Merge branch 'integration' into dev
[libcds.git] / cds / urcu / details / gpt.h
1 //$$CDS-header$$1
2
3 #ifndef CDSLIB_URCU_DETAILS_GPT_H
4 #define CDSLIB_URCU_DETAILS_GPT_H
5
6 #include <mutex>    //unique_lock
7 #include <cds/urcu/details/gp.h>
8 #include <cds/urcu/dispose_thread.h>
9 #include <cds/algo/backoff_strategy.h>
10 #include <cds/container/vyukov_mpmc_cycle_queue.h>
11
12 namespace cds { namespace urcu {
13
14     /// User-space general-purpose RCU with deferred threaded reclamation
15     /**
16         @headerfile cds/urcu/general_threaded.h
17
18         This implementation is similar to \ref general_buffered but separate thread is created
19         for deleting the retired objects. Like \p %general_buffered, the class contains an internal buffer
20         where retired objects are accumulated. When the buffer becomes full,
21         the RCU \p synchronize function is called that waits until all reader/updater threads end up their read-side critical sections,
22         i.e. until the RCU quiescent state will come. After that the "work ready" message is sent to reclamation tread.
23         The reclamation thread frees the buffer.
24         This synchronization cycle may be called in any thread that calls \ref retire_ptr function.
25
26         There is a wrapper \ref cds_urcu_general_threaded_gc "gc<general_threaded>" for \p %general_threaded class
27         that provides unified RCU interface. You should use this wrapper class instead \p %general_threaded
28
29         Template arguments:
30         - \p Buffer - buffer type with FIFO semantics. Default is cds::container::VyukovMPMCCycleQueue. See \ref general_buffered
31             for description of buffer's interface. The buffer contains the objects of \ref epoch_retired_ptr
32             type that contains additional \p m_nEpoch field. This field specifies an epoch when the object
33             has been placed into the buffer. The \p %general_threaded object has a global epoch counter
34             that is incremented on each \p synchronize call. The epoch is used internally to prevent early deletion.
35         - \p Lock - mutex type, default is \p std::mutex
36         - \p DisposerThread - the reclamation thread class. Default is \ref cds::urcu::dispose_thread,
37             see the description of this class for required interface.
38         - \p Backoff - back-off schema, default is cds::backoff::Default
39     */
40     template <
41         class Buffer = cds::container::VyukovMPMCCycleQueue< epoch_retired_ptr >
42         ,class Lock = std::mutex
43         ,class DisposerThread = dispose_thread<Buffer>
44         ,class Backoff = cds::backoff::Default
45     >
46     class general_threaded: public details::gp_singleton< general_threaded_tag >
47     {
48         //@cond
49         typedef details::gp_singleton< general_threaded_tag > base_class;
50         //@endcond
51     public:
52         typedef Buffer          buffer_type ;   ///< Buffer type
53         typedef Lock            lock_type   ;   ///< Lock type
54         typedef Backoff         back_off    ;   ///< Back-off scheme
55         typedef DisposerThread  disposer_thread ;   ///< Disposer thread type
56
57         typedef general_threaded_tag    rcu_tag ;       ///< Thread-side RCU part
58         typedef base_class::thread_gc   thread_gc ;     ///< Access lock class
59         typedef typename thread_gc::scoped_lock scoped_lock ; ///< Access lock class
60
61         static bool const c_bBuffered = true ; ///< This RCU buffers disposed elements
62
63     protected:
64         //@cond
65         typedef details::gp_singleton_instance< rcu_tag >    singleton_ptr;
66
67         struct scoped_disposer {
68             void operator ()( general_threaded * p )
69             {
70                 delete p;
71             }
72         };
73         //@endcond
74
75     protected:
76         //@cond
77         buffer_type                     m_Buffer;
78         atomics::atomic<uint64_t>    m_nCurEpoch;
79         lock_type                       m_Lock;
80         size_t const                    m_nCapacity;
81         disposer_thread                 m_DisposerThread;
82         //@endcond
83
84     public:
85         /// Returns singleton instance
86         static general_threaded * instance()
87         {
88             return static_cast<general_threaded *>( base_class::instance() );
89         }
90         /// Checks if the singleton is created and ready to use
91         static bool isUsed()
92         {
93             return singleton_ptr::s_pRCU != nullptr;
94         }
95
96     protected:
97         //@cond
98         general_threaded( size_t nBufferCapacity )
99             : m_Buffer( nBufferCapacity )
100             , m_nCurEpoch( 1 )
101             , m_nCapacity( nBufferCapacity )
102         {}
103
104         void flip_and_wait()
105         {
106             back_off bkoff;
107             base_class::flip_and_wait( bkoff );
108         }
109
110         // Return: true - synchronize has been called, false - otherwise
111         bool push_buffer( epoch_retired_ptr& p )
112         {
113             bool bPushed = m_Buffer.push( p );
114             if ( !bPushed || m_Buffer.size() >= capacity() ) {
115                 synchronize();
116                 if ( !bPushed ) {
117                     CDS_TSAN_ANNOTATE_IGNORE_RW_BEGIN;
118                     p.free();
119                     CDS_TSAN_ANNOTATE_IGNORE_RW_END;
120                 }
121                 return true;
122             }
123             return false;
124         }
125
126         //@endcond
127
128     public:
129         //@cond
130         ~general_threaded()
