clean up some DEBUG() messages
[model-checker.git] / model.cc
1 #include <stdio.h>
2 #include <algorithm>
3 #include <mutex>
4 #include <new>
5
6 #include "model.h"
7 #include "action.h"
8 #include "nodestack.h"
9 #include "schedule.h"
10 #include "snapshot-interface.h"
11 #include "common.h"
12 #include "clockvector.h"
13 #include "cyclegraph.h"
14 #include "promise.h"
15 #include "datarace.h"
16 #include "threads-model.h"
17 #include "output.h"
18
19 #define INITIAL_THREAD_ID       0
20
21 ModelChecker *model;
22
23 struct bug_message {
24         bug_message(const char *str) {
25                 const char *fmt = "  [BUG] %s\n";
26                 msg = (char *)snapshot_malloc(strlen(fmt) + strlen(str));
27                 sprintf(msg, fmt, str);
28         }
29         ~bug_message() { if (msg) snapshot_free(msg); }
30
31         char *msg;
32         void print() { model_print("%s", msg); }
33
34         SNAPSHOTALLOC
35 };
36
37 /**
38  * Structure for holding small ModelChecker members that should be snapshotted
39  */
40 struct model_snapshot_members {
41         model_snapshot_members() :
42                 current_action(NULL),
43                 /* First thread created will have id INITIAL_THREAD_ID */
44                 next_thread_id(INITIAL_THREAD_ID),
45                 used_sequence_numbers(0),
46                 next_backtrack(NULL),
47                 bugs(),
48                 stats(),
49                 failed_promise(false),
50                 too_many_reads(false),
51                 bad_synchronization(false),
52                 asserted(false)
53         { }
54
55         ~model_snapshot_members() {
56                 for (unsigned int i = 0; i < bugs.size(); i++)
57                         delete bugs[i];
58                 bugs.clear();
59         }
60
61         ModelAction *current_action;
62         unsigned int next_thread_id;
63         modelclock_t used_sequence_numbers;
64         ModelAction *next_backtrack;
65         std::vector< bug_message *, SnapshotAlloc<bug_message *> > bugs;
66         struct execution_stats stats;
67         bool failed_promise;
68         bool too_many_reads;
69         /** @brief Incorrectly-ordered synchronization was made */
70         bool bad_synchronization;
71         bool asserted;
72
73         SNAPSHOTALLOC
74 };
75
76 /** @brief Constructor */
77 ModelChecker::ModelChecker(struct model_params params) :
78         /* Initialize default scheduler */
79         params(params),
80         scheduler(new Scheduler()),
81         diverge(NULL),
82         earliest_diverge(NULL),
83         action_trace(new action_list_t()),
84         thread_map(new HashTable<int, Thread *, int>()),
85         obj_map(new HashTable<const void *, action_list_t *, uintptr_t, 4>()),
86         lock_waiters_map(new HashTable<const void *, action_list_t *, uintptr_t, 4>()),
87         condvar_waiters_map(new HashTable<const void *, action_list_t *, uintptr_t, 4>()),
88         obj_thrd_map(new HashTable<void *, std::vector<action_list_t> *, uintptr_t, 4 >()),
89         promises(new std::vector< Promise *, SnapshotAlloc<Promise *> >()),
90         futurevalues(new std::vector< struct PendingFutureValue, SnapshotAlloc<struct PendingFutureValue> >()),
91         pending_rel_seqs(new std::vector< struct release_seq *, SnapshotAlloc<struct release_seq *> >()),
92         thrd_last_action(new std::vector< ModelAction *, SnapshotAlloc<ModelAction *> >(1)),
93         thrd_last_fence_release(new std::vector< ModelAction *, SnapshotAlloc<ModelAction *> >()),
94         node_stack(new NodeStack()),
95         priv(new struct model_snapshot_members()),
96         mo_graph(new CycleGraph())
97 {
98         /* Initialize a model-checker thread, for special ModelActions */
99         model_thread = new Thread(get_next_id());
100         thread_map->put(id_to_int(model_thread->get_id()), model_thread);
101 }
102
103 /** @brief Destructor */
104 ModelChecker::~ModelChecker()
105 {
106         for (unsigned int i = 0; i < get_num_threads(); i++)
107                 delete thread_map->get(i);
108         delete thread_map;
109
110         delete obj_thrd_map;
111         delete obj_map;
112         delete lock_waiters_map;
113         delete condvar_waiters_map;
114         delete action_trace;
115
116         for (unsigned int i = 0; i < promises->size(); i++)
117                 delete (*promises)[i];
118         delete promises;
119
120         delete pending_rel_seqs;
121
122         delete thrd_last_action;
123         delete thrd_last_fence_release;
124         delete node_stack;
125         delete scheduler;
126         delete mo_graph;
127         delete priv;
128 }
129
130 static action_list_t * get_safe_ptr_action(HashTable<const void *, action_list_t *, uintptr_t, 4> * hash, void * ptr)
131 {
132         action_list_t *tmp = hash->get(ptr);
133         if (tmp == NULL) {
134                 tmp = new action_list_t();
135                 hash->put(ptr, tmp);
136         }
137         return tmp;
138 }
139
140 static std::vector<action_list_t> * get_safe_ptr_vect_action(HashTable<void *, std::vector<action_list_t> *, uintptr_t, 4> * hash, void * ptr)
141 {
142         std::vector<action_list_t> *tmp = hash->get(ptr);
143         if (tmp == NULL) {
144                 tmp = new std::vector<action_list_t>();
145                 hash->put(ptr, tmp);
146         }
147         return tmp;
148 }
149
150 /**
151  * Restores user program to initial state and resets all model-checker data
152  * structures.
153  */
154 void ModelChecker::reset_to_initial_state()
155 {
156         DEBUG("+++ Resetting to initial state +++\n");
157         node_stack->reset_execution();
158
159         /* Print all model-checker output before rollback */
160         fflush(model_out);
161
162         snapshotObject->backTrackBeforeStep(0);
163 }
164
165 /** @return a thread ID for a new Thread */
166 thread_id_t ModelChecker::get_next_id()
167 {
168         return priv->next_thread_id++;
169 }
170
171 /** @return the number of user threads created during this execution */
172 unsigned int ModelChecker::get_num_threads() const
173 {
174         return priv->next_thread_id;
175 }
176
177 /** @return The currently executing Thread. */
178 Thread * ModelChecker::get_current_thread() const
179 {
180         return scheduler->get_current_thread();
181 }
182
183 /** @return a sequence number for a new ModelAction */
184 modelclock_t ModelChecker::get_next_seq_num()
185 {
186         return ++priv->used_sequence_numbers;
187 }
188
189 Node * ModelChecker::get_curr_node() const
190 {
191         return node_stack->get_head();
192 }
193
194 /**
195  * @brief Choose the next thread to execute.
196  *
197  * This function chooses the next thread that should execute. It can force the
198  * adjacency of read/write portions of a RMW action, force THREAD_CREATE to be
199  * followed by a THREAD_START, or it can enforce execution replay/backtracking.
200  * The model-checker may have no preference regarding the next thread (i.e.,
201  * when exploring a new execution ordering), in which case this will return
202  * NULL.
203  * @param curr The current ModelAction. This action might guide the choice of
204  * next thread.
205  * @return The next thread to run. If the model-checker has no preference, NULL.
206  */
207 Thread * ModelChecker::get_next_thread(ModelAction *curr)
208 {
209         thread_id_t tid;
210
211         if (curr != NULL) {
212                 /* Do not split atomic actions. */
213                 if (curr->is_rmwr())
214                         return thread_current();
215                 /* The THREAD_CREATE action points to the created Thread */
216                 else if (curr->get_type() == THREAD_CREATE)
217                         return (Thread *)curr->get_location();
218         }
219
220         /* Have we completed exploring the preselected path? */
221         if (diverge == NULL)
222                 return NULL;
223
224         /* Else, we are trying to replay an execution */
225         ModelAction *next = node_stack->get_next()->get_action();
226
227         if (next == diverge) {
228                 if (earliest_diverge == NULL || *diverge < *earliest_diverge)
229                         earliest_diverge = diverge;
230
231                 Node *nextnode = next->get_node();
232                 Node *prevnode = nextnode->get_parent();
233                 scheduler->update_sleep_set(prevnode);
234
235                 /* Reached divergence point */
236                 if (nextnode->increment_misc()) {
237                         /* The next node will try to satisfy a different misc_index values. */
238                         tid = next->get_tid();
239                         node_stack->pop_restofstack(2);
240                 } else if (nextnode->increment_promise()) {
241                         /* The next node will try to satisfy a different set of promises. */
242                         tid = next->get_tid();
243                         node_stack->pop_restofstack(2);
244                 } else if (nextnode->increment_read_from()) {
245                         /* The next node will read from a different value. */
246                         tid = next->get_tid();
247                         node_stack->pop_restofstack(2);
248                 } else if (nextnode->increment_future_value()) {
249                         /* The next node will try to read from a different future value. */
250                         tid = next->get_tid();
251                         node_stack->pop_restofstack(2);
252                 } else if (nextnode->increment_relseq_break()) {
253                         /* The next node will try to resolve a release sequence differently */
254                         tid = next->get_tid();
255                         node_stack->pop_restofstack(2);
256                 } else {
257                         ASSERT(prevnode);
258                         /* Make a different thread execute for next step */
259                         scheduler->add_sleep(get_thread(next->get_tid()));
260                         tid = prevnode->get_next_backtrack();
261                         /* Make sure the backtracked thread isn't sleeping. */
262                         node_stack->pop_restofstack(1);
263                         if (diverge == earliest_diverge) {
264                                 earliest_diverge = prevnode->get_action();
265                         }
266                 }
267                 /* The correct sleep set is in the parent node. */
268                 execute_sleep_set();
269
270                 DEBUG("*** Divergence point ***\n");
271
272                 diverge = NULL;
273         } else {
274                 tid = next->get_tid();
275         }
276         DEBUG("*** ModelChecker chose next thread = %d ***\n", id_to_int(tid));
277         ASSERT(tid != THREAD_ID_T_NONE);
278         return thread_map->get(id_to_int(tid));
279 }
280
281 /**
282  * We need to know what the next actions of all threads in the sleep
283  * set will be.  This method computes them and stores the actions at
284  * the corresponding thread object's pending action.
285  */
286
287 void ModelChecker::execute_sleep_set()
288 {
289         for (unsigned int i = 0; i < get_num_threads(); i++) {
290                 thread_id_t tid = int_to_id(i);
291                 Thread *thr = get_thread(tid);
292                 if (scheduler->is_sleep_set(thr) && thr->get_pending() == NULL) {
293                         thr->set_state(THREAD_RUNNING);
294                         scheduler->next_thread(thr);
295                         Thread::swap(&system_context, thr);
296                         priv->current_action->set_sleep_flag();
297                         thr->set_pending(priv->current_action);
298                 }
299         }
300 }
301
302 void ModelChecker::wake_up_sleeping_actions(ModelAction *curr)
303 {
304         for (unsigned int i = 0; i < get_num_threads(); i++) {
305                 Thread *thr = get_thread(int_to_id(i));
306                 if (scheduler->is_sleep_set(thr)) {
307                         ModelAction *pending_act = thr->get_pending();
308                         if ((!curr->is_rmwr()) && pending_act->could_synchronize_with(curr))
309                                 //Remove this thread from sleep set
310                                 scheduler->remove_sleep(thr);
311                 }
312         }
313 }
314
315 /** @brief Alert the model-checker that an incorrectly-ordered
316  * synchronization was made */
317 void ModelChecker::set_bad_synchronization()
318 {
319         priv->bad_synchronization = true;
320 }
321
322 bool ModelChecker::has_asserted() const
323 {
324         return priv->asserted;
325 }
326
327 void ModelChecker::set_assert()
328 {
329         priv->asserted = true;
330 }
331
332 /**
333  * Check if we are in a deadlock. Should only be called at the end of an
334  * execution, although it should not give false positives in the middle of an
335  * execution (there should be some ENABLED thread).
336  *
337  * @return True if program is in a deadlock; false otherwise
338  */
339 bool ModelChecker::is_deadlocked() const
340 {
341         bool blocking_threads = false;
342         for (unsigned int i = 0; i < get_num_threads(); i++) {
343                 thread_id_t tid = int_to_id(i);
344                 if (is_enabled(tid))
345                         return false;
346                 Thread *t = get_thread(tid);
347                 if (!t->is_model_thread() && t->get_pending())
348                         blocking_threads = true;
349         }
350         return blocking_threads;
351 }
352
353 /**
354  * Check if this is a complete execution. That is, have all thread completed
355  * execution (rather than exiting because sleep sets have forced a redundant
356  * execution).
357  *
358  * @return True if the execution is complete.
359  */
360 bool ModelChecker::is_complete_execution() const
361 {
362         for (unsigned int i = 0; i < get_num_threads(); i++)
363                 if (is_enabled(int_to_id(i)))
364                         return false;
365         return true;
366 }
367
368 /**
369  * @brief Assert a bug in the executing program.
