Merge remote-tracking branch 'lsk/v3.10/topic/gator' into linux-linaro-lsk
[firefly-linux-kernel-4.4.55.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/aio.h>
35
36 static struct vfsmount *shm_mnt;
37
38 #ifdef CONFIG_SHMEM
39 /*
40  * This virtual memory filesystem is heavily based on the ramfs. It
41  * extends ramfs by the ability to use swap and honor resource limits
42  * which makes it a completely usable filesystem.
43  */
44
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/generic_acl.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69
70 #include <asm/uaccess.h>
71 #include <asm/pgtable.h>
72
73 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
74 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
75
76 /* Pretend that each entry is of this size in directory's i_size */
77 #define BOGO_DIRENT_SIZE 20
78
79 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
80 #define SHORT_SYMLINK_LEN 128
81
82 /*
83  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
84  * inode->i_private (with i_mutex making sure that it has only one user at
85  * a time): we would prefer not to enlarge the shmem inode just for that.
86  */
87 struct shmem_falloc {
88         wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
89         pgoff_t start;          /* start of range currently being fallocated */
90         pgoff_t next;           /* the next page offset to be fallocated */
91         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
92         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
93 };
94
95 /* Flag allocation requirements to shmem_getpage */
96 enum sgp_type {
97         SGP_READ,       /* don't exceed i_size, don't allocate page */
98         SGP_CACHE,      /* don't exceed i_size, may allocate page */
99         SGP_DIRTY,      /* like SGP_CACHE, but set new page dirty */
100         SGP_WRITE,      /* may exceed i_size, may allocate !Uptodate page */
101         SGP_FALLOC,     /* like SGP_WRITE, but make existing page Uptodate */
102 };
103
104 #ifdef CONFIG_TMPFS
105 static unsigned long shmem_default_max_blocks(void)
106 {
107         return totalram_pages / 2;
108 }
109
110 static unsigned long shmem_default_max_inodes(void)
111 {
112         return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
113 }
114 #endif
115
116 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
117 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
118                                 struct shmem_inode_info *info, pgoff_t index);
119 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
120         struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
121
122 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
123         struct page **pagep, enum sgp_type sgp, int *fault_type)
124 {
125         return shmem_getpage_gfp(inode, index, pagep, sgp,
126                         mapping_gfp_mask(inode->i_mapping), fault_type);
127 }
128
129 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
130 {
131         return sb->s_fs_info;
132 }
133
134 /*
135  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
136  * for shared memory and for shared anonymous (/dev/zero) mappings
137  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
138  * consistent with the pre-accounting of private mappings ...
139  */
140 static inline int shmem_acct_size(unsigned long flags, loff_t size)
141 {
142         return (flags & VM_NORESERVE) ?
143                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
144 }
145
146 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
147 {
148         if (!(flags & VM_NORESERVE))
149                 vm_unacct_memory(VM_ACCT(size));
150 }
151
152 /*
153  * ... whereas tmpfs objects are accounted incrementally as
154  * pages are allocated, in order to allow huge sparse files.
155  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
156  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
157  */
158 static inline int shmem_acct_block(unsigned long flags)
159 {
160         return (flags & VM_NORESERVE) ?
161                 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
162 }
163
164 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
165 {
166         if (flags & VM_NORESERVE)
167                 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
168 }
169
170 static const struct super_operations shmem_ops;
171 static const struct address_space_operations shmem_aops;
172 static const struct file_operations shmem_file_operations;
173 static const struct inode_operations shmem_inode_operations;
174 static const struct inode_operations shmem_dir_inode_operations;
175 static const struct inode_operations shmem_special_inode_operations;
176 static const struct vm_operations_struct shmem_vm_ops;
177
178 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
179         .ra_pages       = 0,    /* No readahead */
180         .capabilities   = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
181 };
182
183 static LIST_HEAD(shmem_swaplist);
184 static DEFINE_MUTEX(shmem_swaplist_mutex);
185
186 static int shmem_reserve_inode(struct super_block *sb)
187 {
188         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
189         if (sbinfo->max_inodes) {
190                 spin_lock(&sbinfo->stat_lock);
191                 if (!sbinfo->free_inodes) {
192                         spin_unlock(&sbinfo->stat_lock);
193                         return -ENOSPC;
194                 }
195                 sbinfo->free_inodes--;
196                 spin_unlock(&sbinfo->stat_lock);
197         }
198         return 0;
199 }
200
201 static void shmem_free_inode(struct super_block *sb)
202 {
203         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
204         if (sbinfo->max_inodes) {
205                 spin_lock(&sbinfo->stat_lock);
206                 sbinfo->free_inodes++;
207                 spin_unlock(&sbinfo->stat_lock);
208         }
209 }
210
211 /**
212  * shmem_recalc_inode - recalculate the block usage of an inode
213  * @inode: inode to recalc
214  *
215  * We have to calculate the free blocks since the mm can drop
216  * undirtied hole pages behind our back.
217  *
218  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
219  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
220  *
221  * It has to be called with the spinlock held.
222  */
223 static void shmem_recalc_inode(struct inode *inode)
224 {
225         struct shmem_inode_info *info = SHMEM_I(inode);
226         long freed;
227
228         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
229         if (freed > 0) {
230                 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
231                 if (sbinfo->max_blocks)
232                         percpu_counter_add(&sbinfo->used_blocks, -freed);
233                 info->alloced -= freed;
234                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
235                 shmem_unacct_blocks(info->flags, freed);
236         }
237 }
238
239 /*
240  * Replace item expected in radix tree by a new item, while holding tree lock.
241  */
242 static int shmem_radix_tree_replace(struct address_space *mapping,
243                         pgoff_t index, void *expected, void *replacement)
244 {
245         void **pslot;
246         void *item = NULL;
247
248         VM_BUG_ON(!expected);
249         pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
250         if (pslot)
251                 item = radix_tree_deref_slot_protected(pslot,
252                                                         &mapping->tree_lock);
253         if (item != expected)
254                 return -ENOENT;
255         if (replacement)
256                 radix_tree_replace_slot(pslot, replacement);
257         else
258                 radix_tree_delete(&mapping->page_tree, index);
259         return 0;
260 }
261
262 /*
263  * Sometimes, before we decide whether to proceed or to fail, we must check
264  * that an entry was not already brought back from swap by a racing thread.
265  *
266  * Checking page is not enough: by the time a SwapCache page is locked, it
267  * might be reused, and again be SwapCache, using the same swap as before.
268  */
269 static bool shmem_confirm_swap(struct address_space *mapping,
270                                pgoff_t index, swp_entry_t swap)
271 {
272         void *item;
273
274         rcu_read_lock();
275         item = radix_tree_lookup(&mapping->page_tree, index);
276         rcu_read_unlock();
277         return item == swp_to_radix_entry(swap);
278 }
279
280 /*
281  * Like add_to_page_cache_locked, but error if expected item has gone.
