net: mangle zero checksum in skb_checksum_help()
[firefly-linux-kernel-4.4.55.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/dst_metadata.h>
103 #include <net/pkt_sched.h>
104 #include <net/checksum.h>
105 #include <net/xfrm.h>
106 #include <linux/highmem.h>
107 #include <linux/init.h>
108 #include <linux/module.h>
109 #include <linux/netpoll.h>
110 #include <linux/rcupdate.h>
111 #include <linux/delay.h>
112 #include <net/iw_handler.h>
113 #include <asm/current.h>
114 #include <linux/audit.h>
115 #include <linux/dmaengine.h>
116 #include <linux/err.h>
117 #include <linux/ctype.h>
118 #include <linux/if_arp.h>
119 #include <linux/if_vlan.h>
120 #include <linux/ip.h>
121 #include <net/ip.h>
122 #include <net/mpls.h>
123 #include <linux/ipv6.h>
124 #include <linux/in.h>
125 #include <linux/jhash.h>
126 #include <linux/random.h>
127 #include <trace/events/napi.h>
128 #include <trace/events/net.h>
129 #include <trace/events/skb.h>
130 #include <linux/pci.h>
131 #include <linux/inetdevice.h>
132 #include <linux/cpu_rmap.h>
133 #include <linux/static_key.h>
134 #include <linux/hashtable.h>
135 #include <linux/vmalloc.h>
136 #include <linux/if_macvlan.h>
137 #include <linux/errqueue.h>
138 #include <linux/hrtimer.h>
139 #include <linux/netfilter_ingress.h>
140
141 #include "net-sysfs.h"
142
143 /* Instead of increasing this, you should create a hash table. */
144 #define MAX_GRO_SKBS 8
145
146 /* This should be increased if a protocol with a bigger head is added. */
147 #define GRO_MAX_HEAD (MAX_HEADER + 128)
148
149 static DEFINE_SPINLOCK(ptype_lock);
150 static DEFINE_SPINLOCK(offload_lock);
151 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
152 struct list_head ptype_all __read_mostly;       /* Taps */
153 static struct list_head offload_base __read_mostly;
154
155 static int netif_rx_internal(struct sk_buff *skb);
156 static int call_netdevice_notifiers_info(unsigned long val,
157                                          struct net_device *dev,
158                                          struct netdev_notifier_info *info);
159
160 /*
161  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
162  * semaphore.
163  *
164  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
165  *
166  * Writers must hold the rtnl semaphore while they loop through the
167  * dev_base_head list, and hold dev_base_lock for writing when they do the
168  * actual updates.  This allows pure readers to access the list even
169  * while a writer is preparing to update it.
170  *
171  * To put it another way, dev_base_lock is held for writing only to
172  * protect against pure readers; the rtnl semaphore provides the
173  * protection against other writers.
174  *
175  * See, for example usages, register_netdevice() and
176  * unregister_netdevice(), which must be called with the rtnl
177  * semaphore held.
178  */
179 DEFINE_RWLOCK(dev_base_lock);
180 EXPORT_SYMBOL(dev_base_lock);
181
182 /* protects napi_hash addition/deletion and napi_gen_id */
183 static DEFINE_SPINLOCK(napi_hash_lock);
184
185 static unsigned int napi_gen_id;
186 static DEFINE_HASHTABLE(napi_hash, 8);
187
188 static seqcount_t devnet_rename_seq;
189
190 static inline void dev_base_seq_inc(struct net *net)
191 {
192         while (++net->dev_base_seq == 0);
193 }
194
195 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
196 {
197         unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
198
199         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
200 }
201
202 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
203 {
204         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
205 }
206
207 static inline void rps_lock(struct softnet_data *sd)
208 {
209 #ifdef CONFIG_RPS
210         spin_lock(&sd->input_pkt_queue.lock);
211 #endif
212 }
213
214 static inline void rps_unlock(struct softnet_data *sd)
215 {
216 #ifdef CONFIG_RPS
217         spin_unlock(&sd->input_pkt_queue.lock);
218 #endif
219 }
220
221 /* Device list insertion */
222 static void list_netdevice(struct net_device *dev)
223 {
224         struct net *net = dev_net(dev);
225
226         ASSERT_RTNL();
227
228         write_lock_bh(&dev_base_lock);
229         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
230         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
231         hlist_add_head_rcu(&dev->index_hlist,
232                            dev_index_hash(net, dev->ifindex));
233         write_unlock_bh(&dev_base_lock);
234
235         dev_base_seq_inc(net);
236 }
237
238 /* Device list removal
239  * caller must respect a RCU grace period before freeing/reusing dev
240  */
241 static void unlist_netdevice(struct net_device *dev)
242 {
243         ASSERT_RTNL();
244
245         /* Unlink dev from the device chain */
246         write_lock_bh(&dev_base_lock);
247         list_del_rcu(&dev->dev_list);
248         hlist_del_rcu(&dev->name_hlist);
249         hlist_del_rcu(&dev->index_hlist);
250         write_unlock_bh(&dev_base_lock);
251
252         dev_base_seq_inc(dev_net(dev));
253 }
254
255 /*
256  *      Our notifier list
257  */
258
259 static RAW_NOTIFIER_HEAD(netdev_chain);
260
261 /*
262  *      Device drivers call our routines to queue packets here. We empty the
263  *      queue in the local softnet handler.
264  */
265
266 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
267 EXPORT_PER_CPU_SYMBOL(softnet_data);
268
269 #ifdef CONFIG_LOCKDEP
270 /*
271  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
272  * according to dev->type
273  */
274 static const unsigned short netdev_lock_type[] =
275         {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
276          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
277          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
278          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
279          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
280          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
281          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
282          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
283          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
284          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
285          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
286          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
287          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
288          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
289          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
290
291 static const char *const netdev_lock_name[] =
292         {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
293          "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
294          "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
295          "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
296          "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
297          "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
298          "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
299          "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
300          "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
301          "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
302          "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
303          "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
304          "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
305          "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
306          "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
307
308 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
309 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
310
311 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
312 {
313         int i;
314
315         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
316                 if (netdev_lock_type[i] == dev_type)
317                         return i;
318         /* the last key is used by default */
319         return ARRAY_SIZE(netdev_lock_type) - 1;
320 }
321
322 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
323                                                  unsigned short dev_type)
324 {
325         int i;
326
327         i = netdev_lock_pos(dev_type);
328         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
329                                    netdev_lock_name[i]);
330 }
331
332 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
333 {
334         int i;
335
336         i = netdev_lock_pos(dev->type);
337         lockdep_set_class_and_name(&dev->addr_list_lock,
338                                    &netdev_addr_lock_key[i],
339                                    netdev_lock_name[i]);
340 }
341 #else
342 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
343                                                  unsigned short dev_type)
344 {
345 }
346 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
347 {
348 }
349 #endif
350
351 /*******************************************************************************
352
353                 Protocol management and registration routines
354
355 *******************************************************************************/
356
357 /*
358  *      Add a protocol ID to the list. Now that the input handler is
359  *      smarter we can dispense with all the messy stuff that used to be
360  *      here.
361  *
362  *      BEWARE!!! Protocol handlers, mangling input packets,
363  *      MUST BE last in hash buckets and checking protocol handlers
364  *      MUST start from promiscuous ptype_all chain in net_bh.
365  *      It is true now, do not change it.
366  *      Explanation follows: if protocol handler, mangling packet, will
367  *      be the first on list, it is not able to sense, that packet
368  *      is cloned and should be copied-on-write, so that it will
369  *      change it and subsequent readers will get broken packet.
370  *                                                      --ANK (980803)
371  */
372
373 static inline struct list_head *ptype_head(const struct packet_type *pt)
374 {
375         if (pt->type == htons(ETH_P_ALL))
376                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
377         else
378                 return pt->dev ? &pt->dev->ptype_specific :
379                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
380 }
381
382 /**
383  *      dev_add_pack - add packet handler
384  *      @pt: packet type declaration
385  *
386  *      Add a protocol handler to the networking stack. The passed &packet_type
387  *      is linked into kernel lists and may not be freed until it has been
388  *      removed from the kernel lists.
389  *
390  *      This call does not sleep therefore it can not
391  *      guarantee all CPU's that are in middle of receiving packets
392  *      will see the new packet type (until the next received packet).
393  */
394
395 void dev_add_pack(struct packet_type *pt)
396 {
397         struct list_head *head = ptype_head(pt);
398
399         spin_lock(&ptype_lock);
400         list_add_rcu(&pt->list, head);
401         spin_unlock(&ptype_lock);
402 }
403 EXPORT_SYMBOL(dev_add_pack);
404
405 /**
406  *      __dev_remove_pack        - remove packet handler
407  *      @pt: packet type declaration
408  *
409  *      Remove a protocol handler that was previously added to the kernel
410  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
411  *      from the kernel lists and can be freed or reused once this function
412  *      returns.
413  *
414  *      The packet type might still be in use by receivers
415  *      and must not be freed until after all the CPU's have gone
416  *      through a quiescent state.
417  */
418 void __dev_remove_pack(struct packet_type *pt)
419 {
420         struct list_head *head = ptype_head(pt);
421         struct packet_type *pt1;
422
423         spin_lock(&ptype_lock);
424
425         list_for_each_entry(pt1, head, list) {
426                 if (pt == pt1) {
427                         list_del_rcu(&pt->list);
428                         goto out;
429                 }
430         }
431
432         pr_warn("dev_remove_pack: %p not found\n", pt);
433 out:
434         spin_unlock(&ptype_lock);
435 }
436 EXPORT_SYMBOL(__dev_remove_pack);
437
438 /**
439  *      dev_remove_pack  - remove packet handler
440  *      @pt: packet type declaration
441  *
442  *      Remove a protocol handler that was previously added to the kernel
443  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
444  *      from the kernel lists and can be freed or reused once this function
445  *      returns.
446  *
447  *      This call sleeps to guarantee that no CPU is looking at the packet
448  *      type after return.
449  */
450 void dev_remove_pack(struct packet_type *pt)
451 {
452         __dev_remove_pack(pt);
453
454         synchronize_net();
455 }
456 EXPORT_SYMBOL(dev_remove_pack);
457
458
459 /**
460  *      dev_add_offload - register offload handlers
461  *      @po: protocol offload declaration
462  *
463  *      Add protocol offload handlers to the networking stack. The passed
464  *      &proto_offload is linked into kernel lists and may not be freed until
465  *      it has been removed from the kernel lists.
466  *
467  *      This call does not sleep therefore it can not
468  *      guarantee all CPU's that are in middle of receiving packets
469  *      will see the new offload handlers (until the next received packet).
470  */
471 void dev_add_offload(struct packet_offload *po)
472 {
473         struct packet_offload *elem;
474
475         spin_lock(&offload_lock);
476         list_for_each_entry(elem, &offload_base, list) {
477                 if (po->priority < elem->priority)
478                         break;
479         }
480         list_add_rcu(&po->list, elem->list.prev);
481         spin_unlock(&offload_lock);
482 }
483 EXPORT_SYMBOL(dev_add_offload);
484
485 /**
486  *      __dev_remove_offload     - remove offload handler
487  *      @po: packet offload declaration
488  *
489  *      Remove a protocol offload handler that was previously added to the
490  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
491  *      is removed from the kernel lists and can be freed or reused once this
492  *      function returns.
493  *
494  *      The packet type might still be in use by receivers
495  *      and must not be freed until after all the CPU's have gone
496  *      through a quiescent state.
497  */
498 static void __dev_remove_offload(struct packet_offload *po)
499 {
500         struct list_head *head = &offload_base;
501         struct packet_offload *po1;
502
503         spin_lock(&offload_lock);
504
505         list_for_each_entry(po1, head, list) {
506                 if (po == po1) {
507                         list_del_rcu(&po->list);
508                         goto out;
509                 }
510         }
511
512         pr_warn("dev_remove_offload: %p not found\n", po);
513 out:
514         spin_unlock(&offload_lock);
515 }
516
517 /**
518  *      dev_remove_offload       - remove packet offload handler
519  *      @po: packet offload declaration
520  *
521  *      Remove a packet offload handler that was previously added to the kernel
522  *      offload handlers by dev_add_offload(). The passed &offload_type is
523  *      removed from the kernel lists and can be freed or reused once this
524  *      function returns.
525  *
526  *      This call sleeps to guarantee that no CPU is looking at the packet
527  *      type after return.
528  */
529 void dev_remove_offload(struct packet_offload *po)
530 {
531         __dev_remove_offload(po);
532
533         synchronize_net();
534 }
535 EXPORT_SYMBOL(dev_remove_offload);
536
537 /******************************************************************************
538
539                       Device Boot-time Settings Routines
540
541 *******************************************************************************/
542
543 /* Boot time configuration table */
544 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
545
546 /**
547  *      netdev_boot_setup_add   - add new setup entry
548  *      @name: name of the device
549  *      @map: configured settings for the device
550  *
551  *      Adds new setup entry to the dev_boot_setup list.  The function
552  *      returns 0 on error and 1 on success.  This is a generic routine to
553  *      all netdevices.
554  */
555 static int netdev_boot_setup_add(char *name, struct ifmap *map)
556 {
557         struct netdev_boot_setup *s;
558         int i;
559
560         s = dev_boot_setup;
561         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
562                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
563                         memset(s[i].name, 0, sizeof(s[i].name));
564                         strlcpy(s[i].name, name, IFNAMSIZ);
565                         memcpy(&s[i].map, map, sizeof(s[i].map));
566                         break;
567                 }
568         }
569
570         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
571 }
572
573 /**
574  *      netdev_boot_setup_check - check boot time settings
575  *      @dev: the netdevice
576  *
577  *      Check boot time settings for the device.
578  *      The found settings are set for the device to be used
579  *      later in the device probing.
580  *      Returns 0 if no settings found, 1 if they are.
581  */
582 int netdev_boot_setup_check(struct net_device *dev)
583 {
584         struct netdev_boot_setup *s = dev_boot_setup;
585         int i;
586
587         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
588                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
589                     !strcmp(dev->name, s[i].name)) {
590                         dev->irq        = s[i].map.irq;
591                         dev->base_addr  = s[i].map.base_addr;
592                         dev->mem_start  = s[i].map.mem_start;
593                         dev->mem_end    = s[i].map.mem_end;
594                         return 1;
595                 }
596         }
597         return 0;
598 }
599 EXPORT_SYMBOL(netdev_boot_setup_check);
600
601
602 /**
603  *      netdev_boot_base        - get address from boot time settings
604  *      @prefix: prefix for network device
605  *      @unit: id for network device
606  *
607  *      Check boot time settings for the base address of device.
608  *      The found settings are set for the device to be used
609  *      later in the device probing.
610  *      Returns 0 if no settings found.
611  */
612 unsigned long netdev_boot_base(const char *prefix, int unit)
613 {
614         const struct netdev_boot_setup *s = dev_boot_setup;
615         char name[IFNAMSIZ];
616         int i;
617
618         sprintf(name, "%s%d", prefix, unit);
619
620         /*
621          * If device already registered then return base of 1
622          * to indicate not to probe for this interface
623          */
624         if (__dev_get_by_name(&init_net, name))
625                 return 1;
626
627         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
628                 if (!strcmp(name, s[i].name))
629                         return s[i].map.base_addr;
630         return 0;
631 }
632
633 /*
634  * Saves at boot time configured settings for any netdevice.
635  */
636 int __init netdev_boot_setup(char *str)
637 {
638         int ints[5];
639         struct ifmap map;
640
641         str = get_options(str, ARRAY_SIZE(ints), ints);
642         if (!str || !*str)
643                 return 0;
644
645         /* Save settings */
646         memset(&map, 0, sizeof(map));
647         if (ints[0] > 0)
648                 map.irq = ints[1];
649         if (ints[0] > 1)
650                 map.base_addr = ints[2];
651         if (ints[0] > 2)
652                 map.mem_start = ints[3];
653         if (ints[0] > 3)
654                 map.mem_end = ints[4];
655
656         /* Add new entry to the list */
657         return netdev_boot_setup_add(str, &map);
658 }
659
660 __setup("netdev=", netdev_boot_setup);
661
662 /*******************************************************************************
663
664                             Device Interface Subroutines
665
666 *******************************************************************************/
667
668 /**
669  *      dev_get_iflink  - get 'iflink' value of a interface
670  *      @dev: targeted interface
671  *
672  *      Indicates the ifindex the interface is linked to.
673  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
674  */
675
676 int dev_get_iflink(const struct net_device *dev)
677 {
678         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
679                 return dev->netdev_ops->ndo_get_iflink(dev);
680
681         return dev->ifindex;
682 }
683 EXPORT_SYMBOL(dev_get_iflink);
684
685 /**
686  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
687  *      @dev: targeted interface
688  *      @skb: The packet.
689  *
690  *      For better visibility of tunnel traffic OVS needs to retrieve
691  *      egress tunnel information for a packet. Following API allows
692  *      user to get this info.
693  */
694 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
695 {
696         struct ip_tunnel_info *info;
697
698         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
699                 return -EINVAL;
700
701         info = skb_tunnel_info_unclone(skb);
702         if (!info)
703                 return -ENOMEM;
704         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
705                 return -EINVAL;
706
707         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
708 }
709 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
710
711 /**
712  *      __dev_get_by_name       - find a device by its name
713  *      @net: the applicable net namespace
714  *      @name: name to find
715  *
716  *      Find an interface by name. Must be called under RTNL semaphore
717  *      or @dev_base_lock. If the name is found a pointer to the device
718  *      is returned. If the name is not found then %NULL is returned. The
719  *      reference counters are not incremented so the caller must be
720  *      careful with locks.
721  */
722
723 struct net_device *__dev_get_by_name(struct net *net, const char *name)
724 {
725         struct net_device *dev;
726         struct hlist_head *head = dev_name_hash(net, name);
727
728         hlist_for_each_entry(dev, head, name_hlist)
729                 if (!strncmp(dev->name, name, IFNAMSIZ))
730                         return dev;
731
732         return NULL;
733 }
734 EXPORT_SYMBOL(__dev_get_by_name);
735
736 /**
737  *      dev_get_by_name_rcu     - find a device by its name
738  *      @net: the applicable net namespace
739  *      @name: name to find
740  *
741  *      Find an interface by name.
742  *      If the name is found a pointer to the device is returned.
743  *      If the name is not found then %NULL is returned.
744  *      The reference counters are not incremented so the caller must be
745  *      careful with locks. The caller must hold RCU lock.
746  */
747
748 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
749 {
750         struct net_device *dev;
751         struct hlist_head *head = dev_name_hash(net, name);
752
753         hlist_for_each_entry_rcu(dev, head, name_hlist)
754                 if (!strncmp(dev->name, name, IFNAMSIZ))
755                         return dev;
756
757         return NULL;
758 }
759 EXPORT_SYMBOL(dev_get_by_name_rcu);
760
761 /**
762  *      dev_get_by_name         - find a device by its name
763  *      @net: the applicable net namespace
764  *      @name: name to find
765  *
766  *      Find an interface by name. This can be called from any
767  *      context and does its own locking. The returned handle has
768  *      the usage count incremented and the caller must use dev_put() to
769  *      release it when it is no longer needed. %NULL is returned if no
770  *      matching device is found.
771  */
772
773 struct net_device *dev_get_by_name(struct net *net, const char *name)
774 {
775         struct net_device *dev;
776
777         rcu_read_lock();
778         dev = dev_get_by_name_rcu(net, name);
779         if (dev)
780                 dev_hold(dev);
781         rcu_read_unlock();
782         return dev;
783 }
784 EXPORT_SYMBOL(dev_get_by_name);
785
786 /**
787  *      __dev_get_by_index - find a device by its ifindex
788  *      @net: the applicable net namespace
789  *      @ifindex: index of device
790  *
791  *      Search for an interface by index. Returns %NULL if the device
792  *      is not found or a pointer to the device. The device has not
793  *      had its reference counter increased so the caller must be careful
794  *      about locking. The caller must hold either the RTNL semaphore
795  *      or @dev_base_lock.
796  */
797
798 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
799 {
800         struct net_device *dev;
801         struct hlist_head *head = dev_index_hash(net, ifindex);
802
803         hlist_for_each_entry(dev, head, index_hlist)
804                 if (dev->ifindex == ifindex)
805                         return dev;
806
807         return NULL;
808 }
809 EXPORT_SYMBOL(__dev_get_by_index);
810
811 /**
812  *      dev_get_by_index_rcu - find a device by its ifindex
813  *      @net: the applicable net namespace
814  *      @ifindex: index of device
815  *
816  *      Search for an interface by index. Returns %NULL if the device
817  *      is not found or a pointer to the device. The device has not
818  *      had its reference counter increased so the caller must be careful
819  *      about locking. The caller must hold RCU lock.
820  */
821
822 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
823 {
824         struct net_device *dev;
825         struct hlist_head *head = dev_index_hash(net, ifindex);
826
827         hlist_for_each_entry_rcu(dev, head, index_hlist)
828                 if (dev->ifindex == ifindex)
829                         return dev;
830
831         return NULL;
832 }
833 EXPORT_SYMBOL(dev_get_by_index_rcu);
834
835
836 /**
837  *      dev_get_by_index - find a device by its ifindex
838  *      @net: the applicable net namespace
839  *      @ifindex: index of device
840  *
841  *      Search for an interface by index. Returns NULL if the device
842  *      is not found or a pointer to the device. The device returned has
843  *      had a reference added and the pointer is safe until the user calls
844  *      dev_put to indicate they have finished with it.
845  */
846
847 struct net_device *dev_get_by_index(struct net *net, int ifindex)
848 {
849         struct net_device *dev;
850
851         rcu_read_lock();
852         dev = dev_get_by_index_rcu(net, ifindex);
853         if (dev)
854                 dev_hold(dev);
855         rcu_read_unlock();
856         return dev;
857 }
858 EXPORT_SYMBOL(dev_get_by_index);
859
860 /**
861  *      netdev_get_name - get a netdevice name, knowing its ifindex.
862  *      @net: network namespace
863  *      @name: a pointer to the buffer where the name will be stored.
864  *      @ifindex: the ifindex of the interface to get the name from.
865  *
866  *      The use of raw_seqcount_begin() and cond_resched() before
867  *      retrying is required as we want to give the writers a chance
868  *      to complete when CONFIG_PREEMPT is not set.
869  */
870 int netdev_get_name(struct net *net, char *name, int ifindex)
871 {
872         struct net_device *dev;
873         unsigned int seq;
874
875 retry:
876         seq = raw_seqcount_begin(&devnet_rename_seq);
877         rcu_read_lock();
878         dev = dev_get_by_index_rcu(net, ifindex);
879         if (!dev) {
880                 rcu_read_unlock();
881                 return -ENODEV;
882         }
883
884         strcpy(name, dev->name);
885         rcu_read_unlock();
886         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
887                 cond_resched();
888                 goto retry;
889         }
890
891         return 0;
892 }
893
894 /**
895  *      dev_getbyhwaddr_rcu - find a device by its hardware address
896  *      @net: the applicable net namespace
897  *      @type: media type of device
898  *      @ha: hardware address
899  *
900  *      Search for an interface by MAC address. Returns NULL if the device
901  *      is not found or a pointer to the device.
902  *      The caller must hold RCU or RTNL.
903  *      The returned device has not had its ref count increased
904  *      and the caller must therefore be careful about locking
905  *
906  */
907
908 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
909                                        const char *ha)
910 {
911         struct net_device *dev;
912
913         for_each_netdev_rcu(net, dev)
914                 if (dev->type == type &&
915                     !memcmp(dev->dev_addr, ha, dev->addr_len))
916                         return dev;
917
918         return NULL;
919 }
920 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
921
922 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
923 {
924         struct net_device *dev;
925
926         ASSERT_RTNL();
927         for_each_netdev(net, dev)
928                 if (dev->type == type)
929                         return dev;
930
931         return NULL;
932 }
933 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
934
935 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
936 {
937         struct net_device *dev, *ret = NULL;
938
939         rcu_read_lock();
940         for_each_netdev_rcu(net, dev)
941                 if (dev->type == type) {
942                         dev_hold(dev);
943                         ret = dev;
944                         break;
945                 }
946         rcu_read_unlock();
947         return ret;
948 }
949 EXPORT_SYMBOL(dev_getfirstbyhwtype);
950
951 /**
952  *      __dev_get_by_flags - find any device with given flags
953  *      @net: the applicable net namespace
954  *      @if_flags: IFF_* values
955  *      @mask: bitmask of bits in if_flags to check
956  *
957  *      Search for any interface with the given flags. Returns NULL if a device
958  *      is not found or a pointer to the device. Must be called inside
959  *      rtnl_lock(), and result refcount is unchanged.
960  */
961
962 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
963                                       unsigned short mask)
964 {
965         struct net_device *dev, *ret;
966
967         ASSERT_RTNL();
968
969         ret = NULL;
970         for_each_netdev(net, dev) {
971                 if (((dev->flags ^ if_flags) & mask) == 0) {
972                         ret = dev;
973                         break;
974                 }
975         }
976         return ret;
977 }
978 EXPORT_SYMBOL(__dev_get_by_flags);
979
980 /**
981  *      dev_valid_name - check if name is okay for network device
982  *      @name: name string
983  *
984  *      Network device names need to be valid file names to
985  *      to allow sysfs to work.  We also disallow any kind of
986  *      whitespace.
987  */
988 bool dev_valid_name(const char *name)
989 {
990         if (*name == '\0')
991                 return false;
992         if (strlen(name) >= IFNAMSIZ)
993                 return false;
994         if (!strcmp(name, ".") || !strcmp(name, ".."))
995                 return false;
996
997         while (*name) {
998                 if (*name == '/' || *name == ':' || isspace(*name))
999                         return false;
1000                 name++;
1001         }
1002         return true;
1003 }
1004 EXPORT_SYMBOL(dev_valid_name);
1005
1006 /**
1007  *      __dev_alloc_name - allocate a name for a device
1008  *      @net: network namespace to allocate the device name in
1009  *      @name: name format string
1010  *      @buf:  scratch buffer and result name string
1011  *
1012  *      Passed a format string - eg "lt%d" it will try and find a suitable
1013  *      id. It scans list of devices to build up a free map, then chooses
1014  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1015  *      while allocating the name and adding the device in order to avoid
1016  *      duplicates.
1017  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1018  *      Returns the number of the unit assigned or a negative errno code.
1019  */
1020
1021 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1022 {
1023         int i = 0;
1024         const char *p;
1025         const int max_netdevices = 8*PAGE_SIZE;
1026         unsigned long *inuse;
1027         struct net_device *d;
1028
1029         p = strnchr(name, IFNAMSIZ-1, '%');
1030         if (p) {
1031                 /*
1032                  * Verify the string as this thing may have come from
1033                  * the user.  There must be either one "%d" and no other "%"
1034                  * characters.
1035                  */
1036                 if (p[1] != 'd' || strchr(p + 2, '%'))
1037                         return -EINVAL;
1038
1039                 /* Use one page as a bit array of possible slots */
1040                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1041                 if (!inuse)
1042                         return -ENOMEM;
1043
1044                 for_each_netdev(net, d) {
1045                         if (!sscanf(d->name, name, &i))
1046                                 continue;
1047                         if (i < 0 || i >= max_netdevices)
1048                                 continue;
1049
1050                         /*  avoid cases where sscanf is not exact inverse of printf */
1051                         snprintf(buf, IFNAMSIZ, name, i);
1052                         if (!strncmp(buf, d->name, IFNAMSIZ))
1053                                 set_bit(i, inuse);
1054                 }
1055
1056                 i = find_first_zero_bit(inuse, max_netdevices);
1057                 free_page((unsigned long) inuse);
1058         }
1059
1060         if (buf != name)
1061                 snprintf(buf, IFNAMSIZ, name, i);
1062         if (!__dev_get_by_name(net, buf))
1063                 return i;
1064
1065         /* It is possible to run out of possible slots
1066          * when the name is long and there isn't enough space left
1067          * for the digits, or if all bits are used.
1068          */
1069         return -ENFILE;
1070 }
1071
1072 /**
1073  *      dev_alloc_name - allocate a name for a device
1074  *      @dev: device
1075  *      @name: name format string
1076  *
1077  *      Passed a format string - eg "lt%d" it will try and find a suitable
1078  *      id. It scans list of devices to build up a free map, then chooses
1079  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1080  *      while allocating the name and adding the device in order to avoid
1081  *      duplicates.
1082  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1083  *      Returns the number of the unit assigned or a negative errno code.