370  *
371  * Use this function to assert any sort of bug in the user program. If the
372  * current trace is feasible (actually, a prefix of some feasible execution),
373  * then this execution will be aborted, printing the appropriate message. If
374  * the current trace is not yet feasible, the error message will be stashed and
375  * printed if the execution ever becomes feasible.
376  *
377  * @param msg Descriptive message for the bug (do not include newline char)
378  * @return True if bug is immediately-feasible
379  */
380 bool ModelChecker::assert_bug(const char *msg)
381 {
382         priv->bugs.push_back(new bug_message(msg));
383
384         if (isfeasibleprefix()) {
385                 set_assert();
386                 return true;
387         }
388         return false;
389 }
390
391 /**
392  * @brief Assert a bug in the executing program, asserted by a user thread
393  * @see ModelChecker::assert_bug
394  * @param msg Descriptive message for the bug (do not include newline char)
395  */
396 void ModelChecker::assert_user_bug(const char *msg)
397 {
398         /* If feasible bug, bail out now */
399         if (assert_bug(msg))
400                 switch_to_master(NULL);
401 }
402
403 /** @return True, if any bugs have been reported for this execution */
404 bool ModelChecker::have_bug_reports() const
405 {
406         return priv->bugs.size() != 0;
407 }
408
409 /** @brief Print bug report listing for this execution (if any bugs exist) */
410 void ModelChecker::print_bugs() const
411 {
412         if (have_bug_reports()) {
413                 model_print("Bug report: %zu bug%s detected\n",
414                                 priv->bugs.size(),
415                                 priv->bugs.size() > 1 ? "s" : "");
416                 for (unsigned int i = 0; i < priv->bugs.size(); i++)
417                         priv->bugs[i]->print();
418         }
419 }
420
421 /**
422  * @brief Record end-of-execution stats
423  *
424  * Must be run when exiting an execution. Records various stats.
425  * @see struct execution_stats
426  */
427 void ModelChecker::record_stats()
428 {
429         stats.num_total++;
430         if (!isfeasibleprefix())
431                 stats.num_infeasible++;
432         else if (have_bug_reports())
433                 stats.num_buggy_executions++;
434         else if (is_complete_execution())
435                 stats.num_complete++;
436         else
437                 stats.num_redundant++;
438 }
439
440 /** @brief Print execution stats */
441 void ModelChecker::print_stats() const
442 {
443         model_print("Number of complete, bug-free executions: %d\n", stats.num_complete);
444         model_print("Number of redundant executions: %d\n", stats.num_redundant);
445         model_print("Number of buggy executions: %d\n", stats.num_buggy_executions);
446         model_print("Number of infeasible executions: %d\n", stats.num_infeasible);
447         model_print("Total executions: %d\n", stats.num_total);
448         model_print("Total nodes created: %d\n", node_stack->get_total_nodes());
449 }
450
451 /**
452  * @brief End-of-exeuction print
453  * @param printbugs Should any existing bugs be printed?
454  */
455 void ModelChecker::print_execution(bool printbugs) const
456 {
457         print_program_output();
458
459         if (DBG_ENABLED() || params.verbose) {
460                 model_print("Earliest divergence point since last feasible execution:\n");
461                 if (earliest_diverge)
462                         earliest_diverge->print();
463                 else
464                         model_print("(Not set)\n");
465
466                 model_print("\n");
467                 print_stats();
468         }
469
470         /* Don't print invalid bugs */
471         if (printbugs)
472                 print_bugs();
473
474         model_print("\n");
475         print_summary();
476 }
477
478 /**
479  * Queries the model-checker for more executions to explore and, if one
480  * exists, resets the model-checker state to execute a new execution.
481  *
482  * @return If there are more executions to explore, return true. Otherwise,
483  * return false.
484  */
485 bool ModelChecker::next_execution()
486 {
487         DBG();
488         /* Is this execution a feasible execution that's worth bug-checking? */
489         bool complete = isfeasibleprefix() && (is_complete_execution() ||
490                         have_bug_reports());
491
492         /* End-of-execution bug checks */
493         if (complete) {
494                 if (is_deadlocked())
495                         assert_bug("Deadlock detected");
496
497                 checkDataRaces();
498         }
499
500         record_stats();
501
502         /* Output */
503         if (DBG_ENABLED() || params.verbose || (complete && have_bug_reports()))
504                 print_execution(complete);
505         else
506                 clear_program_output();
507
508         if (complete)
509                 earliest_diverge = NULL;
510
511         if ((diverge = get_next_backtrack()) == NULL)
512                 return false;
513
514         if (DBG_ENABLED()) {
515                 model_print("Next execution will diverge at:\n");
516                 diverge->print();
517         }
518
519         reset_to_initial_state();
520         return true;
521 }
522
523 ModelAction * ModelChecker::get_last_conflict(ModelAction *act)
524 {
525         switch (act->get_type()) {
526         case ATOMIC_FENCE:
527         case ATOMIC_READ:
528         case ATOMIC_WRITE:
529         case ATOMIC_RMW: {
530                 /* Optimization: relaxed operations don't need backtracking */
531                 if (act->is_relaxed())
532                         return NULL;
533                 /* linear search: from most recent to oldest */
534                 action_list_t *list = get_safe_ptr_action(obj_map, act->get_location());
535                 action_list_t::reverse_iterator rit;
536                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
537                         ModelAction *prev = *rit;
538                         if (prev->could_synchronize_with(act))
539                                 return prev;
540                 }
541                 break;
542         }
543         case ATOMIC_LOCK:
544         case ATOMIC_TRYLOCK: {
545                 /* linear search: from most recent to oldest */
546                 action_list_t *list = get_safe_ptr_action(obj_map, act->get_location());
547                 action_list_t::reverse_iterator rit;
548                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
549                         ModelAction *prev = *rit;
550                         if (act->is_conflicting_lock(prev))
551                                 return prev;
552                 }
553                 break;
554         }
555         case ATOMIC_UNLOCK: {
556                 /* linear search: from most recent to oldest */
557                 action_list_t *list = get_safe_ptr_action(obj_map, act->get_location());
558                 action_list_t::reverse_iterator rit;
559                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
560                         ModelAction *prev = *rit;
561                         if (!act->same_thread(prev) && prev->is_failed_trylock())
562                                 return prev;
563                 }
564                 break;
565         }
566         case ATOMIC_WAIT: {
567                 /* linear search: from most recent to oldest */
568                 action_list_t *list = get_safe_ptr_action(obj_map, act->get_location());
569                 action_list_t::reverse_iterator rit;
570                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
571                         ModelAction *prev = *rit;
572                         if (!act->same_thread(prev) && prev->is_failed_trylock())
573                                 return prev;
574                         if (!act->same_thread(prev) && prev->is_notify())
575                                 return prev;
576                 }
577                 break;
578         }
579
580         case ATOMIC_NOTIFY_ALL:
581         case ATOMIC_NOTIFY_ONE: {
582                 /* linear search: from most recent to oldest */
583                 action_list_t *list = get_safe_ptr_action(obj_map, act->get_location());
584                 action_list_t::reverse_iterator rit;
585                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
586                         ModelAction *prev = *rit;
587                         if (!act->same_thread(prev) && prev->is_wait())
588                                 return prev;
589                 }
590                 break;
591         }
592         default:
593                 break;
594         }
595         return NULL;
596 }
597
598 /** This method finds backtracking points where we should try to
599  * reorder the parameter ModelAction against.
600  *
601  * @param the ModelAction to find backtracking points for.
602  */
603 void ModelChecker::set_backtracking(ModelAction *act)
604 {
605         Thread *t = get_thread(act);
606         ModelAction *prev = get_last_conflict(act);
607         if (prev == NULL)
608                 return;
609
610         Node *node = prev->get_node()->get_parent();
611
612         int low_tid, high_tid;
613         if (node->is_enabled(t)) {
614                 low_tid = id_to_int(act->get_tid());
615                 high_tid = low_tid + 1;
616         } else {
617                 low_tid = 0;
618                 high_tid = get_num_threads();
619         }
620
621         for (int i = low_tid; i < high_tid; i++) {
622                 thread_id_t tid = int_to_id(i);
623
624                 /* Make sure this thread can be enabled here. */
625                 if (i >= node->get_num_threads())
626                         break;
627
628                 /* Don't backtrack into a point where the thread is disabled or sleeping. */
629                 if (node->enabled_status(tid) != THREAD_ENABLED)
630                         continue;
631
632                 /* Check if this has been explored already */
633                 if (node->has_been_explored(tid))
634                         continue;
635
636                 /* See if fairness allows */
637                 if (model->params.fairwindow != 0 && !node->has_priority(tid)) {
638                         bool unfair = false;
639                         for (int t = 0; t < node->get_num_threads(); t++) {
640                                 thread_id_t tother = int_to_id(t);
641                                 if (node->is_enabled(tother) && node->has_priority(tother)) {
642                                         unfair = true;
643                                         break;
644                                 }
645                         }
646                         if (unfair)
647                                 continue;
648                 }
649                 /* Cache the latest backtracking point */
650                 set_latest_backtrack(prev);
651
652                 /* If this is a new backtracking point, mark the tree */
653                 if (!node->set_backtrack(tid))
654                         continue;
655                 DEBUG("Setting backtrack: conflict = %d, instead tid = %d\n",
656                                         id_to_int(prev->get_tid()),
657                                         id_to_int(t->get_id()));
658                 if (DBG_ENABLED()) {
659                         prev->print();
660                         act->print();
661                 }
662         }
663 }
664
665 /**
666  * @brief Cache the a backtracking point as the "most recent", if eligible
667  *
668  * Note that this does not prepare the NodeStack for this backtracking
669  * operation, it only caches the action on a per-execution basis
670  *
671  * @param act The operation at which we should explore a different next action
672  * (i.e., backtracking point)
673  * @return True, if this action is now the most recent backtracking point;
674  * false otherwise
675  */
676 bool ModelChecker::set_latest_backtrack(ModelAction *act)
677 {
678         if (!priv->next_backtrack || *act > *priv->next_backtrack) {
679                 priv->next_backtrack = act;
680                 return true;
681         }
682         return false;
683 }
684
685 /**
686  * Returns last backtracking point. The model checker will explore a different
687  * path for this point in the next execution.
688  * @return The ModelAction at which the next execution should diverge.
689  */
690 ModelAction * ModelChecker::get_next_backtrack()
691 {
692         ModelAction *next = priv->next_backtrack;
693         priv->next_backtrack = NULL;
694         return next;
695 }
696
697 /**
698  * Processes a read or rmw model action.
699  * @param curr is the read model action to process.
700  * @param second_part_of_rmw is boolean that is true is this is the second action of a rmw.
701  * @return True if processing this read updates the mo_graph.
702  */
703 bool ModelChecker::process_read(ModelAction *curr, bool second_part_of_rmw)
704 {
705         uint64_t value = VALUE_NONE;
706         bool updated = false;
707         while (true) {
708                 const ModelAction *reads_from = curr->get_node()->get_read_from();
709                 if (reads_from != NULL) {
710                         mo_graph->startChanges();
711
712                         value = reads_from->get_value();
713                         bool r_status = false;
714
715                         if (!second_part_of_rmw) {
716                                 check_recency(curr, reads_from);
717                                 r_status = r_modification_order(curr, reads_from);
718                         }
719
720
721                         if (!second_part_of_rmw && is_infeasible() && (curr->get_node()->increment_read_from() || curr->get_node()->increment_future_value())) {
722                                 mo_graph->rollbackChanges();
723                                 priv->too_many_reads = false;
724                                 continue;
725                         }
726
727                         read_from(curr, reads_from);
728                         mo_graph->commitChanges();
729                         mo_check_promises(curr->get_tid(), reads_from);
730
731                         updated |= r_status;
732                 } else if (!second_part_of_rmw) {
733                         /* Read from future value */
734                         value = curr->get_node()->get_future_value();
735                         modelclock_t expiration = curr->get_node()->get_future_value_expiration();
736                         curr->set_read_from(NULL);
737                         Promise *valuepromise = new Promise(curr, value, expiration);
738                         promises->push_back(valuepromise);
739                 }
740                 get_thread(curr)->set_return_value(value);
741                 return updated;
742         }
743 }
744
745 /**
746  * Processes a lock, trylock, or unlock model action.  @param curr is
747  * the read model action to process.
748  *
749  * The try lock operation checks whether the lock is taken.  If not,
750  * it falls to the normal lock operation case.  If so, it returns
751  * fail.
752  *
753  * The lock operation has already been checked that it is enabled, so
754  * it just grabs the lock and synchronizes with the previous unlock.
755  *
756  * The unlock operation has to re-enable all of the threads that are
757  * waiting on the lock.
