usb: gadget: mtp: add new ioctl for compat
[firefly-linux-kernel-4.4.55.git] / mm / swap.c
1 /*
2  *  linux/mm/swap.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * This file contains the default values for the operation of the
9  * Linux VM subsystem. Fine-tuning documentation can be found in
10  * Documentation/sysctl/vm.txt.
11  * Started 18.12.91
12  * Swap aging added 23.2.95, Stephen Tweedie.
13  * Buffermem limits added 12.3.98, Rik van Riel.
14  */
15
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/export.h>
25 #include <linux/mm_inline.h>
26 #include <linux/percpu_counter.h>
27 #include <linux/percpu.h>
28 #include <linux/cpu.h>
29 #include <linux/notifier.h>
30 #include <linux/backing-dev.h>
31 #include <linux/memcontrol.h>
32 #include <linux/gfp.h>
33 #include <linux/uio.h>
34 #include <linux/hugetlb.h>
35
36 #include "internal.h"
37
38 /* How many pages do we try to swap or page in/out together? */
39 int page_cluster;
40
41 static DEFINE_PER_CPU(struct pagevec[NR_LRU_LISTS], lru_add_pvecs);
42 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
43 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
44
45 /*
46  * This path almost never happens for VM activity - pages are normally
47  * freed via pagevecs.  But it gets used by networking.
48  */
49 static void __page_cache_release(struct page *page)
50 {
51         if (PageLRU(page)) {
52                 struct zone *zone = page_zone(page);
53                 struct lruvec *lruvec;
54                 unsigned long flags;
55
56                 spin_lock_irqsave(&zone->lru_lock, flags);
57                 lruvec = mem_cgroup_page_lruvec(page, zone);
58                 VM_BUG_ON(!PageLRU(page));
59                 __ClearPageLRU(page);
60                 del_page_from_lru_list(page, lruvec, page_off_lru(page));
61                 spin_unlock_irqrestore(&zone->lru_lock, flags);
62         }
63 }
64
65 static void __put_single_page(struct page *page)
66 {
67         __page_cache_release(page);
68         free_hot_cold_page(page, 0);
69 }
70
71 static void __put_compound_page(struct page *page)
72 {
73         compound_page_dtor *dtor;
74
75         __page_cache_release(page);
76         dtor = get_compound_page_dtor(page);
77         (*dtor)(page);
78 }
79
80 static void put_compound_page(struct page *page)
81 {
82         if (unlikely(PageTail(page))) {
83                 /* __split_huge_page_refcount can run under us */
84                 struct page *page_head = compound_head(page);
85
86                 if (likely(page != page_head &&
87                            get_page_unless_zero(page_head))) {
88                         unsigned long flags;
89
90                         /*
91                          * THP can not break up slab pages so avoid taking
92                          * compound_lock().  Slab performs non-atomic bit ops
93                          * on page->flags for better performance.  In particular
94                          * slab_unlock() in slub used to be a hot path.  It is
95                          * still hot on arches that do not support
96                          * this_cpu_cmpxchg_double().
97                          */
98                         if (PageSlab(page_head) || PageHeadHuge(page_head)) {
99                                 if (likely(PageTail(page))) {
100                                         /*
101                                          * __split_huge_page_refcount
102                                          * cannot race here.
103                                          */
104                                         VM_BUG_ON(!PageHead(page_head));
105                                         atomic_dec(&page->_mapcount);
106                                         if (put_page_testzero(page_head))
107                                                 VM_BUG_ON(1);
108                                         if (put_page_testzero(page_head))
109                                                 __put_compound_page(page_head);
110                                         return;
111                                 } else
112                                         /*
113                                          * __split_huge_page_refcount
114                                          * run before us, "page" was a
115                                          * THP tail. The split
116                                          * page_head has been freed
117                                          * and reallocated as slab or
118                                          * hugetlbfs page of smaller
119                                          * order (only possible if
120                                          * reallocated as slab on
121                                          * x86).