1084  */
1085
1086 int dev_alloc_name(struct net_device *dev, const char *name)
1087 {
1088         char buf[IFNAMSIZ];
1089         struct net *net;
1090         int ret;
1091
1092         BUG_ON(!dev_net(dev));
1093         net = dev_net(dev);
1094         ret = __dev_alloc_name(net, name, buf);
1095         if (ret >= 0)
1096                 strlcpy(dev->name, buf, IFNAMSIZ);
1097         return ret;
1098 }
1099 EXPORT_SYMBOL(dev_alloc_name);
1100
1101 static int dev_alloc_name_ns(struct net *net,
1102                              struct net_device *dev,
1103                              const char *name)
1104 {
1105         char buf[IFNAMSIZ];
1106         int ret;
1107
1108         ret = __dev_alloc_name(net, name, buf);
1109         if (ret >= 0)
1110                 strlcpy(dev->name, buf, IFNAMSIZ);
1111         return ret;
1112 }
1113
1114 static int dev_get_valid_name(struct net *net,
1115                               struct net_device *dev,
1116                               const char *name)
1117 {
1118         BUG_ON(!net);
1119
1120         if (!dev_valid_name(name))
1121                 return -EINVAL;
1122
1123         if (strchr(name, '%'))
1124                 return dev_alloc_name_ns(net, dev, name);
1125         else if (__dev_get_by_name(net, name))
1126                 return -EEXIST;
1127         else if (dev->name != name)
1128                 strlcpy(dev->name, name, IFNAMSIZ);
1129
1130         return 0;
1131 }
1132
1133 /**
1134  *      dev_change_name - change name of a device
1135  *      @dev: device
1136  *      @newname: name (or format string) must be at least IFNAMSIZ
1137  *
1138  *      Change name of a device, can pass format strings "eth%d".
1139  *      for wildcarding.
1140  */
1141 int dev_change_name(struct net_device *dev, const char *newname)
1142 {
1143         unsigned char old_assign_type;
1144         char oldname[IFNAMSIZ];
1145         int err = 0;
1146         int ret;
1147         struct net *net;
1148
1149         ASSERT_RTNL();
1150         BUG_ON(!dev_net(dev));
1151
1152         net = dev_net(dev);
1153         if (dev->flags & IFF_UP)
1154                 return -EBUSY;
1155
1156         write_seqcount_begin(&devnet_rename_seq);
1157
1158         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1159                 write_seqcount_end(&devnet_rename_seq);
1160                 return 0;
1161         }
1162
1163         memcpy(oldname, dev->name, IFNAMSIZ);
1164
1165         err = dev_get_valid_name(net, dev, newname);
1166         if (err < 0) {
1167                 write_seqcount_end(&devnet_rename_seq);
1168                 return err;
1169         }
1170
1171         if (oldname[0] && !strchr(oldname, '%'))
1172                 netdev_info(dev, "renamed from %s\n", oldname);
1173
1174         old_assign_type = dev->name_assign_type;
1175         dev->name_assign_type = NET_NAME_RENAMED;
1176
1177 rollback:
1178         ret = device_rename(&dev->dev, dev->name);
1179         if (ret) {
1180                 memcpy(dev->name, oldname, IFNAMSIZ);
1181                 dev->name_assign_type = old_assign_type;
1182                 write_seqcount_end(&devnet_rename_seq);
1183                 return ret;
1184         }
1185
1186         write_seqcount_end(&devnet_rename_seq);
1187
1188         netdev_adjacent_rename_links(dev, oldname);
1189
1190         write_lock_bh(&dev_base_lock);
1191         hlist_del_rcu(&dev->name_hlist);
1192         write_unlock_bh(&dev_base_lock);
1193
1194         synchronize_rcu();
1195
1196         write_lock_bh(&dev_base_lock);
1197         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1198         write_unlock_bh(&dev_base_lock);
1199
1200         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1201         ret = notifier_to_errno(ret);
1202
1203         if (ret) {
1204                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1205                 if (err >= 0) {
1206                         err = ret;
1207                         write_seqcount_begin(&devnet_rename_seq);
1208                         memcpy(dev->name, oldname, IFNAMSIZ);
1209                         memcpy(oldname, newname, IFNAMSIZ);
1210                         dev->name_assign_type = old_assign_type;
1211                         old_assign_type = NET_NAME_RENAMED;
1212                         goto rollback;
1213                 } else {
1214                         pr_err("%s: name change rollback failed: %d\n",
1215                                dev->name, ret);
1216                 }
1217         }
1218
1219         return err;
1220 }
1221
1222 /**
1223  *      dev_set_alias - change ifalias of a device
1224  *      @dev: device
1225  *      @alias: name up to IFALIASZ
1226  *      @len: limit of bytes to copy from info
1227  *
1228  *      Set ifalias for a device,
1229  */
1230 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1231 {
1232         char *new_ifalias;
1233
1234         ASSERT_RTNL();
1235
1236         if (len >= IFALIASZ)
1237                 return -EINVAL;
1238
1239         if (!len) {
1240                 kfree(dev->ifalias);
1241                 dev->ifalias = NULL;
1242                 return 0;
1243         }
1244
1245         new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1246         if (!new_ifalias)
1247                 return -ENOMEM;
1248         dev->ifalias = new_ifalias;
1249
1250         strlcpy(dev->ifalias, alias, len+1);
1251         return len;
1252 }
1253
1254
1255 /**
1256  *      netdev_features_change - device changes features
1257  *      @dev: device to cause notification
1258  *
1259  *      Called to indicate a device has changed features.
1260  */
1261 void netdev_features_change(struct net_device *dev)
1262 {
1263         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1264 }
1265 EXPORT_SYMBOL(netdev_features_change);
1266
1267 /**
1268  *      netdev_state_change - device changes state
1269  *      @dev: device to cause notification
1270  *
1271  *      Called to indicate a device has changed state. This function calls
1272  *      the notifier chains for netdev_chain and sends a NEWLINK message
1273  *      to the routing socket.
1274  */
1275 void netdev_state_change(struct net_device *dev)
1276 {
1277         if (dev->flags & IFF_UP) {
1278                 struct netdev_notifier_change_info change_info;
1279
1280                 change_info.flags_changed = 0;
1281                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1282                                               &change_info.info);
1283                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1284         }
1285 }
1286 EXPORT_SYMBOL(netdev_state_change);
1287
1288 /**
1289  *      netdev_notify_peers - notify network peers about existence of @dev
1290  *      @dev: network device
1291  *
1292  * Generate traffic such that interested network peers are aware of
1293  * @dev, such as by generating a gratuitous ARP. This may be used when
1294  * a device wants to inform the rest of the network about some sort of
1295  * reconfiguration such as a failover event or virtual machine
1296  * migration.
1297  */
1298 void netdev_notify_peers(struct net_device *dev)
1299 {
1300         rtnl_lock();
1301         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1302         rtnl_unlock();
1303 }
1304 EXPORT_SYMBOL(netdev_notify_peers);
1305
1306 static int __dev_open(struct net_device *dev)
1307 {
1308         const struct net_device_ops *ops = dev->netdev_ops;
1309         int ret;
1310
1311         ASSERT_RTNL();
1312
1313         if (!netif_device_present(dev))
1314                 return -ENODEV;
1315
1316         /* Block netpoll from trying to do any rx path servicing.
1317          * If we don't do this there is a chance ndo_poll_controller
1318          * or ndo_poll may be running while we open the device
1319          */
1320         netpoll_poll_disable(dev);
1321
1322         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1323         ret = notifier_to_errno(ret);
1324         if (ret)
1325                 return ret;
1326
1327         set_bit(__LINK_STATE_START, &dev->state);
1328
1329         if (ops->ndo_validate_addr)
1330                 ret = ops->ndo_validate_addr(dev);
1331
1332         if (!ret && ops->ndo_open)
1333                 ret = ops->ndo_open(dev);
1334
1335         netpoll_poll_enable(dev);
1336
1337         if (ret)
1338                 clear_bit(__LINK_STATE_START, &dev->state);
1339         else {
1340                 dev->flags |= IFF_UP;
1341                 dev_set_rx_mode(dev);
1342                 dev_activate(dev);
1343                 add_device_randomness(dev->dev_addr, dev->addr_len);
1344         }
1345
1346         return ret;
1347 }
1348
1349 /**
1350  *      dev_open        - prepare an interface for use.
1351  *      @dev:   device to open
1352  *
1353  *      Takes a device from down to up state. The device's private open
1354  *      function is invoked and then the multicast lists are loaded. Finally
1355  *      the device is moved into the up state and a %NETDEV_UP message is
1356  *      sent to the netdev notifier chain.
1357  *
1358  *      Calling this function on an active interface is a nop. On a failure
1359  *      a negative errno code is returned.
1360  */
1361 int dev_open(struct net_device *dev)
1362 {
1363         int ret;
1364
1365         if (dev->flags & IFF_UP)
1366                 return 0;
1367
1368         ret = __dev_open(dev);
1369         if (ret < 0)
1370                 return ret;
1371
1372         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1373         call_netdevice_notifiers(NETDEV_UP, dev);
1374
1375         return ret;
1376 }
1377 EXPORT_SYMBOL(dev_open);
1378
1379 static int __dev_close_many(struct list_head *head)
1380 {
1381         struct net_device *dev;
1382
1383         ASSERT_RTNL();
1384         might_sleep();
1385
1386         list_for_each_entry(dev, head, close_list) {
1387                 /* Temporarily disable netpoll until the interface is down */
1388                 netpoll_poll_disable(dev);
1389
1390                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1391
1392                 clear_bit(__LINK_STATE_START, &dev->state);
1393
1394                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1395                  * can be even on different cpu. So just clear netif_running().
1396                  *
1397                  * dev->stop() will invoke napi_disable() on all of it's
1398                  * napi_struct instances on this device.
1399                  */
1400                 smp_mb__after_atomic(); /* Commit netif_running(). */
1401         }
1402
1403         dev_deactivate_many(head);
1404
1405         list_for_each_entry(dev, head, close_list) {
1406                 const struct net_device_ops *ops = dev->netdev_ops;
1407
1408                 /*
1409                  *      Call the device specific close. This cannot fail.
1410                  *      Only if device is UP
1411                  *
1412                  *      We allow it to be called even after a DETACH hot-plug
1413                  *      event.
1414                  */
1415                 if (ops->ndo_stop)
1416                         ops->ndo_stop(dev);
1417
1418                 dev->flags &= ~IFF_UP;
1419                 netpoll_poll_enable(dev);
1420         }
1421
1422         return 0;
1423 }
1424
1425 static int __dev_close(struct net_device *dev)
1426 {
1427         int retval;
1428         LIST_HEAD(single);
1429
1430         list_add(&dev->close_list, &single);
1431         retval = __dev_close_many(&single);
1432         list_del(&single);
1433
1434         return retval;
1435 }
1436
1437 int dev_close_many(struct list_head *head, bool unlink)
1438 {
1439         struct net_device *dev, *tmp;
1440
1441         /* Remove the devices that don't need to be closed */
1442         list_for_each_entry_safe(dev, tmp, head, close_list)
1443                 if (!(dev->flags & IFF_UP))
1444                         list_del_init(&dev->close_list);
1445
1446         __dev_close_many(head);
1447
1448         list_for_each_entry_safe(dev, tmp, head, close_list) {
1449                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1450                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1451                 if (unlink)
1452                         list_del_init(&dev->close_list);
1453         }
1454
1455         return 0;
1456 }
1457 EXPORT_SYMBOL(dev_close_many);
1458
1459 /**
1460  *      dev_close - shutdown an interface.
1461  *      @dev: device to shutdown
1462  *
1463  *      This function moves an active device into down state. A
1464  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1465  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1466  *      chain.
1467  */
1468 int dev_close(struct net_device *dev)
1469 {
1470         if (dev->flags & IFF_UP) {
1471                 LIST_HEAD(single);
1472
1473                 list_add(&dev->close_list, &single);
1474                 dev_close_many(&single, true);
1475                 list_del(&single);
1476         }
1477         return 0;
1478 }
1479 EXPORT_SYMBOL(dev_close);
1480
1481
1482 /**
1483  *      dev_disable_lro - disable Large Receive Offload on a device
1484  *      @dev: device
1485  *
1486  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1487  *      called under RTNL.  This is needed if received packets may be
1488  *      forwarded to another interface.
1489  */
1490 void dev_disable_lro(struct net_device *dev)
1491 {
1492         struct net_device *lower_dev;
1493         struct list_head *iter;
1494
1495         dev->wanted_features &= ~NETIF_F_LRO;
1496         netdev_update_features(dev);
1497
1498         if (unlikely(dev->features & NETIF_F_LRO))
1499                 netdev_WARN(dev, "failed to disable LRO!\n");
1500
1501         netdev_for_each_lower_dev(dev, lower_dev, iter)
1502                 dev_disable_lro(lower_dev);
1503 }
1504 EXPORT_SYMBOL(dev_disable_lro);
1505
1506 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1507                                    struct net_device *dev)
1508 {
1509         struct netdev_notifier_info info;
1510
1511         netdev_notifier_info_init(&info, dev);
1512         return nb->notifier_call(nb, val, &info);
1513 }
1514
1515 static int dev_boot_phase = 1;
1516
1517 /**
1518  *      register_netdevice_notifier - register a network notifier block
1519  *      @nb: notifier
1520  *
1521  *      Register a notifier to be called when network device events occur.
1522  *      The notifier passed is linked into the kernel structures and must
1523  *      not be reused until it has been unregistered. A negative errno code
1524  *      is returned on a failure.
1525  *
1526  *      When registered all registration and up events are replayed
1527  *      to the new notifier to allow device to have a race free
1528  *      view of the network device list.
1529  */
1530
1531 int register_netdevice_notifier(struct notifier_block *nb)
1532 {
1533         struct net_device *dev;
1534         struct net_device *last;
1535         struct net *net;
1536         int err;
1537
1538         rtnl_lock();
1539         err = raw_notifier_chain_register(&netdev_chain, nb);
1540         if (err)
1541                 goto unlock;
1542         if (dev_boot_phase)
1543                 goto unlock;
1544         for_each_net(net) {
1545                 for_each_netdev(net, dev) {
1546                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1547                         err = notifier_to_errno(err);
1548                         if (err)
1549                                 goto rollback;
1550
1551                         if (!(dev->flags & IFF_UP))
1552                                 continue;
1553
1554                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1555                 }
1556         }
1557
1558 unlock:
1559         rtnl_unlock();
1560         return err;
1561
1562 rollback:
1563         last = dev;
1564         for_each_net(net) {
1565                 for_each_netdev(net, dev) {
1566                         if (dev == last)
1567                                 goto outroll;
1568
1569                         if (dev->flags & IFF_UP) {
1570                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1571                                                         dev);
1572                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1573                         }
1574                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1575                 }
1576         }
1577
1578 outroll:
1579         raw_notifier_chain_unregister(&netdev_chain, nb);
1580         goto unlock;
1581 }
1582 EXPORT_SYMBOL(register_netdevice_notifier);
1583
1584 /**
1585  *      unregister_netdevice_notifier - unregister a network notifier block
1586  *      @nb: notifier
1587  *
1588  *      Unregister a notifier previously registered by
1589  *      register_netdevice_notifier(). The notifier is unlinked into the
1590  *      kernel structures and may then be reused. A negative errno code
1591  *      is returned on a failure.
1592  *
1593  *      After unregistering unregister and down device events are synthesized
1594  *      for all devices on the device list to the removed notifier to remove
1595  *      the need for special case cleanup code.
1596  */
1597
1598 int unregister_netdevice_notifier(struct notifier_block *nb)
1599 {
1600         struct net_device *dev;
1601         struct net *net;
1602         int err;
1603
1604         rtnl_lock();
1605         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1606         if (err)
1607                 goto unlock;
1608
1609         for_each_net(net) {
1610                 for_each_netdev(net, dev) {
1611                         if (dev->flags & IFF_UP) {
1612                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1613                                                         dev);
1614                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1615                         }
1616                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1617                 }
1618         }
1619 unlock:
1620         rtnl_unlock();
1621         return err;
1622 }
1623 EXPORT_SYMBOL(unregister_netdevice_notifier);
1624
1625 /**
1626  *      call_netdevice_notifiers_info - call all network notifier blocks
1627  *      @val: value passed unmodified to notifier function
1628  *      @dev: net_device pointer passed unmodified to notifier function
1629  *      @info: notifier information data
1630  *
1631  *      Call all network notifier blocks.  Parameters and return value
1632  *      are as for raw_notifier_call_chain().
1633  */
1634
1635 static int call_netdevice_notifiers_info(unsigned long val,
1636                                          struct net_device *dev,
1637                                          struct netdev_notifier_info *info)
1638 {
1639         ASSERT_RTNL();
1640         netdev_notifier_info_init(info, dev);
1641         return raw_notifier_call_chain(&netdev_chain, val, info);
1642 }
1643
1644 /**
1645  *      call_netdevice_notifiers - call all network notifier blocks
1646  *      @val: value passed unmodified to notifier function
1647  *      @dev: net_device pointer passed unmodified to notifier function
1648  *
1649  *      Call all network notifier blocks.  Parameters and return value
1650  *      are as for raw_notifier_call_chain().
1651  */
1652
1653 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1654 {
1655         struct netdev_notifier_info info;
1656
1657         return call_netdevice_notifiers_info(val, dev, &info);
1658 }
1659 EXPORT_SYMBOL(call_netdevice_notifiers);
1660
1661 #ifdef CONFIG_NET_INGRESS
1662 static struct static_key ingress_needed __read_mostly;
1663
1664 void net_inc_ingress_queue(void)
1665 {
1666         static_key_slow_inc(&ingress_needed);
1667 }
1668 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1669
1670 void net_dec_ingress_queue(void)
1671 {
1672         static_key_slow_dec(&ingress_needed);
1673 }
1674 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1675 #endif
1676
1677 static struct static_key netstamp_needed __read_mostly;
1678 #ifdef HAVE_JUMP_LABEL
1679 /* We are not allowed to call static_key_slow_dec() from irq context
1680  * If net_disable_timestamp() is called from irq context, defer the
1681  * static_key_slow_dec() calls.
1682  */
1683 static atomic_t netstamp_needed_deferred;
1684 #endif
1685
1686 void net_enable_timestamp(void)
1687 {
1688 #ifdef HAVE_JUMP_LABEL
1689         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1690
1691         if (deferred) {
1692                 while (--deferred)
1693                         static_key_slow_dec(&netstamp_needed);
1694                 return;
1695         }
1696 #endif
1697         static_key_slow_inc(&netstamp_needed);
1698 }
1699 EXPORT_SYMBOL(net_enable_timestamp);
1700
1701 void net_disable_timestamp(void)
1702 {
1703 #ifdef HAVE_JUMP_LABEL
1704         if (in_interrupt()) {
1705                 atomic_inc(&netstamp_needed_deferred);
1706                 return;
1707         }
1708 #endif
1709         static_key_slow_dec(&netstamp_needed);
1710 }
1711 EXPORT_SYMBOL(net_disable_timestamp);
1712
1713 static inline void net_timestamp_set(struct sk_buff *skb)
1714 {
1715         skb->tstamp.tv64 = 0;
1716         if (static_key_false(&netstamp_needed))
1717                 __net_timestamp(skb);
1718 }
1719
1720 #define net_timestamp_check(COND, SKB)                  \
1721         if (static_key_false(&netstamp_needed)) {               \
1722                 if ((COND) && !(SKB)->tstamp.tv64)      \
1723                         __net_timestamp(SKB);           \
1724         }                                               \
1725
1726 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1727 {
1728         unsigned int len;
1729
1730         if (!(dev->flags & IFF_UP))
1731                 return false;
1732
1733         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1734         if (skb->len <= len)
1735                 return true;
1736
1737         /* if TSO is enabled, we don't care about the length as the packet
1738          * could be forwarded without being segmented before
1739          */
1740         if (skb_is_gso(skb))
1741                 return true;
1742
1743         return false;
1744 }
1745 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1746
1747 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1748 {
1749         if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1750             unlikely(!is_skb_forwardable(dev, skb))) {
1751                 atomic_long_inc(&dev->rx_dropped);
1752                 kfree_skb(skb);
1753                 return NET_RX_DROP;
1754         }
1755
1756         skb_scrub_packet(skb, true);
1757         skb->priority = 0;
1758         skb->protocol = eth_type_trans(skb, dev);
1759         skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1760
1761         return 0;
1762 }
1763 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1764
1765 /**
1766  * dev_forward_skb - loopback an skb to another netif
1767  *
1768  * @dev: destination network device
1769  * @skb: buffer to forward
1770  *
1771  * return values:
1772  *      NET_RX_SUCCESS  (no congestion)
1773  *      NET_RX_DROP     (packet was dropped, but freed)
1774  *
1775  * dev_forward_skb can be used for injecting an skb from the
1776  * start_xmit function of one device into the receive queue
1777  * of another device.
1778  *
1779  * The receiving device may be in another namespace, so
1780  * we have to clear all information in the skb that could
1781  * impact namespace isolation.
1782  */
1783 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1784 {
1785         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1786 }
1787 EXPORT_SYMBOL_GPL(dev_forward_skb);
1788
1789 static inline int deliver_skb(struct sk_buff *skb,
1790                               struct packet_type *pt_prev,
1791                               struct net_device *orig_dev)
1792 {
1793         if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1794                 return -ENOMEM;
1795         atomic_inc(&skb->users);
1796         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1797 }
1798
1799 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1800                                           struct packet_type **pt,
1801                                           struct net_device *orig_dev,
1802                                           __be16 type,
1803                                           struct list_head *ptype_list)
1804 {
1805         struct packet_type *ptype, *pt_prev = *pt;
1806
1807         list_for_each_entry_rcu(ptype, ptype_list, list) {
1808                 if (ptype->type != type)
1809                         continue;
1810                 if (pt_prev)
1811                         deliver_skb(skb, pt_prev, orig_dev);
1812                 pt_prev = ptype;
1813         }
1814         *pt = pt_prev;
1815 }
1816
1817 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1818 {
1819         if (!ptype->af_packet_priv || !skb->sk)
1820                 return false;
1821
1822         if (ptype->id_match)
1823                 return ptype->id_match(ptype, skb->sk);
1824         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1825                 return true;
1826
1827         return false;
1828 }
1829
1830 /*
1831  *      Support routine. Sends outgoing frames to any network
1832  *      taps currently in use.
1833  */
1834
1835 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1836 {
1837         struct packet_type *ptype;
1838         struct sk_buff *skb2 = NULL;
1839         struct packet_type *pt_prev = NULL;
1840         struct list_head *ptype_list = &ptype_all;
1841
1842         rcu_read_lock();
1843 again:
1844         list_for_each_entry_rcu(ptype, ptype_list, list) {
1845                 /* Never send packets back to the socket
1846                  * they originated from - MvS (miquels@drinkel.ow.org)
1847                  */
1848                 if (skb_loop_sk(ptype, skb))
1849                         continue;
1850
1851                 if (pt_prev) {
1852                         deliver_skb(skb2, pt_prev, skb->dev);
1853                         pt_prev = ptype;
1854                         continue;
1855                 }
1856
1857                 /* need to clone skb, done only once */
1858                 skb2 = skb_clone(skb, GFP_ATOMIC);
1859                 if (!skb2)
1860                         goto out_unlock;
1861
1862                 net_timestamp_set(skb2);
1863
1864                 /* skb->nh should be correctly
1865                  * set by sender, so that the second statement is
1866                  * just protection against buggy protocols.
1867                  */
1868                 skb_reset_mac_header(skb2);
1869
1870                 if (skb_network_header(skb2) < skb2->data ||
1871                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1872                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1873                                              ntohs(skb2->protocol),
1874                                              dev->name);
1875                         skb_reset_network_header(skb2);
1876                 }
1877
1878                 skb2->transport_header = skb2->network_header;
1879                 skb2->pkt_type = PACKET_OUTGOING;
1880                 pt_prev = ptype;
1881         }
1882
1883         if (ptype_list == &ptype_all) {
1884                 ptype_list = &dev->ptype_all;
1885                 goto again;
1886         }
1887 out_unlock:
1888         if (pt_prev)
1889                 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1890         rcu_read_unlock();
1891 }
1892
1893 /**
1894  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1895  * @dev: Network device
1896  * @txq: number of queues available
1897  *
1898  * If real_num_tx_queues is changed the tc mappings may no longer be
1899  * valid. To resolve this verify the tc mapping remains valid and if
1900  * not NULL the mapping. With no priorities mapping to this
1901  * offset/count pair it will no longer be used. In the worst case TC0
1902  * is invalid nothing can be done so disable priority mappings. If is
1903  * expected that drivers will fix this mapping if they can before
1904  * calling netif_set_real_num_tx_queues.
1905  */
1906 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1907 {
1908         int i;
1909         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1910
1911         /* If TC0 is invalidated disable TC mapping */
1912         if (tc->offset + tc->count > txq) {
1913                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1914                 dev->num_tc = 0;
1915                 return;
1916         }
1917
1918         /* Invalidated prio to tc mappings set to TC0 */
1919         for (i = 1; i < TC_BITMASK + 1; i++) {
1920                 int q = netdev_get_prio_tc_map(dev, i);
1921
1922                 tc = &dev->tc_to_txq[q];
1923                 if (tc->offset + tc->count > txq) {
1924                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1925                                 i, q);
1926                         netdev_set_prio_tc_map(dev, i, 0);
1927                 }
1928         }
1929 }
1930
1931 #ifdef CONFIG_XPS
1932 static DEFINE_MUTEX(xps_map_mutex);
1933 #define xmap_dereference(P)             \
1934         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1935
1936 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1937                                         int cpu, u16 index)
1938 {
1939         struct xps_map *map = NULL;
1940         int pos;
1941
1942         if (dev_maps)
1943                 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1944
1945         for (pos = 0; map && pos < map->len; pos++) {
1946                 if (map->queues[pos] == index) {
1947                         if (map->len > 1) {
1948                                 map->queues[pos] = map->queues[--map->len];
1949                         } else {
1950                                 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1951                                 kfree_rcu(map, rcu);
1952                                 map = NULL;
1953                         }
1954                         break;
1955                 }
1956         }
1957
1958         return map;
1959 }
1960
1961 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1962 {
1963         struct xps_dev_maps *dev_maps;
1964         int cpu, i;
1965         bool active = false;
1966
1967         mutex_lock(&xps_map_mutex);
1968         dev_maps = xmap_dereference(dev->xps_maps);
1969
1970         if (!dev_maps)
1971                 goto out_no_maps;
1972
1973         for_each_possible_cpu(cpu) {
1974                 for (i = index; i < dev->num_tx_queues; i++) {
1975                         if (!remove_xps_queue(dev_maps, cpu, i))
1976                                 break;
1977                 }
1978                 if (i == dev->num_tx_queues)
1979                         active = true;
1980         }
1981
1982         if (!active) {
1983                 RCU_INIT_POINTER(dev->xps_maps, NULL);
1984                 kfree_rcu(dev_maps, rcu);
1985         }
1986
1987         for (i = index; i < dev->num_tx_queues; i++)
1988                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1989                                              NUMA_NO_NODE);
1990
1991 out_no_maps:
1992         mutex_unlock(&xps_map_mutex);
1993 }
1994
1995 static struct xps_map *expand_xps_map(struct xps_map *map,
1996                                       int cpu, u16 index)
1997 {
1998         struct xps_map *new_map;
1999         int alloc_len = XPS_MIN_MAP_ALLOC;
2000         int i, pos;
2001
2002         for (pos = 0; map && pos < map->len; pos++) {
2003                 if (map->queues[pos] != index)
2004                         continue;
2005                 return map;
2006         }
2007
2008         /* Need to add queue to this CPU's existing map */
2009         if (map) {
2010                 if (pos < map->alloc_len)
2011                         return map;
2012
2013                 alloc_len = map->alloc_len * 2;
2014         }
2015
2016         /* Need to allocate new map to store queue on this CPU's map */
2017         new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2018                                cpu_to_node(cpu));
2019         if (!new_map)
2020                 return NULL;
2021
2022         for (i = 0; i < pos; i++)
2023                 new_map->queues[i] = map->queues[i];
2024         new_map->alloc_len = alloc_len;
2025         new_map->len = pos;
2026
2027         return new_map;
2028 }
2029
2030 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2031                         u16 index)
2032 {
2033         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2034         struct xps_map *map, *new_map;
2035         int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2036         int cpu, numa_node_id = -2;
2037         bool active = false;
2038
2039         mutex_lock(&xps_map_mutex);
2040
2041         dev_maps = xmap_dereference(dev->xps_maps);
2042
2043         /* allocate memory for queue storage */
2044         for_each_online_cpu(cpu) {
2045                 if (!cpumask_test_cpu(cpu, mask))
2046                         continue;
2047
2048                 if (!new_dev_maps)
2049                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2050                 if (!new_dev_maps) {
2051                         mutex_unlock(&xps_map_mutex);
2052                         return -ENOMEM;
2053                 }
2054
2055                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2056                                  NULL;
2057
2058                 map = expand_xps_map(map, cpu, index);
2059                 if (!map)
2060                         goto error;
2061
2062                 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2063         }
2064
2065         if (!new_dev_maps)
2066                 goto out_no_new_maps;
2067
2068         for_each_possible_cpu(cpu) {
2069                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2070                         /* add queue to CPU maps */
2071                         int pos = 0;
2072
2073                         map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2074                         while ((pos < map->len) && (map->queues[pos] != index))
2075                                 pos++;
2076
2077                         if (pos == map->len)
2078                                 map->queues[map->len++] = index;
2079 #ifdef CONFIG_NUMA
2080                         if (numa_node_id == -2)
2081                                 numa_node_id = cpu_to_node(cpu);
2082                         else if (numa_node_id != cpu_to_node(cpu))
2083                                 numa_node_id = -1;
2084 #endif
2085                 } else if (dev_maps) {
2086                         /* fill in the new device map from the old device map */
2087                         map = xmap_dereference(dev_maps->cpu_map[cpu]);
2088                         RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2089                 }
2090
2091         }
2092
2093         rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2094
2095         /* Cleanup old maps */
2096         if (dev_maps) {
2097                 for_each_possible_cpu(cpu) {
2098                         new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2099                         map = xmap_dereference(dev_maps->cpu_map[cpu]);
2100                         if (map && map != new_map)
2101                                 kfree_rcu(map, rcu);
2102                 }
2103
2104                 kfree_rcu(dev_maps, rcu);
2105         }
2106
2107         dev_maps = new_dev_maps;
2108         active = true;
2109
2110 out_no_new_maps:
2111         /* update Tx queue numa node */
2112         netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2113                                      (numa_node_id >= 0) ? numa_node_id :
2114                                      NUMA_NO_NODE);
2115
2116         if (!dev_maps)
2117                 goto out_no_maps;
2118
2119         /* removes queue from unused CPUs */
2120         for_each_possible_cpu(cpu) {
2121                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2122                         continue;
2123
2124                 if (remove_xps_queue(dev_maps, cpu, index))
2125                         active = true;
2126         }
2127
2128         /* free map if not active */
2129         if (!active) {
2130                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2131                 kfree_rcu(dev_maps, rcu);
2132         }
2133
2134 out_no_maps:
2135         mutex_unlock(&xps_map_mutex);
2136
2137         return 0;
2138 error:
2139         /* remove any maps that we added */
2140         for_each_possible_cpu(cpu) {
2141                 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2142                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2143                                  NULL;
2144                 if (new_map && new_map != map)
2145                         kfree(new_map);
2146         }
2147
2148         mutex_unlock(&xps_map_mutex);
2149
2150         kfree(new_dev_maps);
2151         return -ENOMEM;
2152 }
2153 EXPORT_SYMBOL(netif_set_xps_queue);
2154
2155 #endif
2156 /*
2157  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2158  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2159  */
2160 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2161 {
2162         int rc;
2163
2164         if (txq < 1 || txq > dev->num_tx_queues)
2165                 return -EINVAL;
2166
2167         if (dev->reg_state == NETREG_REGISTERED ||
2168             dev->reg_state == NETREG_UNREGISTERING) {
2169                 ASSERT_RTNL();
2170
2171                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2172                                                   txq);
2173                 if (rc)
2174                         return rc;
2175
2176                 if (dev->num_tc)
2177                         netif_setup_tc(dev, txq);
2178
2179                 if (txq < dev->real_num_tx_queues) {
2180                         qdisc_reset_all_tx_gt(dev, txq);
2181 #ifdef CONFIG_XPS
2182                         netif_reset_xps_queues_gt(dev, txq);
2183 #endif
2184                 }
2185         }
2186
2187         dev->real_num_tx_queues = txq;
2188         return 0;
2189 }
2190 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2191
2192 #ifdef CONFIG_SYSFS
2193 /**
2194  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2195  *      @dev: Network device
2196  *      @rxq: Actual number of RX queues
2197  *
2198  *      This must be called either with the rtnl_lock held or before
2199  *      registration of the net device.  Returns 0 on success, or a
2200  *      negative error code.  If called before registration, it always
2201  *      succeeds.
