304 }
2305
2306 static void print_list(action_list_t *list, int exec_num = -1)
2307 {
2308         action_list_t::iterator it;
2309
2310         model_print("---------------------------------------------------------------------\n");
2311         if (exec_num >= 0)
2312                 model_print("Execution %d:\n", exec_num);
2313
2314         unsigned int hash=0;
2315
2316         for (it = list->begin(); it != list->end(); it++) {
2317                 (*it)->print();
2318                 hash=hash^(hash<<3)^((*it)->hash());
2319         }
2320         model_print("HASH %u\n", hash);
2321         model_print("---------------------------------------------------------------------\n");
2322 }
2323
2324 #if SUPPORT_MOD_ORDER_DUMP
2325 void ModelChecker::dumpGraph(char *filename) {
2326         char buffer[200];
2327         sprintf(buffer, "%s.dot",filename);
2328         FILE *file=fopen(buffer, "w");
2329         fprintf(file, "digraph %s {\n",filename);
2330         mo_graph->dumpNodes(file);
2331         ModelAction ** thread_array=(ModelAction **)model_calloc(1, sizeof(ModelAction *)*get_num_threads());
2332
2333         for (action_list_t::iterator it = action_trace->begin(); it != action_trace->end(); it++) {
2334                 ModelAction *action=*it;
2335                 if (action->is_read()) {
2336                         fprintf(file, "N%u [label=\"%u, T%u\"];\n", action->get_seq_number(),action->get_seq_number(), action->get_tid());
2337                         if (action->get_reads_from()!=NULL)
2338                                 fprintf(file, "N%u -> N%u[label=\"rf\", color=red];\n", action->get_seq_number(), action->get_reads_from()->get_seq_number());
2339                 }
2340                 if (thread_array[action->get_tid()] != NULL) {
2341                         fprintf(file, "N%u -> N%u[label=\"sb\", color=blue];\n", thread_array[action->get_tid()]->get_seq_number(), action->get_seq_number());
2342                 }
2343
2344                 thread_array[action->get_tid()]=action;
2345         }
2346         fprintf(file,"}\n");
2347         model_free(thread_array);
2348         fclose(file);
2349 }
2350 #endif
2351
2352 /** @brief Prints an execution trace summary. */
2353 void ModelChecker::print_summary() const
2354 {
2355 #if SUPPORT_MOD_ORDER_DUMP
2356         scheduler->print();
2357         char buffername[100];
2358         sprintf(buffername, "exec%04u", stats.num_total);
2359         mo_graph->dumpGraphToFile(buffername);
2360         sprintf(buffername, "graph%04u", stats.num_total);
2361         dumpGraph(buffername);
2362 #endif
2363
2364         if (!isfeasibleprefix())
2365                 model_print("INFEASIBLE EXECUTION!\n");
2366         print_list(action_trace, stats.num_total);
2367         model_print("\n");
2368 }
2369
2370 /**
2371  * Add a Thread to the system for the first time. Should only be called once
2372  * per thread.
2373  * @param t The Thread to add
2374  */
2375 void ModelChecker::add_thread(Thread *t)
2376 {
2377         thread_map->put(id_to_int(t->get_id()), t);
2378         scheduler->add_thread(t);
2379 }
2380
2381 /**
2382  * Removes a thread from the scheduler.
2383  * @param the thread to remove.
2384  */
2385 void ModelChecker::remove_thread(Thread *t)
2386 {
2387         scheduler->remove_thread(t);
2388 }
2389
2390 /**
2391  * @brief Get a Thread reference by its ID
2392  * @param tid The Thread's ID
2393  * @return A Thread reference
2394  */
2395 Thread * ModelChecker::get_thread(thread_id_t tid) const
2396 {
2397         return thread_map->get(id_to_int(tid));
2398 }
2399
2400 /**
2401  * @brief Get a reference to the Thread in which a ModelAction was executed
2402  * @param act The ModelAction
2403  * @return A Thread reference
2404  */
2405 Thread * ModelChecker::get_thread(ModelAction *act) const
2406 {
2407         return get_thread(act->get_tid());
2408 }
2409
2410 /**
2411  * @brief Check if a Thread is currently enabled
2412  * @param t The Thread to check
2413  * @return True if the Thread is currently enabled
2414  */
2415 bool ModelChecker::is_enabled(Thread *t) const
2416 {
2417         return scheduler->is_enabled(t);
2418 }
2419
2420 /**
2421  * @brief Check if a Thread is currently enabled
2422  * @param tid The ID of the Thread to check
2423  * @return True if the Thread is currently enabled
2424  */
2425 bool ModelChecker::is_enabled(thread_id_t tid) const
2426 {
2427         return scheduler->is_enabled(tid);
2428 }
2429
2430 /**
2431  * Switch from a user-context to the "master thread" context (a.k.a. system
2432  * context). This switch is made with the intention of exploring a particular
2433  * model-checking action (described by a ModelAction object). Must be called
2434  * from a user-thread context.