122                                          */
123                                         goto skip_lock;
124                         }
125                         /*
126                          * page_head wasn't a dangling pointer but it
127                          * may not be a head page anymore by the time
128                          * we obtain the lock. That is ok as long as it
129                          * can't be freed from under us.
130                          */
131                         flags = compound_lock_irqsave(page_head);
132                         if (unlikely(!PageTail(page))) {
133                                 /* __split_huge_page_refcount run before us */
134                                 compound_unlock_irqrestore(page_head, flags);
135 skip_lock:
136                                 if (put_page_testzero(page_head)) {
137                                         /*
138                                          * The head page may have been
139                                          * freed and reallocated as a
140                                          * compound page of smaller
141                                          * order and then freed again.
142                                          * All we know is that it
143                                          * cannot have become: a THP
144                                          * page, a compound page of
145                                          * higher order, a tail page.
146                                          * That is because we still
147                                          * hold the refcount of the
148                                          * split THP tail and
149                                          * page_head was the THP head
150                                          * before the split.
151                                          */
152                                         if (PageHead(page_head))
153                                                 __put_compound_page(page_head);
154                                         else
155                                                 __put_single_page(page_head);
156                                 }
157 out_put_single:
158                                 if (put_page_testzero(page))
159                                         __put_single_page(page);
160                                 return;
161                         }
162                         VM_BUG_ON(page_head != page->first_page);
163                         /*
164                          * We can release the refcount taken by
165                          * get_page_unless_zero() now that
166                          * __split_huge_page_refcount() is blocked on
167                          * the compound_lock.
168                          */
169                         if (put_page_testzero(page_head))
170                                 VM_BUG_ON(1);
171                         /* __split_huge_page_refcount will wait now */
172                         VM_BUG_ON(page_mapcount(page) <= 0);
173                         atomic_dec(&page->_mapcount);
174                         VM_BUG_ON(atomic_read(&page_head->_count) <= 0);
175                         VM_BUG_ON(atomic_read(&page->_count) != 0);
176                         compound_unlock_irqrestore(page_head, flags);
177
178                         if (put_page_testzero(page_head)) {
179                                 if (PageHead(page_head))
180                                         __put_compound_page(page_head);
181                                 else
182                                         __put_single_page(page_head);
183                         }
184                 } else {
185                         /* page_head is a dangling pointer */
186                         VM_BUG_ON(PageTail(page));
187                         goto out_put_single;
188                 }
189         } else if (put_page_testzero(page)) {
190                 if (PageHead(page))
191                         __put_compound_page(page);
192                 else
193                         __put_single_page(page);
194         }
195 }
196
197 void put_page(struct page *page)
198 {
199         if (unlikely(PageCompound(page)))
200                 put_compound_page(page);
201         else if (put_page_testzero(page))
202                 __put_single_page(page);
203 }
204 EXPORT_SYMBOL(put_page);
205
206 /*
207  * This function is exported but must not be called by anything other
208  * than get_page(). It implements the slow path of get_page().
209  */
210 bool __get_page_tail(struct page *page)
211 {
212         /*
213          * This takes care of get_page() if run on a tail page
214          * returned by one of the get_user_pages/follow_page variants.
215          * get_user_pages/follow_page itself doesn't need the compound
216          * lock because it runs __get_page_tail_foll() under the
217          * proper PT lock that already serializes against
218          * split_huge_page().
219          */
220         unsigned long flags;
221         bool got = false;
222         struct page *page_head = compound_head(page);
223
224         if (likely(page != page_head && get_page_unless_zero(page_head))) {
225                 /* Ref to put_compound_page() comment. */
226                 if (PageSlab(page_head) || PageHeadHuge(page_head)) {
227                         if (likely(PageTail(page))) {
228                                 /*
229                                  * This is a hugetlbfs page or a slab
230                                  * page. __split_huge_page_refcount
231                                  * cannot race here.