282  */
283 static int shmem_add_to_page_cache(struct page *page,
284                                    struct address_space *mapping,
285                                    pgoff_t index, gfp_t gfp, void *expected)
286 {
287         int error;
288
289         VM_BUG_ON(!PageLocked(page));
290         VM_BUG_ON(!PageSwapBacked(page));
291
292         page_cache_get(page);
293         page->mapping = mapping;
294         page->index = index;
295
296         spin_lock_irq(&mapping->tree_lock);
297         if (!expected)
298                 error = radix_tree_insert(&mapping->page_tree, index, page);
299         else
300                 error = shmem_radix_tree_replace(mapping, index, expected,
301                                                                  page);
302         if (!error) {
303                 mapping->nrpages++;
304                 __inc_zone_page_state(page, NR_FILE_PAGES);
305                 __inc_zone_page_state(page, NR_SHMEM);
306                 spin_unlock_irq(&mapping->tree_lock);
307         } else {
308                 page->mapping = NULL;
309                 spin_unlock_irq(&mapping->tree_lock);
310                 page_cache_release(page);
311         }
312         return error;
313 }
314
315 /*
316  * Like delete_from_page_cache, but substitutes swap for page.
317  */
318 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
319 {
320         struct address_space *mapping = page->mapping;
321         int error;
322
323         spin_lock_irq(&mapping->tree_lock);
324         error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
325         page->mapping = NULL;
326         mapping->nrpages--;
327         __dec_zone_page_state(page, NR_FILE_PAGES);
328         __dec_zone_page_state(page, NR_SHMEM);
329         spin_unlock_irq(&mapping->tree_lock);
330         page_cache_release(page);
331         BUG_ON(error);
332 }
333
334 /*
335  * Like find_get_pages, but collecting swap entries as well as pages.
336  */
337 static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping,
338                                         pgoff_t start, unsigned int nr_pages,
339                                         struct page **pages, pgoff_t *indices)
340 {
341         void **slot;
342         unsigned int ret = 0;
343         struct radix_tree_iter iter;
344
345         if (!nr_pages)
346                 return 0;
347
348         rcu_read_lock();
349 restart:
350         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
351                 struct page *page;
352 repeat:
353                 page = radix_tree_deref_slot(slot);
354                 if (unlikely(!page))
355                         continue;
356                 if (radix_tree_exception(page)) {
357                         if (radix_tree_deref_retry(page))
358                                 goto restart;
359                         /*
360                          * Otherwise, we must be storing a swap entry
361                          * here as an exceptional entry: so return it
362                          * without attempting to raise page count.
363                          */
364                         goto export;
365                 }
366                 if (!page_cache_get_speculative(page))
367                         goto repeat;
368
369                 /* Has the page moved? */
370                 if (unlikely(page != *slot)) {
371                         page_cache_release(page);
372                         goto repeat;
373                 }
374 export:
375                 indices[ret] = iter.index;
376                 pages[ret] = page;
377                 if (++ret == nr_pages)
378                         break;
379         }
380         rcu_read_unlock();
381         return ret;
382 }
383
384 /*
385  * Remove swap entry from radix tree, free the swap and its page cache.
386  */
387 static int shmem_free_swap(struct address_space *mapping,
388                            pgoff_t index, void *radswap)
389 {
390         int error;
391
392         spin_lock_irq(&mapping->tree_lock);
393         error = shmem_radix_tree_replace(mapping, index, radswap, NULL);
394         spin_unlock_irq(&mapping->tree_lock);
395         if (!error)
396                 free_swap_and_cache(radix_to_swp_entry(radswap));
397         return error;
398 }
399
400 /*
401  * Pagevec may contain swap entries, so shuffle up pages before releasing.
402  */
403 static void shmem_deswap_pagevec(struct pagevec *pvec)
404 {
405         int i, j;
406
407         for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
408                 struct page *page = pvec->pages[i];
409                 if (!radix_tree_exceptional_entry(page))
410                         pvec->pages[j++] = page;
411         }
412         pvec->nr = j;
413 }
414
415 /*
416  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
417  */
418 void shmem_unlock_mapping(struct address_space *mapping)
419 {
420         struct pagevec pvec;
421         pgoff_t indices[PAGEVEC_SIZE];
422         pgoff_t index = 0;
423
424         pagevec_init(&pvec, 0);
425         /*
426          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
427          */
428         while (!mapping_unevictable(mapping)) {
429                 /*
430                  * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
431                  * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
432                  */
433                 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
434                                         PAGEVEC_SIZE, pvec.pages, indices);
435                 if (!pvec.nr)
436                         break;
437                 index = indices[pvec.nr - 1] + 1;
438                 shmem_deswap_pagevec(&pvec);
439                 check_move_unevictable_pages(pvec.pages, pvec.nr);
440                 pagevec_release(&pvec);
441                 cond_resched();
442         }
443 }
444
445 /*
446  * Remove range of pages and swap entries from radix tree, and free them.
447  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
448  */
449 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
450                                                                  bool unfalloc)
451 {
452         struct address_space *mapping = inode->i_mapping;
453         struct shmem_inode_info *info = SHMEM_I(inode);
454         pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
455         pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
456         unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
457         unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
458         struct pagevec pvec;
459         pgoff_t indices[PAGEVEC_SIZE];
460         long nr_swaps_freed = 0;
461         pgoff_t index;
462         int i;
463
464         if (lend == -1)
465                 end = -1;       /* unsigned, so actually very big */
466
467         pagevec_init(&pvec, 0);
468         index = start;
469         while (index < end) {
470                 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
471                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
472                                                         pvec.pages, indices);
473                 if (!pvec.nr)
474                         break;
475                 mem_cgroup_uncharge_start();
476                 for (i = 0; i < pagevec_count(&pvec); i++) {
477                         struct page *page = pvec.pages[i];
478
479                         index = indices[i];
480                         if (index >= end)
481                                 break;
482
483                         if (radix_tree_exceptional_entry(page)) {
484                                 if (unfalloc)
485                                         continue;
486                                 nr_swaps_freed += !shmem_free_swap(mapping,
487                                                                 index, page);
488                                 continue;
489                         }
490
491                         if (!trylock_page(page))
492                                 continue;
493                         if (!unfalloc || !PageUptodate(page)) {
494                                 if (page->mapping == mapping) {
495                                         VM_BUG_ON(PageWriteback(page));
496                                         truncate_inode_page(mapping, page);
497                                 }
498                         }
499                         unlock_page(page);
500                 }
501                 shmem_deswap_pagevec(&pvec);
502                 pagevec_release(&pvec);
503                 mem_cgroup_uncharge_end();
504                 cond_resched();
505                 index++;
506         }
507
508         if (partial_start) {
509                 struct page *page = NULL;
510                 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
511                 if (page) {
512                         unsigned int top = PAGE_CACHE_SIZE;
513                         if (start > end) {
514                                 top = partial_end;
515                                 partial_end = 0;
516                         }
517                         zero_user_segment(page, partial_start, top);
518                         set_page_dirty(page);
519                         unlock_page(page);
520                         page_cache_release(page);
521                 }
522         }
523         if (partial_end) {
524                 struct page *page = NULL;