2202  */
2203 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2204 {
2205         int rc;
2206
2207         if (rxq < 1 || rxq > dev->num_rx_queues)
2208                 return -EINVAL;
2209
2210         if (dev->reg_state == NETREG_REGISTERED) {
2211                 ASSERT_RTNL();
2212
2213                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2214                                                   rxq);
2215                 if (rc)
2216                         return rc;
2217         }
2218
2219         dev->real_num_rx_queues = rxq;
2220         return 0;
2221 }
2222 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2223 #endif
2224
2225 /**
2226  * netif_get_num_default_rss_queues - default number of RSS queues
2227  *
2228  * This routine should set an upper limit on the number of RSS queues
2229  * used by default by multiqueue devices.
2230  */
2231 int netif_get_num_default_rss_queues(void)
2232 {
2233         return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2234 }
2235 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2236
2237 static inline void __netif_reschedule(struct Qdisc *q)
2238 {
2239         struct softnet_data *sd;
2240         unsigned long flags;
2241
2242         local_irq_save(flags);
2243         sd = this_cpu_ptr(&softnet_data);
2244         q->next_sched = NULL;
2245         *sd->output_queue_tailp = q;
2246         sd->output_queue_tailp = &q->next_sched;
2247         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2248         local_irq_restore(flags);
2249 }
2250
2251 void __netif_schedule(struct Qdisc *q)
2252 {
2253         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2254                 __netif_reschedule(q);
2255 }
2256 EXPORT_SYMBOL(__netif_schedule);
2257
2258 struct dev_kfree_skb_cb {
2259         enum skb_free_reason reason;
2260 };
2261
2262 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2263 {
2264         return (struct dev_kfree_skb_cb *)skb->cb;
2265 }
2266
2267 void netif_schedule_queue(struct netdev_queue *txq)
2268 {
2269         rcu_read_lock();
2270         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2271                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2272
2273                 __netif_schedule(q);
2274         }
2275         rcu_read_unlock();
2276 }
2277 EXPORT_SYMBOL(netif_schedule_queue);
2278
2279 /**
2280  *      netif_wake_subqueue - allow sending packets on subqueue
2281  *      @dev: network device
2282  *      @queue_index: sub queue index
2283  *
2284  * Resume individual transmit queue of a device with multiple transmit queues.
2285  */
2286 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2287 {
2288         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2289
2290         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2291                 struct Qdisc *q;
2292
2293                 rcu_read_lock();
2294                 q = rcu_dereference(txq->qdisc);
2295                 __netif_schedule(q);
2296                 rcu_read_unlock();
2297         }
2298 }
2299 EXPORT_SYMBOL(netif_wake_subqueue);
2300
2301 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2302 {
2303         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2304                 struct Qdisc *q;
2305
2306                 rcu_read_lock();
2307                 q = rcu_dereference(dev_queue->qdisc);
2308                 __netif_schedule(q);
2309                 rcu_read_unlock();
2310         }
2311 }
2312 EXPORT_SYMBOL(netif_tx_wake_queue);
2313
2314 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2315 {
2316         unsigned long flags;
2317
2318         if (likely(atomic_read(&skb->users) == 1)) {
2319                 smp_rmb();
2320                 atomic_set(&skb->users, 0);
2321         } else if (likely(!atomic_dec_and_test(&skb->users))) {
2322                 return;
2323         }
2324         get_kfree_skb_cb(skb)->reason = reason;
2325         local_irq_save(flags);
2326         skb->next = __this_cpu_read(softnet_data.completion_queue);
2327         __this_cpu_write(softnet_data.completion_queue, skb);
2328         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2329         local_irq_restore(flags);
2330 }
2331 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2332
2333 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2334 {
2335         if (in_irq() || irqs_disabled())
2336                 __dev_kfree_skb_irq(skb, reason);
2337         else
2338                 dev_kfree_skb(skb);
2339 }
2340 EXPORT_SYMBOL(__dev_kfree_skb_any);
2341
2342
2343 /**
2344  * netif_device_detach - mark device as removed
2345  * @dev: network device
2346  *
2347  * Mark device as removed from system and therefore no longer available.
2348  */
2349 void netif_device_detach(struct net_device *dev)
2350 {
2351         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2352             netif_running(dev)) {
2353                 netif_tx_stop_all_queues(dev);
2354         }
2355 }
2356 EXPORT_SYMBOL(netif_device_detach);
2357
2358 /**
2359  * netif_device_attach - mark device as attached
2360  * @dev: network device
2361  *
2362  * Mark device as attached from system and restart if needed.
2363  */
2364 void netif_device_attach(struct net_device *dev)
2365 {
2366         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2367             netif_running(dev)) {
2368                 netif_tx_wake_all_queues(dev);
2369                 __netdev_watchdog_up(dev);
2370         }
2371 }
2372 EXPORT_SYMBOL(netif_device_attach);
2373
2374 /*
2375  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2376  * to be used as a distribution range.
2377  */
2378 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2379                   unsigned int num_tx_queues)
2380 {
2381         u32 hash;
2382         u16 qoffset = 0;
2383         u16 qcount = num_tx_queues;
2384
2385         if (skb_rx_queue_recorded(skb)) {
2386                 hash = skb_get_rx_queue(skb);
2387                 while (unlikely(hash >= num_tx_queues))
2388                         hash -= num_tx_queues;
2389                 return hash;
2390         }
2391
2392         if (dev->num_tc) {
2393                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2394                 qoffset = dev->tc_to_txq[tc].offset;
2395                 qcount = dev->tc_to_txq[tc].count;
2396         }
2397
2398         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2399 }
2400 EXPORT_SYMBOL(__skb_tx_hash);
2401
2402 static void skb_warn_bad_offload(const struct sk_buff *skb)
2403 {
2404         static const netdev_features_t null_features = 0;
2405         struct net_device *dev = skb->dev;
2406         const char *name = "";
2407
2408         if (!net_ratelimit())
2409                 return;
2410
2411         if (dev) {
2412                 if (dev->dev.parent)
2413                         name = dev_driver_string(dev->dev.parent);
2414                 else
2415                         name = netdev_name(dev);
2416         }
2417         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2418              "gso_type=%d ip_summed=%d\n",
2419              name, dev ? &dev->features : &null_features,
2420              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2421              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2422              skb_shinfo(skb)->gso_type, skb->ip_summed);
2423 }
2424
2425 /*
2426  * Invalidate hardware checksum when packet is to be mangled, and
2427  * complete checksum manually on outgoing path.
2428  */
2429 int skb_checksum_help(struct sk_buff *skb)
2430 {
2431         __wsum csum;
2432         int ret = 0, offset;
2433
2434         if (skb->ip_summed == CHECKSUM_COMPLETE)
2435                 goto out_set_summed;
2436
2437         if (unlikely(skb_shinfo(skb)->gso_size)) {
2438                 skb_warn_bad_offload(skb);
2439                 return -EINVAL;
2440         }
2441
2442         /* Before computing a checksum, we should make sure no frag could
2443          * be modified by an external entity : checksum could be wrong.
2444          */
2445         if (skb_has_shared_frag(skb)) {
2446                 ret = __skb_linearize(skb);
2447                 if (ret)
2448                         goto out;
2449         }
2450
2451         offset = skb_checksum_start_offset(skb);
2452         BUG_ON(offset >= skb_headlen(skb));
2453         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2454
2455         offset += skb->csum_offset;
2456         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2457
2458         if (skb_cloned(skb) &&
2459             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2460                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2461                 if (ret)
2462                         goto out;
2463         }
2464
2465         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2466 out_set_summed:
2467         skb->ip_summed = CHECKSUM_NONE;
2468 out:
2469         return ret;
2470 }
2471 EXPORT_SYMBOL(skb_checksum_help);
2472
2473 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2474 {
2475         __be16 type = skb->protocol;
2476
2477         /* Tunnel gso handlers can set protocol to ethernet. */
2478         if (type == htons(ETH_P_TEB)) {
2479                 struct ethhdr *eth;
2480
2481                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2482                         return 0;
2483
2484                 eth = (struct ethhdr *)skb_mac_header(skb);
2485                 type = eth->h_proto;
2486         }
2487
2488         return __vlan_get_protocol(skb, type, depth);
2489 }
2490
2491 /**
2492  *      skb_mac_gso_segment - mac layer segmentation handler.
2493  *      @skb: buffer to segment
2494  *      @features: features for the output path (see dev->features)
2495  */
2496 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2497                                     netdev_features_t features)
2498 {
2499         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2500         struct packet_offload *ptype;
2501         int vlan_depth = skb->mac_len;
2502         __be16 type = skb_network_protocol(skb, &vlan_depth);
2503
2504         if (unlikely(!type))
2505                 return ERR_PTR(-EINVAL);
2506
2507         __skb_pull(skb, vlan_depth);
2508
2509         rcu_read_lock();
2510         list_for_each_entry_rcu(ptype, &offload_base, list) {
2511                 if (ptype->type == type && ptype->callbacks.gso_segment) {
2512                         segs = ptype->callbacks.gso_segment(skb, features);
2513                         break;
2514                 }
2515         }
2516         rcu_read_unlock();
2517
2518         __skb_push(skb, skb->data - skb_mac_header(skb));
2519
2520         return segs;
2521 }
2522 EXPORT_SYMBOL(skb_mac_gso_segment);
2523
2524
2525 /* openvswitch calls this on rx path, so we need a different check.
2526  */
2527 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2528 {
2529         if (tx_path)
2530                 return skb->ip_summed != CHECKSUM_PARTIAL;
2531         else
2532                 return skb->ip_summed == CHECKSUM_NONE;
2533 }
2534
2535 /**
2536  *      __skb_gso_segment - Perform segmentation on skb.
2537  *      @skb: buffer to segment
2538  *      @features: features for the output path (see dev->features)
2539  *      @tx_path: whether it is called in TX path
2540  *
2541  *      This function segments the given skb and returns a list of segments.
2542  *
2543  *      It may return NULL if the skb requires no segmentation.  This is
2544  *      only possible when GSO is used for verifying header integrity.
2545  *
2546  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2547  */
2548 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2549                                   netdev_features_t features, bool tx_path)
2550 {
2551         if (unlikely(skb_needs_check(skb, tx_path))) {
2552                 int err;
2553
2554                 skb_warn_bad_offload(skb);
2555
2556                 err = skb_cow_head(skb, 0);
2557                 if (err < 0)
2558                         return ERR_PTR(err);
2559         }
2560
2561         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2562                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2563
2564         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2565         SKB_GSO_CB(skb)->encap_level = 0;
2566
2567         skb_reset_mac_header(skb);
2568         skb_reset_mac_len(skb);
2569
2570         return skb_mac_gso_segment(skb, features);
2571 }
2572 EXPORT_SYMBOL(__skb_gso_segment);
2573
2574 /* Take action when hardware reception checksum errors are detected. */
2575 #ifdef CONFIG_BUG
2576 void netdev_rx_csum_fault(struct net_device *dev)
2577 {
2578         if (net_ratelimit()) {
2579                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2580                 dump_stack();
2581         }
2582 }
2583 EXPORT_SYMBOL(netdev_rx_csum_fault);
2584 #endif
2585
2586 /* Actually, we should eliminate this check as soon as we know, that:
2587  * 1. IOMMU is present and allows to map all the memory.
2588  * 2. No high memory really exists on this machine.
2589  */
2590
2591 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2592 {
2593 #ifdef CONFIG_HIGHMEM
2594         int i;
2595         if (!(dev->features & NETIF_F_HIGHDMA)) {
2596                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2597                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2598                         if (PageHighMem(skb_frag_page(frag)))
2599                                 return 1;
2600                 }
2601         }
2602
2603         if (PCI_DMA_BUS_IS_PHYS) {
2604                 struct device *pdev = dev->dev.parent;
2605
2606                 if (!pdev)
2607                         return 0;
2608                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2609                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2610                         dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2611                         if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2612                                 return 1;
2613                 }
2614         }
2615 #endif
2616         return 0;
2617 }
2618
2619 /* If MPLS offload request, verify we are testing hardware MPLS features
2620  * instead of standard features for the netdev.
2621  */
2622 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2623 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2624                                            netdev_features_t features,
2625                                            __be16 type)
2626 {
2627         if (eth_p_mpls(type))
2628                 features &= skb->dev->mpls_features;
2629
2630         return features;
2631 }
2632 #else
2633 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2634                                            netdev_features_t features,
2635                                            __be16 type)
2636 {
2637         return features;
2638 }
2639 #endif
2640
2641 static netdev_features_t harmonize_features(struct sk_buff *skb,
2642         netdev_features_t features)
2643 {
2644         int tmp;
2645         __be16 type;
2646
2647         type = skb_network_protocol(skb, &tmp);
2648         features = net_mpls_features(skb, features, type);
2649
2650         if (skb->ip_summed != CHECKSUM_NONE &&
2651             !can_checksum_protocol(features, type)) {
2652                 features &= ~NETIF_F_ALL_CSUM;
2653         } else if (illegal_highdma(skb->dev, skb)) {
2654                 features &= ~NETIF_F_SG;
2655         }
2656
2657         return features;
2658 }
2659
2660 netdev_features_t passthru_features_check(struct sk_buff *skb,
2661                                           struct net_device *dev,
2662                                           netdev_features_t features)
2663 {
2664         return features;
2665 }
2666 EXPORT_SYMBOL(passthru_features_check);
2667
2668 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2669                                              struct net_device *dev,
2670                                              netdev_features_t features)
2671 {
2672         return vlan_features_check(skb, features);
2673 }
2674
2675 netdev_features_t netif_skb_features(struct sk_buff *skb)
2676 {
2677         struct net_device *dev = skb->dev;
2678         netdev_features_t features = dev->features;
2679         u16 gso_segs = skb_shinfo(skb)->gso_segs;
2680
2681         if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2682                 features &= ~NETIF_F_GSO_MASK;
2683
2684         /* If encapsulation offload request, verify we are testing
2685          * hardware encapsulation features instead of standard
2686          * features for the netdev
2687          */
2688         if (skb->encapsulation)
2689                 features &= dev->hw_enc_features;
2690
2691         if (skb_vlan_tagged(skb))
2692                 features = netdev_intersect_features(features,
2693                                                      dev->vlan_features |
2694                                                      NETIF_F_HW_VLAN_CTAG_TX |
2695                                                      NETIF_F_HW_VLAN_STAG_TX);
2696
2697         if (dev->netdev_ops->ndo_features_check)
2698                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2699                                                                 features);
2700         else
2701                 features &= dflt_features_check(skb, dev, features);
2702
2703         return harmonize_features(skb, features);
2704 }
2705 EXPORT_SYMBOL(netif_skb_features);
2706
2707 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2708                     struct netdev_queue *txq, bool more)
2709 {
2710         unsigned int len;
2711         int rc;
2712
2713         if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2714                 dev_queue_xmit_nit(skb, dev);
2715
2716         len = skb->len;
2717         trace_net_dev_start_xmit(skb, dev);
2718         rc = netdev_start_xmit(skb, dev, txq, more);
2719         trace_net_dev_xmit(skb, rc, dev, len);
2720
2721         return rc;
2722 }
2723
2724 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2725                                     struct netdev_queue *txq, int *ret)
2726 {
2727         struct sk_buff *skb = first;
2728         int rc = NETDEV_TX_OK;
2729
2730         while (skb) {
2731                 struct sk_buff *next = skb->next;
2732
2733                 skb->next = NULL;
2734                 rc = xmit_one(skb, dev, txq, next != NULL);
2735                 if (unlikely(!dev_xmit_complete(rc))) {
2736                         skb->next = next;
2737                         goto out;
2738                 }
2739
2740                 skb = next;
2741                 if (netif_xmit_stopped(txq) && skb) {
2742                         rc = NETDEV_TX_BUSY;
2743                         break;
2744                 }
2745         }
2746
2747 out:
2748         *ret = rc;
2749         return skb;
2750 }
2751
2752 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2753                                           netdev_features_t features)
2754 {
2755         if (skb_vlan_tag_present(skb) &&
2756             !vlan_hw_offload_capable(features, skb->vlan_proto))
2757                 skb = __vlan_hwaccel_push_inside(skb);
2758         return skb;
2759 }
2760
2761 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2762 {
2763         netdev_features_t features;
2764
2765         if (skb->next)
2766                 return skb;
2767
2768         features = netif_skb_features(skb);
2769         skb = validate_xmit_vlan(skb, features);
2770         if (unlikely(!skb))
2771                 goto out_null;
2772
2773         if (netif_needs_gso(skb, features)) {
2774                 struct sk_buff *segs;
2775
2776                 segs = skb_gso_segment(skb, features);
2777                 if (IS_ERR(segs)) {
2778                         goto out_kfree_skb;
2779                 } else if (segs) {
2780                         consume_skb(skb);
2781                         skb = segs;
2782                 }
2783         } else {
2784                 if (skb_needs_linearize(skb, features) &&
2785                     __skb_linearize(skb))
2786                         goto out_kfree_skb;
2787
2788                 /* If packet is not checksummed and device does not
2789                  * support checksumming for this protocol, complete
2790                  * checksumming here.
2791                  */
2792                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2793                         if (skb->encapsulation)
2794                                 skb_set_inner_transport_header(skb,
2795                                                                skb_checksum_start_offset(skb));
2796                         else
2797                                 skb_set_transport_header(skb,
2798                                                          skb_checksum_start_offset(skb));
2799                         if (!(features & NETIF_F_ALL_CSUM) &&
2800                             skb_checksum_help(skb))
2801                                 goto out_kfree_skb;
2802                 }
2803         }
2804
2805         return skb;
2806
2807 out_kfree_skb:
2808         kfree_skb(skb);
2809 out_null:
2810         return NULL;
2811 }
2812
2813 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2814 {
2815         struct sk_buff *next, *head = NULL, *tail;
2816
2817         for (; skb != NULL; skb = next) {
2818                 next = skb->next;
2819                 skb->next = NULL;
2820
2821                 /* in case skb wont be segmented, point to itself */
2822                 skb->prev = skb;
2823
2824                 skb = validate_xmit_skb(skb, dev);
2825                 if (!skb)
2826                         continue;
2827
2828                 if (!head)
2829                         head = skb;
2830                 else
2831                         tail->next = skb;
2832                 /* If skb was segmented, skb->prev points to
2833                  * the last segment. If not, it still contains skb.
2834                  */
2835                 tail = skb->prev;
2836         }
2837         return head;
2838 }
2839 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
2840
2841 static void qdisc_pkt_len_init(struct sk_buff *skb)
2842 {
2843         const struct skb_shared_info *shinfo = skb_shinfo(skb);
2844
2845         qdisc_skb_cb(skb)->pkt_len = skb->len;
2846
2847         /* To get more precise estimation of bytes sent on wire,
2848          * we add to pkt_len the headers size of all segments
2849          */
2850         if (shinfo->gso_size)  {
2851                 unsigned int hdr_len;
2852                 u16 gso_segs = shinfo->gso_segs;
2853
2854                 /* mac layer + network layer */
2855                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2856
2857                 /* + transport layer */
2858                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2859                         hdr_len += tcp_hdrlen(skb);
2860                 else
2861                         hdr_len += sizeof(struct udphdr);
2862
2863                 if (shinfo->gso_type & SKB_GSO_DODGY)
2864                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2865                                                 shinfo->gso_size);
2866
2867                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2868         }
2869 }
2870
2871 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2872                                  struct net_device *dev,
2873                                  struct netdev_queue *txq)
2874 {
2875         spinlock_t *root_lock = qdisc_lock(q);
2876         bool contended;
2877         int rc;
2878
2879         qdisc_pkt_len_init(skb);
2880         qdisc_calculate_pkt_len(skb, q);
2881         /*
2882          * Heuristic to force contended enqueues to serialize on a
2883          * separate lock before trying to get qdisc main lock.
2884          * This permits __QDISC___STATE_RUNNING owner to get the lock more
2885          * often and dequeue packets faster.
2886          */
2887         contended = qdisc_is_running(q);
2888         if (unlikely(contended))
2889                 spin_lock(&q->busylock);
2890
2891         spin_lock(root_lock);
2892         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2893                 kfree_skb(skb);
2894                 rc = NET_XMIT_DROP;
2895         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2896                    qdisc_run_begin(q)) {
2897                 /*
2898                  * This is a work-conserving queue; there are no old skbs
2899                  * waiting to be sent out; and the qdisc is not running -
2900                  * xmit the skb directly.
2901                  */
2902
2903                 qdisc_bstats_update(q, skb);
2904
2905                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
2906                         if (unlikely(contended)) {
2907                                 spin_unlock(&q->busylock);
2908                                 contended = false;
2909                         }
2910                         __qdisc_run(q);
2911                 } else
2912                         qdisc_run_end(q);
2913
2914                 rc = NET_XMIT_SUCCESS;
2915         } else {
2916                 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2917                 if (qdisc_run_begin(q)) {
2918                         if (unlikely(contended)) {
2919                                 spin_unlock(&q->busylock);
2920                                 contended = false;
2921                         }
2922                         __qdisc_run(q);
2923                 }
2924         }
2925         spin_unlock(root_lock);
2926         if (unlikely(contended))
2927                 spin_unlock(&q->busylock);
2928         return rc;
2929 }
2930
2931 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2932 static void skb_update_prio(struct sk_buff *skb)
2933 {
2934         struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2935
2936         if (!skb->priority && skb->sk && map) {
2937                 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2938
2939                 if (prioidx < map->priomap_len)
2940                         skb->priority = map->priomap[prioidx];
2941         }
2942 }
2943 #else
2944 #define skb_update_prio(skb)
2945 #endif
2946
2947 DEFINE_PER_CPU(int, xmit_recursion);
2948 EXPORT_SYMBOL(xmit_recursion);
2949
2950 #define RECURSION_LIMIT 10
2951
2952 /**
2953  *      dev_loopback_xmit - loop back @skb
2954  *      @net: network namespace this loopback is happening in
2955  *      @sk:  sk needed to be a netfilter okfn
2956  *      @skb: buffer to transmit
2957  */
2958 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
2959 {
2960         skb_reset_mac_header(skb);
2961         __skb_pull(skb, skb_network_offset(skb));
2962         skb->pkt_type = PACKET_LOOPBACK;
2963         skb->ip_summed = CHECKSUM_UNNECESSARY;
2964         WARN_ON(!skb_dst(skb));
2965         skb_dst_force(skb);
2966         netif_rx_ni(skb);
2967         return 0;
2968 }
2969 EXPORT_SYMBOL(dev_loopback_xmit);
2970
2971 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2972 {
2973 #ifdef CONFIG_XPS
2974         struct xps_dev_maps *dev_maps;
2975         struct xps_map *map;
2976         int queue_index = -1;
2977
2978         rcu_read_lock();
2979         dev_maps = rcu_dereference(dev->xps_maps);
2980         if (dev_maps) {
2981                 map = rcu_dereference(
2982                     dev_maps->cpu_map[skb->sender_cpu - 1]);
2983                 if (map) {
2984                         if (map->len == 1)
2985                                 queue_index = map->queues[0];
2986                         else
2987                                 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
2988                                                                            map->len)];
2989                         if (unlikely(queue_index >= dev->real_num_tx_queues))
2990                                 queue_index = -1;
2991                 }
2992         }
2993         rcu_read_unlock();
2994
2995         return queue_index;
2996 #else
2997         return -1;
2998 #endif
2999 }
3000
3001 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3002 {
3003         struct sock *sk = skb->sk;
3004         int queue_index = sk_tx_queue_get(sk);
3005
3006         if (queue_index < 0 || skb->ooo_okay ||
3007             queue_index >= dev->real_num_tx_queues) {
3008                 int new_index = get_xps_queue(dev, skb);
3009                 if (new_index < 0)
3010                         new_index = skb_tx_hash(dev, skb);
3011
3012                 if (queue_index != new_index && sk &&
3013                     sk_fullsock(sk) &&
3014                     rcu_access_pointer(sk->sk_dst_cache))
3015                         sk_tx_queue_set(sk, new_index);
3016
3017                 queue_index = new_index;
3018         }
3019
3020         return queue_index;
3021 }
3022
3023 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3024                                     struct sk_buff *skb,
3025                                     void *accel_priv)
3026 {
3027         int queue_index = 0;
3028
3029 #ifdef CONFIG_XPS
3030         if (skb->sender_cpu == 0)
3031                 skb->sender_cpu = raw_smp_processor_id() + 1;
3032 #endif
3033
3034         if (dev->real_num_tx_queues != 1) {
3035                 const struct net_device_ops *ops = dev->netdev_ops;
3036                 if (ops->ndo_select_queue)
3037                         queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3038                                                             __netdev_pick_tx);
3039                 else
3040                         queue_index = __netdev_pick_tx(dev, skb);
3041
3042                 if (!accel_priv)
3043                         queue_index = netdev_cap_txqueue(dev, queue_index);
3044         }
3045
3046         skb_set_queue_mapping(skb, queue_index);
3047         return netdev_get_tx_queue(dev, queue_index);
3048 }
3049
3050 /**
3051  *      __dev_queue_xmit - transmit a buffer
3052  *      @skb: buffer to transmit
3053  *      @accel_priv: private data used for L2 forwarding offload
3054  *
3055  *      Queue a buffer for transmission to a network device. The caller must
3056  *      have set the device and priority and built the buffer before calling
3057  *      this function. The function can be called from an interrupt.
3058  *
3059  *      A negative errno code is returned on a failure. A success does not
3060  *      guarantee the frame will be transmitted as it may be dropped due
3061  *      to congestion or traffic shaping.
3062  *
3063  * -----------------------------------------------------------------------------------
3064  *      I notice this method can also return errors from the queue disciplines,
3065  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3066  *      be positive.
3067  *
3068  *      Regardless of the return value, the skb is consumed, so it is currently
3069  *      difficult to retry a send to this method.  (You can bump the ref count
3070  *      before sending to hold a reference for retry if you are careful.)