232                                  */
233                                 VM_BUG_ON(!PageHead(page_head));
234                                 __get_page_tail_foll(page, false);
235                                 return true;
236                         } else {
237                                 /*
238                                  * __split_huge_page_refcount run
239                                  * before us, "page" was a THP
240                                  * tail. The split page_head has been
241                                  * freed and reallocated as slab or
242                                  * hugetlbfs page of smaller order
243                                  * (only possible if reallocated as
244                                  * slab on x86).
245                                  */
246                                 put_page(page_head);
247                                 return false;
248                         }
249                 }
250
251                 /*
252                  * page_head wasn't a dangling pointer but it
253                  * may not be a head page anymore by the time
254                  * we obtain the lock. That is ok as long as it
255                  * can't be freed from under us.
256                  */
257                 flags = compound_lock_irqsave(page_head);
258                 /* here __split_huge_page_refcount won't run anymore */
259                 if (likely(PageTail(page))) {
260                         __get_page_tail_foll(page, false);
261                         got = true;
262                 }
263                 compound_unlock_irqrestore(page_head, flags);
264                 if (unlikely(!got))
265                         put_page(page_head);
266         }
267         return got;
268 }
269 EXPORT_SYMBOL(__get_page_tail);
270
271 /**
272  * put_pages_list() - release a list of pages
273  * @pages: list of pages threaded on page->lru
274  *
275  * Release a list of pages which are strung together on page.lru.  Currently
276  * used by read_cache_pages() and related error recovery code.
277  */
278 void put_pages_list(struct list_head *pages)
279 {
280         while (!list_empty(pages)) {
281                 struct page *victim;
282
283                 victim = list_entry(pages->prev, struct page, lru);
284                 list_del(&victim->lru);
285                 page_cache_release(victim);
286         }
287 }
288 EXPORT_SYMBOL(put_pages_list);
289
290 /*
291  * get_kernel_pages() - pin kernel pages in memory
292  * @kiov:       An array of struct kvec structures
293  * @nr_segs:    number of segments to pin
294  * @write:      pinning for read/write, currently ignored
295  * @pages:      array that receives pointers to the pages pinned.
296  *              Should be at least nr_segs long.
297  *
298  * Returns number of pages pinned. This may be fewer than the number
299  * requested. If nr_pages is 0 or negative, returns 0. If no pages
300  * were pinned, returns -errno. Each page returned must be released
301  * with a put_page() call when it is finished with.
302  */
303 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
304                 struct page **pages)
305 {
306         int seg;
307
308         for (seg = 0; seg < nr_segs; seg++) {
309                 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
310                         return seg;
311
312                 pages[seg] = kmap_to_page(kiov[seg].iov_base);
313                 page_cache_get(pages[seg]);
314         }
315
316         return seg;
317 }
318 EXPORT_SYMBOL_GPL(get_kernel_pages);
319
320 /*
321  * get_kernel_page() - pin a kernel page in memory
322  * @start:      starting kernel address
323  * @write:      pinning for read/write, currently ignored
324  * @pages:      array that receives pointer to the page pinned.
325  *              Must be at least nr_segs long.
326  *
327  * Returns 1 if page is pinned. If the page was not pinned, returns
328  * -errno. The page returned must be released with a put_page() call
329  * when it is finished with.