525                 shmem_getpage(inode, end, &page, SGP_READ, NULL);
526                 if (page) {
527                         zero_user_segment(page, 0, partial_end);
528                         set_page_dirty(page);
529                         unlock_page(page);
530                         page_cache_release(page);
531                 }
532         }
533         if (start >= end)
534                 return;
535
536         index = start;
537         while (index < end) {
538                 cond_resched();
539                 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
540                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
541                                                         pvec.pages, indices);
542                 if (!pvec.nr) {
543                         /* If all gone or hole-punch or unfalloc, we're done */
544                         if (index == start || end != -1)
545                                 break;
546                         /* But if truncating, restart to make sure all gone */
547                         index = start;
548                         continue;
549                 }
550                 mem_cgroup_uncharge_start();
551                 for (i = 0; i < pagevec_count(&pvec); i++) {
552                         struct page *page = pvec.pages[i];
553
554                         index = indices[i];
555                         if (index >= end)
556                                 break;
557
558                         if (radix_tree_exceptional_entry(page)) {
559                                 if (unfalloc)
560                                         continue;
561                                 if (shmem_free_swap(mapping, index, page)) {
562                                         /* Swap was replaced by page: retry */
563                                         index--;
564                                         break;
565                                 }
566                                 nr_swaps_freed++;
567                                 continue;
568                         }
569
570                         lock_page(page);
571                         if (!unfalloc || !PageUptodate(page)) {
572                                 if (page->mapping == mapping) {
573                                         VM_BUG_ON(PageWriteback(page));
574                                         truncate_inode_page(mapping, page);
575                                 } else {
576                                         /* Page was replaced by swap: retry */
577                                         unlock_page(page);
578                                         index--;
579                                         break;
580                                 }
581                         }
582                         unlock_page(page);
583                 }
584                 shmem_deswap_pagevec(&pvec);
585                 pagevec_release(&pvec);
586                 mem_cgroup_uncharge_end();
587                 index++;
588         }
589
590         spin_lock(&info->lock);
591         info->swapped -= nr_swaps_freed;
592         shmem_recalc_inode(inode);
593         spin_unlock(&info->lock);
594 }
595
596 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
597 {
598         shmem_undo_range(inode, lstart, lend, false);
599         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
600 }
601 EXPORT_SYMBOL_GPL(shmem_truncate_range);
602
603 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
604 {
605         struct inode *inode = dentry->d_inode;
606         int error;
607
608         error = inode_change_ok(inode, attr);
609         if (error)
610                 return error;
611
612         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
613                 loff_t oldsize = inode->i_size;
614                 loff_t newsize = attr->ia_size;
615
616                 if (newsize != oldsize) {
617                         i_size_write(inode, newsize);
618                         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
619                 }
620                 if (newsize < oldsize) {
621                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
622                         unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
623                         shmem_truncate_range(inode, newsize, (loff_t)-1);
624                         /* unmap again to remove racily COWed private pages */
625                         unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
626                 }
627         }
628
629         setattr_copy(inode, attr);
630 #ifdef CONFIG_TMPFS_POSIX_ACL
631         if (attr->ia_valid & ATTR_MODE)
632                 error = generic_acl_chmod(inode);
633 #endif
634         return error;
635 }
636
637 static void shmem_evict_inode(struct inode *inode)
638 {
639         struct shmem_inode_info *info = SHMEM_I(inode);
640
641         if (inode->i_mapping->a_ops == &shmem_aops) {
642                 shmem_unacct_size(info->flags, inode->i_size);
643                 inode->i_size = 0;
644                 shmem_truncate_range(inode, 0, (loff_t)-1);
645                 if (!list_empty(&info->swaplist)) {
646                         mutex_lock(&shmem_swaplist_mutex);
647                         list_del_init(&info->swaplist);
648                         mutex_unlock(&shmem_swaplist_mutex);
649                 }
650         } else
651                 kfree(info->symlink);
652
653         simple_xattrs_free(&info->xattrs);
654         WARN_ON(inode->i_blocks);
655         shmem_free_inode(inode->i_sb);
656         clear_inode(inode);
657 }
658
659 /*
660  * If swap found in inode, free it and move page from swapcache to filecache.
661  */
662 static int shmem_unuse_inode(struct shmem_inode_info *info,
663                              swp_entry_t swap, struct page **pagep)
664 {
665         struct address_space *mapping = info->vfs_inode.i_mapping;
666         void *radswap;
667         pgoff_t index;
668         gfp_t gfp;
669         int error = 0;
670
671         radswap = swp_to_radix_entry(swap);
672         index = radix_tree_locate_item(&mapping->page_tree, radswap);
673         if (index == -1)
674                 return 0;
675
676         /*
677          * Move _head_ to start search for next from here.
678          * But be careful: shmem_evict_inode checks list_empty without taking
679          * mutex, and there's an instant in list_move_tail when info->swaplist
680          * would appear empty, if it were the only one on shmem_swaplist.
681          */
682         if (shmem_swaplist.next != &info->swaplist)
683                 list_move_tail(&shmem_swaplist, &info->swaplist);
684
685         gfp = mapping_gfp_mask(mapping);
686         if (shmem_should_replace_page(*pagep, gfp)) {
687                 mutex_unlock(&shmem_swaplist_mutex);
688                 error = shmem_replace_page(pagep, gfp, info, index);
689                 mutex_lock(&shmem_swaplist_mutex);
690                 /*
691                  * We needed to drop mutex to make that restrictive page
692                  * allocation, but the inode might have been freed while we
693                  * dropped it: although a racing shmem_evict_inode() cannot
694                  * complete without emptying the radix_tree, our page lock
695                  * on this swapcache page is not enough to prevent that -
696                  * free_swap_and_cache() of our swap entry will only
697                  * trylock_page(), removing swap from radix_tree whatever.
698                  *
699                  * We must not proceed to shmem_add_to_page_cache() if the
700                  * inode has been freed, but of course we cannot rely on
701                  * inode or mapping or info to check that.  However, we can
702                  * safely check if our swap entry is still in use (and here
703                  * it can't have got reused for another page): if it's still
704                  * in use, then the inode cannot have been freed yet, and we
705                  * can safely proceed (if it's no longer in use, that tells
706                  * nothing about the inode, but we don't need to unuse swap).
707                  */
708                 if (!page_swapcount(*pagep))
709                         error = -ENOENT;
710         }
711
712         /*
713          * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
714          * but also to hold up shmem_evict_inode(): so inode cannot be freed
715          * beneath us (pagelock doesn't help until the page is in pagecache).
716          */
717         if (!error)
718                 error = shmem_add_to_page_cache(*pagep, mapping, index,
719                                                 GFP_NOWAIT, radswap);
720         if (error != -ENOMEM) {
721                 /*
722                  * Truncation and eviction use free_swap_and_cache(), which
723                  * only does trylock page: if we raced, best clean up here.
724                  */
725                 delete_from_swap_cache(*pagep);
726                 set_page_dirty(*pagep);
727                 if (!error) {
728                         spin_lock(&info->lock);
729                         info->swapped--;
730                         spin_unlock(&info->lock);
731                         swap_free(swap);
732                 }
733                 error = 1;      /* not an error, but entry was found */
734         }
735         return error;
736 }
737
738 /*
739  * Search through swapped inodes to find and replace swap by page.