758  *
759  * @return True if synchronization was updated; false otherwise
760  */
761 bool ModelChecker::process_mutex(ModelAction *curr)
762 {
763         std::mutex *mutex = NULL;
764         struct std::mutex_state *state = NULL;
765
766         if (curr->is_trylock() || curr->is_lock() || curr->is_unlock()) {
767                 mutex = (std::mutex *)curr->get_location();
768                 state = mutex->get_state();
769         } else if (curr->is_wait()) {
770                 mutex = (std::mutex *)curr->get_value();
771                 state = mutex->get_state();
772         }
773
774         switch (curr->get_type()) {
775         case ATOMIC_TRYLOCK: {
776                 bool success = !state->islocked;
777                 curr->set_try_lock(success);
778                 if (!success) {
779                         get_thread(curr)->set_return_value(0);
780                         break;
781                 }
782                 get_thread(curr)->set_return_value(1);
783         }
784                 //otherwise fall into the lock case
785         case ATOMIC_LOCK: {
786                 if (curr->get_cv()->getClock(state->alloc_tid) <= state->alloc_clock)
787                         assert_bug("Lock access before initialization");
788                 state->islocked = true;
789                 ModelAction *unlock = get_last_unlock(curr);
790                 //synchronize with the previous unlock statement
791                 if (unlock != NULL) {
792                         curr->synchronize_with(unlock);
793                         return true;
794                 }
795                 break;
796         }
797         case ATOMIC_UNLOCK: {
798                 //unlock the lock
799                 state->islocked = false;
800                 //wake up the other threads
801                 action_list_t *waiters = get_safe_ptr_action(lock_waiters_map, curr->get_location());
802                 //activate all the waiting threads
803                 for (action_list_t::iterator rit = waiters->begin(); rit != waiters->end(); rit++) {
804                         scheduler->wake(get_thread(*rit));
805                 }
806                 waiters->clear();
807                 break;
808         }
809         case ATOMIC_WAIT: {
810                 //unlock the lock
811                 state->islocked = false;
812                 //wake up the other threads
813                 action_list_t *waiters = get_safe_ptr_action(lock_waiters_map, (void *) curr->get_value());
814                 //activate all the waiting threads
815                 for (action_list_t::iterator rit = waiters->begin(); rit != waiters->end(); rit++) {
816                         scheduler->wake(get_thread(*rit));
817                 }
818                 waiters->clear();
819                 //check whether we should go to sleep or not...simulate spurious failures
820                 if (curr->get_node()->get_misc() == 0) {
821                         get_safe_ptr_action(condvar_waiters_map, curr->get_location())->push_back(curr);
822                         //disable us
823                         scheduler->sleep(get_current_thread());
824                 }
825                 break;
826         }
827         case ATOMIC_NOTIFY_ALL: {
828                 action_list_t *waiters = get_safe_ptr_action(condvar_waiters_map, curr->get_location());
829                 //activate all the waiting threads
830                 for (action_list_t::iterator rit = waiters->begin(); rit != waiters->end(); rit++) {
831                         scheduler->wake(get_thread(*rit));
832                 }
833                 waiters->clear();
834                 break;
835         }
836         case ATOMIC_NOTIFY_ONE: {
837                 action_list_t *waiters = get_safe_ptr_action(condvar_waiters_map, curr->get_location());
838                 int wakeupthread = curr->get_node()->get_misc();
839                 action_list_t::iterator it = waiters->begin();
840                 advance(it, wakeupthread);
841                 scheduler->wake(get_thread(*it));
842                 waiters->erase(it);
843                 break;
844         }
845
846         default:
847                 ASSERT(0);
848         }
849         return false;
850 }
851
852 /**
853  * Process a write ModelAction
854  * @param curr The ModelAction to process
855  * @return True if the mo_graph was updated or promises were resolved
856  */
857 bool ModelChecker::process_write(ModelAction *curr)
858 {
859         bool updated_mod_order = w_modification_order(curr);
860         bool updated_promises = resolve_promises(curr);
861
862         if (promises->size() == 0) {
863                 for (unsigned int i = 0; i < futurevalues->size(); i++) {
864                         struct PendingFutureValue pfv = (*futurevalues)[i];
865                         //Do more ambitious checks now that mo is more complete
866                         if (mo_may_allow(pfv.writer, pfv.act) &&
867                                         pfv.act->get_node()->add_future_value(pfv.writer->get_value(), pfv.writer->get_seq_number() + params.maxfuturedelay))
868                                 set_latest_backtrack(pfv.act);
869                 }
870                 futurevalues->resize(0);
871         }
872
873         mo_graph->commitChanges();
874         mo_check_promises(curr->get_tid(), curr);
875
876         get_thread(curr)->set_return_value(VALUE_NONE);
877         return updated_mod_order || updated_promises;
878 }
879
880 /**
881  * Process a fence ModelAction
882  * @param curr The ModelAction to process
883  * @return True if synchronization was updated
884  */
885 bool ModelChecker::process_fence(ModelAction *curr)
886 {
887         /*
888          * fence-relaxed: no-op
889          * fence-release: only log the occurence (not in this function), for
890          *   use in later synchronization
891          * fence-acquire (this function): search for hypothetical release
892          *   sequences
893          */
894         bool updated = false;
895         if (curr->is_acquire()) {
896                 action_list_t *list = action_trace;
897                 action_list_t::reverse_iterator rit;
898                 /* Find X : is_read(X) && X --sb-> curr */
899                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
900                         ModelAction *act = *rit;
901                         if (act == curr)
902                                 continue;
903                         if (act->get_tid() != curr->get_tid())
904                                 continue;
905                         /* Stop at the beginning of the thread */
906                         if (act->is_thread_start())
907                                 break;
908                         /* Stop once we reach a prior fence-acquire */
909                         if (act->is_fence() && act->is_acquire())
910                                 break;
911                         if (!act->is_read())
912                                 continue;
913                         /* read-acquire will find its own release sequences */
914                         if (act->is_acquire())
915                                 continue;
916
917                         /* Establish hypothetical release sequences */
918                         rel_heads_list_t release_heads;
919                         get_release_seq_heads(curr, act, &release_heads);
920                         for (unsigned int i = 0; i < release_heads.size(); i++)
921                                 if (!curr->synchronize_with(release_heads[i]))
922                                         set_bad_synchronization();
923                         if (release_heads.size() != 0)
924                                 updated = true;
925                 }
926         }
927         return updated;
928 }
929
930 /**
931  * @brief Process the current action for thread-related activity
932  *
933  * Performs current-action processing for a THREAD_* ModelAction. Proccesses
934  * may include setting Thread status, completing THREAD_FINISH/THREAD_JOIN
935  * synchronization, etc.  This function is a no-op for non-THREAD actions
936  * (e.g., ATOMIC_{READ,WRITE,RMW,LOCK}, etc.)
937  *
938  * @param curr The current action
939  * @return True if synchronization was updated or a thread completed
940  */
941 bool ModelChecker::process_thread_action(ModelAction *curr)
942 {
943         bool updated = false;
944
945         switch (curr->get_type()) {
946         case THREAD_CREATE: {
947                 Thread *th = (Thread *)curr->get_location();
948                 th->set_creation(curr);
949                 break;
950         }
951         case THREAD_JOIN: {
952                 Thread *blocking = (Thread *)curr->get_location();
953                 ModelAction *act = get_last_action(blocking->get_id());
954                 curr->synchronize_with(act);
955                 updated = true; /* trigger rel-seq checks */
956                 break;
957         }
958         case THREAD_FINISH: {
959                 Thread *th = get_thread(curr);
960                 while (!th->wait_list_empty()) {
961                         ModelAction *act = th->pop_wait_list();
962                         scheduler->wake(get_thread(act));
963                 }
964                 th->complete();
965                 updated = true; /* trigger rel-seq checks */
966                 break;
967         }
968         case THREAD_START: {
969                 check_promises(curr->get_tid(), NULL, curr->get_cv());
970                 break;
971         }
972         default:
973                 break;
974         }
975
976         return updated;
977 }
978
979 /**
980  * @brief Process the current action for release sequence fixup activity
981  *
982  * Performs model-checker release sequence fixups for the current action,
983  * forcing a single pending release sequence to break (with a given, potential
984  * "loose" write) or to complete (i.e., synchronize). If a pending release
985  * sequence forms a complete release sequence, then we must perform the fixup
986  * synchronization, mo_graph additions, etc.
987  *
988  * @param curr The current action; must be a release sequence fixup action
989  * @param work_queue The work queue to which to add work items as they are
990  * generated
991  */
992 void ModelChecker::process_relseq_fixup(ModelAction *curr, work_queue_t *work_queue)
993 {
994         const ModelAction *write = curr->get_node()->get_relseq_break();
995         struct release_seq *sequence = pending_rel_seqs->back();
996         pending_rel_seqs->pop_back();
997         ASSERT(sequence);
998         ModelAction *acquire = sequence->acquire;
999         const ModelAction *rf = sequence->rf;
1000         const ModelAction *release = sequence->release;
1001         ASSERT(acquire);
1002         ASSERT(release);
1003         ASSERT(rf);
1004         ASSERT(release->same_thread(rf));
1005
1006         if (write == NULL) {
1007                 /**
1008                  * @todo Forcing a synchronization requires that we set
1009                  * modification order constraints. For instance, we can't allow
1010                  * a fixup sequence in which two separate read-acquire
1011                  * operations read from the same sequence, where the first one
1012                  * synchronizes and the other doesn't. Essentially, we can't
1013                  * allow any writes to insert themselves between 'release' and
1014                  * 'rf'
1015                  */
1016
1017                 /* Must synchronize */
1018                 if (!acquire->synchronize_with(release)) {
1019                         set_bad_synchronization();
1020                         return;
1021                 }
1022                 /* Re-check all pending release sequences */
1023                 work_queue->push_back(CheckRelSeqWorkEntry(NULL));
1024                 /* Re-check act for mo_graph edges */
1025                 work_queue->push_back(MOEdgeWorkEntry(acquire));
1026
1027                 /* propagate synchronization to later actions */
1028                 action_list_t::reverse_iterator rit = action_trace->rbegin();
1029                 for (; (*rit) != acquire; rit++) {
1030                         ModelAction *propagate = *rit;
1031                         if (acquire->happens_before(propagate)) {
1032                                 propagate->synchronize_with(acquire);
1033                                 /* Re-check 'propagate' for mo_graph edges */
1034                                 work_queue->push_back(MOEdgeWorkEntry(propagate));
1035                         }
1036                 }
1037         } else {
1038                 /* Break release sequence with new edges:
1039                  *   release --mo--> write --mo--> rf */
1040                 mo_graph->addEdge(release, write);
1041                 mo_graph->addEdge(write, rf);
1042         }
1043
1044         /* See if we have realized a data race */
1045         checkDataRaces();
1046 }
1047
1048 /**
1049  * Initialize the current action by performing one or more of the following
1050  * actions, as appropriate: merging RMWR and RMWC/RMW actions, stepping forward
1051  * in the NodeStack, manipulating backtracking sets, allocating and
1052  * initializing clock vectors, and computing the promises to fulfill.
1053  *
1054  * @param curr The current action, as passed from the user context; may be
1055  * freed/invalidated after the execution of this function, with a different
1056  * action "returned" its place (pass-by-reference)
1057  * @return True if curr is a newly-explored action; false otherwise
1058  */
1059 bool ModelChecker::initialize_curr_action(ModelAction **curr)
1060 {
1061         ModelAction *newcurr;
1062
1063         if ((*curr)->is_rmwc() || (*curr)->is_rmw()) {
1064                 newcurr = process_rmw(*curr);
1065                 delete *curr;
1066
1067                 if (newcurr->is_rmw())
1068                         compute_promises(newcurr);
1069
1070                 *curr = newcurr;
1071                 return false;
1072         }
1073
1074         (*curr)->set_seq_number(get_next_seq_num());
1075
1076         newcurr = node_stack->explore_action(*curr, scheduler->get_enabled_array());
1077         if (newcurr) {
1078                 /* First restore type and order in case of RMW operation */
1079                 if ((*curr)->is_rmwr())
1080                         newcurr->copy_typeandorder(*curr);
1081
1082                 ASSERT((*curr)->get_location() == newcurr->get_location());
1083                 newcurr->copy_from_new(*curr);
1084
1085                 /* Discard duplicate ModelAction; use action from NodeStack */
1086                 delete *curr;
1087
1088                 /* Always compute new clock vector */
1089                 newcurr->create_cv(get_parent_action(newcurr->get_tid()));
1090
1091                 *curr = newcurr;
1092                 return false; /* Action was explored previously */
1093         } else {
1094                 newcurr = *curr;
1095
1096                 /* Always compute new clock vector */
1097                 newcurr->create_cv(get_parent_action(newcurr->get_tid()));
1098
1099                 /* Assign most recent release fence */
1100                 newcurr->set_last_fence_release(get_last_fence_release(newcurr->get_tid()));
1101
1102                 /*
1103                  * Perform one-time actions when pushing new ModelAction onto
1104                  * NodeStack
1105                  */
1106                 if (newcurr->is_write())
1107                         compute_promises(newcurr);
1108                 else if (newcurr->is_relseq_fixup())
1109                         compute_relseq_breakwrites(newcurr);
1110                 else if (newcurr->is_wait())
1111                         newcurr->get_node()->set_misc_max(2);
1112                 else if (newcurr->is_notify_one()) {
1113                         newcurr->get_node()->set_misc_max(get_safe_ptr_action(condvar_waiters_map, newcurr->get_location())->size());
1114                 }
1115                 return true; /* This was a new ModelAction */
1116         }
1117 }
1118
1119 /**
1120  * @brief Establish reads-from relation between two actions
1121  *
1122  * Perform basic operations involved with establishing a concrete rf relation,
1123  * including setting the ModelAction data and checking for release sequences.