330  */
331 int get_kernel_page(unsigned long start, int write, struct page **pages)
332 {
333         const struct kvec kiov = {
334                 .iov_base = (void *)start,
335                 .iov_len = PAGE_SIZE
336         };
337
338         return get_kernel_pages(&kiov, 1, write, pages);
339 }
340 EXPORT_SYMBOL_GPL(get_kernel_page);
341
342 static void pagevec_lru_move_fn(struct pagevec *pvec,
343         void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
344         void *arg)
345 {
346         int i;
347         struct zone *zone = NULL;
348         struct lruvec *lruvec;
349         unsigned long flags = 0;
350
351         for (i = 0; i < pagevec_count(pvec); i++) {
352                 struct page *page = pvec->pages[i];
353                 struct zone *pagezone = page_zone(page);
354
355                 if (pagezone != zone) {
356                         if (zone)
357                                 spin_unlock_irqrestore(&zone->lru_lock, flags);
358                         zone = pagezone;
359                         spin_lock_irqsave(&zone->lru_lock, flags);
360                 }
361
362                 lruvec = mem_cgroup_page_lruvec(page, zone);
363                 (*move_fn)(page, lruvec, arg);
364         }
365         if (zone)
366                 spin_unlock_irqrestore(&zone->lru_lock, flags);
367         release_pages(pvec->pages, pvec->nr, pvec->cold);
368         pagevec_reinit(pvec);
369 }
370
371 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
372                                  void *arg)
373 {
374         int *pgmoved = arg;
375
376         if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
377                 enum lru_list lru = page_lru_base_type(page);
378                 list_move_tail(&page->lru, &lruvec->lists[lru]);
379                 (*pgmoved)++;
380         }
381 }
382
383 /*
384  * pagevec_move_tail() must be called with IRQ disabled.
385  * Otherwise this may cause nasty races.
386  */
387 static void pagevec_move_tail(struct pagevec *pvec)
388 {
389         int pgmoved = 0;
390
391         pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
392         __count_vm_events(PGROTATED, pgmoved);
393 }
394
395 /*
396  * Writeback is about to end against a page which has been marked for immediate
397  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
398  * inactive list.
399  */
400 void rotate_reclaimable_page(struct page *page)
401 {
402         if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
403             !PageUnevictable(page) && PageLRU(page)) {
404                 struct pagevec *pvec;
405                 unsigned long flags;
406
407                 page_cache_get(page);
408                 local_irq_save(flags);
409                 pvec = &__get_cpu_var(lru_rotate_pvecs);
410                 if (!pagevec_add(pvec, page))
411                         pagevec_move_tail(pvec);
412                 local_irq_restore(flags);
413         }
414 }
415
416 static void update_page_reclaim_stat(struct lruvec *lruvec,
417                                      int file, int rotated)
418 {
419         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
420
421         reclaim_stat->recent_scanned[file]++;
422         if (rotated)
423                 reclaim_stat->recent_rotated[file]++;
424 }
425
426 static void __activate_page(struct page *page, struct lruvec *lruvec,
427                             void *arg)
428 {
429         if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
430                 int file = page_is_file_cache(page);
431                 int lru = page_lru_base_type(page);
432
433                 del_page_from_lru_list(page, lruvec, lru);
434                 SetPageActive(page);
435                 lru += LRU_ACTIVE;
436                 add_page_to_lru_list(page, lruvec, lru);
437
438                 __count_vm_event(PGACTIVATE);
439                 update_page_reclaim_stat(lruvec, file, 1);
440         }
441 }
442
443 #ifdef CONFIG_SMP
444 static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
445
446 static void activate_page_drain(int cpu)
447 {
448         struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
449
450         if (pagevec_count(pvec))
451                 pagevec_lru_move_fn(pvec, __activate_page, NULL);
452 }
453
454 void activate_page(struct page *page)
455 {
456         if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
457                 struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
458
459                 page_cache_get(page);
460                 if (!pagevec_add(pvec, page))
461                         pagevec_lru_move_fn(pvec, __activate_page, NULL);
462                 put_cpu_var(activate_page_pvecs);
463         }
464 }
465
466 #else
467 static inline void activate_page_drain(int cpu)
468 {
469 }
470
471 void activate_page(struct page *page)
472 {
473         struct zone *zone = page_zone(page);
474
475         spin_lock_irq(&zone->lru_lock);
476         __activate_page(page, mem_cgroup_page_lruvec(page, zone), NULL);
477         spin_unlock_irq(&zone->lru_lock);
478 }
479 #endif
480
481 /*
482  * Mark a page as having seen activity.