740  */
741 int shmem_unuse(swp_entry_t swap, struct page *page)
742 {
743         struct list_head *this, *next;
744         struct shmem_inode_info *info;
745         int found = 0;
746         int error = 0;
747
748         /*
749          * There's a faint possibility that swap page was replaced before
750          * caller locked it: caller will come back later with the right page.
751          */
752         if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
753                 goto out;
754
755         /*
756          * Charge page using GFP_KERNEL while we can wait, before taking
757          * the shmem_swaplist_mutex which might hold up shmem_writepage().
758          * Charged back to the user (not to caller) when swap account is used.
759          */
760         error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
761         if (error)
762                 goto out;
763         /* No radix_tree_preload: swap entry keeps a place for page in tree */
764
765         mutex_lock(&shmem_swaplist_mutex);
766         list_for_each_safe(this, next, &shmem_swaplist) {
767                 info = list_entry(this, struct shmem_inode_info, swaplist);
768                 if (info->swapped)
769                         found = shmem_unuse_inode(info, swap, &page);
770                 else
771                         list_del_init(&info->swaplist);
772                 cond_resched();
773                 if (found)
774                         break;
775         }
776         mutex_unlock(&shmem_swaplist_mutex);
777
778         if (found < 0)
779                 error = found;
780 out:
781         unlock_page(page);
782         page_cache_release(page);
783         return error;
784 }
785
786 /*
787  * Move the page from the page cache to the swap cache.
788  */
789 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
790 {
791         struct shmem_inode_info *info;
792         struct address_space *mapping;
793         struct inode *inode;
794         swp_entry_t swap;
795         pgoff_t index;
796
797         BUG_ON(!PageLocked(page));
798         mapping = page->mapping;
799         index = page->index;
800         inode = mapping->host;
801         info = SHMEM_I(inode);
802         if (info->flags & VM_LOCKED)
803                 goto redirty;
804         if (!total_swap_pages)
805                 goto redirty;
806
807         /*
808          * shmem_backing_dev_info's capabilities prevent regular writeback or
809          * sync from ever calling shmem_writepage; but a stacking filesystem
810          * might use ->writepage of its underlying filesystem, in which case
811          * tmpfs should write out to swap only in response to memory pressure,
812          * and not for the writeback threads or sync.
813          */
814         if (!wbc->for_reclaim) {
815                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
816                 goto redirty;
817         }
818
819         /*
820          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
821          * value into swapfile.c, the only way we can correctly account for a
822          * fallocated page arriving here is now to initialize it and write it.
823          *
824          * That's okay for a page already fallocated earlier, but if we have
825          * not yet completed the fallocation, then (a) we want to keep track
826          * of this page in case we have to undo it, and (b) it may not be a
827          * good idea to continue anyway, once we're pushing into swap.  So
828          * reactivate the page, and let shmem_fallocate() quit when too many.
829          */
830         if (!PageUptodate(page)) {
831                 if (inode->i_private) {
832                         struct shmem_falloc *shmem_falloc;
833                         spin_lock(&inode->i_lock);
834                         shmem_falloc = inode->i_private;
835                         if (shmem_falloc &&
836                             !shmem_falloc->waitq &&
837                             index >= shmem_falloc->start &&
838                             index < shmem_falloc->next)
839                                 shmem_falloc->nr_unswapped++;
840                         else
841                                 shmem_falloc = NULL;
842                         spin_unlock(&inode->i_lock);
843                         if (shmem_falloc)
844                                 goto redirty;
845                 }
846                 clear_highpage(page);
847                 flush_dcache_page(page);
848                 SetPageUptodate(page);
849         }
850
851         swap = get_swap_page();
852         if (!swap.val)
853                 goto redirty;
854
855         /*
856          * Add inode to shmem_unuse()'s list of swapped-out inodes,
857          * if it's not already there.  Do it now before the page is
858          * moved to swap cache, when its pagelock no longer protects
859          * the inode from eviction.  But don't unlock the mutex until
860          * we've incremented swapped, because shmem_unuse_inode() will
861          * prune a !swapped inode from the swaplist under this mutex.
862          */
863         mutex_lock(&shmem_swaplist_mutex);
864         if (list_empty(&info->swaplist))
865                 list_add_tail(&info->swaplist, &shmem_swaplist);
866
867         if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
868                 swap_shmem_alloc(swap);
869                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
870
871                 spin_lock(&info->lock);
872                 info->swapped++;
873                 shmem_recalc_inode(inode);
874                 spin_unlock(&info->lock);
875
876                 mutex_unlock(&shmem_swaplist_mutex);
877                 BUG_ON(page_mapped(page));
878                 swap_writepage(page, wbc);
879                 return 0;
880         }
881
882         mutex_unlock(&shmem_swaplist_mutex);
883         swapcache_free(swap, NULL);
884 redirty:
885         set_page_dirty(page);
886         if (wbc->for_reclaim)
887                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
888         unlock_page(page);
889         return 0;
890 }
891
892 #ifdef CONFIG_NUMA
893 #ifdef CONFIG_TMPFS
894 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
895 {
896         char buffer[64];
897
898         if (!mpol || mpol->mode == MPOL_DEFAULT)
899                 return;         /* show nothing */
900
901         mpol_to_str(buffer, sizeof(buffer), mpol);
902
903         seq_printf(seq, ",mpol=%s", buffer);
904 }
905
906 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
907 {
908         struct mempolicy *mpol = NULL;
909         if (sbinfo->mpol) {
910                 spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
911                 mpol = sbinfo->mpol;
912                 mpol_get(mpol);
913                 spin_unlock(&sbinfo->stat_lock);
914         }
915         return mpol;
916 }
917 #endif /* CONFIG_TMPFS */
918
919 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
920                         struct shmem_inode_info *info, pgoff_t index)
921 {
922         struct vm_area_struct pvma;
923         struct page *page;
924
925         /* Create a pseudo vma that just contains the policy */
926         pvma.vm_start = 0;
927         /* Bias interleave by inode number to distribute better across nodes */
928         pvma.vm_pgoff = index + info->vfs_inode.i_ino;
929         pvma.vm_ops = NULL;
930         pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
931
932         page = swapin_readahead(swap, gfp, &pvma, 0);
933
934         /* Drop reference taken by mpol_shared_policy_lookup() */
935         mpol_cond_put(pvma.vm_policy);
936
937         return page;
938 }
939
940 static struct page *shmem_alloc_page(gfp_t gfp,
941                         struct shmem_inode_info *info, pgoff_t index)
942 {
943         struct vm_area_struct pvma;
944         struct page *page;
945
946         /* Create a pseudo vma that just contains the policy */
947         pvma.vm_start = 0;
948         /* Bias interleave by inode number to distribute better across nodes */
949         pvma.vm_pgoff = index + info->vfs_inode.i_ino;
950         pvma.vm_ops = NULL;
951         pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
952
953         page = alloc_page_vma(gfp, &pvma, 0);
954
955         /* Drop reference taken by mpol_shared_policy_lookup() */
956         mpol_cond_put(pvma.vm_policy);
957
958         return page;
959 }
960 #else /* !CONFIG_NUMA */
961 #ifdef CONFIG_TMPFS
962 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
963 {
964 }
965 #endif /* CONFIG_TMPFS */
966
967 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
968                         struct shmem_inode_info *info, pgoff_t index)
969 {
970         return swapin_readahead(swap, gfp, NULL, 0);
971 }
972
973 static inline struct page *shmem_alloc_page(gfp_t gfp,
974                         struct shmem_inode_info *info, pgoff_t index)
975 {
976         return alloc_page(gfp);
977 }
978 #endif /* CONFIG_NUMA */
979
980 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
981 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
982 {
983         return NULL;
984 }
985 #endif
986
987 /*
988  * When a page is moved from swapcache to shmem filecache (either by the
989  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
990  * shmem_unuse_inode()), it may have been read in earlier from swap, in
991  * ignorance of the mapping it belongs to.  If that mapping has special
992  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
993  * we may need to copy to a suitable page before moving to filecache.