131         {}
132         //@endcond
133
134         /// Creates singleton object and starts reclamation thread
135         /**
136             The \p nBufferCapacity parameter defines RCU threshold.
137         */
138         static void Construct( size_t nBufferCapacity = 256 )
139         {
140             if ( !singleton_ptr::s_pRCU ) {
141                 std::unique_ptr< general_threaded, scoped_disposer > pRCU( new general_threaded( nBufferCapacity ) );
142                 pRCU->m_DisposerThread.start();
143
144                 singleton_ptr::s_pRCU = pRCU.release();
145             }
146         }
147
148         /// Destroys singleton object and terminates internal reclamation thread
149         static void Destruct( bool bDetachAll = false )
150         {
151             if ( isUsed() ) {
152                 general_threaded * pThis = instance();
153                 if ( bDetachAll )
154                     pThis->m_ThreadList.detach_all();
155
156                 pThis->m_DisposerThread.stop( pThis->m_Buffer, pThis->m_nCurEpoch.load( atomics::memory_order_acquire ));
157
158                 delete pThis;
159                 singleton_ptr::s_pRCU = nullptr;
160             }
161         }
162
163     public:
164         /// Retires \p p pointer
165         /**
166             The method pushes \p p pointer to internal buffer.
167             When the buffer becomes full \ref synchronize function is called
168             to wait for the end of grace period and then
169             a message is sent to the reclamation thread.
170         */
171         virtual void retire_ptr( retired_ptr& p )
172         {
173             if ( p.m_p ) {
174                 epoch_retired_ptr ep( p, m_nCurEpoch.load( atomics::memory_order_acquire ) );
175                 push_buffer( ep );
176             }
177         }
178
179         /// Retires the pointer chain [\p itFirst, \p itLast)
180         template <typename ForwardIterator>
181         void batch_retire( ForwardIterator itFirst, ForwardIterator itLast )
182         {
183             uint64_t nEpoch = m_nCurEpoch.load( atomics::memory_order_relaxed );
184             while ( itFirst != itLast ) {
185                 epoch_retired_ptr p( *itFirst, nEpoch );
186                 ++itFirst;
187                 push_buffer( p );
188             }
189         }
190
191         /// Waits to finish a grace period and calls disposing thread
192         void synchronize()
193         {
194             synchronize( false );
195         }
196
197         //@cond
198         void synchronize( bool bSync )
199         {
200             uint64_t nPrevEpoch = m_nCurEpoch.fetch_add( 1, atomics::memory_order_release );
201
202             atomics::atomic_thread_fence( atomics::memory_order_acquire );
203             {
204                 std::unique_lock<lock_type> sl( m_Lock );
205                 flip_and_wait();
206                 flip_and_wait();
207
208                 m_DisposerThread.dispose( m_Buffer, nPrevEpoch, bSync );
209             }
210             atomics::atomic_thread_fence( atomics::memory_order_release );
211         }
212         void force_dispose()
213         {
214             synchronize( true );
215         }
216         //@endcond
217
218         /// Returns the threshold of internal buffer
219         size_t capacity() const
220         {
221             return m_nCapacity;
222         }
223     };
224 }} // namespace cds::urcu
225
226 #endif // #ifndef CDSLIB_URCU_DETAILS_GPT_H