3071  *
3072  *      When calling this method, interrupts MUST be enabled.  This is because
3073  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3074  *          --BLG
3075  */
3076 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3077 {
3078         struct net_device *dev = skb->dev;
3079         struct netdev_queue *txq;
3080         struct Qdisc *q;
3081         int rc = -ENOMEM;
3082
3083         skb_reset_mac_header(skb);
3084
3085         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3086                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3087
3088         /* Disable soft irqs for various locks below. Also
3089          * stops preemption for RCU.
3090          */
3091         rcu_read_lock_bh();
3092
3093         skb_update_prio(skb);
3094
3095         /* If device/qdisc don't need skb->dst, release it right now while
3096          * its hot in this cpu cache.
3097          */
3098         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3099                 skb_dst_drop(skb);
3100         else
3101                 skb_dst_force(skb);
3102
3103 #ifdef CONFIG_NET_SWITCHDEV
3104         /* Don't forward if offload device already forwarded */
3105         if (skb->offload_fwd_mark &&
3106             skb->offload_fwd_mark == dev->offload_fwd_mark) {
3107                 consume_skb(skb);
3108                 rc = NET_XMIT_SUCCESS;
3109                 goto out;
3110         }
3111 #endif
3112
3113         txq = netdev_pick_tx(dev, skb, accel_priv);
3114         q = rcu_dereference_bh(txq->qdisc);
3115
3116 #ifdef CONFIG_NET_CLS_ACT
3117         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3118 #endif
3119         trace_net_dev_queue(skb);
3120         if (q->enqueue) {
3121                 rc = __dev_xmit_skb(skb, q, dev, txq);
3122                 goto out;
3123         }
3124
3125         /* The device has no queue. Common case for software devices:
3126            loopback, all the sorts of tunnels...
3127
3128            Really, it is unlikely that netif_tx_lock protection is necessary
3129            here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3130            counters.)
3131            However, it is possible, that they rely on protection
3132            made by us here.
3133
3134            Check this and shot the lock. It is not prone from deadlocks.
3135            Either shot noqueue qdisc, it is even simpler 8)
3136          */
3137         if (dev->flags & IFF_UP) {
3138                 int cpu = smp_processor_id(); /* ok because BHs are off */
3139
3140                 if (txq->xmit_lock_owner != cpu) {
3141
3142                         if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
3143                                 goto recursion_alert;
3144
3145                         skb = validate_xmit_skb(skb, dev);
3146                         if (!skb)
3147                                 goto drop;
3148
3149                         HARD_TX_LOCK(dev, txq, cpu);
3150
3151                         if (!netif_xmit_stopped(txq)) {
3152                                 __this_cpu_inc(xmit_recursion);
3153                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3154                                 __this_cpu_dec(xmit_recursion);
3155                                 if (dev_xmit_complete(rc)) {
3156                                         HARD_TX_UNLOCK(dev, txq);
3157                                         goto out;
3158                                 }
3159                         }
3160                         HARD_TX_UNLOCK(dev, txq);
3161                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3162                                              dev->name);
3163                 } else {
3164                         /* Recursion is detected! It is possible,
3165                          * unfortunately
3166                          */
3167 recursion_alert:
3168                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3169                                              dev->name);
3170                 }
3171         }
3172
3173         rc = -ENETDOWN;
3174 drop:
3175         rcu_read_unlock_bh();
3176
3177         atomic_long_inc(&dev->tx_dropped);
3178         kfree_skb_list(skb);
3179         return rc;
3180 out:
3181         rcu_read_unlock_bh();
3182         return rc;
3183 }
3184
3185 int dev_queue_xmit(struct sk_buff *skb)
3186 {
3187         return __dev_queue_xmit(skb, NULL);
3188 }
3189 EXPORT_SYMBOL(dev_queue_xmit);
3190
3191 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3192 {
3193         return __dev_queue_xmit(skb, accel_priv);
3194 }
3195 EXPORT_SYMBOL(dev_queue_xmit_accel);
3196
3197
3198 /*=======================================================================
3199                         Receiver routines
3200   =======================================================================*/
3201
3202 int netdev_max_backlog __read_mostly = 1000;
3203 EXPORT_SYMBOL(netdev_max_backlog);
3204
3205 int netdev_tstamp_prequeue __read_mostly = 1;
3206 int netdev_budget __read_mostly = 300;
3207 int weight_p __read_mostly = 64;            /* old backlog weight */
3208
3209 /* Called with irq disabled */
3210 static inline void ____napi_schedule(struct softnet_data *sd,
3211                                      struct napi_struct *napi)
3212 {
3213         list_add_tail(&napi->poll_list, &sd->poll_list);
3214         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3215 }
3216
3217 #ifdef CONFIG_RPS
3218
3219 /* One global table that all flow-based protocols share. */
3220 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3221 EXPORT_SYMBOL(rps_sock_flow_table);
3222 u32 rps_cpu_mask __read_mostly;
3223 EXPORT_SYMBOL(rps_cpu_mask);
3224
3225 struct static_key rps_needed __read_mostly;
3226
3227 static struct rps_dev_flow *
3228 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3229             struct rps_dev_flow *rflow, u16 next_cpu)
3230 {
3231         if (next_cpu < nr_cpu_ids) {
3232 #ifdef CONFIG_RFS_ACCEL
3233                 struct netdev_rx_queue *rxqueue;
3234                 struct rps_dev_flow_table *flow_table;
3235                 struct rps_dev_flow *old_rflow;
3236                 u32 flow_id;
3237                 u16 rxq_index;
3238                 int rc;
3239
3240                 /* Should we steer this flow to a different hardware queue? */
3241                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3242                     !(dev->features & NETIF_F_NTUPLE))
3243                         goto out;
3244                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3245                 if (rxq_index == skb_get_rx_queue(skb))
3246                         goto out;
3247
3248                 rxqueue = dev->_rx + rxq_index;
3249                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3250                 if (!flow_table)
3251                         goto out;
3252                 flow_id = skb_get_hash(skb) & flow_table->mask;
3253                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3254                                                         rxq_index, flow_id);
3255                 if (rc < 0)
3256                         goto out;
3257                 old_rflow = rflow;
3258                 rflow = &flow_table->flows[flow_id];
3259                 rflow->filter = rc;
3260                 if (old_rflow->filter == rflow->filter)
3261                         old_rflow->filter = RPS_NO_FILTER;
3262         out:
3263 #endif
3264                 rflow->last_qtail =
3265                         per_cpu(softnet_data, next_cpu).input_queue_head;
3266         }
3267
3268         rflow->cpu = next_cpu;
3269         return rflow;
3270 }
3271
3272 /*
3273  * get_rps_cpu is called from netif_receive_skb and returns the target
3274  * CPU from the RPS map of the receiving queue for a given skb.
3275  * rcu_read_lock must be held on entry.
3276  */
3277 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3278                        struct rps_dev_flow **rflowp)
3279 {
3280         const struct rps_sock_flow_table *sock_flow_table;
3281         struct netdev_rx_queue *rxqueue = dev->_rx;
3282         struct rps_dev_flow_table *flow_table;
3283         struct rps_map *map;
3284         int cpu = -1;
3285         u32 tcpu;
3286         u32 hash;
3287
3288         if (skb_rx_queue_recorded(skb)) {
3289                 u16 index = skb_get_rx_queue(skb);
3290
3291                 if (unlikely(index >= dev->real_num_rx_queues)) {
3292                         WARN_ONCE(dev->real_num_rx_queues > 1,
3293                                   "%s received packet on queue %u, but number "
3294                                   "of RX queues is %u\n",
3295                                   dev->name, index, dev->real_num_rx_queues);
3296                         goto done;
3297                 }
3298                 rxqueue += index;
3299         }
3300
3301         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3302
3303         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3304         map = rcu_dereference(rxqueue->rps_map);
3305         if (!flow_table && !map)
3306                 goto done;
3307
3308         skb_reset_network_header(skb);
3309         hash = skb_get_hash(skb);
3310         if (!hash)
3311                 goto done;
3312
3313         sock_flow_table = rcu_dereference(rps_sock_flow_table);
3314         if (flow_table && sock_flow_table) {
3315                 struct rps_dev_flow *rflow;
3316                 u32 next_cpu;
3317                 u32 ident;
3318
3319                 /* First check into global flow table if there is a match */
3320                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3321                 if ((ident ^ hash) & ~rps_cpu_mask)
3322                         goto try_rps;
3323
3324                 next_cpu = ident & rps_cpu_mask;
3325
3326                 /* OK, now we know there is a match,
3327                  * we can look at the local (per receive queue) flow table
3328                  */
3329                 rflow = &flow_table->flows[hash & flow_table->mask];
3330                 tcpu = rflow->cpu;
3331
3332                 /*
3333                  * If the desired CPU (where last recvmsg was done) is
3334                  * different from current CPU (one in the rx-queue flow
3335                  * table entry), switch if one of the following holds:
3336                  *   - Current CPU is unset (>= nr_cpu_ids).
3337                  *   - Current CPU is offline.
3338                  *   - The current CPU's queue tail has advanced beyond the
3339                  *     last packet that was enqueued using this table entry.
3340                  *     This guarantees that all previous packets for the flow
3341                  *     have been dequeued, thus preserving in order delivery.
3342                  */
3343                 if (unlikely(tcpu != next_cpu) &&
3344                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3345                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3346                       rflow->last_qtail)) >= 0)) {
3347                         tcpu = next_cpu;
3348                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3349                 }
3350
3351                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3352                         *rflowp = rflow;
3353                         cpu = tcpu;
3354                         goto done;
3355                 }
3356         }
3357
3358 try_rps:
3359
3360         if (map) {
3361                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3362                 if (cpu_online(tcpu)) {
3363                         cpu = tcpu;
3364                         goto done;
3365                 }
3366         }
3367
3368 done:
3369         return cpu;
3370 }
3371
3372 #ifdef CONFIG_RFS_ACCEL
3373
3374 /**
3375  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3376  * @dev: Device on which the filter was set
3377  * @rxq_index: RX queue index
3378  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3379  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3380  *
3381  * Drivers that implement ndo_rx_flow_steer() should periodically call
3382  * this function for each installed filter and remove the filters for
3383  * which it returns %true.
3384  */
3385 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3386                          u32 flow_id, u16 filter_id)
3387 {
3388         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3389         struct rps_dev_flow_table *flow_table;
3390         struct rps_dev_flow *rflow;
3391         bool expire = true;
3392         unsigned int cpu;
3393
3394         rcu_read_lock();
3395         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3396         if (flow_table && flow_id <= flow_table->mask) {
3397                 rflow = &flow_table->flows[flow_id];
3398                 cpu = ACCESS_ONCE(rflow->cpu);
3399                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3400                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3401                            rflow->last_qtail) <
3402                      (int)(10 * flow_table->mask)))
3403                         expire = false;
3404         }
3405         rcu_read_unlock();
3406         return expire;
3407 }
3408 EXPORT_SYMBOL(rps_may_expire_flow);
3409
3410 #endif /* CONFIG_RFS_ACCEL */
3411
3412 /* Called from hardirq (IPI) context */
3413 static void rps_trigger_softirq(void *data)
3414 {
3415         struct softnet_data *sd = data;
3416
3417         ____napi_schedule(sd, &sd->backlog);
3418         sd->received_rps++;
3419 }
3420
3421 #endif /* CONFIG_RPS */
3422
3423 /*
3424  * Check if this softnet_data structure is another cpu one
3425  * If yes, queue it to our IPI list and return 1
3426  * If no, return 0
3427  */
3428 static int rps_ipi_queued(struct softnet_data *sd)
3429 {
3430 #ifdef CONFIG_RPS
3431         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3432
3433         if (sd != mysd) {
3434                 sd->rps_ipi_next = mysd->rps_ipi_list;
3435                 mysd->rps_ipi_list = sd;
3436
3437                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3438                 return 1;
3439         }
3440 #endif /* CONFIG_RPS */
3441         return 0;
3442 }
3443
3444 #ifdef CONFIG_NET_FLOW_LIMIT
3445 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3446 #endif
3447
3448 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3449 {
3450 #ifdef CONFIG_NET_FLOW_LIMIT
3451         struct sd_flow_limit *fl;
3452         struct softnet_data *sd;
3453         unsigned int old_flow, new_flow;
3454
3455         if (qlen < (netdev_max_backlog >> 1))
3456                 return false;
3457
3458         sd = this_cpu_ptr(&softnet_data);
3459
3460         rcu_read_lock();
3461         fl = rcu_dereference(sd->flow_limit);
3462         if (fl) {
3463                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3464                 old_flow = fl->history[fl->history_head];
3465                 fl->history[fl->history_head] = new_flow;
3466
3467                 fl->history_head++;
3468                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3469
3470                 if (likely(fl->buckets[old_flow]))
3471                         fl->buckets[old_flow]--;
3472
3473                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3474                         fl->count++;
3475                         rcu_read_unlock();
3476                         return true;
3477                 }
3478         }
3479         rcu_read_unlock();
3480 #endif
3481         return false;
3482 }
3483
3484 /*
3485  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3486  * queue (may be a remote CPU queue).
3487  */
3488 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3489                               unsigned int *qtail)
3490 {
3491         struct softnet_data *sd;
3492         unsigned long flags;
3493         unsigned int qlen;
3494
3495         sd = &per_cpu(softnet_data, cpu);
3496
3497         local_irq_save(flags);
3498
3499         rps_lock(sd);
3500         if (!netif_running(skb->dev))
3501                 goto drop;
3502         qlen = skb_queue_len(&sd->input_pkt_queue);
3503         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3504                 if (qlen) {
3505 enqueue:
3506                         __skb_queue_tail(&sd->input_pkt_queue, skb);
3507                         input_queue_tail_incr_save(sd, qtail);
3508                         rps_unlock(sd);
3509                         local_irq_restore(flags);
3510                         return NET_RX_SUCCESS;
3511                 }
3512
3513                 /* Schedule NAPI for backlog device
3514                  * We can use non atomic operation since we own the queue lock
3515                  */
3516                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3517                         if (!rps_ipi_queued(sd))
3518                                 ____napi_schedule(sd, &sd->backlog);
3519                 }
3520                 goto enqueue;
3521         }
3522
3523 drop:
3524         sd->dropped++;
3525         rps_unlock(sd);
3526
3527         local_irq_restore(flags);
3528
3529         atomic_long_inc(&skb->dev->rx_dropped);
3530         kfree_skb(skb);
3531         return NET_RX_DROP;
3532 }
3533
3534 static int netif_rx_internal(struct sk_buff *skb)
3535 {
3536         int ret;
3537
3538         net_timestamp_check(netdev_tstamp_prequeue, skb);
3539
3540         trace_netif_rx(skb);
3541 #ifdef CONFIG_RPS
3542         if (static_key_false(&rps_needed)) {
3543                 struct rps_dev_flow voidflow, *rflow = &voidflow;
3544                 int cpu;
3545
3546                 preempt_disable();
3547                 rcu_read_lock();
3548
3549                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3550                 if (cpu < 0)
3551                         cpu = smp_processor_id();
3552
3553                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3554
3555                 rcu_read_unlock();
3556                 preempt_enable();
3557         } else
3558 #endif
3559         {
3560                 unsigned int qtail;
3561                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3562                 put_cpu();
3563         }
3564         return ret;
3565 }
3566
3567 /**
3568  *      netif_rx        -       post buffer to the network code
3569  *      @skb: buffer to post
3570  *
3571  *      This function receives a packet from a device driver and queues it for
3572  *      the upper (protocol) levels to process.  It always succeeds. The buffer
3573  *      may be dropped during processing for congestion control or by the
3574  *      protocol layers.
3575  *
3576  *      return values:
3577  *      NET_RX_SUCCESS  (no congestion)
3578  *      NET_RX_DROP     (packet was dropped)
3579  *
3580  */
3581
3582 int netif_rx(struct sk_buff *skb)
3583 {
3584         trace_netif_rx_entry(skb);
3585
3586         return netif_rx_internal(skb);
3587 }
3588 EXPORT_SYMBOL(netif_rx);
3589
3590 int netif_rx_ni(struct sk_buff *skb)
3591 {
3592         int err;
3593
3594         trace_netif_rx_ni_entry(skb);
3595
3596         preempt_disable();
3597         err = netif_rx_internal(skb);
3598         if (local_softirq_pending())
3599                 do_softirq();
3600         preempt_enable();
3601
3602         return err;
3603 }
3604 EXPORT_SYMBOL(netif_rx_ni);
3605
3606 static void net_tx_action(struct softirq_action *h)
3607 {
3608         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3609
3610         if (sd->completion_queue) {
3611                 struct sk_buff *clist;
3612
3613                 local_irq_disable();
3614                 clist = sd->completion_queue;
3615                 sd->completion_queue = NULL;
3616                 local_irq_enable();
3617
3618                 while (clist) {
3619                         struct sk_buff *skb = clist;
3620                         clist = clist->next;
3621
3622                         WARN_ON(atomic_read(&skb->users));
3623                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3624                                 trace_consume_skb(skb);
3625                         else
3626                                 trace_kfree_skb(skb, net_tx_action);
3627                         __kfree_skb(skb);
3628                 }
3629         }
3630
3631         if (sd->output_queue) {
3632                 struct Qdisc *head;
3633
3634                 local_irq_disable();
3635                 head = sd->output_queue;
3636                 sd->output_queue = NULL;
3637                 sd->output_queue_tailp = &sd->output_queue;
3638                 local_irq_enable();
3639
3640                 while (head) {
3641                         struct Qdisc *q = head;
3642                         spinlock_t *root_lock;
3643
3644                         head = head->next_sched;
3645
3646                         root_lock = qdisc_lock(q);
3647                         if (spin_trylock(root_lock)) {
3648                                 smp_mb__before_atomic();
3649                                 clear_bit(__QDISC_STATE_SCHED,
3650                                           &q->state);
3651                                 qdisc_run(q);
3652                                 spin_unlock(root_lock);
3653                         } else {
3654                                 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3655                                               &q->state)) {
3656                                         __netif_reschedule(q);
3657                                 } else {
3658                                         smp_mb__before_atomic();
3659                                         clear_bit(__QDISC_STATE_SCHED,
3660                                                   &q->state);
3661                                 }
3662                         }
3663                 }
3664         }
3665 }
3666
3667 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3668     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3669 /* This hook is defined here for ATM LANE */
3670 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3671                              unsigned char *addr) __read_mostly;
3672 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3673 #endif
3674
3675 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3676                                          struct packet_type **pt_prev,
3677                                          int *ret, struct net_device *orig_dev)
3678 {
3679 #ifdef CONFIG_NET_CLS_ACT
3680         struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3681         struct tcf_result cl_res;
3682
3683         /* If there's at least one ingress present somewhere (so
3684          * we get here via enabled static key), remaining devices
3685          * that are not configured with an ingress qdisc will bail
3686          * out here.
3687          */
3688         if (!cl)
3689                 return skb;
3690         if (*pt_prev) {
3691                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3692                 *pt_prev = NULL;
3693         }
3694
3695         qdisc_skb_cb(skb)->pkt_len = skb->len;
3696         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3697         qdisc_bstats_cpu_update(cl->q, skb);
3698
3699         switch (tc_classify(skb, cl, &cl_res, false)) {
3700         case TC_ACT_OK:
3701         case TC_ACT_RECLASSIFY:
3702                 skb->tc_index = TC_H_MIN(cl_res.classid);
3703                 break;
3704         case TC_ACT_SHOT:
3705                 qdisc_qstats_cpu_drop(cl->q);
3706         case TC_ACT_STOLEN:
3707         case TC_ACT_QUEUED:
3708                 kfree_skb(skb);
3709                 return NULL;
3710         case TC_ACT_REDIRECT:
3711                 /* skb_mac_header check was done by cls/act_bpf, so
3712                  * we can safely push the L2 header back before
3713                  * redirecting to another netdev
3714                  */
3715                 __skb_push(skb, skb->mac_len);
3716                 skb_do_redirect(skb);
3717                 return NULL;
3718         default:
3719                 break;
3720         }
3721 #endif /* CONFIG_NET_CLS_ACT */
3722         return skb;
3723 }
3724
3725 /**
3726  *      netdev_is_rx_handler_busy - check if receive handler is registered
3727  *      @dev: device to check
3728  *
3729  *      Check if a receive handler is already registered for a given device.
3730  *      Return true if there one.
3731  *
3732  *      The caller must hold the rtnl_mutex.
3733  */
3734 bool netdev_is_rx_handler_busy(struct net_device *dev)
3735 {
3736         ASSERT_RTNL();
3737         return dev && rtnl_dereference(dev->rx_handler);
3738 }
3739 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
3740
3741 /**
3742  *      netdev_rx_handler_register - register receive handler
3743  *      @dev: device to register a handler for
3744  *      @rx_handler: receive handler to register
3745  *      @rx_handler_data: data pointer that is used by rx handler
3746  *
3747  *      Register a receive handler for a device. This handler will then be
3748  *      called from __netif_receive_skb. A negative errno code is returned
3749  *      on a failure.
3750  *
3751  *      The caller must hold the rtnl_mutex.
3752  *
3753  *      For a general description of rx_handler, see enum rx_handler_result.
3754  */
3755 int netdev_rx_handler_register(struct net_device *dev,
3756                                rx_handler_func_t *rx_handler,
3757                                void *rx_handler_data)
3758 {
3759         ASSERT_RTNL();
3760
3761         if (dev->rx_handler)
3762                 return -EBUSY;
3763
3764         /* Note: rx_handler_data must be set before rx_handler */
3765         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3766         rcu_assign_pointer(dev->rx_handler, rx_handler);
3767
3768         return 0;
3769 }
3770 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3771
3772 /**
3773  *      netdev_rx_handler_unregister - unregister receive handler
3774  *      @dev: device to unregister a handler from
3775  *
3776  *      Unregister a receive handler from a device.
3777  *
3778  *      The caller must hold the rtnl_mutex.
3779  */
3780 void netdev_rx_handler_unregister(struct net_device *dev)
3781 {
3782
3783         ASSERT_RTNL();
3784         RCU_INIT_POINTER(dev->rx_handler, NULL);
3785         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3786          * section has a guarantee to see a non NULL rx_handler_data
3787          * as well.
3788          */
3789         synchronize_net();
3790         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3791 }
3792 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3793
3794 /*
3795  * Limit the use of PFMEMALLOC reserves to those protocols that implement
3796  * the special handling of PFMEMALLOC skbs.
3797  */
3798 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3799 {
3800         switch (skb->protocol) {
3801         case htons(ETH_P_ARP):
3802         case htons(ETH_P_IP):
3803         case htons(ETH_P_IPV6):
3804         case htons(ETH_P_8021Q):
3805         case htons(ETH_P_8021AD):
3806                 return true;
3807         default:
3808                 return false;
3809         }
3810 }
3811
3812 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
3813                              int *ret, struct net_device *orig_dev)
3814 {
3815 #ifdef CONFIG_NETFILTER_INGRESS
3816         if (nf_hook_ingress_active(skb)) {
3817                 if (*pt_prev) {
3818                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
3819                         *pt_prev = NULL;
3820                 }
3821
3822                 return nf_hook_ingress(skb);
3823         }
3824 #endif /* CONFIG_NETFILTER_INGRESS */
3825         return 0;
3826 }
3827
3828 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3829 {
3830         struct packet_type *ptype, *pt_prev;
3831         rx_handler_func_t *rx_handler;
3832         struct net_device *orig_dev;
3833         bool deliver_exact = false;
3834         int ret = NET_RX_DROP;
3835         __be16 type;
3836
3837         net_timestamp_check(!netdev_tstamp_prequeue, skb);
3838
3839         trace_netif_receive_skb(skb);
3840
3841         orig_dev = skb->dev;
3842
3843         skb_reset_network_header(skb);
3844         if (!skb_transport_header_was_set(skb))
3845                 skb_reset_transport_header(skb);
3846         skb_reset_mac_len(skb);
3847
3848         pt_prev = NULL;
3849
3850 another_round:
3851         skb->skb_iif = skb->dev->ifindex;
3852
3853         __this_cpu_inc(softnet_data.processed);
3854
3855         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3856             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3857                 skb = skb_vlan_untag(skb);
3858                 if (unlikely(!skb))
3859                         goto out;
3860         }
3861
3862 #ifdef CONFIG_NET_CLS_ACT
3863         if (skb->tc_verd & TC_NCLS) {
3864                 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3865                 goto ncls;
3866         }
3867 #endif
3868
3869         if (pfmemalloc)
3870                 goto skip_taps;
3871
3872         list_for_each_entry_rcu(ptype, &ptype_all, list) {
3873                 if (pt_prev)
3874                         ret = deliver_skb(skb, pt_prev, orig_dev);
3875                 pt_prev = ptype;
3876         }
3877
3878         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
3879                 if (pt_prev)
3880                         ret = deliver_skb(skb, pt_prev, orig_dev);
3881                 pt_prev = ptype;
3882         }
3883
3884 skip_taps:
3885 #ifdef CONFIG_NET_INGRESS
3886         if (static_key_false(&ingress_needed)) {
3887                 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3888                 if (!skb)
3889                         goto out;
3890
3891                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
3892                         goto out;
3893         }
3894 #endif
3895 #ifdef CONFIG_NET_CLS_ACT
3896         skb->tc_verd = 0;
3897 ncls:
3898 #endif
3899         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3900                 goto drop;
3901
3902         if (skb_vlan_tag_present(skb)) {
3903                 if (pt_prev) {
3904                         ret = deliver_skb(skb, pt_prev, orig_dev);
3905                         pt_prev = NULL;
3906                 }
3907                 if (vlan_do_receive(&skb))
3908                         goto another_round;
3909                 else if (unlikely(!skb))
3910                         goto out;
3911         }
3912
3913         rx_handler = rcu_dereference(skb->dev->rx_handler);
3914         if (rx_handler) {
3915                 if (pt_prev) {
3916                         ret = deliver_skb(skb, pt_prev, orig_dev);
3917                         pt_prev = NULL;
3918                 }
3919                 switch (rx_handler(&skb)) {
3920                 case RX_HANDLER_CONSUMED:
3921                         ret = NET_RX_SUCCESS;
3922                         goto out;
3923                 case RX_HANDLER_ANOTHER:
3924                         goto another_round;
3925                 case RX_HANDLER_EXACT:
3926                         deliver_exact = true;
3927                 case RX_HANDLER_PASS:
3928                         break;
3929                 default:
3930                         BUG();
3931                 }
3932         }
3933
3934         if (unlikely(skb_vlan_tag_present(skb))) {
3935                 if (skb_vlan_tag_get_id(skb))
3936                         skb->pkt_type = PACKET_OTHERHOST;
3937                 /* Note: we might in the future use prio bits
3938                  * and set skb->priority like in vlan_do_receive()
3939                  * For the time being, just ignore Priority Code Point
3940                  */
3941                 skb->vlan_tci = 0;
3942         }
3943
3944         type = skb->protocol;
3945
3946         /* deliver only exact match when indicated */
3947         if (likely(!deliver_exact)) {
3948                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3949                                        &ptype_base[ntohs(type) &
3950                                                    PTYPE_HASH_MASK]);
3951         }
3952
3953         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3954                                &orig_dev->ptype_specific);
3955
3956         if (unlikely(skb->dev != orig_dev)) {
3957                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3958                                        &skb->dev->ptype_specific);
3959         }
3960
3961         if (pt_prev) {
3962                 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3963                         goto drop;
3964                 else
3965                         ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3966         } else {
3967 drop:
3968                 atomic_long_inc(&skb->dev->rx_dropped);
3969                 kfree_skb(skb);
3970                 /* Jamal, now you will not able to escape explaining
3971                  * me how you were going to use this. :-)
3972                  */
3973                 ret = NET_RX_DROP;
3974         }
3975
3976 out:
3977         return ret;
3978 }
3979
3980 static int __netif_receive_skb(struct sk_buff *skb)
3981 {
3982         int ret;
3983
3984         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3985                 unsigned long pflags = current->flags;
3986
3987                 /*
3988                  * PFMEMALLOC skbs are special, they should
3989                  * - be delivered to SOCK_MEMALLOC sockets only
3990                  * - stay away from userspace
3991                  * - have bounded memory usage
3992                  *
3993                  * Use PF_MEMALLOC as this saves us from propagating the allocation
3994                  * context down to all allocation sites.
3995                  */
3996                 current->flags |= PF_MEMALLOC;
3997                 ret = __netif_receive_skb_core(skb, true);
3998                 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3999         } else
4000                 ret = __netif_receive_skb_core(skb, false);
4001
4002         return ret;
4003 }
4004
4005 static int netif_receive_skb_internal(struct sk_buff *skb)
4006 {
4007         int ret;
4008
4009         net_timestamp_check(netdev_tstamp_prequeue, skb);
4010
4011         if (skb_defer_rx_timestamp(skb))
4012                 return NET_RX_SUCCESS;
4013
4014         rcu_read_lock();
4015
4016 #ifdef CONFIG_RPS
4017         if (static_key_false(&rps_needed)) {
4018                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4019                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4020
4021                 if (cpu >= 0) {
4022                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4023                         rcu_read_unlock();
4024                         return ret;
4025                 }
4026         }
4027 #endif
4028         ret = __netif_receive_skb(skb);
4029         rcu_read_unlock();
4030         return ret;
4031 }
4032
4033 /**
4034  *      netif_receive_skb - process receive buffer from network
4035  *      @skb: buffer to process
4036  *
4037  *      netif_receive_skb() is the main receive data processing function.