994  *
995  * In a future release, this may well be extended to respect cpuset and
996  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
997  * but for now it is a simple matter of zone.
998  */
999 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1000 {
1001         return page_zonenum(page) > gfp_zone(gfp);
1002 }
1003
1004 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1005                                 struct shmem_inode_info *info, pgoff_t index)
1006 {
1007         struct page *oldpage, *newpage;
1008         struct address_space *swap_mapping;
1009         pgoff_t swap_index;
1010         int error;
1011
1012         oldpage = *pagep;
1013         swap_index = page_private(oldpage);
1014         swap_mapping = page_mapping(oldpage);
1015
1016         /*
1017          * We have arrived here because our zones are constrained, so don't
1018          * limit chance of success by further cpuset and node constraints.
1019          */
1020         gfp &= ~GFP_CONSTRAINT_MASK;
1021         newpage = shmem_alloc_page(gfp, info, index);
1022         if (!newpage)
1023                 return -ENOMEM;
1024
1025         page_cache_get(newpage);
1026         copy_highpage(newpage, oldpage);
1027         flush_dcache_page(newpage);
1028
1029         __set_page_locked(newpage);
1030         SetPageUptodate(newpage);
1031         SetPageSwapBacked(newpage);
1032         set_page_private(newpage, swap_index);
1033         SetPageSwapCache(newpage);
1034
1035         /*
1036          * Our caller will very soon move newpage out of swapcache, but it's
1037          * a nice clean interface for us to replace oldpage by newpage there.
1038          */
1039         spin_lock_irq(&swap_mapping->tree_lock);
1040         error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1041                                                                    newpage);
1042         if (!error) {
1043                 __inc_zone_page_state(newpage, NR_FILE_PAGES);
1044                 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1045         }
1046         spin_unlock_irq(&swap_mapping->tree_lock);
1047
1048         if (unlikely(error)) {
1049                 /*
1050                  * Is this possible?  I think not, now that our callers check
1051                  * both PageSwapCache and page_private after getting page lock;
1052                  * but be defensive.  Reverse old to newpage for clear and free.
1053                  */
1054                 oldpage = newpage;
1055         } else {
1056                 mem_cgroup_replace_page_cache(oldpage, newpage);
1057                 lru_cache_add_anon(newpage);
1058                 *pagep = newpage;
1059         }
1060
1061         ClearPageSwapCache(oldpage);
1062         set_page_private(oldpage, 0);
1063
1064         unlock_page(oldpage);
1065         page_cache_release(oldpage);
1066         page_cache_release(oldpage);
1067         return error;
1068 }
1069
1070 /*
1071  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1072  *
1073  * If we allocate a new one we do not mark it dirty. That's up to the
1074  * vm. If we swap it in we mark it dirty since we also free the swap
1075  * entry since a page cannot live in both the swap and page cache
1076  */
1077 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1078         struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1079 {
1080         struct address_space *mapping = inode->i_mapping;
1081         struct shmem_inode_info *info;
1082         struct shmem_sb_info *sbinfo;
1083         struct page *page;
1084         swp_entry_t swap;
1085         int error;
1086         int once = 0;
1087         int alloced = 0;
1088
1089         if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1090                 return -EFBIG;
1091 repeat:
1092         swap.val = 0;
1093         page = find_lock_page(mapping, index);
1094         if (radix_tree_exceptional_entry(page)) {
1095                 swap = radix_to_swp_entry(page);
1096                 page = NULL;
1097         }
1098
1099         if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1100             ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1101                 error = -EINVAL;
1102                 goto failed;
1103         }
1104
1105         /* fallocated page? */
1106         if (page && !PageUptodate(page)) {
1107                 if (sgp != SGP_READ)
1108                         goto clear;
1109                 unlock_page(page);
1110                 page_cache_release(page);
1111                 page = NULL;
1112         }
1113         if (page || (sgp == SGP_READ && !swap.val)) {
1114                 *pagep = page;
1115                 return 0;
1116         }
1117
1118         /*
1119          * Fast cache lookup did not find it:
1120          * bring it back from swap or allocate.
1121          */
1122         info = SHMEM_I(inode);
1123         sbinfo = SHMEM_SB(inode->i_sb);
1124
1125         if (swap.val) {
1126                 /* Look it up and read it in.. */
1127                 page = lookup_swap_cache(swap);
1128                 if (!page) {
1129                         /* here we actually do the io */
1130                         if (fault_type)
1131                                 *fault_type |= VM_FAULT_MAJOR;
1132                         page = shmem_swapin(swap, gfp, info, index);
1133                         if (!page) {
1134                                 error = -ENOMEM;
1135                                 goto failed;
1136                         }
1137                 }
1138
1139                 /* We have to do this with page locked to prevent races */
1140                 lock_page(page);
1141                 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1142                     !shmem_confirm_swap(mapping, index, swap)) {
1143                         error = -EEXIST;        /* try again */
1144                         goto unlock;
1145                 }
1146                 if (!PageUptodate(page)) {
1147                         error = -EIO;
1148                         goto failed;
1149                 }
1150                 wait_on_page_writeback(page);
1151
1152                 if (shmem_should_replace_page(page, gfp)) {
1153                         error = shmem_replace_page(&page, gfp, info, index);
1154                         if (error)
1155                                 goto failed;
1156                 }
1157
1158                 error = mem_cgroup_cache_charge(page, current->mm,
1159                                                 gfp & GFP_RECLAIM_MASK);
1160                 if (!error) {
1161                         error = shmem_add_to_page_cache(page, mapping, index,
1162                                                 gfp, swp_to_radix_entry(swap));
1163                         /*
1164                          * We already confirmed swap under page lock, and make
1165                          * no memory allocation here, so usually no possibility
1166                          * of error; but free_swap_and_cache() only trylocks a
1167                          * page, so it is just possible that the entry has been
1168                          * truncated or holepunched since swap was confirmed.
1169                          * shmem_undo_range() will have done some of the
1170                          * unaccounting, now delete_from_swap_cache() will do
1171                          * the rest (including mem_cgroup_uncharge_swapcache).