483  *
484  * inactive,unreferenced        ->      inactive,referenced
485  * inactive,referenced          ->      active,unreferenced
486  * active,unreferenced          ->      active,referenced
487  */
488 void mark_page_accessed(struct page *page)
489 {
490         if (!PageActive(page) && !PageUnevictable(page) &&
491                         PageReferenced(page) && PageLRU(page)) {
492                 activate_page(page);
493                 ClearPageReferenced(page);
494         } else if (!PageReferenced(page)) {
495                 SetPageReferenced(page);
496         }
497 }
498 EXPORT_SYMBOL(mark_page_accessed);
499
500 /*
501  * Order of operations is important: flush the pagevec when it's already
502  * full, not when adding the last page, to make sure that last page is
503  * not added to the LRU directly when passed to this function. Because
504  * mark_page_accessed() (called after this when writing) only activates
505  * pages that are on the LRU, linear writes in subpage chunks would see
506  * every PAGEVEC_SIZE page activated, which is unexpected.
507  */
508 void __lru_cache_add(struct page *page, enum lru_list lru)
509 {
510         struct pagevec *pvec = &get_cpu_var(lru_add_pvecs)[lru];
511
512         page_cache_get(page);
513         if (!pagevec_space(pvec))
514                 __pagevec_lru_add(pvec, lru);
515         pagevec_add(pvec, page);
516         put_cpu_var(lru_add_pvecs);
517 }
518 EXPORT_SYMBOL(__lru_cache_add);
519
520 /**
521  * lru_cache_add_lru - add a page to a page list
522  * @page: the page to be added to the LRU.
523  * @lru: the LRU list to which the page is added.
524  */
525 void lru_cache_add_lru(struct page *page, enum lru_list lru)
526 {
527         if (PageActive(page)) {
528                 VM_BUG_ON(PageUnevictable(page));
529                 ClearPageActive(page);
530         } else if (PageUnevictable(page)) {
531                 VM_BUG_ON(PageActive(page));
532                 ClearPageUnevictable(page);
533         }
534
535         VM_BUG_ON(PageLRU(page) || PageActive(page) || PageUnevictable(page));
536         __lru_cache_add(page, lru);
537 }
538
539 /**
540  * add_page_to_unevictable_list - add a page to the unevictable list
541  * @page:  the page to be added to the unevictable list
542  *
543  * Add page directly to its zone's unevictable list.  To avoid races with
544  * tasks that might be making the page evictable, through eg. munlock,
545  * munmap or exit, while it's not on the lru, we want to add the page
546  * while it's locked or otherwise "invisible" to other tasks.  This is
547  * difficult to do when using the pagevec cache, so bypass that.
548  */
549 void add_page_to_unevictable_list(struct page *page)
550 {
551         struct zone *zone = page_zone(page);
552         struct lruvec *lruvec;
553
554         spin_lock_irq(&zone->lru_lock);
555         lruvec = mem_cgroup_page_lruvec(page, zone);
556         SetPageUnevictable(page);
557         SetPageLRU(page);
558         add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE);
559         spin_unlock_irq(&zone->lru_lock);
560 }
561
562 /*
563  * If the page can not be invalidated, it is moved to the
564  * inactive list to speed up its reclaim.  It is moved to the
565  * head of the list, rather than the tail, to give the flusher
566  * threads some time to write it out, as this is much more
567  * effective than the single-page writeout from reclaim.
568  *
569  * If the page isn't page_mapped and dirty/writeback, the page
570  * could reclaim asap using PG_reclaim.
571  *
572  * 1. active, mapped page -> none
573  * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
574  * 3. inactive, mapped page -> none
575  * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
576  * 5. inactive, clean -> inactive, tail
577  * 6. Others -> none
578  *
579  * In 4, why it moves inactive's head, the VM expects the page would
580  * be write it out by flusher threads as this is much more effective
581  * than the single-page writeout from reclaim.