4038  *      It always succeeds. The buffer may be dropped during processing
4039  *      for congestion control or by the protocol layers.
4040  *
4041  *      This function may only be called from softirq context and interrupts
4042  *      should be enabled.
4043  *
4044  *      Return values (usually ignored):
4045  *      NET_RX_SUCCESS: no congestion
4046  *      NET_RX_DROP: packet was dropped
4047  */
4048 int netif_receive_skb(struct sk_buff *skb)
4049 {
4050         trace_netif_receive_skb_entry(skb);
4051
4052         return netif_receive_skb_internal(skb);
4053 }
4054 EXPORT_SYMBOL(netif_receive_skb);
4055
4056 /* Network device is going away, flush any packets still pending
4057  * Called with irqs disabled.
4058  */
4059 static void flush_backlog(void *arg)
4060 {
4061         struct net_device *dev = arg;
4062         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4063         struct sk_buff *skb, *tmp;
4064
4065         rps_lock(sd);
4066         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4067                 if (skb->dev == dev) {
4068                         __skb_unlink(skb, &sd->input_pkt_queue);
4069                         kfree_skb(skb);
4070                         input_queue_head_incr(sd);
4071                 }
4072         }
4073         rps_unlock(sd);
4074
4075         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4076                 if (skb->dev == dev) {
4077                         __skb_unlink(skb, &sd->process_queue);
4078                         kfree_skb(skb);
4079                         input_queue_head_incr(sd);
4080                 }
4081         }
4082 }
4083
4084 static int napi_gro_complete(struct sk_buff *skb)
4085 {
4086         struct packet_offload *ptype;
4087         __be16 type = skb->protocol;
4088         struct list_head *head = &offload_base;
4089         int err = -ENOENT;
4090
4091         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4092
4093         if (NAPI_GRO_CB(skb)->count == 1) {
4094                 skb_shinfo(skb)->gso_size = 0;
4095                 goto out;
4096         }
4097
4098         rcu_read_lock();
4099         list_for_each_entry_rcu(ptype, head, list) {
4100                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4101                         continue;
4102
4103                 err = ptype->callbacks.gro_complete(skb, 0);
4104                 break;
4105         }
4106         rcu_read_unlock();
4107
4108         if (err) {
4109                 WARN_ON(&ptype->list == head);
4110                 kfree_skb(skb);
4111                 return NET_RX_SUCCESS;
4112         }
4113
4114 out:
4115         return netif_receive_skb_internal(skb);
4116 }
4117
4118 /* napi->gro_list contains packets ordered by age.
4119  * youngest packets at the head of it.
4120  * Complete skbs in reverse order to reduce latencies.
4121  */
4122 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4123 {
4124         struct sk_buff *skb, *prev = NULL;
4125
4126         /* scan list and build reverse chain */
4127         for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4128                 skb->prev = prev;
4129                 prev = skb;
4130         }
4131
4132         for (skb = prev; skb; skb = prev) {
4133                 skb->next = NULL;
4134
4135                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4136                         return;
4137
4138                 prev = skb->prev;
4139                 napi_gro_complete(skb);
4140                 napi->gro_count--;
4141         }
4142
4143         napi->gro_list = NULL;
4144 }
4145 EXPORT_SYMBOL(napi_gro_flush);
4146
4147 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4148 {
4149         struct sk_buff *p;
4150         unsigned int maclen = skb->dev->hard_header_len;
4151         u32 hash = skb_get_hash_raw(skb);
4152
4153         for (p = napi->gro_list; p; p = p->next) {
4154                 unsigned long diffs;
4155
4156                 NAPI_GRO_CB(p)->flush = 0;
4157
4158                 if (hash != skb_get_hash_raw(p)) {
4159                         NAPI_GRO_CB(p)->same_flow = 0;
4160                         continue;
4161                 }
4162
4163                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4164                 diffs |= p->vlan_tci ^ skb->vlan_tci;
4165                 diffs |= skb_metadata_dst_cmp(p, skb);
4166                 if (maclen == ETH_HLEN)
4167                         diffs |= compare_ether_header(skb_mac_header(p),
4168                                                       skb_mac_header(skb));
4169                 else if (!diffs)
4170                         diffs = memcmp(skb_mac_header(p),
4171                                        skb_mac_header(skb),
4172                                        maclen);
4173                 NAPI_GRO_CB(p)->same_flow = !diffs;
4174         }
4175 }
4176
4177 static void skb_gro_reset_offset(struct sk_buff *skb)
4178 {
4179         const struct skb_shared_info *pinfo = skb_shinfo(skb);
4180         const skb_frag_t *frag0 = &pinfo->frags[0];
4181
4182         NAPI_GRO_CB(skb)->data_offset = 0;
4183         NAPI_GRO_CB(skb)->frag0 = NULL;
4184         NAPI_GRO_CB(skb)->frag0_len = 0;
4185
4186         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4187             pinfo->nr_frags &&
4188             !PageHighMem(skb_frag_page(frag0))) {
4189                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4190                 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4191         }
4192 }
4193
4194 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4195 {
4196         struct skb_shared_info *pinfo = skb_shinfo(skb);
4197
4198         BUG_ON(skb->end - skb->tail < grow);
4199
4200         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4201
4202         skb->data_len -= grow;
4203         skb->tail += grow;
4204
4205         pinfo->frags[0].page_offset += grow;
4206         skb_frag_size_sub(&pinfo->frags[0], grow);
4207
4208         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4209                 skb_frag_unref(skb, 0);
4210                 memmove(pinfo->frags, pinfo->frags + 1,
4211                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4212         }
4213 }
4214
4215 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4216 {
4217         struct sk_buff **pp = NULL;
4218         struct packet_offload *ptype;
4219         __be16 type = skb->protocol;
4220         struct list_head *head = &offload_base;
4221         int same_flow;
4222         enum gro_result ret;
4223         int grow;
4224
4225         if (!(skb->dev->features & NETIF_F_GRO))
4226                 goto normal;
4227
4228         if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4229                 goto normal;
4230
4231         gro_list_prepare(napi, skb);
4232
4233         rcu_read_lock();
4234         list_for_each_entry_rcu(ptype, head, list) {
4235                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4236                         continue;
4237
4238                 skb_set_network_header(skb, skb_gro_offset(skb));
4239                 skb_reset_mac_len(skb);
4240                 NAPI_GRO_CB(skb)->same_flow = 0;
4241                 NAPI_GRO_CB(skb)->flush = 0;
4242                 NAPI_GRO_CB(skb)->free = 0;
4243                 NAPI_GRO_CB(skb)->encap_mark = 0;
4244                 NAPI_GRO_CB(skb)->recursion_counter = 0;
4245                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4246
4247                 /* Setup for GRO checksum validation */
4248                 switch (skb->ip_summed) {
4249                 case CHECKSUM_COMPLETE:
4250                         NAPI_GRO_CB(skb)->csum = skb->csum;
4251                         NAPI_GRO_CB(skb)->csum_valid = 1;
4252                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4253                         break;
4254                 case CHECKSUM_UNNECESSARY:
4255                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4256                         NAPI_GRO_CB(skb)->csum_valid = 0;
4257                         break;
4258                 default:
4259                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4260                         NAPI_GRO_CB(skb)->csum_valid = 0;
4261                 }
4262
4263                 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4264                 break;
4265         }
4266         rcu_read_unlock();
4267
4268         if (&ptype->list == head)
4269                 goto normal;
4270
4271         same_flow = NAPI_GRO_CB(skb)->same_flow;
4272         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4273
4274         if (pp) {
4275                 struct sk_buff *nskb = *pp;
4276
4277                 *pp = nskb->next;
4278                 nskb->next = NULL;
4279                 napi_gro_complete(nskb);
4280                 napi->gro_count--;
4281         }
4282
4283         if (same_flow)
4284                 goto ok;
4285
4286         if (NAPI_GRO_CB(skb)->flush)
4287                 goto normal;
4288
4289         if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4290                 struct sk_buff *nskb = napi->gro_list;
4291
4292                 /* locate the end of the list to select the 'oldest' flow */
4293                 while (nskb->next) {
4294                         pp = &nskb->next;
4295                         nskb = *pp;
4296                 }
4297                 *pp = NULL;
4298                 nskb->next = NULL;
4299                 napi_gro_complete(nskb);
4300         } else {
4301                 napi->gro_count++;
4302         }
4303         NAPI_GRO_CB(skb)->count = 1;
4304         NAPI_GRO_CB(skb)->age = jiffies;
4305         NAPI_GRO_CB(skb)->last = skb;
4306         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4307         skb->next = napi->gro_list;
4308         napi->gro_list = skb;
4309         ret = GRO_HELD;
4310
4311 pull:
4312         grow = skb_gro_offset(skb) - skb_headlen(skb);
4313         if (grow > 0)
4314                 gro_pull_from_frag0(skb, grow);
4315 ok:
4316         return ret;
4317
4318 normal:
4319         ret = GRO_NORMAL;
4320         goto pull;
4321 }
4322
4323 struct packet_offload *gro_find_receive_by_type(__be16 type)
4324 {
4325         struct list_head *offload_head = &offload_base;
4326         struct packet_offload *ptype;
4327
4328         list_for_each_entry_rcu(ptype, offload_head, list) {
4329                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4330                         continue;
4331                 return ptype;
4332         }
4333         return NULL;
4334 }
4335 EXPORT_SYMBOL(gro_find_receive_by_type);
4336
4337 struct packet_offload *gro_find_complete_by_type(__be16 type)
4338 {
4339         struct list_head *offload_head = &offload_base;
4340         struct packet_offload *ptype;
4341
4342         list_for_each_entry_rcu(ptype, offload_head, list) {
4343                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4344                         continue;
4345                 return ptype;
4346         }
4347         return NULL;
4348 }
4349 EXPORT_SYMBOL(gro_find_complete_by_type);
4350
4351 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4352 {
4353         switch (ret) {
4354         case GRO_NORMAL:
4355                 if (netif_receive_skb_internal(skb))
4356                         ret = GRO_DROP;
4357                 break;
4358
4359         case GRO_DROP:
4360                 kfree_skb(skb);
4361                 break;
4362
4363         case GRO_MERGED_FREE:
4364                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4365                         skb_dst_drop(skb);
4366                         kmem_cache_free(skbuff_head_cache, skb);
4367                 } else {
4368                         __kfree_skb(skb);
4369                 }
4370                 break;
4371
4372         case GRO_HELD:
4373         case GRO_MERGED:
4374                 break;
4375         }
4376
4377         return ret;
4378 }
4379
4380 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4381 {
4382         trace_napi_gro_receive_entry(skb);
4383
4384         skb_gro_reset_offset(skb);
4385
4386         return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4387 }
4388 EXPORT_SYMBOL(napi_gro_receive);
4389
4390 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4391 {
4392         if (unlikely(skb->pfmemalloc)) {
4393                 consume_skb(skb);
4394                 return;
4395         }
4396         __skb_pull(skb, skb_headlen(skb));
4397         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4398         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4399         skb->vlan_tci = 0;
4400         skb->dev = napi->dev;
4401         skb->skb_iif = 0;
4402         skb->encapsulation = 0;
4403         skb_shinfo(skb)->gso_type = 0;
4404         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4405
4406         napi->skb = skb;
4407 }
4408
4409 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4410 {
4411         struct sk_buff *skb = napi->skb;
4412
4413         if (!skb) {
4414                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4415                 napi->skb = skb;
4416         }
4417         return skb;
4418 }
4419 EXPORT_SYMBOL(napi_get_frags);
4420
4421 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4422                                       struct sk_buff *skb,
4423                                       gro_result_t ret)
4424 {
4425         switch (ret) {
4426         case GRO_NORMAL:
4427         case GRO_HELD:
4428                 __skb_push(skb, ETH_HLEN);
4429                 skb->protocol = eth_type_trans(skb, skb->dev);
4430                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4431                         ret = GRO_DROP;
4432                 break;
4433
4434         case GRO_DROP:
4435         case GRO_MERGED_FREE:
4436                 napi_reuse_skb(napi, skb);
4437                 break;
4438
4439         case GRO_MERGED:
4440                 break;
4441         }
4442
4443         return ret;
4444 }
4445
4446 /* Upper GRO stack assumes network header starts at gro_offset=0
4447  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4448  * We copy ethernet header into skb->data to have a common layout.
4449  */
4450 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4451 {
4452         struct sk_buff *skb = napi->skb;
4453         const struct ethhdr *eth;
4454         unsigned int hlen = sizeof(*eth);
4455
4456         napi->skb = NULL;
4457
4458         skb_reset_mac_header(skb);
4459         skb_gro_reset_offset(skb);
4460
4461         eth = skb_gro_header_fast(skb, 0);
4462         if (unlikely(skb_gro_header_hard(skb, hlen))) {
4463                 eth = skb_gro_header_slow(skb, hlen, 0);
4464                 if (unlikely(!eth)) {
4465                         napi_reuse_skb(napi, skb);
4466                         return NULL;
4467                 }
4468         } else {
4469                 gro_pull_from_frag0(skb, hlen);
4470                 NAPI_GRO_CB(skb)->frag0 += hlen;
4471                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4472         }
4473         __skb_pull(skb, hlen);
4474
4475         /*
4476          * This works because the only protocols we care about don't require
4477          * special handling.
4478          * We'll fix it up properly in napi_frags_finish()
4479          */
4480         skb->protocol = eth->h_proto;
4481
4482         return skb;
4483 }
4484
4485 gro_result_t napi_gro_frags(struct napi_struct *napi)
4486 {
4487         struct sk_buff *skb = napi_frags_skb(napi);
4488
4489         if (!skb)
4490                 return GRO_DROP;
4491
4492         trace_napi_gro_frags_entry(skb);
4493
4494         return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4495 }
4496 EXPORT_SYMBOL(napi_gro_frags);
4497
4498 /* Compute the checksum from gro_offset and return the folded value
4499  * after adding in any pseudo checksum.
4500  */
4501 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4502 {
4503         __wsum wsum;
4504         __sum16 sum;
4505
4506         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4507
4508         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4509         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4510         if (likely(!sum)) {
4511                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4512                     !skb->csum_complete_sw)
4513                         netdev_rx_csum_fault(skb->dev);
4514         }
4515
4516         NAPI_GRO_CB(skb)->csum = wsum;
4517         NAPI_GRO_CB(skb)->csum_valid = 1;
4518
4519         return sum;
4520 }
4521 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4522
4523 /*
4524  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4525  * Note: called with local irq disabled, but exits with local irq enabled.
4526  */
4527 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4528 {
4529 #ifdef CONFIG_RPS
4530         struct softnet_data *remsd = sd->rps_ipi_list;
4531
4532         if (remsd) {
4533                 sd->rps_ipi_list = NULL;
4534
4535                 local_irq_enable();
4536
4537                 /* Send pending IPI's to kick RPS processing on remote cpus. */
4538                 while (remsd) {
4539                         struct softnet_data *next = remsd->rps_ipi_next;
4540
4541                         if (cpu_online(remsd->cpu))
4542                                 smp_call_function_single_async(remsd->cpu,
4543                                                            &remsd->csd);
4544                         remsd = next;
4545                 }
4546         } else
4547 #endif
4548                 local_irq_enable();
4549 }
4550
4551 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4552 {
4553 #ifdef CONFIG_RPS
4554         return sd->rps_ipi_list != NULL;
4555 #else
4556         return false;
4557 #endif
4558 }
4559
4560 static int process_backlog(struct napi_struct *napi, int quota)
4561 {
4562         int work = 0;
4563         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4564
4565         /* Check if we have pending ipi, its better to send them now,
4566          * not waiting net_rx_action() end.
4567          */
4568         if (sd_has_rps_ipi_waiting(sd)) {
4569                 local_irq_disable();
4570                 net_rps_action_and_irq_enable(sd);
4571         }
4572
4573         napi->weight = weight_p;
4574         local_irq_disable();
4575         while (1) {
4576                 struct sk_buff *skb;
4577
4578                 while ((skb = __skb_dequeue(&sd->process_queue))) {
4579                         rcu_read_lock();
4580                         local_irq_enable();
4581                         __netif_receive_skb(skb);
4582                         rcu_read_unlock();
4583                         local_irq_disable();
4584                         input_queue_head_incr(sd);
4585                         if (++work >= quota) {
4586                                 local_irq_enable();
4587                                 return work;
4588                         }
4589                 }
4590
4591                 rps_lock(sd);
4592                 if (skb_queue_empty(&sd->input_pkt_queue)) {
4593                         /*
4594                          * Inline a custom version of __napi_complete().
4595                          * only current cpu owns and manipulates this napi,
4596                          * and NAPI_STATE_SCHED is the only possible flag set
4597                          * on backlog.
4598                          * We can use a plain write instead of clear_bit(),
4599                          * and we dont need an smp_mb() memory barrier.
4600                          */
4601                         napi->state = 0;
4602                         rps_unlock(sd);
4603
4604                         break;
4605                 }
4606
4607                 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4608                                            &sd->process_queue);
4609                 rps_unlock(sd);
4610         }
4611         local_irq_enable();
4612
4613         return work;
4614 }
4615
4616 /**
4617  * __napi_schedule - schedule for receive
4618  * @n: entry to schedule
4619  *
4620  * The entry's receive function will be scheduled to run.
4621  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4622  */
4623 void __napi_schedule(struct napi_struct *n)
4624 {
4625         unsigned long flags;
4626
4627         local_irq_save(flags);
4628         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4629         local_irq_restore(flags);
4630 }
4631 EXPORT_SYMBOL(__napi_schedule);
4632
4633 /**
4634  * __napi_schedule_irqoff - schedule for receive
4635  * @n: entry to schedule
4636  *
4637  * Variant of __napi_schedule() assuming hard irqs are masked
4638  */
4639 void __napi_schedule_irqoff(struct napi_struct *n)
4640 {
4641         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4642 }
4643 EXPORT_SYMBOL(__napi_schedule_irqoff);
4644
4645 void __napi_complete(struct napi_struct *n)
4646 {
4647         BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4648
4649         list_del_init(&n->poll_list);
4650         smp_mb__before_atomic();
4651         clear_bit(NAPI_STATE_SCHED, &n->state);
4652 }
4653 EXPORT_SYMBOL(__napi_complete);
4654
4655 void napi_complete_done(struct napi_struct *n, int work_done)
4656 {
4657         unsigned long flags;
4658
4659         /*
4660          * don't let napi dequeue from the cpu poll list
4661          * just in case its running on a different cpu
4662          */
4663         if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4664                 return;
4665
4666         if (n->gro_list) {
4667                 unsigned long timeout = 0;
4668
4669                 if (work_done)
4670                         timeout = n->dev->gro_flush_timeout;
4671
4672                 if (timeout)
4673                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
4674                                       HRTIMER_MODE_REL_PINNED);
4675                 else
4676                         napi_gro_flush(n, false);
4677         }
4678         if (likely(list_empty(&n->poll_list))) {
4679                 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4680         } else {
4681                 /* If n->poll_list is not empty, we need to mask irqs */
4682                 local_irq_save(flags);
4683                 __napi_complete(n);
4684                 local_irq_restore(flags);
4685         }
4686 }
4687 EXPORT_SYMBOL(napi_complete_done);
4688
4689 /* must be called under rcu_read_lock(), as we dont take a reference */
4690 struct napi_struct *napi_by_id(unsigned int napi_id)
4691 {
4692         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4693         struct napi_struct *napi;
4694
4695         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4696                 if (napi->napi_id == napi_id)
4697                         return napi;
4698
4699         return NULL;
4700 }
4701 EXPORT_SYMBOL_GPL(napi_by_id);
4702
4703 void napi_hash_add(struct napi_struct *napi)
4704 {
4705         if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4706
4707                 spin_lock(&napi_hash_lock);
4708
4709                 /* 0 is not a valid id, we also skip an id that is taken
4710                  * we expect both events to be extremely rare
4711                  */
4712                 napi->napi_id = 0;
4713                 while (!napi->napi_id) {
4714                         napi->napi_id = ++napi_gen_id;
4715                         if (napi_by_id(napi->napi_id))
4716                                 napi->napi_id = 0;
4717                 }
4718
4719                 hlist_add_head_rcu(&napi->napi_hash_node,
4720                         &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4721
4722                 spin_unlock(&napi_hash_lock);
4723         }
4724 }
4725 EXPORT_SYMBOL_GPL(napi_hash_add);
4726
4727 /* Warning : caller is responsible to make sure rcu grace period
4728  * is respected before freeing memory containing @napi
4729  */
4730 void napi_hash_del(struct napi_struct *napi)
4731 {
4732         spin_lock(&napi_hash_lock);
4733
4734         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4735                 hlist_del_rcu(&napi->napi_hash_node);
4736
4737         spin_unlock(&napi_hash_lock);
4738 }
4739 EXPORT_SYMBOL_GPL(napi_hash_del);
4740
4741 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4742 {
4743         struct napi_struct *napi;
4744
4745         napi = container_of(timer, struct napi_struct, timer);
4746         if (napi->gro_list)
4747                 napi_schedule(napi);
4748
4749         return HRTIMER_NORESTART;
4750 }
4751
4752 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4753                     int (*poll)(struct napi_struct *, int), int weight)
4754 {
4755         INIT_LIST_HEAD(&napi->poll_list);
4756         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4757         napi->timer.function = napi_watchdog;
4758         napi->gro_count = 0;
4759         napi->gro_list = NULL;
4760         napi->skb = NULL;
4761         napi->poll = poll;
4762         if (weight > NAPI_POLL_WEIGHT)
4763                 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4764                             weight, dev->name);
4765         napi->weight = weight;
4766         list_add(&napi->dev_list, &dev->napi_list);
4767         napi->dev = dev;
4768 #ifdef CONFIG_NETPOLL
4769         spin_lock_init(&napi->poll_lock);
4770         napi->poll_owner = -1;
4771 #endif
4772         set_bit(NAPI_STATE_SCHED, &napi->state);
4773 }
4774 EXPORT_SYMBOL(netif_napi_add);
4775
4776 void napi_disable(struct napi_struct *n)
4777 {
4778         might_sleep();
4779         set_bit(NAPI_STATE_DISABLE, &n->state);
4780
4781         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4782                 msleep(1);
4783         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
4784                 msleep(1);
4785
4786         hrtimer_cancel(&n->timer);
4787
4788         clear_bit(NAPI_STATE_DISABLE, &n->state);
4789 }
4790 EXPORT_SYMBOL(napi_disable);
4791
4792 void netif_napi_del(struct napi_struct *napi)
4793 {
4794         list_del_init(&napi->dev_list);
4795         napi_free_frags(napi);
4796
4797         kfree_skb_list(napi->gro_list);
4798         napi->gro_list = NULL;
4799         napi->gro_count = 0;
4800 }
4801 EXPORT_SYMBOL(netif_napi_del);
4802
4803 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
4804 {
4805         void *have;
4806         int work, weight;
4807
4808         list_del_init(&n->poll_list);
4809
4810         have = netpoll_poll_lock(n);
4811
4812         weight = n->weight;
4813
4814         /* This NAPI_STATE_SCHED test is for avoiding a race
4815          * with netpoll's poll_napi().  Only the entity which
4816          * obtains the lock and sees NAPI_STATE_SCHED set will
4817          * actually make the ->poll() call.  Therefore we avoid
4818          * accidentally calling ->poll() when NAPI is not scheduled.
4819          */
4820         work = 0;
4821         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4822                 work = n->poll(n, weight);
4823                 trace_napi_poll(n);
4824         }
4825
4826         WARN_ON_ONCE(work > weight);
4827
4828         if (likely(work < weight))
4829                 goto out_unlock;
4830
4831         /* Drivers must not modify the NAPI state if they
4832          * consume the entire weight.  In such cases this code
4833          * still "owns" the NAPI instance and therefore can
4834          * move the instance around on the list at-will.
4835          */
4836         if (unlikely(napi_disable_pending(n))) {
4837                 napi_complete(n);
4838                 goto out_unlock;
4839         }
4840
4841         if (n->gro_list) {
4842                 /* flush too old packets
4843                  * If HZ < 1000, flush all packets.
4844                  */
4845                 napi_gro_flush(n, HZ >= 1000);
4846         }
4847
4848         /* Some drivers may have called napi_schedule
4849          * prior to exhausting their budget.
4850          */
4851         if (unlikely(!list_empty(&n->poll_list))) {
4852                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
4853                              n->dev ? n->dev->name : "backlog");
4854                 goto out_unlock;
4855         }
4856
4857         list_add_tail(&n->poll_list, repoll);
4858
4859 out_unlock:
4860         netpoll_poll_unlock(have);
4861
4862         return work;
4863 }
4864
4865 static void net_rx_action(struct softirq_action *h)
4866 {
4867         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4868         unsigned long time_limit = jiffies + 2;
4869         int budget = netdev_budget;
4870         LIST_HEAD(list);
4871         LIST_HEAD(repoll);
4872
4873         local_irq_disable();
4874         list_splice_init(&sd->poll_list, &list);
4875         local_irq_enable();
4876
4877         for (;;) {
4878                 struct napi_struct *n;
4879
4880                 if (list_empty(&list)) {
4881                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
4882                                 return;
4883                         break;
4884                 }
4885
4886                 n = list_first_entry(&list, struct napi_struct, poll_list);
4887                 budget -= napi_poll(n, &repoll);
4888
4889                 /* If softirq window is exhausted then punt.
4890                  * Allow this to run for 2 jiffies since which will allow
4891                  * an average latency of 1.5/HZ.
4892                  */
4893                 if (unlikely(budget <= 0 ||
4894                              time_after_eq(jiffies, time_limit))) {
4895                         sd->time_squeeze++;
4896                         break;
4897                 }
4898         }
4899
4900         local_irq_disable();
4901
4902         list_splice_tail_init(&sd->poll_list, &list);
4903         list_splice_tail(&repoll, &list);
4904         list_splice(&list, &sd->poll_list);
4905         if (!list_empty(&sd->poll_list))
4906                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4907
4908         net_rps_action_and_irq_enable(sd);
4909 }
4910
4911 struct netdev_adjacent {
4912         struct net_device *dev;
4913
4914         /* upper master flag, there can only be one master device per list */
4915         bool master;
4916
4917         /* counter for the number of times this device was added to us */
4918         u16 ref_nr;
4919
4920         /* private field for the users */
4921         void *private;
4922
4923         struct list_head list;
4924         struct rcu_head rcu;
4925 };
4926
4927 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
4928                                                  struct list_head *adj_list)
4929 {
4930         struct netdev_adjacent *adj;
4931
4932         list_for_each_entry(adj, adj_list, list) {
4933                 if (adj->dev == adj_dev)
4934                         return adj;
4935         }
4936         return NULL;
4937 }
4938
4939 /**
4940  * netdev_has_upper_dev - Check if device is linked to an upper device
4941  * @dev: device
4942  * @upper_dev: upper device to check
4943  *
4944  * Find out if a device is linked to specified upper device and return true
4945  * in case it is. Note that this checks only immediate upper device,
4946  * not through a complete stack of devices. The caller must hold the RTNL lock.
4947  */
4948 bool netdev_has_upper_dev(struct net_device *dev,
4949                           struct net_device *upper_dev)
4950 {
4951         ASSERT_RTNL();
4952
4953         return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
4954 }
4955 EXPORT_SYMBOL(netdev_has_upper_dev);
4956
4957 /**
4958  * netdev_has_any_upper_dev - Check if device is linked to some device
4959  * @dev: device
4960  *
4961  * Find out if a device is linked to an upper device and return true in case
4962  * it is. The caller must hold the RTNL lock.
4963  */
4964 static bool netdev_has_any_upper_dev(struct net_device *dev)
4965 {
4966         ASSERT_RTNL();
4967
4968         return !list_empty(&dev->all_adj_list.upper);
4969 }
4970
4971 /**
4972  * netdev_master_upper_dev_get - Get master upper device
4973  * @dev: device
4974  *
4975  * Find a master upper device and return pointer to it or NULL in case
4976  * it's not there. The caller must hold the RTNL lock.
4977  */
4978 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4979 {
4980         struct netdev_adjacent *upper;
4981
4982         ASSERT_RTNL();
4983
4984         if (list_empty(&dev->adj_list.upper))
4985                 return NULL;
4986
4987         upper = list_first_entry(&dev->adj_list.upper,
4988                                  struct netdev_adjacent, list);
4989         if (likely(upper->master))
4990                 return upper->dev;
4991         return NULL;
4992 }
4993 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4994
4995 void *netdev_adjacent_get_private(struct list_head *adj_list)
4996 {
4997         struct netdev_adjacent *adj;
4998
4999         adj = list_entry(adj_list, struct netdev_adjacent, list);
5000
5001         return adj->private;
5002 }
5003 EXPORT_SYMBOL(netdev_adjacent_get_private);
5004
5005 /**
5006  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5007  * @dev: device
5008  * @iter: list_head ** of the current position
5009  *
5010  * Gets the next device from the dev's upper list, starting from iter
5011  * position. The caller must hold RCU read lock.