1172                          * Reset swap.val? No, leave it so "failed" goes back to
1173                          * "repeat": reading a hole and writing should succeed.
1174                          */
1175                         if (error)
1176                                 delete_from_swap_cache(page);
1177                 }
1178                 if (error)
1179                         goto failed;
1180
1181                 spin_lock(&info->lock);
1182                 info->swapped--;
1183                 shmem_recalc_inode(inode);
1184                 spin_unlock(&info->lock);
1185
1186                 delete_from_swap_cache(page);
1187                 set_page_dirty(page);
1188                 swap_free(swap);
1189
1190         } else {
1191                 if (shmem_acct_block(info->flags)) {
1192                         error = -ENOSPC;
1193                         goto failed;
1194                 }
1195                 if (sbinfo->max_blocks) {
1196                         if (percpu_counter_compare(&sbinfo->used_blocks,
1197                                                 sbinfo->max_blocks) >= 0) {
1198                                 error = -ENOSPC;
1199                                 goto unacct;
1200                         }
1201                         percpu_counter_inc(&sbinfo->used_blocks);
1202                 }
1203
1204                 page = shmem_alloc_page(gfp, info, index);
1205                 if (!page) {
1206                         error = -ENOMEM;
1207                         goto decused;
1208                 }
1209
1210                 SetPageSwapBacked(page);
1211                 __set_page_locked(page);
1212                 error = mem_cgroup_cache_charge(page, current->mm,
1213                                                 gfp & GFP_RECLAIM_MASK);
1214                 if (error)
1215                         goto decused;
1216                 error = radix_tree_preload(gfp & GFP_RECLAIM_MASK);
1217                 if (!error) {
1218                         error = shmem_add_to_page_cache(page, mapping, index,
1219                                                         gfp, NULL);
1220                         radix_tree_preload_end();
1221                 }
1222                 if (error) {
1223                         mem_cgroup_uncharge_cache_page(page);
1224                         goto decused;
1225                 }
1226                 lru_cache_add_anon(page);
1227
1228                 spin_lock(&info->lock);
1229                 info->alloced++;
1230                 inode->i_blocks += BLOCKS_PER_PAGE;
1231                 shmem_recalc_inode(inode);
1232                 spin_unlock(&info->lock);
1233                 alloced = true;
1234
1235                 /*
1236                  * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1237                  */
1238                 if (sgp == SGP_FALLOC)
1239                         sgp = SGP_WRITE;
1240 clear:
1241                 /*
1242                  * Let SGP_WRITE caller clear ends if write does not fill page;
1243                  * but SGP_FALLOC on a page fallocated earlier must initialize
1244                  * it now, lest undo on failure cancel our earlier guarantee.
1245                  */
1246                 if (sgp != SGP_WRITE) {
1247                         clear_highpage(page);
1248                         flush_dcache_page(page);
1249                         SetPageUptodate(page);
1250                 }
1251                 if (sgp == SGP_DIRTY)
1252                         set_page_dirty(page);
1253         }
1254
1255         /* Perhaps the file has been truncated since we checked */
1256         if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1257             ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1258                 error = -EINVAL;
1259                 if (alloced)
1260                         goto trunc;
1261                 else
1262                         goto failed;
1263         }
1264         *pagep = page;
1265         return 0;
1266
1267         /*
1268          * Error recovery.
1269          */
1270 trunc:
1271         info = SHMEM_I(inode);
1272         ClearPageDirty(page);
1273         delete_from_page_cache(page);
1274         spin_lock(&info->lock);
1275         info->alloced--;
1276         inode->i_blocks -= BLOCKS_PER_PAGE;
1277         spin_unlock(&info->lock);
1278 decused:
1279         sbinfo = SHMEM_SB(inode->i_sb);
1280         if (sbinfo->max_blocks)
1281                 percpu_counter_add(&sbinfo->used_blocks, -1);
1282 unacct:
1283         shmem_unacct_blocks(info->flags, 1);
1284 failed:
1285         if (swap.val && error != -EINVAL &&
1286             !shmem_confirm_swap(mapping, index, swap))
1287                 error = -EEXIST;
1288 unlock:
1289         if (page) {
1290                 unlock_page(page);
1291                 page_cache_release(page);
1292         }
1293         if (error == -ENOSPC && !once++) {
1294                 info = SHMEM_I(inode);
1295                 spin_lock(&info->lock);
1296                 shmem_recalc_inode(inode);
1297                 spin_unlock(&info->lock);
1298                 goto repeat;
1299         }
1300         if (error == -EEXIST)   /* from above or from radix_tree_insert */
1301                 goto repeat;
1302         return error;
1303 }
1304
1305 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1306 {
1307         struct inode *inode = file_inode(vma->vm_file);
1308         int error;
1309         int ret = VM_FAULT_LOCKED;
1310
1311         /*
1312          * Trinity finds that probing a hole which tmpfs is punching can
1313          * prevent the hole-punch from ever completing: which in turn
1314          * locks writers out with its hold on i_mutex.  So refrain from
1315          * faulting pages into the hole while it's being punched.  Although
1316          * shmem_undo_range() does remove the additions, it may be unable to
1317          * keep up, as each new page needs its own unmap_mapping_range() call,
1318          * and the i_mmap tree grows ever slower to scan if new vmas are added.
1319          *
1320          * It does not matter if we sometimes reach this check just before the
1321          * hole-punch begins, so that one fault then races with the punch:
1322          * we just need to make racing faults a rare case.
1323          *
1324          * The implementation below would be much simpler if we just used a
1325          * standard mutex or completion: but we cannot take i_mutex in fault,
1326          * and bloating every shmem inode for this unlikely case would be sad.
1327          */
1328         if (unlikely(inode->i_private)) {
1329                 struct shmem_falloc *shmem_falloc;
1330
1331                 spin_lock(&inode->i_lock);
1332                 shmem_falloc = inode->i_private;
1333                 if (shmem_falloc &&
1334                     shmem_falloc->waitq &&
1335                     vmf->pgoff >= shmem_falloc->start &&
1336                     vmf->pgoff < shmem_falloc->next) {
1337                         wait_queue_head_t *shmem_falloc_waitq;
1338                         DEFINE_WAIT(shmem_fault_wait);
1339
1340                         ret = VM_FAULT_NOPAGE;
1341                         if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1342                            !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1343                                 /* It's polite to up mmap_sem if we can */
1344                                 up_read(&vma->vm_mm->mmap_sem);
1345                                 ret = VM_FAULT_RETRY;
1346                         }
1347
1348                         shmem_falloc_waitq = shmem_falloc->waitq;
1349                         prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1350                                         TASK_UNINTERRUPTIBLE);
1351                         spin_unlock(&inode->i_lock);
1352                         schedule();
1353
1354                         /*
1355                          * shmem_falloc_waitq points into the shmem_fallocate()
1356                          * stack of the hole-punching task: shmem_falloc_waitq
1357                          * is usually invalid by the time we reach here, but
1358                          * finish_wait() does not dereference it in that case;
1359                          * though i_lock needed lest racing with wake_up_all().