2435  *
2436  * @param act The current action that will be explored. May be NULL only if
2437  * trace is exiting via an assertion (see ModelChecker::set_assert and
2438  * ModelChecker::has_asserted).
2439  * @return Return status from the 'swap' call (i.e., success/fail, 0/-1)
2440  */
2441 int ModelChecker::switch_to_master(ModelAction *act)
2442 {
2443         DBG();
2444         Thread *old = thread_current();
2445         set_current_action(act);
2446         old->set_state(THREAD_READY);
2447         return Thread::swap(old, &system_context);
2448 }
2449
2450 /**
2451  * Takes the next step in the execution, if possible.
2452  * @return Returns true (success) if a step was taken and false otherwise.
2453  */
2454 bool ModelChecker::take_step() {
2455         if (has_asserted())
2456                 return false;
2457
2458         Thread *curr = priv->current_action ? get_thread(priv->current_action) : NULL;
2459         if (curr) {
2460                 if (curr->get_state() == THREAD_READY) {
2461                         ASSERT(priv->current_action);
2462
2463                         priv->nextThread = check_current_action(priv->current_action);
2464                         priv->current_action = NULL;
2465
2466                         if (curr->is_blocked() || curr->is_complete())
2467                                 scheduler->remove_thread(curr);
2468                 } else {
2469                         ASSERT(false);
2470                 }
2471         }
2472         Thread *next = scheduler->next_thread(priv->nextThread);
2473
2474         /* Infeasible -> don't take any more steps */
2475         if (is_infeasible())
2476                 return false;
2477         else if (isfeasibleprefix() && have_bug_reports()) {
2478                 set_assert();
2479                 return false;
2480         }
2481
2482         if (params.bound != 0) {
2483                 if (priv->used_sequence_numbers > params.bound) {
2484                         return false;
2485                 }
2486         }
2487
2488         DEBUG("(%d, %d)\n", curr ? id_to_int(curr->get_id()) : -1,
2489                         next ? id_to_int(next->get_id()) : -1);
2490
2491         /*
2492          * Launch end-of-execution release sequence fixups only when there are:
2493          *
2494          * (1) no more user threads to run (or when execution replay chooses
2495          *     the 'model_thread')
2496          * (2) pending release sequences
2497          * (3) pending assertions (i.e., data races)
2498          * (4) no pending promises
2499          */
2500         if (!pending_rel_seqs->empty() && (!next || next->is_model_thread()) &&
2501                         isfinalfeasible() && !unrealizedraces.empty()) {
2502                 model_print("*** WARNING: release sequence fixup action (%zu pending release seuqences) ***\n",
2503                                 pending_rel_seqs->size());
2504                 ModelAction *fixup = new ModelAction(MODEL_FIXUP_RELSEQ,
2505                                 std::memory_order_seq_cst, NULL, VALUE_NONE,
2506                                 model_thread);
2507                 set_current_action(fixup);
2508                 return true;
2509         }
2510
2511         /* next == NULL -> don't take any more steps */
2512         if (!next)
2513                 return false;
2514
2515         next->set_state(THREAD_RUNNING);
2516
2517         if (next->get_pending() != NULL) {
2518                 /* restart a pending action */
2519                 set_current_action(next->get_pending());
2520                 next->set_pending(NULL);
2521                 next->set_state(THREAD_READY);
2522                 return true;
2523         }
2524
2525         /* Return false only if swap fails with an error */
2526         return (Thread::swap(&system_context, next) == 0);
2527 }
2528
2529 /** Wrapper to run the user's main function, with appropriate arguments */
2530 void user_main_wrapper(void *)
2531 {
2532         user_main(model->params.argc, model->params.argv);
2533 }
2534
2535 /** @brief Run ModelChecker for the user program */
2536 void ModelChecker::run()
2537 {
2538         do {
2539                 thrd_t user_thread;
2540
2541                 /* Start user program */
2542                 add_thread(new Thread(&user_thread, &user_main_wrapper, NULL));
2543
2544                 /* Wait for all threads to complete */
2545                 while (take_step());
2546         } while (next_execution());
2547
2548         print_stats();
2549 }