582  */
583 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
584                               void *arg)
585 {
586         int lru, file;
587         bool active;
588
589         if (!PageLRU(page))
590                 return;
591
592         if (PageUnevictable(page))
593                 return;
594
595         /* Some processes are using the page */
596         if (page_mapped(page))
597                 return;
598
599         active = PageActive(page);
600         file = page_is_file_cache(page);
601         lru = page_lru_base_type(page);
602
603         del_page_from_lru_list(page, lruvec, lru + active);
604         ClearPageActive(page);
605         ClearPageReferenced(page);
606         add_page_to_lru_list(page, lruvec, lru);
607
608         if (PageWriteback(page) || PageDirty(page)) {
609                 /*
610                  * PG_reclaim could be raced with end_page_writeback
611                  * It can make readahead confusing.  But race window
612                  * is _really_ small and  it's non-critical problem.
613                  */
614                 SetPageReclaim(page);
615         } else {
616                 /*
617                  * The page's writeback ends up during pagevec
618                  * We moves tha page into tail of inactive.
619                  */
620                 list_move_tail(&page->lru, &lruvec->lists[lru]);
621                 __count_vm_event(PGROTATED);
622         }
623
624         if (active)
625                 __count_vm_event(PGDEACTIVATE);
626         update_page_reclaim_stat(lruvec, file, 0);
627 }
628
629 /*
630  * Drain pages out of the cpu's pagevecs.
631  * Either "cpu" is the current CPU, and preemption has already been
632  * disabled; or "cpu" is being hot-unplugged, and is already dead.
633  */
634 void lru_add_drain_cpu(int cpu)
635 {
636         struct pagevec *pvecs = per_cpu(lru_add_pvecs, cpu);
637         struct pagevec *pvec;
638         int lru;
639
640         for_each_lru(lru) {
641                 pvec = &pvecs[lru - LRU_BASE];
642                 if (pagevec_count(pvec))
643                         __pagevec_lru_add(pvec, lru);
644         }
645
646         pvec = &per_cpu(lru_rotate_pvecs, cpu);
647         if (pagevec_count(pvec)) {
648                 unsigned long flags;
649
650                 /* No harm done if a racing interrupt already did this */
651                 local_irq_save(flags);
652                 pagevec_move_tail(pvec);
653                 local_irq_restore(flags);
654         }
655
656         pvec = &per_cpu(lru_deactivate_pvecs, cpu);
657         if (pagevec_count(pvec))
658                 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
659
660         activate_page_drain(cpu);
661 }
662
663 /**
664  * deactivate_page - forcefully deactivate a page
665  * @page: page to deactivate
666  *
667  * This function hints the VM that @page is a good reclaim candidate,
668  * for example if its invalidation fails due to the page being dirty
669  * or under writeback.
670  */
671 void deactivate_page(struct page *page)
672 {
673         /*
674          * In a workload with many unevictable page such as mprotect, unevictable
675          * page deactivation for accelerating reclaim is pointless.
676          */
677         if (PageUnevictable(page))
678                 return;
679
680         if (likely(get_page_unless_zero(page))) {
681                 struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
682
683                 if (!pagevec_add(pvec, page))
684                         pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
685                 put_cpu_var(lru_deactivate_pvecs);
686         }
687 }
688
689 void lru_add_drain(void)
690 {
691         lru_add_drain_cpu(get_cpu());
692         put_cpu();
693 }
694
695 static void lru_add_drain_per_cpu(struct work_struct *dummy)
696 {
697         lru_add_drain();
698 }
699
700 /*
701  * Returns 0 for success
702  */
703 int lru_add_drain_all(void)
704 {
705         return schedule_on_each_cpu(lru_add_drain_per_cpu);
706 }
707
708 /*
709  * Batched page_cache_release().  Decrement the reference count on all the
710  * passed pages.  If it fell to zero then remove the page from the LRU and
711  * free it.