1124  *
1125  * @param act The action that is reading (must be a read)
1126  * @param rf The action from which we are reading (must be a write)
1127  *
1128  * @return True if this read established synchronization
1129  */
1130 bool ModelChecker::read_from(ModelAction *act, const ModelAction *rf)
1131 {
1132         act->set_read_from(rf);
1133         if (rf != NULL && act->is_acquire()) {
1134                 rel_heads_list_t release_heads;
1135                 get_release_seq_heads(act, act, &release_heads);
1136                 int num_heads = release_heads.size();
1137                 for (unsigned int i = 0; i < release_heads.size(); i++)
1138                         if (!act->synchronize_with(release_heads[i])) {
1139                                 set_bad_synchronization();
1140                                 num_heads--;
1141                         }
1142                 return num_heads > 0;
1143         }
1144         return false;
1145 }
1146
1147 /**
1148  * @brief Check whether a model action is enabled.
1149  *
1150  * Checks whether a lock or join operation would be successful (i.e., is the
1151  * lock already locked, or is the joined thread already complete). If not, put
1152  * the action in a waiter list.
1153  *
1154  * @param curr is the ModelAction to check whether it is enabled.
1155  * @return a bool that indicates whether the action is enabled.
1156  */
1157 bool ModelChecker::check_action_enabled(ModelAction *curr) {
1158         if (curr->is_lock()) {
1159                 std::mutex *lock = (std::mutex *)curr->get_location();
1160                 struct std::mutex_state *state = lock->get_state();
1161                 if (state->islocked) {
1162                         //Stick the action in the appropriate waiting queue
1163                         get_safe_ptr_action(lock_waiters_map, curr->get_location())->push_back(curr);
1164                         return false;
1165                 }
1166         } else if (curr->get_type() == THREAD_JOIN) {
1167                 Thread *blocking = (Thread *)curr->get_location();
1168                 if (!blocking->is_complete()) {
1169                         blocking->push_wait_list(curr);
1170                         return false;
1171                 }
1172         }
1173
1174         return true;
1175 }
1176
1177 /**
1178  * Stores the ModelAction for the current thread action.  Call this
1179  * immediately before switching from user- to system-context to pass
1180  * data between them.
1181  * @param act The ModelAction created by the user-thread action
1182  */
1183 void ModelChecker::set_current_action(ModelAction *act) {
1184         priv->current_action = act;
1185 }
1186
1187 /**
1188  * This is the heart of the model checker routine. It performs model-checking
1189  * actions corresponding to a given "current action." Among other processes, it
1190  * calculates reads-from relationships, updates synchronization clock vectors,
1191  * forms a memory_order constraints graph, and handles replay/backtrack
1192  * execution when running permutations of previously-observed executions.
1193  *
1194  * @param curr The current action to process
1195  * @return The next Thread that must be executed. May be NULL if ModelChecker
1196  * makes no choice (e.g., according to replay execution, combining RMW actions,
1197  * etc.)
1198  */
1199 Thread * ModelChecker::check_current_action(ModelAction *curr)
1200 {
1201         ASSERT(curr);
1202         bool second_part_of_rmw = curr->is_rmwc() || curr->is_rmw();
1203
1204         if (!check_action_enabled(curr)) {
1205                 /* Make the execution look like we chose to run this action
1206                  * much later, when a lock/join can succeed */
1207                 get_current_thread()->set_pending(curr);
1208                 scheduler->sleep(get_current_thread());
1209                 return get_next_thread(NULL);
1210         }
1211
1212         bool newly_explored = initialize_curr_action(&curr);
1213
1214         DBG();
1215         if (DBG_ENABLED())
1216                 curr->print();
1217
1218         wake_up_sleeping_actions(curr);
1219
1220         /* Add the action to lists before any other model-checking tasks */
1221         if (!second_part_of_rmw)
1222                 add_action_to_lists(curr);
1223
1224         /* Build may_read_from set for newly-created actions */
1225         if (newly_explored && curr->is_read())
1226                 build_reads_from_past(curr);
1227
1228         /* Initialize work_queue with the "current action" work */
1229         work_queue_t work_queue(1, CheckCurrWorkEntry(curr));
1230         while (!work_queue.empty() && !has_asserted()) {
1231                 WorkQueueEntry work = work_queue.front();
1232                 work_queue.pop_front();
1233
1234                 switch (work.type) {
1235                 case WORK_CHECK_CURR_ACTION: {
1236                         ModelAction *act = work.action;
1237                         bool update = false; /* update this location's release seq's */
1238                         bool update_all = false; /* update all release seq's */
1239
1240                         if (process_thread_action(curr))
1241                                 update_all = true;
1242
1243                         if (act->is_read() && process_read(act, second_part_of_rmw))
1244                                 update = true;
1245
1246                         if (act->is_write() && process_write(act))
1247                                 update = true;
1248
1249                         if (act->is_fence() && process_fence(act))
1250                                 update_all = true;
1251
1252                         if (act->is_mutex_op() && process_mutex(act))
1253                                 update_all = true;
1254
1255                         if (act->is_relseq_fixup())
1256                                 process_relseq_fixup(curr, &work_queue);
1257
1258                         if (update_all)
1259                                 work_queue.push_back(CheckRelSeqWorkEntry(NULL));
1260                         else if (update)
1261                                 work_queue.push_back(CheckRelSeqWorkEntry(act->get_location()));
1262                         break;
1263                 }
1264                 case WORK_CHECK_RELEASE_SEQ:
1265                         resolve_release_sequences(work.location, &work_queue);
1266                         break;
1267                 case WORK_CHECK_MO_EDGES: {
1268                         /** @todo Complete verification of work_queue */
1269                         ModelAction *act = work.action;
1270                         bool updated = false;
1271
1272                         if (act->is_read()) {
1273                                 const ModelAction *rf = act->get_reads_from();
1274                                 if (rf != NULL && r_modification_order(act, rf))
1275                                         updated = true;
1276                         }
1277                         if (act->is_write()) {
1278                                 if (w_modification_order(act))
1279                                         updated = true;
1280                         }
1281                         mo_graph->commitChanges();
1282
1283                         if (updated)
1284                                 work_queue.push_back(CheckRelSeqWorkEntry(act->get_location()));
1285                         break;
1286                 }
1287                 default:
1288                         ASSERT(false);
1289                         break;
1290                 }
1291         }
1292
1293         check_curr_backtracking(curr);
1294         set_backtracking(curr);
1295         return get_next_thread(curr);
1296 }
1297
1298 void ModelChecker::check_curr_backtracking(ModelAction *curr)
1299 {
1300         Node *currnode = curr->get_node();
1301         Node *parnode = currnode->get_parent();
1302
1303         if ((parnode && !parnode->backtrack_empty()) ||
1304                          !currnode->misc_empty() ||
1305                          !currnode->read_from_empty() ||
1306                          !currnode->future_value_empty() ||
1307                          !currnode->promise_empty() ||
1308                          !currnode->relseq_break_empty()) {
1309                 set_latest_backtrack(curr);
1310         }
1311 }
1312
1313 bool ModelChecker::promises_expired() const
1314 {
1315         for (unsigned int i = 0; i < promises->size(); i++) {
1316                 Promise *promise = (*promises)[i];
1317                 if (promise->get_expiration() < priv->used_sequence_numbers)
1318                         return true;
1319         }
1320         return false;
1321 }
1322
1323 /**
1324  * This is the strongest feasibility check available.
1325  * @return whether the current trace (partial or complete) must be a prefix of
1326  * a feasible trace.
1327  */
1328 bool ModelChecker::isfeasibleprefix() const
1329 {
1330         return pending_rel_seqs->size() == 0 && is_feasible_prefix_ignore_relseq();
1331 }
1332
1333 /**
1334  * Returns whether the current completed trace is feasible, except for pending
1335  * release sequences.
1336  */
1337 bool ModelChecker::is_feasible_prefix_ignore_relseq() const
1338 {
1339         if (DBG_ENABLED() && promises->size() != 0)
1340                 DEBUG("Infeasible: unrevolved promises\n");
1341
1342         return !is_infeasible() && promises->size() == 0;
1343 }
1344
1345 /**
1346  * Check if the current partial trace is infeasible. Does not check any
1347  * end-of-execution flags, which might rule out the execution. Thus, this is
1348  * useful only for ruling an execution as infeasible.
1349  * @return whether the current partial trace is infeasible.
1350  */
1351 bool ModelChecker::is_infeasible() const
1352 {
1353         if (DBG_ENABLED() && mo_graph->checkForRMWViolation())
1354                 DEBUG("Infeasible: RMW violation\n");
1355
1356         return mo_graph->checkForRMWViolation() || is_infeasible_ignoreRMW();
1357 }
1358
1359 /**
1360  * Check If the current partial trace is infeasible, while ignoring
1361  * infeasibility related to 2 RMW's reading from the same store. It does not
1362  * check end-of-execution feasibility.
1363  * @see ModelChecker::is_infeasible
1364  * @return whether the current partial trace is infeasible, ignoring multiple
1365  * RMWs reading from the same store.
1366  * */
1367 bool ModelChecker::is_infeasible_ignoreRMW() const
1368 {
1369         if (DBG_ENABLED()) {
1370                 if (mo_graph->checkForCycles())
1371                         DEBUG("Infeasible: modification order cycles\n");
1372                 if (priv->failed_promise)
1373                         DEBUG("Infeasible: failed promise\n");
1374                 if (priv->too_many_reads)
1375                         DEBUG("Infeasible: too many reads\n");
1376                 if (priv->bad_synchronization)
1377                         DEBUG("Infeasible: bad synchronization ordering\n");
1378                 if (promises_expired())
1379                         DEBUG("Infeasible: promises expired\n");
1380         }
1381         return mo_graph->checkForCycles() || priv->failed_promise ||
1382                 priv->too_many_reads || priv->bad_synchronization ||
1383                 promises_expired();
1384 }
1385
1386 /** Close out a RMWR by converting previous RMWR into a RMW or READ. */
1387 ModelAction * ModelChecker::process_rmw(ModelAction *act) {
1388         ModelAction *lastread = get_last_action(act->get_tid());
1389         lastread->process_rmw(act);
1390         if (act->is_rmw() && lastread->get_reads_from() != NULL) {
1391                 mo_graph->addRMWEdge(lastread->get_reads_from(), lastread);
1392                 mo_graph->commitChanges();
1393         }
1394         return lastread;
1395 }
1396
1397 /**
1398  * Checks whether a thread has read from the same write for too many times
1399  * without seeing the effects of a later write.
1400  *
1401  * Basic idea:
1402  * 1) there must a different write that we could read from that would satisfy the modification order,
1403  * 2) we must have read from the same value in excess of maxreads times, and
1404  * 3) that other write must have been in the reads_from set for maxreads times.
1405  *
1406  * If so, we decide that the execution is no longer feasible.
1407  */
1408 void ModelChecker::check_recency(ModelAction *curr, const ModelAction *rf)
1409 {
1410         if (params.maxreads != 0) {
1411                 if (curr->get_node()->get_read_from_size() <= 1)
1412                         return;
1413                 //Must make sure that execution is currently feasible...  We could
1414                 //accidentally clear by rolling back
1415                 if (is_infeasible())
1416                         return;
1417                 std::vector<action_list_t> *thrd_lists = get_safe_ptr_vect_action(obj_thrd_map, curr->get_location());
1418                 int tid = id_to_int(curr->get_tid());
1419
1420                 /* Skip checks */
1421                 if ((int)thrd_lists->size() <= tid)
1422                         return;
1423                 action_list_t *list = &(*thrd_lists)[tid];
1424
1425                 action_list_t::reverse_iterator rit = list->rbegin();
1426                 /* Skip past curr */
1427                 for (; (*rit) != curr; rit++)
1428                         ;
1429                 /* go past curr now */
1430                 rit++;
1431
1432                 action_list_t::reverse_iterator ritcopy = rit;
1433                 //See if we have enough reads from the same value
1434                 int count = 0;
1435                 for (; count < params.maxreads; rit++, count++) {
1436                         if (rit == list->rend())
1437                                 return;
1438                         ModelAction *act = *rit;
1439                         if (!act->is_read())
1440                                 return;
1441
1442                         if (act->get_reads_from() != rf)
1443                                 return;
1444                         if (act->get_node()->get_read_from_size() <= 1)
1445                                 return;
1446                 }
1447                 for (int i = 0; i < curr->get_node()->get_read_from_size(); i++) {
1448                         /* Get write */
1449                         const ModelAction *write = curr->get_node()->get_read_from_at(i);
1450
1451                         /* Need a different write */
1452                         if (write == rf)
1453                                 continue;
1454
1455                         /* Test to see whether this is a feasible write to read from */
1456                         mo_graph->startChanges();
1457                         r_modification_order(curr, write);
1458                         bool feasiblereadfrom = !is_infeasible();
1459                         mo_graph->rollbackChanges();
1460
1461                         if (!feasiblereadfrom)
1462                                 continue;
1463                         rit = ritcopy;
1464
1465                         bool feasiblewrite = true;
1466                         //new we need to see if this write works for everyone
1467
1468                         for (int loop = count; loop > 0; loop--, rit++) {
1469                                 ModelAction *act = *rit;
1470                                 bool foundvalue = false;
1471                                 for (int j = 0; j < act->get_node()->get_read_from_size(); j++) {
1472                                         if (act->get_node()->get_read_from_at(j) == write) {
1473                                                 foundvalue = true;
1474                                                 break;
1475                                         }
1476                                 }
1477                                 if (!foundvalue) {
1478                                         feasiblewrite = false;
1479                                         break;
1480                                 }
1481                         }
1482                         if (feasiblewrite) {
1483                                 priv->too_many_reads = true;
1484                                 return;
1485                         }
1486                 }
1487         }
1488 }
1489
1490 /**
1491  * Updates the mo_graph with the constraints imposed from the current
1492  * read.