1360                          */
1361                         spin_lock(&inode->i_lock);
1362                         finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1363                         spin_unlock(&inode->i_lock);
1364                         return ret;
1365                 }
1366                 spin_unlock(&inode->i_lock);
1367         }
1368
1369         error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1370         if (error)
1371                 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1372
1373         if (ret & VM_FAULT_MAJOR) {
1374                 count_vm_event(PGMAJFAULT);
1375                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1376         }
1377         return ret;
1378 }
1379
1380 #ifdef CONFIG_NUMA
1381 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1382 {
1383         struct inode *inode = file_inode(vma->vm_file);
1384         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1385 }
1386
1387 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1388                                           unsigned long addr)
1389 {
1390         struct inode *inode = file_inode(vma->vm_file);
1391         pgoff_t index;
1392
1393         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1394         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1395 }
1396 #endif
1397
1398 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1399 {
1400         struct inode *inode = file_inode(file);
1401         struct shmem_inode_info *info = SHMEM_I(inode);
1402         int retval = -ENOMEM;
1403
1404         spin_lock(&info->lock);
1405         if (lock && !(info->flags & VM_LOCKED)) {
1406                 if (!user_shm_lock(inode->i_size, user))
1407                         goto out_nomem;
1408                 info->flags |= VM_LOCKED;
1409                 mapping_set_unevictable(file->f_mapping);
1410         }
1411         if (!lock && (info->flags & VM_LOCKED) && user) {
1412                 user_shm_unlock(inode->i_size, user);
1413                 info->flags &= ~VM_LOCKED;
1414                 mapping_clear_unevictable(file->f_mapping);
1415         }
1416         retval = 0;
1417
1418 out_nomem:
1419         spin_unlock(&info->lock);
1420         return retval;
1421 }
1422
1423 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1424 {
1425         file_accessed(file);
1426         vma->vm_ops = &shmem_vm_ops;
1427         return 0;
1428 }
1429
1430 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1431                                      umode_t mode, dev_t dev, unsigned long flags)
1432 {
1433         struct inode *inode;
1434         struct shmem_inode_info *info;
1435         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1436
1437         if (shmem_reserve_inode(sb))
1438                 return NULL;
1439
1440         inode = new_inode(sb);
1441         if (inode) {
1442                 inode->i_ino = get_next_ino();
1443                 inode_init_owner(inode, dir, mode);
1444                 inode->i_blocks = 0;
1445                 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1446                 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1447                 inode->i_generation = get_seconds();
1448                 info = SHMEM_I(inode);
1449                 memset(info, 0, (char *)inode - (char *)info);
1450                 spin_lock_init(&info->lock);
1451                 info->flags = flags & VM_NORESERVE;
1452                 INIT_LIST_HEAD(&info->swaplist);
1453                 simple_xattrs_init(&info->xattrs);
1454                 cache_no_acl(inode);
1455
1456                 switch (mode & S_IFMT) {
1457                 default:
1458                         inode->i_op = &shmem_special_inode_operations;
1459                         init_special_inode(inode, mode, dev);
1460                         break;
1461                 case S_IFREG:
1462                         inode->i_mapping->a_ops = &shmem_aops;
1463                         inode->i_op = &shmem_inode_operations;
1464                         inode->i_fop = &shmem_file_operations;
1465                         mpol_shared_policy_init(&info->policy,
1466                                                  shmem_get_sbmpol(sbinfo));
1467                         break;
1468                 case S_IFDIR:
1469                         inc_nlink(inode);
1470                         /* Some things misbehave if size == 0 on a directory */
1471                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
1472                         inode->i_op = &shmem_dir_inode_operations;
1473                         inode->i_fop = &simple_dir_operations;
1474                         break;
1475                 case S_IFLNK:
1476                         /*
1477                          * Must not load anything in the rbtree,
1478                          * mpol_free_shared_policy will not be called.
1479                          */
1480                         mpol_shared_policy_init(&info->policy, NULL);
1481                         break;
1482                 }
1483         } else
1484                 shmem_free_inode(sb);
1485         return inode;
1486 }
1487
1488 #ifdef CONFIG_TMPFS
1489 static const struct inode_operations shmem_symlink_inode_operations;
1490 static const struct inode_operations shmem_short_symlink_operations;
1491
1492 #ifdef CONFIG_TMPFS_XATTR
1493 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1494 #else
1495 #define shmem_initxattrs NULL
1496 #endif
1497
1498 static int
1499 shmem_write_begin(struct file *file, struct address_space *mapping,
1500                         loff_t pos, unsigned len, unsigned flags,
1501                         struct page **pagep, void **fsdata)
1502 {
1503         struct inode *inode = mapping->host;
1504         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1505         return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1506 }
1507
1508 static int
1509 shmem_write_end(struct file *file, struct address_space *mapping,
1510                         loff_t pos, unsigned len, unsigned copied,
1511                         struct page *page, void *fsdata)
1512 {
1513         struct inode *inode = mapping->host;
1514
1515         if (pos + copied > inode->i_size)
1516                 i_size_write(inode, pos + copied);
1517
1518         if (!PageUptodate(page)) {
1519                 if (copied < PAGE_CACHE_SIZE) {
1520                         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1521                         zero_user_segments(page, 0, from,
1522                                         from + copied, PAGE_CACHE_SIZE);
1523                 }
1524                 SetPageUptodate(page);
1525         }
1526         set_page_dirty(page);
1527         unlock_page(page);
1528         page_cache_release(page);
1529
1530         return copied;
1531 }
1532
1533 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1534 {
1535         struct inode *inode = file_inode(filp);
1536         struct address_space *mapping = inode->i_mapping;
1537         pgoff_t index;
1538         unsigned long offset;
1539         enum sgp_type sgp = SGP_READ;
1540
1541         /*
1542          * Might this read be for a stacking filesystem?  Then when reading
1543          * holes of a sparse file, we actually need to allocate those pages,
1544          * and even mark them dirty, so it cannot exceed the max_blocks limit.
1545          */
1546         if (segment_eq(get_fs(), KERNEL_DS))
1547                 sgp = SGP_DIRTY;
1548
1549         index = *ppos >> PAGE_CACHE_SHIFT;
1550         offset = *ppos & ~PAGE_CACHE_MASK;
1551
1552         for (;;) {
1553                 struct page *page = NULL;
1554                 pgoff_t end_index;
1555                 unsigned long nr, ret;
1556                 loff_t i_size = i_size_read(inode);
1557
1558                 end_index = i_size >> PAGE_CACHE_SHIFT;
1559                 if (index > end_index)
1560                         break;
1561                 if (index == end_index) {
1562                         nr = i_size & ~PAGE_CACHE_MASK;
1563                         if (nr <= offset)
1564                                 break;
1565                 }
1566
1567                 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1568                 if (desc->error) {
1569                         if (desc->error == -EINVAL)
1570                                 desc->error = 0;
1571                         break;
1572                 }
1573                 if (page)
1574                         unlock_page(page);
1575
1576                 /*
1577                  * We must evaluate after, since reads (unlike writes)
1578                  * are called without i_mutex protection against truncate
1579                  */
1580                 nr = PAGE_CACHE_SIZE;
1581                 i_size = i_size_read(inode);
1582                 end_index = i_size >> PAGE_CACHE_SHIFT;
1583                 if (index == end_index) {
1584                         nr = i_size & ~PAGE_CACHE_MASK;
1585                         if (nr <= offset) {
1586                                 if (page)
1587                                         page_cache_release(page);
1588                                 break;
1589                         }
1590                 }
1591                 nr -= offset;
1592
1593                 if (page) {
1594                         /*
1595                          * If users can be writing to this page using arbitrary
1596                          * virtual addresses, take care about potential aliasing
1597                          * before reading the page on the kernel side.