5012  */
5013 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5014                                                  struct list_head **iter)
5015 {
5016         struct netdev_adjacent *upper;
5017
5018         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5019
5020         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5021
5022         if (&upper->list == &dev->adj_list.upper)
5023                 return NULL;
5024
5025         *iter = &upper->list;
5026
5027         return upper->dev;
5028 }
5029 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5030
5031 /**
5032  * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
5033  * @dev: device
5034  * @iter: list_head ** of the current position
5035  *
5036  * Gets the next device from the dev's upper list, starting from iter
5037  * position. The caller must hold RCU read lock.
5038  */
5039 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5040                                                      struct list_head **iter)
5041 {
5042         struct netdev_adjacent *upper;
5043
5044         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5045
5046         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5047
5048         if (&upper->list == &dev->all_adj_list.upper)
5049                 return NULL;
5050
5051         *iter = &upper->list;
5052
5053         return upper->dev;
5054 }
5055 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
5056
5057 /**
5058  * netdev_lower_get_next_private - Get the next ->private from the
5059  *                                 lower neighbour list
5060  * @dev: device
5061  * @iter: list_head ** of the current position
5062  *
5063  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5064  * list, starting from iter position. The caller must hold either hold the
5065  * RTNL lock or its own locking that guarantees that the neighbour lower
5066  * list will remain unchanged.
5067  */
5068 void *netdev_lower_get_next_private(struct net_device *dev,
5069                                     struct list_head **iter)
5070 {
5071         struct netdev_adjacent *lower;
5072
5073         lower = list_entry(*iter, struct netdev_adjacent, list);
5074
5075         if (&lower->list == &dev->adj_list.lower)
5076                 return NULL;
5077
5078         *iter = lower->list.next;
5079
5080         return lower->private;
5081 }
5082 EXPORT_SYMBOL(netdev_lower_get_next_private);
5083
5084 /**
5085  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5086  *                                     lower neighbour list, RCU
5087  *                                     variant
5088  * @dev: device
5089  * @iter: list_head ** of the current position
5090  *
5091  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5092  * list, starting from iter position. The caller must hold RCU read lock.
5093  */
5094 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5095                                         struct list_head **iter)
5096 {
5097         struct netdev_adjacent *lower;
5098
5099         WARN_ON_ONCE(!rcu_read_lock_held());
5100
5101         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5102
5103         if (&lower->list == &dev->adj_list.lower)
5104                 return NULL;
5105
5106         *iter = &lower->list;
5107
5108         return lower->private;
5109 }
5110 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5111
5112 /**
5113  * netdev_lower_get_next - Get the next device from the lower neighbour
5114  *                         list
5115  * @dev: device
5116  * @iter: list_head ** of the current position
5117  *
5118  * Gets the next netdev_adjacent from the dev's lower neighbour
5119  * list, starting from iter position. The caller must hold RTNL lock or
5120  * its own locking that guarantees that the neighbour lower
5121  * list will remain unchanged.
5122  */
5123 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5124 {
5125         struct netdev_adjacent *lower;
5126
5127         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5128
5129         if (&lower->list == &dev->adj_list.lower)
5130                 return NULL;
5131
5132         *iter = &lower->list;
5133
5134         return lower->dev;
5135 }
5136 EXPORT_SYMBOL(netdev_lower_get_next);
5137
5138 /**
5139  * netdev_lower_get_first_private_rcu - Get the first ->private from the
5140  *                                     lower neighbour list, RCU
5141  *                                     variant
5142  * @dev: device
5143  *
5144  * Gets the first netdev_adjacent->private from the dev's lower neighbour
5145  * list. The caller must hold RCU read lock.
5146  */
5147 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5148 {
5149         struct netdev_adjacent *lower;
5150
5151         lower = list_first_or_null_rcu(&dev->adj_list.lower,
5152                         struct netdev_adjacent, list);
5153         if (lower)
5154                 return lower->private;
5155         return NULL;
5156 }
5157 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5158
5159 /**
5160  * netdev_master_upper_dev_get_rcu - Get master upper device
5161  * @dev: device
5162  *
5163  * Find a master upper device and return pointer to it or NULL in case
5164  * it's not there. The caller must hold the RCU read lock.
5165  */
5166 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5167 {
5168         struct netdev_adjacent *upper;
5169
5170         upper = list_first_or_null_rcu(&dev->adj_list.upper,
5171                                        struct netdev_adjacent, list);
5172         if (upper && likely(upper->master))
5173                 return upper->dev;
5174         return NULL;
5175 }
5176 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5177
5178 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5179                               struct net_device *adj_dev,
5180                               struct list_head *dev_list)
5181 {
5182         char linkname[IFNAMSIZ+7];
5183         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5184                 "upper_%s" : "lower_%s", adj_dev->name);
5185         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5186                                  linkname);
5187 }
5188 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5189                                char *name,
5190                                struct list_head *dev_list)
5191 {
5192         char linkname[IFNAMSIZ+7];
5193         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5194                 "upper_%s" : "lower_%s", name);
5195         sysfs_remove_link(&(dev->dev.kobj), linkname);
5196 }
5197
5198 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5199                                                  struct net_device *adj_dev,
5200                                                  struct list_head *dev_list)
5201 {
5202         return (dev_list == &dev->adj_list.upper ||
5203                 dev_list == &dev->adj_list.lower) &&
5204                 net_eq(dev_net(dev), dev_net(adj_dev));
5205 }
5206
5207 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5208                                         struct net_device *adj_dev,
5209                                         u16 ref_nr,
5210                                         struct list_head *dev_list,
5211                                         void *private, bool master)
5212 {
5213         struct netdev_adjacent *adj;
5214         int ret;
5215
5216         adj = __netdev_find_adj(adj_dev, dev_list);
5217
5218         if (adj) {
5219                 adj->ref_nr += ref_nr;
5220                 return 0;
5221         }
5222
5223         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5224         if (!adj)
5225                 return -ENOMEM;
5226
5227         adj->dev = adj_dev;
5228         adj->master = master;
5229         adj->ref_nr = ref_nr;
5230         adj->private = private;
5231         dev_hold(adj_dev);
5232
5233         pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5234                  adj_dev->name, dev->name, adj_dev->name);
5235
5236         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5237                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5238                 if (ret)
5239                         goto free_adj;
5240         }
5241
5242         /* Ensure that master link is always the first item in list. */
5243         if (master) {
5244                 ret = sysfs_create_link(&(dev->dev.kobj),
5245                                         &(adj_dev->dev.kobj), "master");
5246                 if (ret)
5247                         goto remove_symlinks;
5248
5249                 list_add_rcu(&adj->list, dev_list);
5250         } else {
5251                 list_add_tail_rcu(&adj->list, dev_list);
5252         }
5253
5254         return 0;
5255
5256 remove_symlinks:
5257         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5258                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5259 free_adj:
5260         kfree(adj);
5261         dev_put(adj_dev);
5262
5263         return ret;
5264 }
5265
5266 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5267                                          struct net_device *adj_dev,
5268                                          u16 ref_nr,
5269                                          struct list_head *dev_list)
5270 {
5271         struct netdev_adjacent *adj;
5272
5273         adj = __netdev_find_adj(adj_dev, dev_list);
5274
5275         if (!adj) {
5276                 pr_err("tried to remove device %s from %s\n",
5277                        dev->name, adj_dev->name);
5278                 BUG();
5279         }
5280
5281         if (adj->ref_nr > ref_nr) {
5282                 pr_debug("%s to %s ref_nr-%d = %d\n", dev->name, adj_dev->name,
5283                          ref_nr, adj->ref_nr-ref_nr);
5284                 adj->ref_nr -= ref_nr;
5285                 return;
5286         }
5287
5288         if (adj->master)
5289                 sysfs_remove_link(&(dev->dev.kobj), "master");
5290
5291         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5292                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5293
5294         list_del_rcu(&adj->list);
5295         pr_debug("dev_put for %s, because link removed from %s to %s\n",
5296                  adj_dev->name, dev->name, adj_dev->name);
5297         dev_put(adj_dev);
5298         kfree_rcu(adj, rcu);
5299 }
5300
5301 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5302                                             struct net_device *upper_dev,
5303                                             u16 ref_nr,
5304                                             struct list_head *up_list,
5305                                             struct list_head *down_list,
5306                                             void *private, bool master)
5307 {
5308         int ret;
5309
5310         ret = __netdev_adjacent_dev_insert(dev, upper_dev, ref_nr, up_list,
5311                                            private, master);
5312         if (ret)
5313                 return ret;
5314
5315         ret = __netdev_adjacent_dev_insert(upper_dev, dev, ref_nr, down_list,
5316                                            private, false);
5317         if (ret) {
5318                 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5319                 return ret;
5320         }
5321
5322         return 0;
5323 }
5324
5325 static int __netdev_adjacent_dev_link(struct net_device *dev,
5326                                       struct net_device *upper_dev,
5327                                       u16 ref_nr)
5328 {
5329         return __netdev_adjacent_dev_link_lists(dev, upper_dev, ref_nr,
5330                                                 &dev->all_adj_list.upper,
5331                                                 &upper_dev->all_adj_list.lower,
5332                                                 NULL, false);
5333 }
5334
5335 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5336                                                struct net_device *upper_dev,
5337                                                u16 ref_nr,
5338                                                struct list_head *up_list,
5339                                                struct list_head *down_list)
5340 {
5341         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5342         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5343 }
5344
5345 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5346                                          struct net_device *upper_dev,
5347                                          u16 ref_nr)
5348 {
5349         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, ref_nr,
5350                                            &dev->all_adj_list.upper,
5351                                            &upper_dev->all_adj_list.lower);
5352 }
5353
5354 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5355                                                 struct net_device *upper_dev,
5356                                                 void *private, bool master)
5357 {
5358         int ret = __netdev_adjacent_dev_link(dev, upper_dev, 1);
5359
5360         if (ret)
5361                 return ret;
5362
5363         ret = __netdev_adjacent_dev_link_lists(dev, upper_dev, 1,
5364                                                &dev->adj_list.upper,
5365                                                &upper_dev->adj_list.lower,
5366                                                private, master);
5367         if (ret) {
5368                 __netdev_adjacent_dev_unlink(dev, upper_dev, 1);
5369                 return ret;
5370         }
5371
5372         return 0;
5373 }
5374
5375 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5376                                                    struct net_device *upper_dev)
5377 {
5378         __netdev_adjacent_dev_unlink(dev, upper_dev, 1);
5379         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
5380                                            &dev->adj_list.upper,
5381                                            &upper_dev->adj_list.lower);
5382 }
5383
5384 static int __netdev_upper_dev_link(struct net_device *dev,
5385                                    struct net_device *upper_dev, bool master,
5386                                    void *private)
5387 {
5388         struct netdev_notifier_changeupper_info changeupper_info;
5389         struct netdev_adjacent *i, *j, *to_i, *to_j;
5390         int ret = 0;
5391
5392         ASSERT_RTNL();
5393
5394         if (dev == upper_dev)
5395                 return -EBUSY;
5396
5397         /* To prevent loops, check if dev is not upper device to upper_dev. */
5398         if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
5399                 return -EBUSY;
5400
5401         if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
5402                 return -EEXIST;
5403
5404         if (master && netdev_master_upper_dev_get(dev))
5405                 return -EBUSY;
5406
5407         changeupper_info.upper_dev = upper_dev;
5408         changeupper_info.master = master;
5409         changeupper_info.linking = true;
5410
5411         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5412                                             &changeupper_info.info);
5413         ret = notifier_to_errno(ret);
5414         if (ret)
5415                 return ret;
5416
5417         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5418                                                    master);
5419         if (ret)
5420                 return ret;
5421
5422         /* Now that we linked these devs, make all the upper_dev's
5423          * all_adj_list.upper visible to every dev's all_adj_list.lower an
5424          * versa, and don't forget the devices itself. All of these
5425          * links are non-neighbours.
5426          */
5427         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5428                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5429                         pr_debug("Interlinking %s with %s, non-neighbour\n",
5430                                  i->dev->name, j->dev->name);
5431                         ret = __netdev_adjacent_dev_link(i->dev, j->dev, i->ref_nr);
5432                         if (ret)
5433                                 goto rollback_mesh;
5434                 }
5435         }
5436
5437         /* add dev to every upper_dev's upper device */
5438         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5439                 pr_debug("linking %s's upper device %s with %s\n",
5440                          upper_dev->name, i->dev->name, dev->name);
5441                 ret = __netdev_adjacent_dev_link(dev, i->dev, i->ref_nr);
5442                 if (ret)
5443                         goto rollback_upper_mesh;
5444         }
5445
5446         /* add upper_dev to every dev's lower device */
5447         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5448                 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5449                          i->dev->name, upper_dev->name);
5450                 ret = __netdev_adjacent_dev_link(i->dev, upper_dev, i->ref_nr);
5451                 if (ret)
5452                         goto rollback_lower_mesh;
5453         }
5454
5455         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5456                                       &changeupper_info.info);
5457         return 0;
5458
5459 rollback_lower_mesh:
5460         to_i = i;
5461         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5462                 if (i == to_i)
5463                         break;
5464                 __netdev_adjacent_dev_unlink(i->dev, upper_dev, i->ref_nr);
5465         }
5466
5467         i = NULL;
5468
5469 rollback_upper_mesh:
5470         to_i = i;
5471         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5472                 if (i == to_i)
5473                         break;
5474                 __netdev_adjacent_dev_unlink(dev, i->dev, i->ref_nr);
5475         }
5476
5477         i = j = NULL;
5478
5479 rollback_mesh:
5480         to_i = i;
5481         to_j = j;
5482         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5483                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5484                         if (i == to_i && j == to_j)
5485                                 break;
5486                         __netdev_adjacent_dev_unlink(i->dev, j->dev, i->ref_nr);
5487                 }
5488                 if (i == to_i)
5489                         break;
5490         }
5491
5492         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5493
5494         return ret;
5495 }
5496
5497 /**
5498  * netdev_upper_dev_link - Add a link to the upper device
5499  * @dev: device
5500  * @upper_dev: new upper device
5501  *
5502  * Adds a link to device which is upper to this one. The caller must hold
5503  * the RTNL lock. On a failure a negative errno code is returned.
5504  * On success the reference counts are adjusted and the function
5505  * returns zero.
5506  */
5507 int netdev_upper_dev_link(struct net_device *dev,
5508                           struct net_device *upper_dev)
5509 {
5510         return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5511 }
5512 EXPORT_SYMBOL(netdev_upper_dev_link);
5513
5514 /**
5515  * netdev_master_upper_dev_link - Add a master link to the upper device
5516  * @dev: device
5517  * @upper_dev: new upper device
5518  *
5519  * Adds a link to device which is upper to this one. In this case, only
5520  * one master upper device can be linked, although other non-master devices
5521  * might be linked as well. The caller must hold the RTNL lock.
5522  * On a failure a negative errno code is returned. On success the reference
5523  * counts are adjusted and the function returns zero.
5524  */
5525 int netdev_master_upper_dev_link(struct net_device *dev,
5526                                  struct net_device *upper_dev)
5527 {
5528         return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5529 }
5530 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5531
5532 int netdev_master_upper_dev_link_private(struct net_device *dev,
5533                                          struct net_device *upper_dev,
5534                                          void *private)
5535 {
5536         return __netdev_upper_dev_link(dev, upper_dev, true, private);
5537 }
5538 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5539
5540 /**
5541  * netdev_upper_dev_unlink - Removes a link to upper device
5542  * @dev: device
5543  * @upper_dev: new upper device
5544  *
5545  * Removes a link to device which is upper to this one. The caller must hold
5546  * the RTNL lock.
5547  */
5548 void netdev_upper_dev_unlink(struct net_device *dev,
5549                              struct net_device *upper_dev)
5550 {
5551         struct netdev_notifier_changeupper_info changeupper_info;
5552         struct netdev_adjacent *i, *j;
5553         ASSERT_RTNL();
5554
5555         changeupper_info.upper_dev = upper_dev;
5556         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5557         changeupper_info.linking = false;
5558
5559         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5560                                       &changeupper_info.info);
5561
5562         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5563
5564         /* Here is the tricky part. We must remove all dev's lower
5565          * devices from all upper_dev's upper devices and vice
5566          * versa, to maintain the graph relationship.
5567          */
5568         list_for_each_entry(i, &dev->all_adj_list.lower, list)
5569                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5570                         __netdev_adjacent_dev_unlink(i->dev, j->dev, i->ref_nr);
5571
5572         /* remove also the devices itself from lower/upper device
5573          * list
5574          */
5575         list_for_each_entry(i, &dev->all_adj_list.lower, list)
5576                 __netdev_adjacent_dev_unlink(i->dev, upper_dev, i->ref_nr);
5577
5578         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5579                 __netdev_adjacent_dev_unlink(dev, i->dev, i->ref_nr);
5580
5581         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5582                                       &changeupper_info.info);
5583 }
5584 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5585
5586 /**
5587  * netdev_bonding_info_change - Dispatch event about slave change
5588  * @dev: device
5589  * @bonding_info: info to dispatch
5590  *
5591  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5592  * The caller must hold the RTNL lock.
5593  */
5594 void netdev_bonding_info_change(struct net_device *dev,
5595                                 struct netdev_bonding_info *bonding_info)
5596 {
5597         struct netdev_notifier_bonding_info     info;
5598
5599         memcpy(&info.bonding_info, bonding_info,
5600                sizeof(struct netdev_bonding_info));
5601         call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5602                                       &info.info);
5603 }
5604 EXPORT_SYMBOL(netdev_bonding_info_change);
5605
5606 static void netdev_adjacent_add_links(struct net_device *dev)
5607 {
5608         struct netdev_adjacent *iter;
5609
5610         struct net *net = dev_net(dev);
5611
5612         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5613                 if (!net_eq(net,dev_net(iter->dev)))
5614                         continue;
5615                 netdev_adjacent_sysfs_add(iter->dev, dev,
5616                                           &iter->dev->adj_list.lower);
5617                 netdev_adjacent_sysfs_add(dev, iter->dev,
5618                                           &dev->adj_list.upper);
5619         }
5620
5621         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5622                 if (!net_eq(net,dev_net(iter->dev)))
5623                         continue;
5624                 netdev_adjacent_sysfs_add(iter->dev, dev,
5625                                           &iter->dev->adj_list.upper);
5626                 netdev_adjacent_sysfs_add(dev, iter->dev,
5627                                           &dev->adj_list.lower);
5628         }
5629 }
5630
5631 static void netdev_adjacent_del_links(struct net_device *dev)
5632 {
5633         struct netdev_adjacent *iter;
5634
5635         struct net *net = dev_net(dev);
5636
5637         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5638                 if (!net_eq(net,dev_net(iter->dev)))
5639                         continue;
5640                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5641                                           &iter->dev->adj_list.lower);
5642                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5643                                           &dev->adj_list.upper);
5644         }
5645
5646         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5647                 if (!net_eq(net,dev_net(iter->dev)))
5648                         continue;
5649                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5650                                           &iter->dev->adj_list.upper);
5651                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5652                                           &dev->adj_list.lower);
5653         }
5654 }
5655
5656 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5657 {
5658         struct netdev_adjacent *iter;
5659
5660         struct net *net = dev_net(dev);
5661
5662         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5663                 if (!net_eq(net,dev_net(iter->dev)))
5664                         continue;
5665                 netdev_adjacent_sysfs_del(iter->dev, oldname,
5666                                           &iter->dev->adj_list.lower);
5667                 netdev_adjacent_sysfs_add(iter->dev, dev,
5668                                           &iter->dev->adj_list.lower);
5669         }
5670
5671         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5672                 if (!net_eq(net,dev_net(iter->dev)))
5673                         continue;
5674                 netdev_adjacent_sysfs_del(iter->dev, oldname,
5675                                           &iter->dev->adj_list.upper);
5676                 netdev_adjacent_sysfs_add(iter->dev, dev,
5677                                           &iter->dev->adj_list.upper);
5678         }
5679 }
5680
5681 void *netdev_lower_dev_get_private(struct net_device *dev,
5682                                    struct net_device *lower_dev)
5683 {
5684         struct netdev_adjacent *lower;
5685
5686         if (!lower_dev)
5687                 return NULL;
5688         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
5689         if (!lower)
5690                 return NULL;
5691
5692         return lower->private;
5693 }
5694 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5695
5696
5697 int dev_get_nest_level(struct net_device *dev,
5698                        bool (*type_check)(struct net_device *dev))
5699 {
5700         struct net_device *lower = NULL;
5701         struct list_head *iter;
5702         int max_nest = -1;
5703         int nest;
5704
5705         ASSERT_RTNL();
5706
5707         netdev_for_each_lower_dev(dev, lower, iter) {
5708                 nest = dev_get_nest_level(lower, type_check);
5709                 if (max_nest < nest)
5710                         max_nest = nest;
5711         }
5712
5713         if (type_check(dev))
5714                 max_nest++;
5715
5716         return max_nest;
5717 }
5718 EXPORT_SYMBOL(dev_get_nest_level);
5719
5720 static void dev_change_rx_flags(struct net_device *dev, int flags)
5721 {
5722         const struct net_device_ops *ops = dev->netdev_ops;
5723
5724         if (ops->ndo_change_rx_flags)
5725                 ops->ndo_change_rx_flags(dev, flags);
5726 }
5727
5728 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5729 {
5730         unsigned int old_flags = dev->flags;
5731         kuid_t uid;
5732         kgid_t gid;
5733
5734         ASSERT_RTNL();
5735
5736         dev->flags |= IFF_PROMISC;
5737         dev->promiscuity += inc;
5738         if (dev->promiscuity == 0) {
5739                 /*
5740                  * Avoid overflow.
5741                  * If inc causes overflow, untouch promisc and return error.
5742                  */
5743                 if (inc < 0)
5744                         dev->flags &= ~IFF_PROMISC;
5745                 else {
5746                         dev->promiscuity -= inc;
5747                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5748                                 dev->name);
5749                         return -EOVERFLOW;
5750                 }
5751         }
5752         if (dev->flags != old_flags) {
5753                 pr_info("device %s %s promiscuous mode\n",
5754                         dev->name,
5755                         dev->flags & IFF_PROMISC ? "entered" : "left");
5756                 if (audit_enabled) {
5757                         current_uid_gid(&uid, &gid);
5758                         audit_log(current->audit_context, GFP_ATOMIC,
5759                                 AUDIT_ANOM_PROMISCUOUS,
5760                                 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5761                                 dev->name, (dev->flags & IFF_PROMISC),
5762                                 (old_flags & IFF_PROMISC),
5763                                 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5764                                 from_kuid(&init_user_ns, uid),
5765                                 from_kgid(&init_user_ns, gid),
5766                                 audit_get_sessionid(current));
5767                 }
5768
5769                 dev_change_rx_flags(dev, IFF_PROMISC);
5770         }
5771         if (notify)
5772                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5773         return 0;
5774 }
5775
5776 /**
5777  *      dev_set_promiscuity     - update promiscuity count on a device
5778  *      @dev: device
5779  *      @inc: modifier
5780  *
5781  *      Add or remove promiscuity from a device. While the count in the device
5782  *      remains above zero the interface remains promiscuous. Once it hits zero
5783  *      the device reverts back to normal filtering operation. A negative inc
5784  *      value is used to drop promiscuity on the device.
5785  *      Return 0 if successful or a negative errno code on error.
5786  */
5787 int dev_set_promiscuity(struct net_device *dev, int inc)
5788 {
5789         unsigned int old_flags = dev->flags;
5790         int err;
5791
5792         err = __dev_set_promiscuity(dev, inc, true);
5793         if (err < 0)
5794                 return err;
5795         if (dev->flags != old_flags)
5796                 dev_set_rx_mode(dev);
5797         return err;
5798 }
5799 EXPORT_SYMBOL(dev_set_promiscuity);
5800
5801 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5802 {
5803         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5804
5805         ASSERT_RTNL();
5806
5807         dev->flags |= IFF_ALLMULTI;
5808         dev->allmulti += inc;
5809         if (dev->allmulti == 0) {
5810                 /*
5811                  * Avoid overflow.
5812                  * If inc causes overflow, untouch allmulti and return error.
5813                  */
5814                 if (inc < 0)
5815                         dev->flags &= ~IFF_ALLMULTI;
5816                 else {
5817                         dev->allmulti -= inc;
5818                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5819                                 dev->name);
5820                         return -EOVERFLOW;
5821                 }
5822         }
5823         if (dev->flags ^ old_flags) {
5824                 dev_change_rx_flags(dev, IFF_ALLMULTI);
5825                 dev_set_rx_mode(dev);
5826                 if (notify)
5827                         __dev_notify_flags(dev, old_flags,
5828                                            dev->gflags ^ old_gflags);
5829         }
5830         return 0;
5831 }
5832
5833 /**
5834  *      dev_set_allmulti        - update allmulti count on a device
5835  *      @dev: device
5836  *      @inc: modifier
5837  *
5838  *      Add or remove reception of all multicast frames to a device. While the
5839  *      count in the device remains above zero the interface remains listening
5840  *      to all interfaces. Once it hits zero the device reverts back to normal
5841  *      filtering operation. A negative @inc value is used to drop the counter
5842  *      when releasing a resource needing all multicasts.
5843  *      Return 0 if successful or a negative errno code on error.
5844  */
5845
5846 int dev_set_allmulti(struct net_device *dev, int inc)
5847 {
5848         return __dev_set_allmulti(dev, inc, true);
5849 }
5850 EXPORT_SYMBOL(dev_set_allmulti);
5851
5852 /*
5853  *      Upload unicast and multicast address lists to device and
5854  *      configure RX filtering. When the device doesn't support unicast
5855  *      filtering it is put in promiscuous mode while unicast addresses
5856  *      are present.
5857  */
5858 void __dev_set_rx_mode(struct net_device *dev)
5859 {
5860         const struct net_device_ops *ops = dev->netdev_ops;
5861
5862         /* dev_open will call this function so the list will stay sane. */
5863         if (!(dev->flags&IFF_UP))
5864                 return;
5865
5866         if (!netif_device_present(dev))
5867                 return;
5868
5869         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5870                 /* Unicast addresses changes may only happen under the rtnl,
5871                  * therefore calling __dev_set_promiscuity here is safe.
5872                  */
5873                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5874                         __dev_set_promiscuity(dev, 1, false);
5875                         dev->uc_promisc = true;
5876                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5877                         __dev_set_promiscuity(dev, -1, false);
5878                         dev->uc_promisc = false;
5879                 }
5880         }
5881
5882         if (ops->ndo_set_rx_mode)
5883                 ops->ndo_set_rx_mode(dev);
5884 }
5885
5886 void dev_set_rx_mode(struct net_device *dev)
5887 {
5888         netif_addr_lock_bh(dev);
5889         __dev_set_rx_mode(dev);
5890         netif_addr_unlock_bh(dev);
5891 }
5892
5893 /**
5894  *      dev_get_flags - get flags reported to userspace
5895  *      @dev: device
5896  *
5897  *      Get the combination of flag bits exported through APIs to userspace.
5898  */
5899 unsigned int dev_get_flags(const struct net_device *dev)
5900 {
5901         unsigned int flags;
5902
5903         flags = (dev->flags & ~(IFF_PROMISC |
5904                                 IFF_ALLMULTI |
5905                                 IFF_RUNNING |
5906                                 IFF_LOWER_UP |
5907                                 IFF_DORMANT)) |
5908                 (dev->gflags & (IFF_PROMISC |
5909                                 IFF_ALLMULTI));
5910
5911         if (netif_running(dev)) {
5912                 if (netif_oper_up(dev))
5913                         flags |= IFF_RUNNING;
5914                 if (netif_carrier_ok(dev))
5915                         flags |= IFF_LOWER_UP;
5916                 if (netif_dormant(dev))
5917                         flags |= IFF_DORMANT;
5918         }
5919
5920         return flags;
5921 }
5922 EXPORT_SYMBOL(dev_get_flags);
5923
5924 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5925 {
5926         unsigned int old_flags = dev->flags;
5927         int ret;
5928
5929         ASSERT_RTNL();
5930
5931         /*
5932          *      Set the flags on our device.
5933          */
5934
5935         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5936                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5937                                IFF_AUTOMEDIA)) |
5938                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5939                                     IFF_ALLMULTI));
5940
5941         /*
5942          *      Load in the correct multicast list now the flags have changed.
5943          */
5944
5945         if ((old_flags ^ flags) & IFF_MULTICAST)
5946                 dev_change_rx_flags(dev, IFF_MULTICAST);
5947
5948         dev_set_rx_mode(dev);
5949
5950         /*
5951          *      Have we downed the interface. We handle IFF_UP ourselves
5952          *      according to user attempts to set it, rather than blindly
5953          *      setting it.