1493  *
1494  * Basic idea is the following: Go through each other thread and find
1495  * the lastest action that happened before our read.  Two cases:
1496  *
1497  * (1) The action is a write => that write must either occur before
1498  * the write we read from or be the write we read from.
1499  *
1500  * (2) The action is a read => the write that that action read from
1501  * must occur before the write we read from or be the same write.
1502  *
1503  * @param curr The current action. Must be a read.
1504  * @param rf The action that curr reads from. Must be a write.
1505  * @return True if modification order edges were added; false otherwise
1506  */
1507 bool ModelChecker::r_modification_order(ModelAction *curr, const ModelAction *rf)
1508 {
1509         std::vector<action_list_t> *thrd_lists = get_safe_ptr_vect_action(obj_thrd_map, curr->get_location());
1510         unsigned int i;
1511         bool added = false;
1512         ASSERT(curr->is_read());
1513
1514         /* Last SC fence in the current thread */
1515         ModelAction *last_sc_fence_local = get_last_seq_cst_fence(curr->get_tid(), NULL);
1516
1517         /* Iterate over all threads */
1518         for (i = 0; i < thrd_lists->size(); i++) {
1519                 /* Last SC fence in thread i */
1520                 ModelAction *last_sc_fence_thread_local = NULL;
1521                 if (int_to_id((int)i) != curr->get_tid())
1522                         last_sc_fence_thread_local = get_last_seq_cst_fence(int_to_id(i), NULL);
1523
1524                 /* Last SC fence in thread i, before last SC fence in current thread */
1525                 ModelAction *last_sc_fence_thread_before = NULL;
1526                 if (last_sc_fence_local)
1527                         last_sc_fence_thread_before = get_last_seq_cst_fence(int_to_id(i), last_sc_fence_local);
1528
1529                 /* Iterate over actions in thread, starting from most recent */
1530                 action_list_t *list = &(*thrd_lists)[i];
1531                 action_list_t::reverse_iterator rit;
1532                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
1533                         ModelAction *act = *rit;
1534
1535                         if (act->is_write() && act != rf && act != curr) {
1536                                 /* C++, Section 29.3 statement 5 */
1537                                 if (curr->is_seqcst() && last_sc_fence_thread_local &&
1538                                                 *act < *last_sc_fence_thread_local) {
1539                                         mo_graph->addEdge(act, rf);
1540                                         added = true;
1541                                         break;
1542                                 }
1543                                 /* C++, Section 29.3 statement 4 */
1544                                 else if (act->is_seqcst() && last_sc_fence_local &&
1545                                                 *act < *last_sc_fence_local) {
1546                                         mo_graph->addEdge(act, rf);
1547                                         added = true;
1548                                         break;
1549                                 }
1550                                 /* C++, Section 29.3 statement 6 */
1551                                 else if (last_sc_fence_thread_before &&
1552                                                 *act < *last_sc_fence_thread_before) {
1553                                         mo_graph->addEdge(act, rf);
1554                                         added = true;
1555                                         break;
1556                                 }
1557                         }
1558
1559                         /*
1560                          * Include at most one act per-thread that "happens
1561                          * before" curr. Don't consider reflexively.
1562                          */
1563                         if (act->happens_before(curr) && act != curr) {
1564                                 if (act->is_write()) {
1565                                         if (rf != act) {
1566                                                 mo_graph->addEdge(act, rf);
1567                                                 added = true;
1568                                         }
1569                                 } else {
1570                                         const ModelAction *prevreadfrom = act->get_reads_from();
1571                                         //if the previous read is unresolved, keep going...
1572                                         if (prevreadfrom == NULL)
1573                                                 continue;
1574
1575                                         if (rf != prevreadfrom) {
1576                                                 mo_graph->addEdge(prevreadfrom, rf);
1577                                                 added = true;
1578                                         }
1579                                 }
1580                                 break;
1581                         }
1582                 }
1583         }
1584
1585         return added;
1586 }
1587
1588 /** This method fixes up the modification order when we resolve a
1589  *  promises.  The basic problem is that actions that occur after the
1590  *  read curr could not property add items to the modification order
1591  *  for our read.
1592  *
1593  *  So for each thread, we find the earliest item that happens after
1594  *  the read curr.  This is the item we have to fix up with additional
1595  *  constraints.  If that action is write, we add a MO edge between
1596  *  the Action rf and that action.  If the action is a read, we add a
1597  *  MO edge between the Action rf, and whatever the read accessed.
1598  *
1599  * @param curr is the read ModelAction that we are fixing up MO edges for.
1600  * @param rf is the write ModelAction that curr reads from.
1601  *
1602  */
1603 void ModelChecker::post_r_modification_order(ModelAction *curr, const ModelAction *rf)
1604 {
1605         std::vector<action_list_t> *thrd_lists = get_safe_ptr_vect_action(obj_thrd_map, curr->get_location());
1606         unsigned int i;
1607         ASSERT(curr->is_read());
1608
1609         /* Iterate over all threads */
1610         for (i = 0; i < thrd_lists->size(); i++) {
1611                 /* Iterate over actions in thread, starting from most recent */
1612                 action_list_t *list = &(*thrd_lists)[i];
1613                 action_list_t::reverse_iterator rit;
1614                 ModelAction *lastact = NULL;
1615
1616                 /* Find last action that happens after curr that is either not curr or a rmw */
1617                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
1618                         ModelAction *act = *rit;
1619                         if (curr->happens_before(act) && (curr != act || curr->is_rmw())) {
1620                                 lastact = act;
1621                         } else
1622                                 break;
1623                 }
1624
1625                         /* Include at most one act per-thread that "happens before" curr */
1626                 if (lastact != NULL) {
1627                         if (lastact == curr) {
1628                                 //Case 1: The resolved read is a RMW, and we need to make sure
1629                                 //that the write portion of the RMW mod order after rf
1630
1631                                 mo_graph->addEdge(rf, lastact);
1632                         } else if (lastact->is_read()) {
1633                                 //Case 2: The resolved read is a normal read and the next
1634                                 //operation is a read, and we need to make sure the value read
1635                                 //is mod ordered after rf
1636
1637                                 const ModelAction *postreadfrom = lastact->get_reads_from();
1638                                 if (postreadfrom != NULL && rf != postreadfrom)
1639                                         mo_graph->addEdge(rf, postreadfrom);
1640                         } else {
1641                                 //Case 3: The resolved read is a normal read and the next
1642                                 //operation is a write, and we need to make sure that the
1643                                 //write is mod ordered after rf
1644                                 if (lastact != rf)
1645                                         mo_graph->addEdge(rf, lastact);
1646                         }
1647                         break;
1648                 }
1649         }
1650 }
1651
1652 /**
1653  * Updates the mo_graph with the constraints imposed from the current write.
1654  *
1655  * Basic idea is the following: Go through each other thread and find
1656  * the lastest action that happened before our write.  Two cases:
1657  *
1658  * (1) The action is a write => that write must occur before
1659  * the current write
1660  *
1661  * (2) The action is a read => the write that that action read from
1662  * must occur before the current write.
1663  *
1664  * This method also handles two other issues:
1665  *
1666  * (I) Sequential Consistency: Making sure that if the current write is
1667  * seq_cst, that it occurs after the previous seq_cst write.
1668  *
1669  * (II) Sending the write back to non-synchronizing reads.
1670  *
1671  * @param curr The current action. Must be a write.
1672  * @return True if modification order edges were added; false otherwise
1673  */
1674 bool ModelChecker::w_modification_order(ModelAction *curr)
1675 {
1676         std::vector<action_list_t> *thrd_lists = get_safe_ptr_vect_action(obj_thrd_map, curr->get_location());
1677         unsigned int i;
1678         bool added = false;
1679         ASSERT(curr->is_write());
1680
1681         if (curr->is_seqcst()) {
1682                 /* We have to at least see the last sequentially consistent write,
1683                          so we are initialized. */
1684                 ModelAction *last_seq_cst = get_last_seq_cst_write(curr);
1685                 if (last_seq_cst != NULL) {
1686                         mo_graph->addEdge(last_seq_cst, curr);
1687                         added = true;
1688                 }
1689         }
1690
1691         /* Last SC fence in the current thread */
1692         ModelAction *last_sc_fence_local = get_last_seq_cst_fence(curr->get_tid(), NULL);
1693
1694         /* Iterate over all threads */
1695         for (i = 0; i < thrd_lists->size(); i++) {
1696                 /* Last SC fence in thread i, before last SC fence in current thread */
1697                 ModelAction *last_sc_fence_thread_before = NULL;
1698                 if (last_sc_fence_local && int_to_id((int)i) != curr->get_tid())
1699                         last_sc_fence_thread_before = get_last_seq_cst_fence(int_to_id(i), last_sc_fence_local);
1700
1701                 /* Iterate over actions in thread, starting from most recent */
1702                 action_list_t *list = &(*thrd_lists)[i];
1703                 action_list_t::reverse_iterator rit;
1704                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
1705                         ModelAction *act = *rit;
1706                         if (act == curr) {
1707                                 /*
1708                                  * 1) If RMW and it actually read from something, then we
1709                                  * already have all relevant edges, so just skip to next
1710                                  * thread.
1711                                  *
1712                                  * 2) If RMW and it didn't read from anything, we should
1713                                  * whatever edge we can get to speed up convergence.
1714                                  *
1715                                  * 3) If normal write, we need to look at earlier actions, so
1716                                  * continue processing list.
1717                                  */
1718                                 if (curr->is_rmw()) {
1719                                         if (curr->get_reads_from() != NULL)
1720                                                 break;
1721                                         else
1722                                                 continue;
1723                                 } else
1724                                         continue;
1725                         }
1726
1727                         /* C++, Section 29.3 statement 7 */
1728                         if (last_sc_fence_thread_before && act->is_write() &&
1729                                         *act < *last_sc_fence_thread_before) {
1730                                 mo_graph->addEdge(act, curr);
1731                                 added = true;
1732                                 break;
1733                         }
1734
1735                         /*
1736                          * Include at most one act per-thread that "happens
1737                          * before" curr
1738                          */
1739                         if (act->happens_before(curr)) {
1740                                 /*
1741                                  * Note: if act is RMW, just add edge:
1742                                  *   act --mo--> curr
1743                                  * The following edge should be handled elsewhere:
1744                                  *   readfrom(act) --mo--> act
1745                                  */
1746                                 if (act->is_write())
1747                                         mo_graph->addEdge(act, curr);
1748                                 else if (act->is_read()) {
1749                                         //if previous read accessed a null, just keep going
1750                                         if (act->get_reads_from() == NULL)
1751                                                 continue;
1752                                         mo_graph->addEdge(act->get_reads_from(), curr);
1753                                 }
1754                                 added = true;
1755                                 break;
1756                         } else if (act->is_read() && !act->could_synchronize_with(curr) &&
1757                                                      !act->same_thread(curr)) {
1758                                 /* We have an action that:
1759                                    (1) did not happen before us
1760                                    (2) is a read and we are a write
1761                                    (3) cannot synchronize with us
1762                                    (4) is in a different thread
1763                                    =>
1764                                    that read could potentially read from our write.  Note that
1765                                    these checks are overly conservative at this point, we'll
1766                                    do more checks before actually removing the
1767                                    pendingfuturevalue.
1768
1769                                  */
1770                                 if (thin_air_constraint_may_allow(curr, act)) {
1771                                         if (!is_infeasible() ||
1772                                                         (curr->is_rmw() && act->is_rmw() && curr->get_reads_from() == act->get_reads_from() && !is_infeasible_ignoreRMW())) {
1773                                                 struct PendingFutureValue pfv = {curr, act};
1774                                                 futurevalues->push_back(pfv);
1775                                         }
1776                                 }
1777                         }
1778                 }
1779         }
1780
1781         return added;
1782 }
1783
1784 /** Arbitrary reads from the future are not allowed.  Section 29.3
1785  * part 9 places some constraints.  This method checks one result of constraint
1786  * constraint.  Others require compiler support. */
1787 bool ModelChecker::thin_air_constraint_may_allow(const ModelAction *writer, const ModelAction *reader)
1788 {
1789         if (!writer->is_rmw())
1790                 return true;
1791
1792         if (!reader->is_rmw())
1793                 return true;
1794
1795         for (const ModelAction *search = writer->get_reads_from(); search != NULL; search = search->get_reads_from()) {
1796                 if (search == reader)
1797                         return false;
1798                 if (search->get_tid() == reader->get_tid() &&
1799                                 search->happens_before(reader))
1800                         break;
1801         }
1802
1803         return true;
1804 }
1805
1806 /**
1807  * Arbitrary reads from the future are not allowed. Section 29.3 part 9 places
1808  * some constraints. This method checks one the following constraint (others
1809  * require compiler support):
1810  *
1811  *   If X --hb-> Y --mo-> Z, then X should not read from Z.