712  *
713  * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
714  * for the remainder of the operation.
715  *
716  * The locking in this function is against shrink_inactive_list(): we recheck
717  * the page count inside the lock to see whether shrink_inactive_list()
718  * grabbed the page via the LRU.  If it did, give up: shrink_inactive_list()
719  * will free it.
720  */
721 void release_pages(struct page **pages, int nr, int cold)
722 {
723         int i;
724         LIST_HEAD(pages_to_free);
725         struct zone *zone = NULL;
726         struct lruvec *lruvec;
727         unsigned long uninitialized_var(flags);
728
729         for (i = 0; i < nr; i++) {
730                 struct page *page = pages[i];
731
732                 if (unlikely(PageCompound(page))) {
733                         if (zone) {
734                                 spin_unlock_irqrestore(&zone->lru_lock, flags);
735                                 zone = NULL;
736                         }
737                         put_compound_page(page);
738                         continue;
739                 }
740
741                 if (!put_page_testzero(page))
742                         continue;
743
744                 if (PageLRU(page)) {
745                         struct zone *pagezone = page_zone(page);
746
747                         if (pagezone != zone) {
748                                 if (zone)
749                                         spin_unlock_irqrestore(&zone->lru_lock,
750                                                                         flags);
751                                 zone = pagezone;
752                                 spin_lock_irqsave(&zone->lru_lock, flags);
753                         }
754
755                         lruvec = mem_cgroup_page_lruvec(page, zone);
756                         VM_BUG_ON(!PageLRU(page));
757                         __ClearPageLRU(page);
758                         del_page_from_lru_list(page, lruvec, page_off_lru(page));
759                 }
760
761                 list_add(&page->lru, &pages_to_free);
762         }
763         if (zone)
764                 spin_unlock_irqrestore(&zone->lru_lock, flags);
765
766         free_hot_cold_page_list(&pages_to_free, cold);
767 }
768 EXPORT_SYMBOL(release_pages);
769
770 /*
771  * The pages which we're about to release may be in the deferred lru-addition
772  * queues.  That would prevent them from really being freed right now.  That's
773  * OK from a correctness point of view but is inefficient - those pages may be
774  * cache-warm and we want to give them back to the page allocator ASAP.
775  *
776  * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
777  * and __pagevec_lru_add_active() call release_pages() directly to avoid
778  * mutual recursion.
779  */
780 void __pagevec_release(struct pagevec *pvec)
781 {
782         lru_add_drain();
783         release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
784         pagevec_reinit(pvec);
785 }
786 EXPORT_SYMBOL(__pagevec_release);
787
788 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
789 /* used by __split_huge_page_refcount() */
790 void lru_add_page_tail(struct page *page, struct page *page_tail,
791                        struct lruvec *lruvec, struct list_head *list)
792 {
793         int uninitialized_var(active);
794         enum lru_list lru;
795         const int file = 0;
796
797         VM_BUG_ON(!PageHead(page));
798         VM_BUG_ON(PageCompound(page_tail));
799         VM_BUG_ON(PageLRU(page_tail));
800         VM_BUG_ON(NR_CPUS != 1 &&
801                   !spin_is_locked(&lruvec_zone(lruvec)->lru_lock));
802
803         if (!list)
804                 SetPageLRU(page_tail);
805
806         if (page_evictable(page_tail)) {
807                 if (PageActive(page)) {
808                         SetPageActive(page_tail);
809                         active = 1;
810                         lru = LRU_ACTIVE_ANON;
811                 } else {
812                         active = 0;
813                         lru = LRU_INACTIVE_ANON;
814                 }
815         } else {
816                 SetPageUnevictable(page_tail);
817                 lru = LRU_UNEVICTABLE;
818         }
819
820         if (likely(PageLRU(page)))
821                 list_add_tail(&page_tail->lru, &page->lru);
822         else if (list) {
823                 /* page reclaim is reclaiming a huge page */
824                 get_page(page_tail);
825                 list_add_tail(&page_tail->lru, list);
826         } else {
827                 struct list_head *list_head;
828                 /*
829                  * Head page has not yet been counted, as an hpage,
830                  * so we must account for each subpage individually.