5954          */
5955
5956         ret = 0;
5957         if ((old_flags ^ flags) & IFF_UP)
5958                 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5959
5960         if ((flags ^ dev->gflags) & IFF_PROMISC) {
5961                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5962                 unsigned int old_flags = dev->flags;
5963
5964                 dev->gflags ^= IFF_PROMISC;
5965
5966                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5967                         if (dev->flags != old_flags)
5968                                 dev_set_rx_mode(dev);
5969         }
5970
5971         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5972            is important. Some (broken) drivers set IFF_PROMISC, when
5973            IFF_ALLMULTI is requested not asking us and not reporting.
5974          */
5975         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5976                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5977
5978                 dev->gflags ^= IFF_ALLMULTI;
5979                 __dev_set_allmulti(dev, inc, false);
5980         }
5981
5982         return ret;
5983 }
5984
5985 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5986                         unsigned int gchanges)
5987 {
5988         unsigned int changes = dev->flags ^ old_flags;
5989
5990         if (gchanges)
5991                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5992
5993         if (changes & IFF_UP) {
5994                 if (dev->flags & IFF_UP)
5995                         call_netdevice_notifiers(NETDEV_UP, dev);
5996                 else
5997                         call_netdevice_notifiers(NETDEV_DOWN, dev);
5998         }
5999
6000         if (dev->flags & IFF_UP &&
6001             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6002                 struct netdev_notifier_change_info change_info;
6003
6004                 change_info.flags_changed = changes;
6005                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6006                                               &change_info.info);
6007         }
6008 }
6009
6010 /**
6011  *      dev_change_flags - change device settings
6012  *      @dev: device
6013  *      @flags: device state flags
6014  *
6015  *      Change settings on device based state flags. The flags are
6016  *      in the userspace exported format.
6017  */
6018 int dev_change_flags(struct net_device *dev, unsigned int flags)
6019 {
6020         int ret;
6021         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6022
6023         ret = __dev_change_flags(dev, flags);
6024         if (ret < 0)
6025                 return ret;
6026
6027         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6028         __dev_notify_flags(dev, old_flags, changes);
6029         return ret;
6030 }
6031 EXPORT_SYMBOL(dev_change_flags);
6032
6033 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6034 {
6035         const struct net_device_ops *ops = dev->netdev_ops;
6036
6037         if (ops->ndo_change_mtu)
6038                 return ops->ndo_change_mtu(dev, new_mtu);
6039
6040         dev->mtu = new_mtu;
6041         return 0;
6042 }
6043
6044 /**
6045  *      dev_set_mtu - Change maximum transfer unit
6046  *      @dev: device
6047  *      @new_mtu: new transfer unit
6048  *
6049  *      Change the maximum transfer size of the network device.
6050  */
6051 int dev_set_mtu(struct net_device *dev, int new_mtu)
6052 {
6053         int err, orig_mtu;
6054
6055         if (new_mtu == dev->mtu)
6056                 return 0;
6057
6058         /*      MTU must be positive.    */
6059         if (new_mtu < 0)
6060                 return -EINVAL;
6061
6062         if (!netif_device_present(dev))
6063                 return -ENODEV;
6064
6065         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6066         err = notifier_to_errno(err);
6067         if (err)
6068                 return err;
6069
6070         orig_mtu = dev->mtu;
6071         err = __dev_set_mtu(dev, new_mtu);
6072
6073         if (!err) {
6074                 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6075                 err = notifier_to_errno(err);
6076                 if (err) {
6077                         /* setting mtu back and notifying everyone again,
6078                          * so that they have a chance to revert changes.
6079                          */
6080                         __dev_set_mtu(dev, orig_mtu);
6081                         call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6082                 }
6083         }
6084         return err;
6085 }
6086 EXPORT_SYMBOL(dev_set_mtu);
6087
6088 /**
6089  *      dev_set_group - Change group this device belongs to
6090  *      @dev: device
6091  *      @new_group: group this device should belong to
6092  */
6093 void dev_set_group(struct net_device *dev, int new_group)
6094 {
6095         dev->group = new_group;
6096 }
6097 EXPORT_SYMBOL(dev_set_group);
6098
6099 /**
6100  *      dev_set_mac_address - Change Media Access Control Address
6101  *      @dev: device
6102  *      @sa: new address
6103  *
6104  *      Change the hardware (MAC) address of the device
6105  */
6106 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6107 {
6108         const struct net_device_ops *ops = dev->netdev_ops;
6109         int err;
6110
6111         if (!ops->ndo_set_mac_address)
6112                 return -EOPNOTSUPP;
6113         if (sa->sa_family != dev->type)
6114                 return -EINVAL;
6115         if (!netif_device_present(dev))
6116                 return -ENODEV;
6117         err = ops->ndo_set_mac_address(dev, sa);
6118         if (err)
6119                 return err;
6120         dev->addr_assign_type = NET_ADDR_SET;
6121         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6122         add_device_randomness(dev->dev_addr, dev->addr_len);
6123         return 0;
6124 }
6125 EXPORT_SYMBOL(dev_set_mac_address);
6126
6127 /**
6128  *      dev_change_carrier - Change device carrier
6129  *      @dev: device
6130  *      @new_carrier: new value
6131  *
6132  *      Change device carrier
6133  */
6134 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6135 {
6136         const struct net_device_ops *ops = dev->netdev_ops;
6137
6138         if (!ops->ndo_change_carrier)
6139                 return -EOPNOTSUPP;
6140         if (!netif_device_present(dev))
6141                 return -ENODEV;
6142         return ops->ndo_change_carrier(dev, new_carrier);
6143 }
6144 EXPORT_SYMBOL(dev_change_carrier);
6145
6146 /**
6147  *      dev_get_phys_port_id - Get device physical port ID
6148  *      @dev: device
6149  *      @ppid: port ID
6150  *
6151  *      Get device physical port ID
6152  */
6153 int dev_get_phys_port_id(struct net_device *dev,
6154                          struct netdev_phys_item_id *ppid)
6155 {
6156         const struct net_device_ops *ops = dev->netdev_ops;
6157
6158         if (!ops->ndo_get_phys_port_id)
6159                 return -EOPNOTSUPP;
6160         return ops->ndo_get_phys_port_id(dev, ppid);
6161 }
6162 EXPORT_SYMBOL(dev_get_phys_port_id);
6163
6164 /**
6165  *      dev_get_phys_port_name - Get device physical port name
6166  *      @dev: device
6167  *      @name: port name
6168  *
6169  *      Get device physical port name
6170  */
6171 int dev_get_phys_port_name(struct net_device *dev,
6172                            char *name, size_t len)
6173 {
6174         const struct net_device_ops *ops = dev->netdev_ops;
6175
6176         if (!ops->ndo_get_phys_port_name)
6177                 return -EOPNOTSUPP;
6178         return ops->ndo_get_phys_port_name(dev, name, len);
6179 }
6180 EXPORT_SYMBOL(dev_get_phys_port_name);
6181
6182 /**
6183  *      dev_change_proto_down - update protocol port state information
6184  *      @dev: device
6185  *      @proto_down: new value
6186  *
6187  *      This info can be used by switch drivers to set the phys state of the
6188  *      port.
6189  */
6190 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6191 {
6192         const struct net_device_ops *ops = dev->netdev_ops;
6193
6194         if (!ops->ndo_change_proto_down)
6195                 return -EOPNOTSUPP;
6196         if (!netif_device_present(dev))
6197                 return -ENODEV;
6198         return ops->ndo_change_proto_down(dev, proto_down);
6199 }
6200 EXPORT_SYMBOL(dev_change_proto_down);
6201
6202 /**
6203  *      dev_new_index   -       allocate an ifindex
6204  *      @net: the applicable net namespace
6205  *
6206  *      Returns a suitable unique value for a new device interface
6207  *      number.  The caller must hold the rtnl semaphore or the
6208  *      dev_base_lock to be sure it remains unique.
6209  */
6210 static int dev_new_index(struct net *net)
6211 {
6212         int ifindex = net->ifindex;
6213         for (;;) {
6214                 if (++ifindex <= 0)
6215                         ifindex = 1;
6216                 if (!__dev_get_by_index(net, ifindex))
6217                         return net->ifindex = ifindex;
6218         }
6219 }
6220
6221 /* Delayed registration/unregisteration */
6222 static LIST_HEAD(net_todo_list);
6223 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6224
6225 static void net_set_todo(struct net_device *dev)
6226 {
6227         list_add_tail(&dev->todo_list, &net_todo_list);
6228         dev_net(dev)->dev_unreg_count++;
6229 }
6230
6231 static void rollback_registered_many(struct list_head *head)
6232 {
6233         struct net_device *dev, *tmp;
6234         LIST_HEAD(close_head);
6235
6236         BUG_ON(dev_boot_phase);
6237         ASSERT_RTNL();
6238
6239         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6240                 /* Some devices call without registering
6241                  * for initialization unwind. Remove those
6242                  * devices and proceed with the remaining.
6243                  */
6244                 if (dev->reg_state == NETREG_UNINITIALIZED) {
6245                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6246                                  dev->name, dev);
6247
6248                         WARN_ON(1);
6249                         list_del(&dev->unreg_list);
6250                         continue;
6251                 }
6252                 dev->dismantle = true;
6253                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6254         }
6255
6256         /* If device is running, close it first. */
6257         list_for_each_entry(dev, head, unreg_list)
6258                 list_add_tail(&dev->close_list, &close_head);
6259         dev_close_many(&close_head, true);
6260
6261         list_for_each_entry(dev, head, unreg_list) {
6262                 /* And unlink it from device chain. */
6263                 unlist_netdevice(dev);
6264
6265                 dev->reg_state = NETREG_UNREGISTERING;
6266                 on_each_cpu(flush_backlog, dev, 1);
6267         }
6268
6269         synchronize_net();
6270
6271         list_for_each_entry(dev, head, unreg_list) {
6272                 struct sk_buff *skb = NULL;
6273
6274                 /* Shutdown queueing discipline. */
6275                 dev_shutdown(dev);
6276
6277
6278                 /* Notify protocols, that we are about to destroy
6279                    this device. They should clean all the things.
6280                 */
6281                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6282
6283                 if (!dev->rtnl_link_ops ||
6284                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6285                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6286                                                      GFP_KERNEL);
6287
6288                 /*
6289                  *      Flush the unicast and multicast chains
6290                  */
6291                 dev_uc_flush(dev);
6292                 dev_mc_flush(dev);
6293
6294                 if (dev->netdev_ops->ndo_uninit)
6295                         dev->netdev_ops->ndo_uninit(dev);
6296
6297                 if (skb)
6298                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6299
6300                 /* Notifier chain MUST detach us all upper devices. */
6301                 WARN_ON(netdev_has_any_upper_dev(dev));
6302
6303                 /* Remove entries from kobject tree */
6304                 netdev_unregister_kobject(dev);
6305 #ifdef CONFIG_XPS
6306                 /* Remove XPS queueing entries */
6307                 netif_reset_xps_queues_gt(dev, 0);
6308 #endif
6309         }
6310
6311         synchronize_net();
6312
6313         list_for_each_entry(dev, head, unreg_list)
6314                 dev_put(dev);
6315 }
6316
6317 static void rollback_registered(struct net_device *dev)
6318 {
6319         LIST_HEAD(single);
6320
6321         list_add(&dev->unreg_list, &single);
6322         rollback_registered_many(&single);
6323         list_del(&single);
6324 }
6325
6326 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6327         struct net_device *upper, netdev_features_t features)
6328 {
6329         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6330         netdev_features_t feature;
6331         int feature_bit;
6332
6333         for_each_netdev_feature(&upper_disables, feature_bit) {
6334                 feature = __NETIF_F_BIT(feature_bit);
6335                 if (!(upper->wanted_features & feature)
6336                     && (features & feature)) {
6337                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6338                                    &feature, upper->name);
6339                         features &= ~feature;
6340                 }
6341         }
6342
6343         return features;
6344 }
6345
6346 static void netdev_sync_lower_features(struct net_device *upper,
6347         struct net_device *lower, netdev_features_t features)
6348 {
6349         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6350         netdev_features_t feature;
6351         int feature_bit;
6352
6353         for_each_netdev_feature(&upper_disables, feature_bit) {
6354                 feature = __NETIF_F_BIT(feature_bit);
6355                 if (!(features & feature) && (lower->features & feature)) {
6356                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6357                                    &feature, lower->name);
6358                         lower->wanted_features &= ~feature;
6359                         netdev_update_features(lower);
6360
6361                         if (unlikely(lower->features & feature))
6362                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6363                                             &feature, lower->name);
6364                 }
6365         }
6366 }
6367
6368 static netdev_features_t netdev_fix_features(struct net_device *dev,
6369         netdev_features_t features)
6370 {
6371         /* Fix illegal checksum combinations */
6372         if ((features & NETIF_F_HW_CSUM) &&
6373             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6374                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6375                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6376         }
6377
6378         /* TSO requires that SG is present as well. */
6379         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6380                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6381                 features &= ~NETIF_F_ALL_TSO;
6382         }
6383
6384         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6385                                         !(features & NETIF_F_IP_CSUM)) {
6386                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6387                 features &= ~NETIF_F_TSO;
6388                 features &= ~NETIF_F_TSO_ECN;
6389         }
6390
6391         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6392                                          !(features & NETIF_F_IPV6_CSUM)) {
6393                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6394                 features &= ~NETIF_F_TSO6;
6395         }
6396
6397         /* TSO ECN requires that TSO is present as well. */
6398         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6399                 features &= ~NETIF_F_TSO_ECN;
6400
6401         /* Software GSO depends on SG. */
6402         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6403                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6404                 features &= ~NETIF_F_GSO;
6405         }
6406
6407         /* UFO needs SG and checksumming */
6408         if (features & NETIF_F_UFO) {
6409                 /* maybe split UFO into V4 and V6? */
6410                 if (!((features & NETIF_F_GEN_CSUM) ||
6411                     (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
6412                             == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6413                         netdev_dbg(dev,
6414                                 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6415                         features &= ~NETIF_F_UFO;
6416                 }
6417
6418                 if (!(features & NETIF_F_SG)) {
6419                         netdev_dbg(dev,
6420                                 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6421                         features &= ~NETIF_F_UFO;
6422                 }
6423         }
6424
6425 #ifdef CONFIG_NET_RX_BUSY_POLL
6426         if (dev->netdev_ops->ndo_busy_poll)
6427                 features |= NETIF_F_BUSY_POLL;
6428         else
6429 #endif
6430                 features &= ~NETIF_F_BUSY_POLL;
6431
6432         return features;
6433 }
6434
6435 int __netdev_update_features(struct net_device *dev)
6436 {
6437         struct net_device *upper, *lower;
6438         netdev_features_t features;
6439         struct list_head *iter;
6440         int err = -1;
6441
6442         ASSERT_RTNL();
6443
6444         features = netdev_get_wanted_features(dev);
6445
6446         if (dev->netdev_ops->ndo_fix_features)
6447                 features = dev->netdev_ops->ndo_fix_features(dev, features);
6448
6449         /* driver might be less strict about feature dependencies */
6450         features = netdev_fix_features(dev, features);
6451
6452         /* some features can't be enabled if they're off an an upper device */
6453         netdev_for_each_upper_dev_rcu(dev, upper, iter)
6454                 features = netdev_sync_upper_features(dev, upper, features);
6455
6456         if (dev->features == features)
6457                 goto sync_lower;
6458
6459         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6460                 &dev->features, &features);
6461
6462         if (dev->netdev_ops->ndo_set_features)
6463                 err = dev->netdev_ops->ndo_set_features(dev, features);
6464         else
6465                 err = 0;
6466
6467         if (unlikely(err < 0)) {
6468                 netdev_err(dev,
6469                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
6470                         err, &features, &dev->features);
6471                 /* return non-0 since some features might have changed and
6472                  * it's better to fire a spurious notification than miss it
6473                  */
6474                 return -1;
6475         }
6476
6477 sync_lower:
6478         /* some features must be disabled on lower devices when disabled
6479          * on an upper device (think: bonding master or bridge)
6480          */
6481         netdev_for_each_lower_dev(dev, lower, iter)
6482                 netdev_sync_lower_features(dev, lower, features);
6483
6484         if (!err)
6485                 dev->features = features;
6486
6487         return err < 0 ? 0 : 1;
6488 }
6489
6490 /**
6491  *      netdev_update_features - recalculate device features
6492  *      @dev: the device to check
6493  *
6494  *      Recalculate dev->features set and send notifications if it
6495  *      has changed. Should be called after driver or hardware dependent
6496  *      conditions might have changed that influence the features.
6497  */
6498 void netdev_update_features(struct net_device *dev)
6499 {
6500         if (__netdev_update_features(dev))
6501                 netdev_features_change(dev);
6502 }
6503 EXPORT_SYMBOL(netdev_update_features);
6504
6505 /**
6506  *      netdev_change_features - recalculate device features
6507  *      @dev: the device to check
6508  *
6509  *      Recalculate dev->features set and send notifications even
6510  *      if they have not changed. Should be called instead of
6511  *      netdev_update_features() if also dev->vlan_features might
6512  *      have changed to allow the changes to be propagated to stacked
6513  *      VLAN devices.
6514  */
6515 void netdev_change_features(struct net_device *dev)
6516 {
6517         __netdev_update_features(dev);
6518         netdev_features_change(dev);
6519 }
6520 EXPORT_SYMBOL(netdev_change_features);
6521
6522 /**
6523  *      netif_stacked_transfer_operstate -      transfer operstate
6524  *      @rootdev: the root or lower level device to transfer state from
6525  *      @dev: the device to transfer operstate to
6526  *
6527  *      Transfer operational state from root to device. This is normally
6528  *      called when a stacking relationship exists between the root
6529  *      device and the device(a leaf device).
6530  */
6531 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6532                                         struct net_device *dev)
6533 {
6534         if (rootdev->operstate == IF_OPER_DORMANT)
6535                 netif_dormant_on(dev);
6536         else
6537                 netif_dormant_off(dev);
6538
6539         if (netif_carrier_ok(rootdev)) {
6540                 if (!netif_carrier_ok(dev))
6541                         netif_carrier_on(dev);
6542         } else {
6543                 if (netif_carrier_ok(dev))
6544                         netif_carrier_off(dev);
6545         }
6546 }
6547 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6548
6549 #ifdef CONFIG_SYSFS
6550 static int netif_alloc_rx_queues(struct net_device *dev)
6551 {
6552         unsigned int i, count = dev->num_rx_queues;
6553         struct netdev_rx_queue *rx;
6554         size_t sz = count * sizeof(*rx);
6555
6556         BUG_ON(count < 1);
6557
6558         rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6559         if (!rx) {
6560                 rx = vzalloc(sz);
6561                 if (!rx)
6562                         return -ENOMEM;
6563         }
6564         dev->_rx = rx;
6565
6566         for (i = 0; i < count; i++)
6567                 rx[i].dev = dev;
6568         return 0;
6569 }
6570 #endif
6571
6572 static void netdev_init_one_queue(struct net_device *dev,
6573                                   struct netdev_queue *queue, void *_unused)
6574 {
6575         /* Initialize queue lock */
6576         spin_lock_init(&queue->_xmit_lock);
6577         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6578         queue->xmit_lock_owner = -1;
6579         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6580         queue->dev = dev;
6581 #ifdef CONFIG_BQL
6582         dql_init(&queue->dql, HZ);
6583 #endif
6584 }
6585
6586 static void netif_free_tx_queues(struct net_device *dev)
6587 {
6588         kvfree(dev->_tx);
6589 }
6590
6591 static int netif_alloc_netdev_queues(struct net_device *dev)
6592 {
6593         unsigned int count = dev->num_tx_queues;
6594         struct netdev_queue *tx;
6595         size_t sz = count * sizeof(*tx);
6596
6597         if (count < 1 || count > 0xffff)
6598                 return -EINVAL;
6599
6600         tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6601         if (!tx) {
6602                 tx = vzalloc(sz);
6603                 if (!tx)
6604                         return -ENOMEM;
6605         }
6606         dev->_tx = tx;
6607
6608         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6609         spin_lock_init(&dev->tx_global_lock);
6610
6611         return 0;
6612 }
6613
6614 void netif_tx_stop_all_queues(struct net_device *dev)
6615 {
6616         unsigned int i;
6617
6618         for (i = 0; i < dev->num_tx_queues; i++) {
6619                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
6620                 netif_tx_stop_queue(txq);
6621         }
6622 }
6623 EXPORT_SYMBOL(netif_tx_stop_all_queues);
6624
6625 /**
6626  *      register_netdevice      - register a network device
6627  *      @dev: device to register
6628  *
6629  *      Take a completed network device structure and add it to the kernel
6630  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6631  *      chain. 0 is returned on success. A negative errno code is returned
6632  *      on a failure to set up the device, or if the name is a duplicate.
6633  *
6634  *      Callers must hold the rtnl semaphore. You may want
6635  *      register_netdev() instead of this.
6636  *
6637  *      BUGS:
6638  *      The locking appears insufficient to guarantee two parallel registers
6639  *      will not get the same name.
6640  */
6641
6642 int register_netdevice(struct net_device *dev)
6643 {
6644         int ret;
6645         struct net *net = dev_net(dev);
6646
6647         BUG_ON(dev_boot_phase);
6648         ASSERT_RTNL();
6649
6650         might_sleep();
6651
6652         /* When net_device's are persistent, this will be fatal. */
6653         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6654         BUG_ON(!net);
6655
6656         spin_lock_init(&dev->addr_list_lock);
6657         netdev_set_addr_lockdep_class(dev);
6658
6659         ret = dev_get_valid_name(net, dev, dev->name);
6660         if (ret < 0)
6661                 goto out;
6662
6663         /* Init, if this function is available */
6664         if (dev->netdev_ops->ndo_init) {
6665                 ret = dev->netdev_ops->ndo_init(dev);
6666                 if (ret) {
6667                         if (ret > 0)
6668                                 ret = -EIO;
6669                         goto out;
6670                 }
6671         }
6672
6673         if (((dev->hw_features | dev->features) &
6674              NETIF_F_HW_VLAN_CTAG_FILTER) &&
6675             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6676              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6677                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6678                 ret = -EINVAL;
6679                 goto err_uninit;
6680         }
6681
6682         ret = -EBUSY;
6683         if (!dev->ifindex)
6684                 dev->ifindex = dev_new_index(net);
6685         else if (__dev_get_by_index(net, dev->ifindex))
6686                 goto err_uninit;
6687
6688         /* Transfer changeable features to wanted_features and enable
6689          * software offloads (GSO and GRO).
6690          */
6691         dev->hw_features |= NETIF_F_SOFT_FEATURES;
6692         dev->features |= NETIF_F_SOFT_FEATURES;
6693         dev->wanted_features = dev->features & dev->hw_features;
6694
6695         if (!(dev->flags & IFF_LOOPBACK)) {
6696                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6697         }
6698
6699         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6700          */
6701         dev->vlan_features |= NETIF_F_HIGHDMA;
6702
6703         /* Make NETIF_F_SG inheritable to tunnel devices.
6704          */
6705         dev->hw_enc_features |= NETIF_F_SG;
6706
6707         /* Make NETIF_F_SG inheritable to MPLS.
6708          */
6709         dev->mpls_features |= NETIF_F_SG;
6710
6711         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6712         ret = notifier_to_errno(ret);
6713         if (ret)
6714                 goto err_uninit;
6715
6716         ret = netdev_register_kobject(dev);
6717         if (ret)
6718                 goto err_uninit;
6719         dev->reg_state = NETREG_REGISTERED;
6720
6721         __netdev_update_features(dev);
6722
6723         /*
6724          *      Default initial state at registry is that the
6725          *      device is present.
6726          */
6727
6728         set_bit(__LINK_STATE_PRESENT, &dev->state);
6729
6730         linkwatch_init_dev(dev);
6731
6732         dev_init_scheduler(dev);
6733         dev_hold(dev);
6734         list_netdevice(dev);
6735         add_device_randomness(dev->dev_addr, dev->addr_len);
6736
6737         /* If the device has permanent device address, driver should
6738          * set dev_addr and also addr_assign_type should be set to
6739          * NET_ADDR_PERM (default value).
6740          */
6741         if (dev->addr_assign_type == NET_ADDR_PERM)
6742                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6743
6744         /* Notify protocols, that a new device appeared. */
6745         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6746         ret = notifier_to_errno(ret);
6747         if (ret) {
6748                 rollback_registered(dev);
6749                 dev->reg_state = NETREG_UNREGISTERED;
6750         }
6751         /*
6752          *      Prevent userspace races by waiting until the network
6753          *      device is fully setup before sending notifications.
6754          */
6755         if (!dev->rtnl_link_ops ||
6756             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6757                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6758
6759 out:
6760         return ret;
6761
6762 err_uninit:
6763         if (dev->netdev_ops->ndo_uninit)
6764                 dev->netdev_ops->ndo_uninit(dev);
6765         goto out;
6766 }
6767 EXPORT_SYMBOL(register_netdevice);
6768
6769 /**
6770  *      init_dummy_netdev       - init a dummy network device for NAPI
6771  *      @dev: device to init
6772  *
6773  *      This takes a network device structure and initialize the minimum
6774  *      amount of fields so it can be used to schedule NAPI polls without
6775  *      registering a full blown interface. This is to be used by drivers
6776  *      that need to tie several hardware interfaces to a single NAPI
6777  *      poll scheduler due to HW limitations.
6778  */
6779 int init_dummy_netdev(struct net_device *dev)
6780 {
6781         /* Clear everything. Note we don't initialize spinlocks
6782          * are they aren't supposed to be taken by any of the
6783          * NAPI code and this dummy netdev is supposed to be
6784          * only ever used for NAPI polls
6785          */
6786         memset(dev, 0, sizeof(struct net_device));
6787
6788         /* make sure we BUG if trying to hit standard
6789          * register/unregister code path
6790          */
6791         dev->reg_state = NETREG_DUMMY;
6792
6793         /* NAPI wants this */
6794         INIT_LIST_HEAD(&dev->napi_list);
6795
6796         /* a dummy interface is started by default */
6797         set_bit(__LINK_STATE_PRESENT, &dev->state);
6798         set_bit(__LINK_STATE_START, &dev->state);
6799
6800         /* Note : We dont allocate pcpu_refcnt for dummy devices,
6801          * because users of this 'device' dont need to change
6802          * its refcount.
6803          */
6804
6805         return 0;
6806 }
6807 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6808
6809
6810 /**
6811  *      register_netdev - register a network device
6812  *      @dev: device to register
6813  *
6814  *      Take a completed network device structure and add it to the kernel
6815  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6816  *      chain. 0 is returned on success. A negative errno code is returned
6817  *      on a failure to set up the device, or if the name is a duplicate.
6818  *
6819  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
6820  *      and expands the device name if you passed a format string to
6821  *      alloc_netdev.
6822  */
6823 int register_netdev(struct net_device *dev)
6824 {
6825         int err;
6826
6827         rtnl_lock();
6828         err = register_netdevice(dev);
6829         rtnl_unlock();
6830         return err;
6831 }
6832 EXPORT_SYMBOL(register_netdev);
6833
6834 int netdev_refcnt_read(const struct net_device *dev)
6835 {
6836         int i, refcnt = 0;
6837
6838         for_each_possible_cpu(i)
6839                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6840         return refcnt;
6841 }
6842 EXPORT_SYMBOL(netdev_refcnt_read);
6843
6844 /**
6845  * netdev_wait_allrefs - wait until all references are gone.
6846  * @dev: target net_device
6847  *
6848  * This is called when unregistering network devices.
6849  *
6850  * Any protocol or device that holds a reference should register
6851  * for netdevice notification, and cleanup and put back the
6852  * reference if they receive an UNREGISTER event.
6853  * We can get stuck here if buggy protocols don't correctly
6854  * call dev_put.
6855  */
6856 static void netdev_wait_allrefs(struct net_device *dev)
6857 {
6858         unsigned long rebroadcast_time, warning_time;
6859         int refcnt;
6860
6861         linkwatch_forget_dev(dev);
6862
6863         rebroadcast_time = warning_time = jiffies;
6864         refcnt = netdev_refcnt_read(dev);
6865
6866         while (refcnt != 0) {
6867                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6868                         rtnl_lock();
6869
6870                         /* Rebroadcast unregister notification */
6871                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6872
6873                         __rtnl_unlock();
6874                         rcu_barrier();
6875                         rtnl_lock();
6876
6877                         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6878                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6879                                      &dev->state)) {
6880                                 /* We must not have linkwatch events
6881                                  * pending on unregister. If this
6882                                  * happens, we simply run the queue
6883                                  * unscheduled, resulting in a noop
6884                                  * for this device.
6885                                  */
6886                                 linkwatch_run_queue();
6887                         }
6888
6889                         __rtnl_unlock();
6890
6891                         rebroadcast_time = jiffies;
6892                 }
6893
6894                 msleep(250);
6895
6896                 refcnt = netdev_refcnt_read(dev);
6897
6898                 if (time_after(jiffies, warning_time + 10 * HZ)) {
6899                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6900                                  dev->name, refcnt);
6901                         warning_time = jiffies;
6902                 }
6903         }
6904 }
6905
6906 /* The sequence is:
6907  *
6908  *      rtnl_lock();
6909  *      ...
6910  *      register_netdevice(x1);
6911  *      register_netdevice(x2);
6912  *      ...
6913  *      unregister_netdevice(y1);
6914  *      unregister_netdevice(y2);
6915  *      ...
6916  *      rtnl_unlock();
6917  *      free_netdev(y1);
6918  *      free_netdev(y2);
6919  *
6920  * We are invoked by rtnl_unlock().
6921  * This allows us to deal with problems:
6922  * 1) We can delete sysfs objects which invoke hotplug
6923  *    without deadlocking with linkwatch via keventd.
6924  * 2) Since we run with the RTNL semaphore not held, we can sleep
6925  *    safely in order to wait for the netdev refcnt to drop to zero.