1812  */
1813 bool ModelChecker::mo_may_allow(const ModelAction *writer, const ModelAction *reader)
1814 {
1815         std::vector<action_list_t> *thrd_lists = get_safe_ptr_vect_action(obj_thrd_map, reader->get_location());
1816         unsigned int i;
1817         /* Iterate over all threads */
1818         for (i = 0; i < thrd_lists->size(); i++) {
1819                 const ModelAction *write_after_read = NULL;
1820
1821                 /* Iterate over actions in thread, starting from most recent */
1822                 action_list_t *list = &(*thrd_lists)[i];
1823                 action_list_t::reverse_iterator rit;
1824                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
1825                         ModelAction *act = *rit;
1826
1827                         /* Don't disallow due to act == reader */
1828                         if (!reader->happens_before(act) || reader == act)
1829                                 break;
1830                         else if (act->is_write())
1831                                 write_after_read = act;
1832                         else if (act->is_read() && act->get_reads_from() != NULL)
1833                                 write_after_read = act->get_reads_from();
1834                 }
1835
1836                 if (write_after_read && write_after_read != writer && mo_graph->checkReachable(write_after_read, writer))
1837                         return false;
1838         }
1839         return true;
1840 }
1841
1842 /**
1843  * Finds the head(s) of the release sequence(s) containing a given ModelAction.
1844  * The ModelAction under consideration is expected to be taking part in
1845  * release/acquire synchronization as an object of the "reads from" relation.
1846  * Note that this can only provide release sequence support for RMW chains
1847  * which do not read from the future, as those actions cannot be traced until
1848  * their "promise" is fulfilled. Similarly, we may not even establish the
1849  * presence of a release sequence with certainty, as some modification order
1850  * constraints may be decided further in the future. Thus, this function
1851  * "returns" two pieces of data: a pass-by-reference vector of @a release_heads
1852  * and a boolean representing certainty.
1853  *
1854  * @param rf The action that might be part of a release sequence. Must be a
1855  * write.
1856  * @param release_heads A pass-by-reference style return parameter. After
1857  * execution of this function, release_heads will contain the heads of all the
1858  * relevant release sequences, if any exists with certainty
1859  * @param pending A pass-by-reference style return parameter which is only used
1860  * when returning false (i.e., uncertain). Returns most information regarding
1861  * an uncertain release sequence, including any write operations that might
1862  * break the sequence.
1863  * @return true, if the ModelChecker is certain that release_heads is complete;
1864  * false otherwise
1865  */
1866 bool ModelChecker::release_seq_heads(const ModelAction *rf,
1867                 rel_heads_list_t *release_heads,
1868                 struct release_seq *pending) const
1869 {
1870         /* Only check for release sequences if there are no cycles */
1871         if (mo_graph->checkForCycles())
1872                 return false;
1873
1874         while (rf) {
1875                 ASSERT(rf->is_write());
1876
1877                 if (rf->is_release())
1878                         release_heads->push_back(rf);
1879                 else if (rf->get_last_fence_release())
1880                         release_heads->push_back(rf->get_last_fence_release());
1881                 if (!rf->is_rmw())
1882                         break; /* End of RMW chain */
1883
1884                 /** @todo Need to be smarter here...  In the linux lock
1885                  * example, this will run to the beginning of the program for
1886                  * every acquire. */
1887                 /** @todo The way to be smarter here is to keep going until 1
1888                  * thread has a release preceded by an acquire and you've seen
1889                  *       both. */
1890
1891                 /* acq_rel RMW is a sufficient stopping condition */
1892                 if (rf->is_acquire() && rf->is_release())
1893                         return true; /* complete */
1894
1895                 rf = rf->get_reads_from();
1896         };
1897         if (!rf) {
1898                 /* read from future: need to settle this later */
1899                 pending->rf = NULL;
1900                 return false; /* incomplete */
1901         }
1902
1903         if (rf->is_release())
1904                 return true; /* complete */
1905
1906         /* else relaxed write
1907          * - check for fence-release in the same thread (29.8, stmt. 3)
1908          * - check modification order for contiguous subsequence
1909          *   -> rf must be same thread as release */
1910
1911         const ModelAction *fence_release = rf->get_last_fence_release();
1912         /* Synchronize with a fence-release unconditionally; we don't need to
1913          * find any more "contiguous subsequence..." for it */
1914         if (fence_release)
1915                 release_heads->push_back(fence_release);
1916
1917         int tid = id_to_int(rf->get_tid());
1918         std::vector<action_list_t> *thrd_lists = get_safe_ptr_vect_action(obj_thrd_map, rf->get_location());
1919         action_list_t *list = &(*thrd_lists)[tid];
1920         action_list_t::const_reverse_iterator rit;
1921
1922         /* Find rf in the thread list */
1923         rit = std::find(list->rbegin(), list->rend(), rf);
1924         ASSERT(rit != list->rend());
1925
1926         /* Find the last {write,fence}-release */
1927         for (; rit != list->rend(); rit++) {
1928                 if (fence_release && *(*rit) < *fence_release)
1929                         break;
1930                 if ((*rit)->is_release())
1931                         break;
1932         }
1933         if (rit == list->rend()) {
1934                 /* No write-release in this thread */
1935                 return true; /* complete */
1936         } else if (fence_release && *(*rit) < *fence_release) {
1937                 /* The fence-release is more recent (and so, "stronger") than
1938                  * the most recent write-release */
1939                 return true; /* complete */
1940         } /* else, need to establish contiguous release sequence */
1941         ModelAction *release = *rit;
1942
1943         ASSERT(rf->same_thread(release));
1944
1945         pending->writes.clear();
1946
1947         bool certain = true;
1948         for (unsigned int i = 0; i < thrd_lists->size(); i++) {
1949                 if (id_to_int(rf->get_tid()) == (int)i)
1950                         continue;
1951                 list = &(*thrd_lists)[i];
1952
1953                 /* Can we ensure no future writes from this thread may break
1954                  * the release seq? */
1955                 bool future_ordered = false;
1956
1957                 ModelAction *last = get_last_action(int_to_id(i));
1958                 Thread *th = get_thread(int_to_id(i));
1959                 if ((last && rf->happens_before(last)) ||
1960                                 !is_enabled(th) ||
1961                                 th->is_complete())
1962                         future_ordered = true;
1963
1964                 ASSERT(!th->is_model_thread() || future_ordered);
1965
1966                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
1967                         const ModelAction *act = *rit;
1968                         /* Reach synchronization -> this thread is complete */
1969                         if (act->happens_before(release))
1970                                 break;
1971                         if (rf->happens_before(act)) {
1972                                 future_ordered = true;
1973                                 continue;
1974                         }
1975
1976                         /* Only non-RMW writes can break release sequences */
1977                         if (!act->is_write() || act->is_rmw())
1978                                 continue;
1979
1980                         /* Check modification order */
1981                         if (mo_graph->checkReachable(rf, act)) {
1982                                 /* rf --mo--> act */
1983                                 future_ordered = true;
1984                                 continue;
1985                         }
1986                         if (mo_graph->checkReachable(act, release))
1987                                 /* act --mo--> release */
1988                                 break;
1989                         if (mo_graph->checkReachable(release, act) &&
1990                                       mo_graph->checkReachable(act, rf)) {
1991                                 /* release --mo-> act --mo--> rf */
1992                                 return true; /* complete */
1993                         }
1994                         /* act may break release sequence */
1995                         pending->writes.push_back(act);
1996                         certain = false;
1997                 }
1998                 if (!future_ordered)
1999                         certain = false; /* This thread is uncertain */
2000         }
2001
2002         if (certain) {
2003                 release_heads->push_back(release);
2004                 pending->writes.clear();
2005         } else {
2006                 pending->release = release;
2007                 pending->rf = rf;
2008         }
2009         return certain;
2010 }
2011
2012 /**
2013  * An interface for getting the release sequence head(s) with which a
2014  * given ModelAction must synchronize. This function only returns a non-empty
2015  * result when it can locate a release sequence head with certainty. Otherwise,
2016  * it may mark the internal state of the ModelChecker so that it will handle
2017  * the release sequence at a later time, causing @a acquire to update its
2018  * synchronization at some later point in execution.
2019  *
2020  * @param acquire The 'acquire' action that may synchronize with a release
2021  * sequence
2022  * @param read The read action that may read from a release sequence; this may
2023  * be the same as acquire, or else an earlier action in the same thread (i.e.,
2024  * when 'acquire' is a fence-acquire)
2025  * @param release_heads A pass-by-reference return parameter. Will be filled
2026  * with the head(s) of the release sequence(s), if they exists with certainty.
2027  * @see ModelChecker::release_seq_heads
2028  */
2029 void ModelChecker::get_release_seq_heads(ModelAction *acquire,
2030                 ModelAction *read, rel_heads_list_t *release_heads)
2031 {
2032         const ModelAction *rf = read->get_reads_from();
2033         struct release_seq *sequence = (struct release_seq *)snapshot_calloc(1, sizeof(struct release_seq));
2034         sequence->acquire = acquire;
2035         sequence->read = read;
2036
2037         if (!release_seq_heads(rf, release_heads, sequence)) {
2038                 /* add act to 'lazy checking' list */
2039                 pending_rel_seqs->push_back(sequence);
2040         } else {
2041                 snapshot_free(sequence);
2042         }
2043 }
2044
2045 /**
2046  * Attempt to resolve all stashed operations that might synchronize with a
2047  * release sequence for a given location. This implements the "lazy" portion of
2048  * determining whether or not a release sequence was contiguous, since not all
2049  * modification order information is present at the time an action occurs.
2050  *
2051  * @param location The location/object that should be checked for release
2052  * sequence resolutions. A NULL value means to check all locations.
2053  * @param work_queue The work queue to which to add work items as they are
2054  * generated
2055  * @return True if any updates occurred (new synchronization, new mo_graph
2056  * edges)
2057  */
2058 bool ModelChecker::resolve_release_sequences(void *location, work_queue_t *work_queue)
2059 {
2060         bool updated = false;
2061         std::vector< struct release_seq *, SnapshotAlloc<struct release_seq *> >::iterator it = pending_rel_seqs->begin();
2062         while (it != pending_rel_seqs->end()) {
2063                 struct release_seq *pending = *it;
2064                 ModelAction *acquire = pending->acquire;
2065                 const ModelAction *read = pending->read;
2066
2067                 /* Only resolve sequences on the given location, if provided */
2068                 if (location && read->get_location() != location) {
2069                         it++;
2070                         continue;
2071                 }
2072
2073                 const ModelAction *rf = read->get_reads_from();
2074                 rel_heads_list_t release_heads;
2075                 bool complete;
2076                 complete = release_seq_heads(rf, &release_heads, pending);
2077                 for (unsigned int i = 0; i < release_heads.size(); i++) {
2078                         if (!acquire->has_synchronized_with(release_heads[i])) {
2079                                 if (acquire->synchronize_with(release_heads[i]))
2080                                         updated = true;
2081                                 else
2082                                         set_bad_synchronization();
2083                         }
2084                 }
2085
2086                 if (updated) {
2087                         /* Re-check all pending release sequences */
2088                         work_queue->push_back(CheckRelSeqWorkEntry(NULL));
2089                         /* Re-check read-acquire for mo_graph edges */
2090                         if (acquire->is_read())
2091                                 work_queue->push_back(MOEdgeWorkEntry(acquire));
2092
2093                         /* propagate synchronization to later actions */
2094                         action_list_t::reverse_iterator rit = action_trace->rbegin();
2095                         for (; (*rit) != acquire; rit++) {
2096                                 ModelAction *propagate = *rit;
2097                                 if (acquire->happens_before(propagate)) {
2098                                         propagate->synchronize_with(acquire);
2099                                         /* Re-check 'propagate' for mo_graph edges */
2100                                         work_queue->push_back(MOEdgeWorkEntry(propagate));
2101                                 }
2102                         }
2103                 }
2104                 if (complete) {
2105                         it = pending_rel_seqs->erase(it);
2106                         snapshot_free(pending);
2107                 } else {
2108                         it++;
2109                 }
2110         }
2111
2112         // If we resolved promises or data races, see if we have realized a data race.
2113         checkDataRaces();
2114
2115         return updated;
2116 }
2117
2118 /**
2119  * Performs various bookkeeping operations for the current ModelAction. For
2120  * instance, adds action to the per-object, per-thread action vector and to the
2121  * action trace list of all thread actions.
2122  *
2123  * @param act is the ModelAction to add.