831                  *
832                  * Use the standard add function to put page_tail on the list,
833                  * but then correct its position so they all end up in order.
834                  */
835                 add_page_to_lru_list(page_tail, lruvec, lru);
836                 list_head = page_tail->lru.prev;
837                 list_move_tail(&page_tail->lru, list_head);
838         }
839
840         if (!PageUnevictable(page))
841                 update_page_reclaim_stat(lruvec, file, active);
842 }
843 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
844
845 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
846                                  void *arg)
847 {
848         enum lru_list lru = (enum lru_list)arg;
849         int file = is_file_lru(lru);
850         int active = is_active_lru(lru);
851
852         VM_BUG_ON(PageActive(page));
853         VM_BUG_ON(PageUnevictable(page));
854         VM_BUG_ON(PageLRU(page));
855
856         SetPageLRU(page);
857         if (active)
858                 SetPageActive(page);
859         add_page_to_lru_list(page, lruvec, lru);
860         update_page_reclaim_stat(lruvec, file, active);
861 }
862
863 /*
864  * Add the passed pages to the LRU, then drop the caller's refcount
865  * on them.  Reinitialises the caller's pagevec.
866  */
867 void __pagevec_lru_add(struct pagevec *pvec, enum lru_list lru)
868 {
869         VM_BUG_ON(is_unevictable_lru(lru));
870
871         pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, (void *)lru);
872 }
873 EXPORT_SYMBOL(__pagevec_lru_add);
874
875 /**
876  * pagevec_lookup - gang pagecache lookup
877  * @pvec:       Where the resulting pages are placed
878  * @mapping:    The address_space to search
879  * @start:      The starting page index
880  * @nr_pages:   The maximum number of pages
881  *
882  * pagevec_lookup() will search for and return a group of up to @nr_pages pages
883  * in the mapping.  The pages are placed in @pvec.  pagevec_lookup() takes a
884  * reference against the pages in @pvec.
885  *
886  * The search returns a group of mapping-contiguous pages with ascending
887  * indexes.  There may be holes in the indices due to not-present pages.
888  *
889  * pagevec_lookup() returns the number of pages which were found.
890  */
891 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
892                 pgoff_t start, unsigned nr_pages)
893 {
894         pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
895         return pagevec_count(pvec);
896 }
897 EXPORT_SYMBOL(pagevec_lookup);
898
899 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
900                 pgoff_t *index, int tag, unsigned nr_pages)
901 {
902         pvec->nr = find_get_pages_tag(mapping, index, tag,
903                                         nr_pages, pvec->pages);
904         return pagevec_count(pvec);
905 }
906 EXPORT_SYMBOL(pagevec_lookup_tag);
907
908 /*
909  * Perform any setup for the swap system
910  */
911 void __init swap_setup(void)
912 {
913         unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
914 #ifdef CONFIG_SWAP
915         int i;
916
917         bdi_init(swapper_spaces[0].backing_dev_info);
918         for (i = 0; i < MAX_SWAPFILES; i++) {
919                 spin_lock_init(&swapper_spaces[i].tree_lock);
920                 INIT_LIST_HEAD(&swapper_spaces[i].i_mmap_nonlinear);
921         }
922 #endif
923
924         /* Use a smaller cluster for small-memory machines */
925         if (megs < 16)
926                 page_cluster = 2;
927         else
928                 page_cluster = 3;
929         /*
930          * Right now other parts of the system means that we
931          * _really_ don't want to cluster much more
932          */
933 }