6926  *
6927  * We must not return until all unregister events added during
6928  * the interval the lock was held have been completed.
6929  */
6930 void netdev_run_todo(void)
6931 {
6932         struct list_head list;
6933
6934         /* Snapshot list, allow later requests */
6935         list_replace_init(&net_todo_list, &list);
6936
6937         __rtnl_unlock();
6938
6939
6940         /* Wait for rcu callbacks to finish before next phase */
6941         if (!list_empty(&list))
6942                 rcu_barrier();
6943
6944         while (!list_empty(&list)) {
6945                 struct net_device *dev
6946                         = list_first_entry(&list, struct net_device, todo_list);
6947                 list_del(&dev->todo_list);
6948
6949                 rtnl_lock();
6950                 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6951                 __rtnl_unlock();
6952
6953                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6954                         pr_err("network todo '%s' but state %d\n",
6955                                dev->name, dev->reg_state);
6956                         dump_stack();
6957                         continue;
6958                 }
6959
6960                 dev->reg_state = NETREG_UNREGISTERED;
6961
6962                 netdev_wait_allrefs(dev);
6963
6964                 /* paranoia */
6965                 BUG_ON(netdev_refcnt_read(dev));
6966                 BUG_ON(!list_empty(&dev->ptype_all));
6967                 BUG_ON(!list_empty(&dev->ptype_specific));
6968                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6969                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6970                 WARN_ON(dev->dn_ptr);
6971
6972                 if (dev->destructor)
6973                         dev->destructor(dev);
6974
6975                 /* Report a network device has been unregistered */
6976                 rtnl_lock();
6977                 dev_net(dev)->dev_unreg_count--;
6978                 __rtnl_unlock();
6979                 wake_up(&netdev_unregistering_wq);
6980
6981                 /* Free network device */
6982                 kobject_put(&dev->dev.kobj);
6983         }
6984 }
6985
6986 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
6987  * fields in the same order, with only the type differing.
6988  */
6989 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6990                              const struct net_device_stats *netdev_stats)
6991 {
6992 #if BITS_PER_LONG == 64
6993         BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6994         memcpy(stats64, netdev_stats, sizeof(*stats64));
6995 #else
6996         size_t i, n = sizeof(*stats64) / sizeof(u64);
6997         const unsigned long *src = (const unsigned long *)netdev_stats;
6998         u64 *dst = (u64 *)stats64;
6999
7000         BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
7001                      sizeof(*stats64) / sizeof(u64));
7002         for (i = 0; i < n; i++)
7003                 dst[i] = src[i];
7004 #endif
7005 }
7006 EXPORT_SYMBOL(netdev_stats_to_stats64);
7007
7008 /**
7009  *      dev_get_stats   - get network device statistics
7010  *      @dev: device to get statistics from
7011  *      @storage: place to store stats
7012  *
7013  *      Get network statistics from device. Return @storage.
7014  *      The device driver may provide its own method by setting
7015  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7016  *      otherwise the internal statistics structure is used.
7017  */
7018 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7019                                         struct rtnl_link_stats64 *storage)
7020 {
7021         const struct net_device_ops *ops = dev->netdev_ops;
7022
7023         if (ops->ndo_get_stats64) {
7024                 memset(storage, 0, sizeof(*storage));
7025                 ops->ndo_get_stats64(dev, storage);
7026         } else if (ops->ndo_get_stats) {
7027                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7028         } else {
7029                 netdev_stats_to_stats64(storage, &dev->stats);
7030         }
7031         storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7032         storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7033         return storage;
7034 }
7035 EXPORT_SYMBOL(dev_get_stats);
7036
7037 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7038 {
7039         struct netdev_queue *queue = dev_ingress_queue(dev);
7040
7041 #ifdef CONFIG_NET_CLS_ACT
7042         if (queue)
7043                 return queue;
7044         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7045         if (!queue)
7046                 return NULL;
7047         netdev_init_one_queue(dev, queue, NULL);
7048         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7049         queue->qdisc_sleeping = &noop_qdisc;
7050         rcu_assign_pointer(dev->ingress_queue, queue);
7051 #endif
7052         return queue;
7053 }
7054
7055 static const struct ethtool_ops default_ethtool_ops;
7056
7057 void netdev_set_default_ethtool_ops(struct net_device *dev,
7058                                     const struct ethtool_ops *ops)
7059 {
7060         if (dev->ethtool_ops == &default_ethtool_ops)
7061                 dev->ethtool_ops = ops;
7062 }
7063 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7064
7065 void netdev_freemem(struct net_device *dev)
7066 {
7067         char *addr = (char *)dev - dev->padded;
7068
7069         kvfree(addr);
7070 }
7071
7072 /**
7073  *      alloc_netdev_mqs - allocate network device
7074  *      @sizeof_priv:           size of private data to allocate space for
7075  *      @name:                  device name format string
7076  *      @name_assign_type:      origin of device name
7077  *      @setup:                 callback to initialize device
7078  *      @txqs:                  the number of TX subqueues to allocate
7079  *      @rxqs:                  the number of RX subqueues to allocate
7080  *
7081  *      Allocates a struct net_device with private data area for driver use
7082  *      and performs basic initialization.  Also allocates subqueue structs
7083  *      for each queue on the device.
7084  */
7085 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7086                 unsigned char name_assign_type,
7087                 void (*setup)(struct net_device *),
7088                 unsigned int txqs, unsigned int rxqs)
7089 {
7090         struct net_device *dev;
7091         size_t alloc_size;
7092         struct net_device *p;
7093
7094         BUG_ON(strlen(name) >= sizeof(dev->name));
7095
7096         if (txqs < 1) {
7097                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7098                 return NULL;
7099         }
7100
7101 #ifdef CONFIG_SYSFS
7102         if (rxqs < 1) {
7103                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7104                 return NULL;
7105         }
7106 #endif
7107
7108         alloc_size = sizeof(struct net_device);
7109         if (sizeof_priv) {
7110                 /* ensure 32-byte alignment of private area */
7111                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7112                 alloc_size += sizeof_priv;
7113         }
7114         /* ensure 32-byte alignment of whole construct */
7115         alloc_size += NETDEV_ALIGN - 1;
7116
7117         p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7118         if (!p)
7119                 p = vzalloc(alloc_size);
7120         if (!p)
7121                 return NULL;
7122
7123         dev = PTR_ALIGN(p, NETDEV_ALIGN);
7124         dev->padded = (char *)dev - (char *)p;
7125
7126         dev->pcpu_refcnt = alloc_percpu(int);
7127         if (!dev->pcpu_refcnt)
7128                 goto free_dev;
7129
7130         if (dev_addr_init(dev))
7131                 goto free_pcpu;
7132
7133         dev_mc_init(dev);
7134         dev_uc_init(dev);
7135
7136         dev_net_set(dev, &init_net);
7137
7138         dev->gso_max_size = GSO_MAX_SIZE;
7139         dev->gso_max_segs = GSO_MAX_SEGS;
7140         dev->gso_min_segs = 0;
7141
7142         INIT_LIST_HEAD(&dev->napi_list);
7143         INIT_LIST_HEAD(&dev->unreg_list);
7144         INIT_LIST_HEAD(&dev->close_list);
7145         INIT_LIST_HEAD(&dev->link_watch_list);
7146         INIT_LIST_HEAD(&dev->adj_list.upper);
7147         INIT_LIST_HEAD(&dev->adj_list.lower);
7148         INIT_LIST_HEAD(&dev->all_adj_list.upper);
7149         INIT_LIST_HEAD(&dev->all_adj_list.lower);
7150         INIT_LIST_HEAD(&dev->ptype_all);
7151         INIT_LIST_HEAD(&dev->ptype_specific);
7152         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7153         setup(dev);
7154
7155         if (!dev->tx_queue_len) {
7156                 dev->priv_flags |= IFF_NO_QUEUE;
7157                 dev->tx_queue_len = 1;
7158         }
7159
7160         dev->num_tx_queues = txqs;
7161         dev->real_num_tx_queues = txqs;
7162         if (netif_alloc_netdev_queues(dev))
7163                 goto free_all;
7164
7165 #ifdef CONFIG_SYSFS
7166         dev->num_rx_queues = rxqs;
7167         dev->real_num_rx_queues = rxqs;
7168         if (netif_alloc_rx_queues(dev))
7169                 goto free_all;
7170 #endif
7171
7172         strcpy(dev->name, name);
7173         dev->name_assign_type = name_assign_type;
7174         dev->group = INIT_NETDEV_GROUP;
7175         if (!dev->ethtool_ops)
7176                 dev->ethtool_ops = &default_ethtool_ops;
7177
7178         nf_hook_ingress_init(dev);
7179
7180         return dev;
7181
7182 free_all:
7183         free_netdev(dev);
7184         return NULL;
7185
7186 free_pcpu:
7187         free_percpu(dev->pcpu_refcnt);
7188 free_dev:
7189         netdev_freemem(dev);
7190         return NULL;
7191 }
7192 EXPORT_SYMBOL(alloc_netdev_mqs);
7193
7194 /**
7195  *      free_netdev - free network device
7196  *      @dev: device
7197  *
7198  *      This function does the last stage of destroying an allocated device
7199  *      interface. The reference to the device object is released.
7200  *      If this is the last reference then it will be freed.
7201  */
7202 void free_netdev(struct net_device *dev)
7203 {
7204         struct napi_struct *p, *n;
7205
7206         netif_free_tx_queues(dev);
7207 #ifdef CONFIG_SYSFS
7208         kvfree(dev->_rx);
7209 #endif
7210
7211         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7212
7213         /* Flush device addresses */
7214         dev_addr_flush(dev);
7215
7216         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7217                 netif_napi_del(p);
7218
7219         free_percpu(dev->pcpu_refcnt);
7220         dev->pcpu_refcnt = NULL;
7221
7222         /*  Compatibility with error handling in drivers */
7223         if (dev->reg_state == NETREG_UNINITIALIZED) {
7224                 netdev_freemem(dev);
7225                 return;
7226         }
7227
7228         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7229         dev->reg_state = NETREG_RELEASED;
7230
7231         /* will free via device release */
7232         put_device(&dev->dev);
7233 }
7234 EXPORT_SYMBOL(free_netdev);
7235
7236 /**
7237  *      synchronize_net -  Synchronize with packet receive processing
7238  *
7239  *      Wait for packets currently being received to be done.
7240  *      Does not block later packets from starting.
7241  */
7242 void synchronize_net(void)
7243 {
7244         might_sleep();
7245         if (rtnl_is_locked())
7246                 synchronize_rcu_expedited();
7247         else
7248                 synchronize_rcu();
7249 }
7250 EXPORT_SYMBOL(synchronize_net);
7251
7252 /**
7253  *      unregister_netdevice_queue - remove device from the kernel
7254  *      @dev: device
7255  *      @head: list
7256  *
7257  *      This function shuts down a device interface and removes it
7258  *      from the kernel tables.
7259  *      If head not NULL, device is queued to be unregistered later.
7260  *
7261  *      Callers must hold the rtnl semaphore.  You may want
7262  *      unregister_netdev() instead of this.
7263  */
7264
7265 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7266 {
7267         ASSERT_RTNL();
7268
7269         if (head) {
7270                 list_move_tail(&dev->unreg_list, head);
7271         } else {
7272                 rollback_registered(dev);
7273                 /* Finish processing unregister after unlock */
7274                 net_set_todo(dev);
7275         }
7276 }
7277 EXPORT_SYMBOL(unregister_netdevice_queue);
7278
7279 /**
7280  *      unregister_netdevice_many - unregister many devices
7281  *      @head: list of devices
7282  *
7283  *  Note: As most callers use a stack allocated list_head,
7284  *  we force a list_del() to make sure stack wont be corrupted later.
7285  */
7286 void unregister_netdevice_many(struct list_head *head)
7287 {
7288         struct net_device *dev;
7289
7290         if (!list_empty(head)) {
7291                 rollback_registered_many(head);
7292                 list_for_each_entry(dev, head, unreg_list)
7293                         net_set_todo(dev);
7294                 list_del(head);
7295         }
7296 }
7297 EXPORT_SYMBOL(unregister_netdevice_many);
7298
7299 /**
7300  *      unregister_netdev - remove device from the kernel
7301  *      @dev: device
7302  *
7303  *      This function shuts down a device interface and removes it
7304  *      from the kernel tables.
7305  *
7306  *      This is just a wrapper for unregister_netdevice that takes
7307  *      the rtnl semaphore.  In general you want to use this and not
7308  *      unregister_netdevice.
7309  */
7310 void unregister_netdev(struct net_device *dev)
7311 {
7312         rtnl_lock();
7313         unregister_netdevice(dev);
7314         rtnl_unlock();
7315 }
7316 EXPORT_SYMBOL(unregister_netdev);
7317
7318 /**
7319  *      dev_change_net_namespace - move device to different nethost namespace
7320  *      @dev: device
7321  *      @net: network namespace
7322  *      @pat: If not NULL name pattern to try if the current device name
7323  *            is already taken in the destination network namespace.
7324  *
7325  *      This function shuts down a device interface and moves it
7326  *      to a new network namespace. On success 0 is returned, on
7327  *      a failure a netagive errno code is returned.
7328  *
7329  *      Callers must hold the rtnl semaphore.
7330  */
7331
7332 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7333 {
7334         int err;
7335
7336         ASSERT_RTNL();
7337
7338         /* Don't allow namespace local devices to be moved. */
7339         err = -EINVAL;
7340         if (dev->features & NETIF_F_NETNS_LOCAL)
7341                 goto out;
7342
7343         /* Ensure the device has been registrered */
7344         if (dev->reg_state != NETREG_REGISTERED)
7345                 goto out;
7346
7347         /* Get out if there is nothing todo */
7348         err = 0;
7349         if (net_eq(dev_net(dev), net))
7350                 goto out;
7351
7352         /* Pick the destination device name, and ensure
7353          * we can use it in the destination network namespace.
7354          */
7355         err = -EEXIST;
7356         if (__dev_get_by_name(net, dev->name)) {
7357                 /* We get here if we can't use the current device name */
7358                 if (!pat)
7359                         goto out;
7360                 if (dev_get_valid_name(net, dev, pat) < 0)
7361                         goto out;
7362         }
7363
7364         /*
7365          * And now a mini version of register_netdevice unregister_netdevice.
7366          */
7367
7368         /* If device is running close it first. */
7369         dev_close(dev);
7370
7371         /* And unlink it from device chain */
7372         err = -ENODEV;
7373         unlist_netdevice(dev);
7374
7375         synchronize_net();
7376
7377         /* Shutdown queueing discipline. */
7378         dev_shutdown(dev);
7379
7380         /* Notify protocols, that we are about to destroy
7381            this device. They should clean all the things.
7382
7383            Note that dev->reg_state stays at NETREG_REGISTERED.
7384            This is wanted because this way 8021q and macvlan know
7385            the device is just moving and can keep their slaves up.
7386         */
7387         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7388         rcu_barrier();
7389         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7390         rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7391
7392         /*
7393          *      Flush the unicast and multicast chains
7394          */
7395         dev_uc_flush(dev);
7396         dev_mc_flush(dev);
7397
7398         /* Send a netdev-removed uevent to the old namespace */
7399         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7400         netdev_adjacent_del_links(dev);
7401
7402         /* Actually switch the network namespace */
7403         dev_net_set(dev, net);
7404
7405         /* If there is an ifindex conflict assign a new one */
7406         if (__dev_get_by_index(net, dev->ifindex))
7407                 dev->ifindex = dev_new_index(net);
7408
7409         /* Send a netdev-add uevent to the new namespace */
7410         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7411         netdev_adjacent_add_links(dev);
7412
7413         /* Fixup kobjects */
7414         err = device_rename(&dev->dev, dev->name);
7415         WARN_ON(err);
7416
7417         /* Add the device back in the hashes */
7418         list_netdevice(dev);
7419
7420         /* Notify protocols, that a new device appeared. */
7421         call_netdevice_notifiers(NETDEV_REGISTER, dev);
7422
7423         /*
7424          *      Prevent userspace races by waiting until the network
7425          *      device is fully setup before sending notifications.
7426          */
7427         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7428
7429         synchronize_net();
7430         err = 0;
7431 out:
7432         return err;
7433 }
7434 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7435
7436 static int dev_cpu_callback(struct notifier_block *nfb,
7437                             unsigned long action,
7438                             void *ocpu)
7439 {
7440         struct sk_buff **list_skb;
7441         struct sk_buff *skb;
7442         unsigned int cpu, oldcpu = (unsigned long)ocpu;
7443         struct softnet_data *sd, *oldsd;
7444
7445         if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7446                 return NOTIFY_OK;
7447
7448         local_irq_disable();
7449         cpu = smp_processor_id();
7450         sd = &per_cpu(softnet_data, cpu);
7451         oldsd = &per_cpu(softnet_data, oldcpu);
7452
7453         /* Find end of our completion_queue. */
7454         list_skb = &sd->completion_queue;
7455         while (*list_skb)
7456                 list_skb = &(*list_skb)->next;
7457         /* Append completion queue from offline CPU. */
7458         *list_skb = oldsd->completion_queue;
7459         oldsd->completion_queue = NULL;
7460
7461         /* Append output queue from offline CPU. */
7462         if (oldsd->output_queue) {
7463                 *sd->output_queue_tailp = oldsd->output_queue;
7464                 sd->output_queue_tailp = oldsd->output_queue_tailp;
7465                 oldsd->output_queue = NULL;
7466                 oldsd->output_queue_tailp = &oldsd->output_queue;
7467         }
7468         /* Append NAPI poll list from offline CPU, with one exception :
7469          * process_backlog() must be called by cpu owning percpu backlog.
7470          * We properly handle process_queue & input_pkt_queue later.
7471          */
7472         while (!list_empty(&oldsd->poll_list)) {
7473                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7474                                                             struct napi_struct,
7475                                                             poll_list);
7476
7477                 list_del_init(&napi->poll_list);
7478                 if (napi->poll == process_backlog)
7479                         napi->state = 0;
7480                 else
7481                         ____napi_schedule(sd, napi);
7482         }
7483
7484         raise_softirq_irqoff(NET_TX_SOFTIRQ);
7485         local_irq_enable();
7486
7487         /* Process offline CPU's input_pkt_queue */
7488         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7489                 netif_rx_ni(skb);
7490                 input_queue_head_incr(oldsd);
7491         }
7492         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7493                 netif_rx_ni(skb);
7494                 input_queue_head_incr(oldsd);
7495         }
7496
7497         return NOTIFY_OK;
7498 }
7499
7500
7501 /**
7502  *      netdev_increment_features - increment feature set by one
7503  *      @all: current feature set
7504  *      @one: new feature set
7505  *      @mask: mask feature set
7506  *
7507  *      Computes a new feature set after adding a device with feature set
7508  *      @one to the master device with current feature set @all.  Will not
7509  *      enable anything that is off in @mask. Returns the new feature set.
7510  */
7511 netdev_features_t netdev_increment_features(netdev_features_t all,
7512         netdev_features_t one, netdev_features_t mask)
7513 {
7514         if (mask & NETIF_F_GEN_CSUM)
7515                 mask |= NETIF_F_ALL_CSUM;
7516         mask |= NETIF_F_VLAN_CHALLENGED;
7517
7518         all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7519         all &= one | ~NETIF_F_ALL_FOR_ALL;
7520
7521         /* If one device supports hw checksumming, set for all. */
7522         if (all & NETIF_F_GEN_CSUM)
7523                 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7524
7525         return all;
7526 }
7527 EXPORT_SYMBOL(netdev_increment_features);
7528
7529 static struct hlist_head * __net_init netdev_create_hash(void)
7530 {
7531         int i;
7532         struct hlist_head *hash;
7533
7534         hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7535         if (hash != NULL)
7536                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7537                         INIT_HLIST_HEAD(&hash[i]);
7538
7539         return hash;
7540 }
7541
7542 /* Initialize per network namespace state */
7543 static int __net_init netdev_init(struct net *net)
7544 {
7545         if (net != &init_net)
7546                 INIT_LIST_HEAD(&net->dev_base_head);
7547
7548         net->dev_name_head = netdev_create_hash();
7549         if (net->dev_name_head == NULL)
7550                 goto err_name;
7551
7552         net->dev_index_head = netdev_create_hash();
7553         if (net->dev_index_head == NULL)
7554                 goto err_idx;
7555
7556         return 0;
7557
7558 err_idx:
7559         kfree(net->dev_name_head);
7560 err_name:
7561         return -ENOMEM;
7562 }
7563
7564 /**
7565  *      netdev_drivername - network driver for the device
7566  *      @dev: network device
7567  *
7568  *      Determine network driver for device.
7569  */
7570 const char *netdev_drivername(const struct net_device *dev)
7571 {
7572         const struct device_driver *driver;
7573         const struct device *parent;
7574         const char *empty = "";
7575
7576         parent = dev->dev.parent;
7577         if (!parent)
7578                 return empty;
7579
7580         driver = parent->driver;
7581         if (driver && driver->name)
7582                 return driver->name;
7583         return empty;
7584 }
7585
7586 static void __netdev_printk(const char *level, const struct net_device *dev,
7587                             struct va_format *vaf)
7588 {
7589         if (dev && dev->dev.parent) {
7590                 dev_printk_emit(level[1] - '0',
7591                                 dev->dev.parent,
7592                                 "%s %s %s%s: %pV",
7593                                 dev_driver_string(dev->dev.parent),
7594                                 dev_name(dev->dev.parent),
7595                                 netdev_name(dev), netdev_reg_state(dev),
7596                                 vaf);
7597         } else if (dev) {
7598                 printk("%s%s%s: %pV",
7599                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
7600         } else {
7601                 printk("%s(NULL net_device): %pV", level, vaf);
7602         }
7603 }
7604
7605 void netdev_printk(const char *level, const struct net_device *dev,
7606                    const char *format, ...)
7607 {
7608         struct va_format vaf;
7609         va_list args;
7610
7611         va_start(args, format);
7612
7613         vaf.fmt = format;
7614         vaf.va = &args;
7615
7616         __netdev_printk(level, dev, &vaf);
7617
7618         va_end(args);
7619 }
7620 EXPORT_SYMBOL(netdev_printk);
7621
7622 #define define_netdev_printk_level(func, level)                 \
7623 void func(const struct net_device *dev, const char *fmt, ...)   \
7624 {                                                               \
7625         struct va_format vaf;                                   \
7626         va_list args;                                           \
7627                                                                 \
7628         va_start(args, fmt);                                    \
7629                                                                 \
7630         vaf.fmt = fmt;                                          \
7631         vaf.va = &args;                                         \
7632                                                                 \
7633         __netdev_printk(level, dev, &vaf);                      \
7634                                                                 \
7635         va_end(args);                                           \
7636 }                                                               \
7637 EXPORT_SYMBOL(func);
7638
7639 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7640 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7641 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7642 define_netdev_printk_level(netdev_err, KERN_ERR);
7643 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7644 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7645 define_netdev_printk_level(netdev_info, KERN_INFO);
7646
7647 static void __net_exit netdev_exit(struct net *net)
7648 {
7649         kfree(net->dev_name_head);
7650         kfree(net->dev_index_head);
7651 }
7652
7653 static struct pernet_operations __net_initdata netdev_net_ops = {
7654         .init = netdev_init,
7655         .exit = netdev_exit,
7656 };
7657
7658 static void __net_exit default_device_exit(struct net *net)
7659 {
7660         struct net_device *dev, *aux;
7661         /*
7662          * Push all migratable network devices back to the
7663          * initial network namespace
7664          */
7665         rtnl_lock();
7666         for_each_netdev_safe(net, dev, aux) {
7667                 int err;
7668                 char fb_name[IFNAMSIZ];
7669
7670                 /* Ignore unmoveable devices (i.e. loopback) */
7671                 if (dev->features & NETIF_F_NETNS_LOCAL)
7672                         continue;
7673
7674                 /* Leave virtual devices for the generic cleanup */
7675                 if (dev->rtnl_link_ops)
7676                         continue;
7677
7678                 /* Push remaining network devices to init_net */
7679                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7680                 err = dev_change_net_namespace(dev, &init_net, fb_name);
7681                 if (err) {
7682                         pr_emerg("%s: failed to move %s to init_net: %d\n",
7683                                  __func__, dev->name, err);
7684                         BUG();
7685                 }
7686         }
7687         rtnl_unlock();
7688 }
7689
7690 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7691 {
7692         /* Return with the rtnl_lock held when there are no network
7693          * devices unregistering in any network namespace in net_list.
7694          */
7695         struct net *net;
7696         bool unregistering;
7697         DEFINE_WAIT_FUNC(wait, woken_wake_function);
7698
7699         add_wait_queue(&netdev_unregistering_wq, &wait);
7700         for (;;) {
7701                 unregistering = false;
7702                 rtnl_lock();
7703                 list_for_each_entry(net, net_list, exit_list) {
7704                         if (net->dev_unreg_count > 0) {
7705                                 unregistering = true;
7706                                 break;
7707                         }
7708                 }
7709                 if (!unregistering)
7710                         break;
7711                 __rtnl_unlock();
7712
7713                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
7714         }
7715         remove_wait_queue(&netdev_unregistering_wq, &wait);
7716 }
7717
7718 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7719 {
7720         /* At exit all network devices most be removed from a network
7721          * namespace.  Do this in the reverse order of registration.
7722          * Do this across as many network namespaces as possible to
7723          * improve batching efficiency.
7724          */
7725         struct net_device *dev;
7726         struct net *net;
7727         LIST_HEAD(dev_kill_list);
7728
7729         /* To prevent network device cleanup code from dereferencing
7730          * loopback devices or network devices that have been freed
7731          * wait here for all pending unregistrations to complete,
7732          * before unregistring the loopback device and allowing the
7733          * network namespace be freed.
7734          *
7735          * The netdev todo list containing all network devices
7736          * unregistrations that happen in default_device_exit_batch
7737          * will run in the rtnl_unlock() at the end of
7738          * default_device_exit_batch.
7739          */
7740         rtnl_lock_unregistering(net_list);
7741         list_for_each_entry(net, net_list, exit_list) {
7742                 for_each_netdev_reverse(net, dev) {
7743                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7744                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7745                         else
7746                                 unregister_netdevice_queue(dev, &dev_kill_list);
7747                 }
7748         }
7749         unregister_netdevice_many(&dev_kill_list);
7750         rtnl_unlock();
7751 }
7752
7753 static struct pernet_operations __net_initdata default_device_ops = {
7754         .exit = default_device_exit,
7755         .exit_batch = default_device_exit_batch,
7756 };
7757
7758 /*
7759  *      Initialize the DEV module. At boot time this walks the device list and
7760  *      unhooks any devices that fail to initialise (normally hardware not
7761  *      present) and leaves us with a valid list of present and active devices.
7762  *
7763  */
7764
7765 /*
7766  *       This is called single threaded during boot, so no need
7767  *       to take the rtnl semaphore.
7768  */
7769 static int __init net_dev_init(void)
7770 {
7771         int i, rc = -ENOMEM;
7772
7773         BUG_ON(!dev_boot_phase);
7774
7775         if (dev_proc_init())
7776                 goto out;
7777
7778         if (netdev_kobject_init())
7779                 goto out;
7780
7781         INIT_LIST_HEAD(&ptype_all);
7782         for (i = 0; i < PTYPE_HASH_SIZE; i++)
7783                 INIT_LIST_HEAD(&ptype_base[i]);
7784
7785         INIT_LIST_HEAD(&offload_base);
7786
7787         if (register_pernet_subsys(&netdev_net_ops))
7788                 goto out;
7789
7790         /*
7791          *      Initialise the packet receive queues.
7792          */
7793
7794         for_each_possible_cpu(i) {
7795                 struct softnet_data *sd = &per_cpu(softnet_data, i);
7796
7797                 skb_queue_head_init(&sd->input_pkt_queue);
7798                 skb_queue_head_init(&sd->process_queue);
7799                 INIT_LIST_HEAD(&sd->poll_list);
7800                 sd->output_queue_tailp = &sd->output_queue;
7801 #ifdef CONFIG_RPS
7802                 sd->csd.func = rps_trigger_softirq;
7803                 sd->csd.info = sd;
7804                 sd->cpu = i;
7805 #endif
7806
7807                 sd->backlog.poll = process_backlog;
7808                 sd->backlog.weight = weight_p;
7809         }
7810
7811         dev_boot_phase = 0;
7812
7813         /* The loopback device is special if any other network devices
7814          * is present in a network namespace the loopback device must
7815          * be present. Since we now dynamically allocate and free the
7816          * loopback device ensure this invariant is maintained by
7817          * keeping the loopback device as the first device on the
7818          * list of network devices.  Ensuring the loopback devices
7819          * is the first device that appears and the last network device
7820          * that disappears.
7821          */
7822         if (register_pernet_device(&loopback_net_ops))
7823                 goto out;
7824
7825         if (register_pernet_device(&default_device_ops))
7826                 goto out;
7827
7828         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7829         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7830
7831         hotcpu_notifier(dev_cpu_callback, 0);
7832         dst_subsys_init();
7833         rc = 0;
7834 out:
7835         return rc;
7836 }
7837
7838 subsys_initcall(net_dev_init);