2124  */
2125 void ModelChecker::add_action_to_lists(ModelAction *act)
2126 {
2127         int tid = id_to_int(act->get_tid());
2128         ModelAction *uninit = NULL;
2129         int uninit_id = -1;
2130         action_list_t *list = get_safe_ptr_action(obj_map, act->get_location());
2131         if (list->empty() && act->is_atomic_var()) {
2132                 uninit = new_uninitialized_action(act->get_location());
2133                 uninit_id = id_to_int(uninit->get_tid());
2134                 list->push_back(uninit);
2135         }
2136         list->push_back(act);
2137
2138         action_trace->push_back(act);
2139         if (uninit)
2140                 action_trace->push_front(uninit);
2141
2142         std::vector<action_list_t> *vec = get_safe_ptr_vect_action(obj_thrd_map, act->get_location());
2143         if (tid >= (int)vec->size())
2144                 vec->resize(priv->next_thread_id);
2145         (*vec)[tid].push_back(act);
2146         if (uninit)
2147                 (*vec)[uninit_id].push_front(uninit);
2148
2149         if ((int)thrd_last_action->size() <= tid)
2150                 thrd_last_action->resize(get_num_threads());
2151         (*thrd_last_action)[tid] = act;
2152         if (uninit)
2153                 (*thrd_last_action)[uninit_id] = uninit;
2154
2155         if (act->is_fence() && act->is_release()) {
2156                 if ((int)thrd_last_fence_release->size() <= tid)
2157                         thrd_last_fence_release->resize(get_num_threads());
2158                 (*thrd_last_fence_release)[tid] = act;
2159         }
2160
2161         if (act->is_wait()) {
2162                 void *mutex_loc = (void *) act->get_value();
2163                 get_safe_ptr_action(obj_map, mutex_loc)->push_back(act);
2164
2165                 std::vector<action_list_t> *vec = get_safe_ptr_vect_action(obj_thrd_map, mutex_loc);
2166                 if (tid >= (int)vec->size())
2167                         vec->resize(priv->next_thread_id);
2168                 (*vec)[tid].push_back(act);
2169         }
2170 }
2171
2172 /**
2173  * @brief Get the last action performed by a particular Thread
2174  * @param tid The thread ID of the Thread in question
2175  * @return The last action in the thread
2176  */
2177 ModelAction * ModelChecker::get_last_action(thread_id_t tid) const
2178 {
2179         int threadid = id_to_int(tid);
2180         if (threadid < (int)thrd_last_action->size())
2181                 return (*thrd_last_action)[id_to_int(tid)];
2182         else
2183                 return NULL;
2184 }
2185
2186 /**
2187  * @brief Get the last fence release performed by a particular Thread
2188  * @param tid The thread ID of the Thread in question
2189  * @return The last fence release in the thread, if one exists; NULL otherwise
2190  */
2191 ModelAction * ModelChecker::get_last_fence_release(thread_id_t tid) const
2192 {
2193         int threadid = id_to_int(tid);
2194         if (threadid < (int)thrd_last_fence_release->size())
2195                 return (*thrd_last_fence_release)[id_to_int(tid)];
2196         else
2197                 return NULL;
2198 }
2199
2200 /**
2201  * Gets the last memory_order_seq_cst write (in the total global sequence)
2202  * performed on a particular object (i.e., memory location), not including the
2203  * current action.
2204  * @param curr The current ModelAction; also denotes the object location to
2205  * check
2206  * @return The last seq_cst write
2207  */
2208 ModelAction * ModelChecker::get_last_seq_cst_write(ModelAction *curr) const
2209 {
2210         void *location = curr->get_location();
2211         action_list_t *list = get_safe_ptr_action(obj_map, location);
2212         /* Find: max({i in dom(S) | seq_cst(t_i) && isWrite(t_i) && samevar(t_i, t)}) */
2213         action_list_t::reverse_iterator rit;
2214         for (rit = list->rbegin(); rit != list->rend(); rit++)
2215                 if ((*rit)->is_write() && (*rit)->is_seqcst() && (*rit) != curr)
2216                         return *rit;
2217         return NULL;
2218 }
2219
2220 /**
2221  * Gets the last memory_order_seq_cst fence (in the total global sequence)
2222  * performed in a particular thread, prior to a particular fence.
2223  * @param tid The ID of the thread to check
2224  * @param before_fence The fence from which to begin the search; if NULL, then
2225  * search for the most recent fence in the thread.
2226  * @return The last prior seq_cst fence in the thread, if exists; otherwise, NULL
2227  */
2228 ModelAction * ModelChecker::get_last_seq_cst_fence(thread_id_t tid, const ModelAction *before_fence) const
2229 {
2230         /* All fences should have NULL location */
2231         action_list_t *list = get_safe_ptr_action(obj_map, NULL);
2232         action_list_t::reverse_iterator rit = list->rbegin();
2233
2234         if (before_fence) {
2235                 for (; rit != list->rend(); rit++)
2236                         if (*rit == before_fence)
2237                                 break;
2238
2239                 ASSERT(*rit == before_fence);
2240                 rit++;
2241         }
2242
2243         for (; rit != list->rend(); rit++)
2244                 if ((*rit)->is_fence() && (tid == (*rit)->get_tid()) && (*rit)->is_seqcst())
2245                         return *rit;
2246         return NULL;
2247 }
2248
2249 /**
2250  * Gets the last unlock operation performed on a particular mutex (i.e., memory
2251  * location). This function identifies the mutex according to the current
2252  * action, which is presumed to perform on the same mutex.
2253  * @param curr The current ModelAction; also denotes the object location to
2254  * check
2255  * @return The last unlock operation
2256  */
2257 ModelAction * ModelChecker::get_last_unlock(ModelAction *curr) const
2258 {
2259         void *location = curr->get_location();
2260         action_list_t *list = get_safe_ptr_action(obj_map, location);
2261         /* Find: max({i in dom(S) | isUnlock(t_i) && samevar(t_i, t)}) */
2262         action_list_t::reverse_iterator rit;
2263         for (rit = list->rbegin(); rit != list->rend(); rit++)
2264                 if ((*rit)->is_unlock() || (*rit)->is_wait())
2265                         return *rit;
2266         return NULL;
2267 }
2268
2269 ModelAction * ModelChecker::get_parent_action(thread_id_t tid) const
2270 {
2271         ModelAction *parent = get_last_action(tid);
2272         if (!parent)
2273                 parent = get_thread(tid)->get_creation();
2274         return parent;
2275 }
2276
2277 /**
2278  * Returns the clock vector for a given thread.
2279  * @param tid The thread whose clock vector we want
2280  * @return Desired clock vector
2281  */
2282 ClockVector * ModelChecker::get_cv(thread_id_t tid) const
2283 {
2284         return get_parent_action(tid)->get_cv();
2285 }
2286
2287 /**
2288  * Resolve a set of Promises with a current write. The set is provided in the
2289  * Node corresponding to @a write.
2290  * @param write The ModelAction that is fulfilling Promises
2291  * @return True if promises were resolved; false otherwise
2292  */
2293 bool ModelChecker::resolve_promises(ModelAction *write)
2294 {
2295         bool resolved = false;
2296         std::vector< thread_id_t, ModelAlloc<thread_id_t> > threads_to_check;
2297
2298         for (unsigned int i = 0, promise_index = 0; promise_index < promises->size(); i++) {
2299                 Promise *promise = (*promises)[promise_index];
2300                 if (write->get_node()->get_promise(i)) {
2301                         ModelAction *read = promise->get_action();
2302                         if (read->is_rmw()) {
2303                                 mo_graph->addRMWEdge(write, read);
2304                         }
2305                         read_from(read, write);
2306                         //First fix up the modification order for actions that happened
2307                         //before the read
2308                         r_modification_order(read, write);
2309                         //Next fix up the modification order for actions that happened
2310                         //after the read.
2311                         post_r_modification_order(read, write);
2312                         //Make sure the promise's value matches the write's value
2313                         ASSERT(promise->get_value() == write->get_value());
2314                         delete(promise);
2315
2316                         promises->erase(promises->begin() + promise_index);
2317                         threads_to_check.push_back(read->get_tid());
2318
2319                         resolved = true;
2320                 } else
2321                         promise_index++;
2322         }
2323
2324         //Check whether reading these writes has made threads unable to
2325         //resolve promises
2326
2327         for (unsigned int i = 0; i < threads_to_check.size(); i++)
2328                 mo_check_promises(threads_to_check[i], write);
2329
2330         return resolved;
2331 }
2332
2333 /**
2334  * Compute the set of promises that could potentially be satisfied by this
2335  * action. Note that the set computation actually appears in the Node, not in
2336  * ModelChecker.
2337  * @param curr The ModelAction that may satisfy promises
2338  */
2339 void ModelChecker::compute_promises(ModelAction *curr)
2340 {
2341         for (unsigned int i = 0; i < promises->size(); i++) {
2342                 Promise *promise = (*promises)[i];
2343                 const ModelAction *act = promise->get_action();
2344                 if (!act->happens_before(curr) &&
2345                                 act->is_read() &&
2346                                 !act->could_synchronize_with(curr) &&
2347                                 !act->same_thread(curr) &&
2348                                 act->get_location() == curr->get_location() &&
2349                                 promise->get_value() == curr->get_value()) {
2350                         curr->get_node()->set_promise(i, act->is_rmw());
2351                 }
2352         }
2353 }
2354
2355 /** Checks promises in response to change in ClockVector Threads. */
2356 void ModelChecker::check_promises(thread_id_t tid, ClockVector *old_cv, ClockVector *merge_cv)
2357 {
2358         for (unsigned int i = 0; i < promises->size(); i++) {
2359                 Promise *promise = (*promises)[i];
2360                 const ModelAction *act = promise->get_action();
2361                 if ((old_cv == NULL || !old_cv->synchronized_since(act)) &&
2362                                 merge_cv->synchronized_since(act)) {
2363                         if (promise->increment_threads(tid)) {
2364                                 //Promise has failed
2365                                 priv->failed_promise = true;
2366                                 return;
2367                         }
2368                 }
2369         }
2370 }
2371
2372 void ModelChecker::check_promises_thread_disabled() {
2373         for (unsigned int i = 0; i < promises->size(); i++) {
2374                 Promise *promise = (*promises)[i];
2375                 if (promise->check_promise()) {
2376                         priv->failed_promise = true;
2377                         return;
2378                 }
2379         }
2380 }
2381
2382 /** Checks promises in response to addition to modification order for threads.
2383  * Definitions:
2384  * pthread is the thread that performed the read that created the promise
2385  *
2386  * pread is the read that created the promise
2387  *
2388  * pwrite is either the first write to same location as pread by
2389  * pthread that is sequenced after pread or the value read by the
2390  * first read to the same lcoation as pread by pthread that is
2391  * sequenced after pread..
2392  *
2393  *      1. If tid=pthread, then we check what other threads are reachable
2394  * through the mode order starting with pwrite.  Those threads cannot
2395  * perform a write that will resolve the promise due to modification
2396  * order constraints.
2397  *
2398  * 2. If the tid is not pthread, we check whether pwrite can reach the
2399  * action write through the modification order.  If so, that thread
2400  * cannot perform a future write that will resolve the promise due to
2401  * modificatin order constraints.
2402  *
2403  *      @param tid The thread that either read from the model action
2404  *      write, or actually did the model action write.
2405  *
2406  *      @param write The ModelAction representing the relevant write.
2407  */
2408 void ModelChecker::mo_check_promises(thread_id_t tid, const ModelAction *write)
2409 {
2410         void *location = write->get_location();
2411         for (unsigned int i = 0; i < promises->size(); i++) {
2412                 Promise *promise = (*promises)[i];
2413                 const ModelAction *act = promise->get_action();
2414
2415                 //Is this promise on the same location?
2416                 if (act->get_location() != location)
2417                         continue;
2418
2419                 //same thread as the promise
2420                 if (act->get_tid() == tid) {
2421
2422                         //do we have a pwrite for the promise, if not, set it
2423                         if (promise->get_write() == NULL) {
2424                                 promise->set_write(write);
2425                                 //The pwrite cannot happen before the promise
2426                                 if (write->happens_before(act) && (write != act)) {
2427                                         priv->failed_promise = true;
2428                                         return;
2429                                 }
2430                         }
2431                         if (mo_graph->checkPromise(write, promise)) {
2432                                 priv->failed_promise = true;
2433                                 return;
2434                         }
2435                 }
2436
2437                 //Don't do any lookups twice for the same thread
2438                 if (promise->has_sync_thread(tid))
2439                         continue;
2440
2441                 if (promise->get_write() && mo_graph->checkReachable(promise->get_write(), write)) {
2442                         if (promise->increment_threads(tid)) {
2443                                 priv->failed_promise = true;
2444                                 return;
2445                         }
2446                 }
2447         }
2448 }
2449
2450 /**
2451  * Compute the set of writes that may break the current pending release
2452  * sequence. This information is extracted from previou release sequence
2453  * calculations.
2454  *
2455  * @param curr The current ModelAction. Must be a release sequence fixup
2456  * action.
2457  */
2458 void ModelChecker::compute_relseq_breakwrites(ModelAction *curr)
2459 {
2460         if (pending_rel_seqs->empty())
2461                 return;
2462
2463         struct release_seq *pending = pending_rel_seqs->back();
2464         for (unsigned int i = 0; i < pending->writes.size(); i++) {
2465                 const ModelAction *write = pending->writes[i];
2466                 curr->get_node()->add_relseq_break(write);
2467         }
2468
2469         /* NULL means don't break the sequence; just synchronize */
2470         curr->get_node()->add_relseq_break(NULL);
2471 }
2472
2473 /**
2474  * Build up an initial set of all past writes that this 'read' action may read
2475  * from. This set is determined by the clock vector's "happens before"
2476  * relationship.
2477  * @param curr is the current ModelAction that we are exploring; it must be a
2478  * 'read' operation.
2479  */
2480 void ModelChecker::build_reads_from_past(ModelAction *curr)
2481 {
2482         std::vector<action_list_t> *thrd_lists = get_safe_ptr_vect_action(obj_thrd_map, curr->get_location());
2483         unsigned int i;
2484         ASSERT(curr->is_read());
2485
2486         ModelAction *last_sc_write = NULL;
2487
2488         if (curr->is_seqcst())
2489                 last_sc_write = get_last_seq_cst_write(curr);
2490
2491         /* Iterate over all threads */
2492         for (i = 0; i < thrd_lists->size(); i++) {
2493                 /* Iterate over actions in thread, starting from most recent */
2494                 action_list_t *list = &(*thrd_lists)[i];
2495                 action_list_t::reverse_iterator rit;
2496                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
2497                         ModelAction *act = *rit;
2498
2499                         /* Only consider 'write' actions */
2500                         if (!act->is_write() || act == curr)
2501                                 continue;
2502
2503                         /* Don't consider more than one seq_cst write if we are a seq_cst read. */
2504                         bool allow_read = true;
2505
2506                         if (curr->is_seqcst() && (act->is_seqcst() || (last_sc_write != NULL && act->happens_before(last_sc_write))) && act != last_sc_write)
2507                                 allow_read = false;
2508                         else if (curr->get_sleep_flag() && !curr->is_seqcst() && !sleep_can_read_from(curr, act))
2509                                 allow_read = false;
2510
2511                         if (allow_read)
2512                                 curr->get_node()->add_read_from(act);
2513
2514                         /* Include at most one act per-thread that "happens before" curr */
2515                         if (act->happens_before(curr))
2516                                 break;
2517                 }
2518         }
2519
2520         if (DBG_ENABLED()) {
2521                 model_print("Reached read action:\n");
2522                 curr->print();
2523                 model_print("Printing may_read_from\n");
2524                 curr->get_node()->print_may_read_from();
2525                 model_print("End printing may_read_from\n");
2526         }
2527 }
2528
2529 bool ModelChecker::sleep_can_read_from(ModelAction *curr, const ModelAction *write)
2530 {
2531         while (true) {
2532                 /* UNINIT actions don't have a Node, and they never sleep */
2533                 if (write->is_uninitialized())
2534                         return true;
2535                 Node *prevnode = write->get_node()->get_parent();
2536
2537                 bool thread_sleep = prevnode->enabled_status(curr->get_tid()) == THREAD_SLEEP_SET;
2538                 if (write->is_release() && thread_sleep)
2539                         return true;
2540                 if (!write->is_rmw()) {
2541                         return false;
2542                 }
2543                 if (write->get_reads_from() == NULL)
2544                         return true;
2545                 write = write->get_reads_from();
2546         }
2547 }
2548
2549 /**
2550  * @brief Create a new action representing an uninitialized atomic
2551  * @param location The memory location of the atomic object
2552  * @return A pointer to a new ModelAction
2553  */
2554 ModelAction * ModelChecker::new_uninitialized_action(void *location) const
2555 {
2556         ModelAction *act = (ModelAction *)snapshot_malloc(sizeof(class ModelAction));
2557         act = new (act) ModelAction(ATOMIC_UNINIT, std::memory_order_relaxed, location, 0, model_thread);
2558         act->create_cv(NULL);
2559         return act;
2560 }
2561
2562 static void print_list(action_list_t *list, int exec_num = -1)
2563 {
2564         action_list_t::iterator it;
2565
2566         model_print("---------------------------------------------------------------------\n");
2567         if (exec_num >= 0)
2568                 model_print("Execution %d:\n", exec_num);
2569
2570         unsigned int hash = 0;
2571
2572         for (it = list->begin(); it != list->end(); it++) {
2573                 (*it)->print();
2574                 hash = hash^(hash<<3)^((*it)->hash());
2575         }
2576         model_print("HASH %u\n", hash);
2577         model_print("---------------------------------------------------------------------\n");
2578 }
2579
2580 #if SUPPORT_MOD_ORDER_DUMP
2581 void ModelChecker::dumpGraph(char *filename) const
2582 {
2583         char buffer[200];
2584         sprintf(buffer, "%s.dot", filename);
2585         FILE *file = fopen(buffer, "w");
2586         fprintf(file, "digraph %s {\n", filename);
2587         mo_graph->dumpNodes(file);
2588         ModelAction **thread_array = (ModelAction **)model_calloc(1, sizeof(ModelAction *) * get_num_threads());
2589
2590         for (action_list_t::iterator it = action_trace->begin(); it != action_trace->end(); it++) {
2591                 ModelAction *action = *it;
2592                 if (action->is_read()) {
2593                         fprintf(file, "N%u [label=\"%u, T%u\"];\n", action->get_seq_number(), action->get_seq_number(), action->get_tid());
2594                         if (action->get_reads_from() != NULL)
2595                                 fprintf(file, "N%u -> N%u[label=\"rf\", color=red];\n", action->get_seq_number(), action->get_reads_from()->get_seq_number());
2596                 }
2597                 if (thread_array[action->get_tid()] != NULL) {
2598                         fprintf(file, "N%u -> N%u[label=\"sb\", color=blue];\n", thread_array[action->get_tid()]->get_seq_number(), action->get_seq_number());
2599                 }
2600
2601                 thread_array[action->get_tid()] = action;
2602         }
2603         fprintf(file, "}\n");
2604         model_free(thread_array);
2605         fclose(file);
2606 }
2607 #endif
2608
2609 /** @brief Prints an execution trace summary. */
2610 void ModelChecker::print_summary() const
2611 {
2612 #if SUPPORT_MOD_ORDER_DUMP
2613         scheduler->print();
2614         char buffername[100];
2615         sprintf(buffername, "exec%04u", stats.num_total);
2616         mo_graph->dumpGraphToFile(buffername);
2617         sprintf(buffername, "graph%04u", stats.num_total);
2618         dumpGraph(buffername);
2619 #endif
2620
2621         if (!isfeasibleprefix())
2622                 model_print("INFEASIBLE EXECUTION!\n");
2623         print_list(action_trace, stats.num_total);
2624         model_print("\n");
2625 }
2626
2627 /**
2628  * Add a Thread to the system for the first time. Should only be called once
2629  * per thread.
2630  * @param t The Thread to add
2631  */
2632 void ModelChecker::add_thread(Thread *t)
2633 {
2634         thread_map->put(id_to_int(t->get_id()), t);
2635         scheduler->add_thread(t);
2636 }
2637
2638 /**
2639  * Removes a thread from the scheduler.
2640  * @param the thread to remove.
2641  */
2642 void ModelChecker::remove_thread(Thread *t)
2643 {
2644         scheduler->remove_thread(t);
2645 }
2646
2647 /**
2648  * @brief Get a Thread reference by its ID
2649  * @param tid The Thread's ID
2650  * @return A Thread reference
2651  */
2652 Thread * ModelChecker::get_thread(thread_id_t tid) const
2653 {
2654         return thread_map->get(id_to_int(tid));
2655 }
2656
2657 /**
2658  * @brief Get a reference to the Thread in which a ModelAction was executed
2659  * @param act The ModelAction
2660  * @return A Thread reference
2661  */
2662 Thread * ModelChecker::get_thread(ModelAction *act) const
2663 {
2664         return get_thread(act->get_tid());
2665 }
2666
2667 /**
2668  * @brief Check if a Thread is currently enabled
2669  * @param t The Thread to check
2670  * @return True if the Thread is currently enabled
2671  */
2672 bool ModelChecker::is_enabled(Thread *t) const
2673 {
2674         return scheduler->is_enabled(t);
2675 }
2676
2677 /**
2678  * @brief Check if a Thread is currently enabled
2679  * @param tid The ID of the Thread to check
2680  * @return True if the Thread is currently enabled
2681  */
2682 bool ModelChecker::is_enabled(thread_id_t tid) const
2683 {
2684         return scheduler->is_enabled(tid);
2685 }
2686
2687 /**
2688  * Switch from a user-context to the "master thread" context (a.k.a. system
2689  * context). This switch is made with the intention of exploring a particular
2690  * model-checking action (described by a ModelAction object). Must be called
2691  * from a user-thread context.
2692  *
2693  * @param act The current action that will be explored. May be NULL only if
2694  * trace is exiting via an assertion (see ModelChecker::set_assert and
2695  * ModelChecker::has_asserted).
2696  * @return Return the value returned by the current action
2697  */
2698 uint64_t ModelChecker::switch_to_master(ModelAction *act)
2699 {
2700         DBG();
2701         Thread *old = thread_current();
2702         set_current_action(act);
2703         old->set_state(THREAD_READY);
2704         if (Thread::swap(old, &system_context) < 0) {
2705                 perror("swap threads");
2706                 exit(EXIT_FAILURE);
2707         }
2708         return old->get_return_value();
2709 }
2710
2711 /**
2712  * Takes the next step in the execution, if possible.
2713  * @param curr The current step to take
2714  * @return Returns true (success) if a step was taken and false otherwise.
2715  */
2716 bool ModelChecker::take_step(ModelAction *curr)
2717 {
2718         if (has_asserted())
2719                 return false;
2720
2721         Thread *curr_thrd = get_thread(curr);
2722         ASSERT(curr_thrd->get_state() == THREAD_READY);
2723
2724         Thread *next_thrd = check_current_action(curr);
2725
2726         if (curr_thrd->is_blocked() || curr_thrd->is_complete())
2727                 scheduler->remove_thread(curr_thrd);
2728
2729         next_thrd = scheduler->next_thread(next_thrd);
2730
2731         /* Infeasible -> don't take any more steps */
2732         if (is_infeasible())
2733                 return false;
2734         else if (isfeasibleprefix() && have_bug_reports()) {
2735                 set_assert();
2736                 return false;
2737         }
2738
2739         if (params.bound != 0) {
2740                 if (priv->used_sequence_numbers > params.bound) {
2741                         return false;
2742                 }
2743         }
2744
2745         DEBUG("(%d, %d)\n", curr_thrd ? id_to_int(curr_thrd->get_id()) : -1,
2746                         next_thrd ? id_to_int(next_thrd->get_id()) : -1);
2747
2748         /*
2749          * Launch end-of-execution release sequence fixups only when there are:
2750          *
2751          * (1) no more user threads to run (or when execution replay chooses
2752          *     the 'model_thread')
2753          * (2) pending release sequences
2754          * (3) pending assertions (i.e., data races)
2755          * (4) no pending promises
2756          */
2757         if (!pending_rel_seqs->empty() && (!next_thrd || next_thrd->is_model_thread()) &&
2758                         is_feasible_prefix_ignore_relseq() && !unrealizedraces.empty()) {
2759                 model_print("*** WARNING: release sequence fixup action (%zu pending release seuqences) ***\n",
2760                                 pending_rel_seqs->size());
2761                 ModelAction *fixup = new ModelAction(MODEL_FIXUP_RELSEQ,
2762                                 std::memory_order_seq_cst, NULL, VALUE_NONE,
2763                                 model_thread);
2764                 set_current_action(fixup);
2765                 return true;
2766         }
2767
2768         /* next_thrd == NULL -> don't take any more steps */
2769         if (!next_thrd)
2770                 return false;
2771
2772         next_thrd->set_state(THREAD_RUNNING);
2773
2774         if (next_thrd->get_pending() != NULL) {
2775                 /* restart a pending action */
2776                 set_current_action(next_thrd->get_pending());
2777                 next_thrd->set_pending(NULL);
2778                 next_thrd->set_state(THREAD_READY);
2779                 return true;
2780         }
2781
2782         /* Return false only if swap fails with an error */
2783         return (Thread::swap(&system_context, next_thrd) == 0);
2784 }
2785
2786 /** Wrapper to run the user's main function, with appropriate arguments */
2787 void user_main_wrapper(void *)
2788 {
2789         user_main(model->params.argc, model->params.argv);
2790 }
2791
2792 /** @brief Run ModelChecker for the user program */
2793 void ModelChecker::run()
2794 {
2795         do {
2796                 thrd_t user_thread;
2797                 Thread *t = new Thread(&user_thread, &user_main_wrapper, NULL);
2798
2799                 add_thread(t);
2800
2801                 /* Run user thread up to its first action */
2802                 scheduler->next_thread(t);
2803                 Thread::swap(&system_context, t);
2804
2805                 /* Wait for all threads to complete */
2806                 while (take_step(priv->current_action));
2807         } while (next_execution());
2808
2809         print_stats();
2810 }