1598                          */
1599                         if (mapping_writably_mapped(mapping))
1600                                 flush_dcache_page(page);
1601                         /*
1602                          * Mark the page accessed if we read the beginning.
1603                          */
1604                         if (!offset)
1605                                 mark_page_accessed(page);
1606                 } else {
1607                         page = ZERO_PAGE(0);
1608                         page_cache_get(page);
1609                 }
1610
1611                 /*
1612                  * Ok, we have the page, and it's up-to-date, so
1613                  * now we can copy it to user space...
1614                  *
1615                  * The actor routine returns how many bytes were actually used..
1616                  * NOTE! This may not be the same as how much of a user buffer
1617                  * we filled up (we may be padding etc), so we can only update
1618                  * "pos" here (the actor routine has to update the user buffer
1619                  * pointers and the remaining count).
1620                  */
1621                 ret = actor(desc, page, offset, nr);
1622                 offset += ret;
1623                 index += offset >> PAGE_CACHE_SHIFT;
1624                 offset &= ~PAGE_CACHE_MASK;
1625
1626                 page_cache_release(page);
1627                 if (ret != nr || !desc->count)
1628                         break;
1629
1630                 cond_resched();
1631         }
1632
1633         *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1634         file_accessed(filp);
1635 }
1636
1637 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1638                 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1639 {
1640         struct file *filp = iocb->ki_filp;
1641         ssize_t retval;
1642         unsigned long seg;
1643         size_t count;
1644         loff_t *ppos = &iocb->ki_pos;
1645
1646         retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1647         if (retval)
1648                 return retval;
1649
1650         for (seg = 0; seg < nr_segs; seg++) {
1651                 read_descriptor_t desc;
1652
1653                 desc.written = 0;
1654                 desc.arg.buf = iov[seg].iov_base;
1655                 desc.count = iov[seg].iov_len;
1656                 if (desc.count == 0)
1657                         continue;
1658                 desc.error = 0;
1659                 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1660                 retval += desc.written;
1661                 if (desc.error) {
1662                         retval = retval ?: desc.error;
1663                         break;
1664                 }
1665                 if (desc.count > 0)
1666                         break;
1667         }
1668         return retval;
1669 }
1670
1671 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1672                                 struct pipe_inode_info *pipe, size_t len,
1673                                 unsigned int flags)
1674 {
1675         struct address_space *mapping = in->f_mapping;
1676         struct inode *inode = mapping->host;
1677         unsigned int loff, nr_pages, req_pages;
1678         struct page *pages[PIPE_DEF_BUFFERS];
1679         struct partial_page partial[PIPE_DEF_BUFFERS];
1680         struct page *page;
1681         pgoff_t index, end_index;
1682         loff_t isize, left;
1683         int error, page_nr;
1684         struct splice_pipe_desc spd = {
1685                 .pages = pages,
1686                 .partial = partial,
1687                 .nr_pages_max = PIPE_DEF_BUFFERS,
1688                 .flags = flags,
1689                 .ops = &page_cache_pipe_buf_ops,
1690                 .spd_release = spd_release_page,
1691         };
1692
1693         isize = i_size_read(inode);
1694         if (unlikely(*ppos >= isize))
1695                 return 0;
1696
1697         left = isize - *ppos;
1698         if (unlikely(left < len))
1699                 len = left;
1700
1701         if (splice_grow_spd(pipe, &spd))
1702                 return -ENOMEM;
1703
1704         index = *ppos >> PAGE_CACHE_SHIFT;
1705         loff = *ppos & ~PAGE_CACHE_MASK;
1706         req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1707         nr_pages = min(req_pages, pipe->buffers);
1708
1709         spd.nr_pages = find_get_pages_contig(mapping, index,
1710                                                 nr_pages, spd.pages);
1711         index += spd.nr_pages;
1712         error = 0;
1713
1714         while (spd.nr_pages < nr_pages) {
1715                 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1716                 if (error)
1717                         break;
1718                 unlock_page(page);
1719                 spd.pages[spd.nr_pages++] = page;
1720                 index++;
1721         }
1722
1723         index = *ppos >> PAGE_CACHE_SHIFT;
1724         nr_pages = spd.nr_pages;
1725         spd.nr_pages = 0;
1726
1727         for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1728                 unsigned int this_len;
1729
1730                 if (!len)
1731                         break;
1732
1733                 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1734                 page = spd.pages[page_nr];
1735
1736                 if (!PageUptodate(page) || page->mapping != mapping) {
1737                         error = shmem_getpage(inode, index, &page,
1738                                                         SGP_CACHE, NULL);
1739                         if (error)
1740                                 break;
1741                         unlock_page(page);
1742                         page_cache_release(spd.pages[page_nr]);
1743                         spd.pages[page_nr] = page;
1744                 }
1745
1746                 isize = i_size_read(inode);
1747                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1748                 if (unlikely(!isize || index > end_index))
1749                         break;
1750
1751                 if (end_index == index) {
1752                         unsigned int plen;
1753
1754                         plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1755                         if (plen <= loff)
1756                                 break;
1757
1758                         this_len = min(this_len, plen - loff);
1759                         len = this_len;
1760                 }
1761
1762                 spd.partial[page_nr].offset = loff;
1763                 spd.partial[page_nr].len = this_len;
1764                 len -= this_len;
1765                 loff = 0;
1766                 spd.nr_pages++;
1767                 index++;
1768         }
1769
1770         while (page_nr < nr_pages)
1771                 page_cache_release(spd.pages[page_nr++]);
1772
1773         if (spd.nr_pages)
1774                 error = splice_to_pipe(pipe, &spd);
1775
1776         splice_shrink_spd(&spd);
1777
1778         if (error > 0) {
1779                 *ppos += error;
1780                 file_accessed(in);
1781         }
1782         return error;
1783 }
1784
1785 /*
1786  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1787  */
1788 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1789                                     pgoff_t index, pgoff_t end, int whence)
1790 {
1791         struct page *page;
1792         struct pagevec pvec;
1793         pgoff_t indices[PAGEVEC_SIZE];
1794         bool done = false;
1795         int i;
1796
1797         pagevec_init(&pvec, 0);
1798         pvec.nr = 1;            /* start small: we may be there already */
1799         while (!done) {
1800                 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
1801                                         pvec.nr, pvec.pages, indices);
1802                 if (!pvec.nr) {
1803                         if (whence == SEEK_DATA)
1804                                 index = end;
1805                         break;
1806                 }
1807                 for (i = 0; i < pvec.nr; i++, index++) {
1808                         if (index < indices[i]) {
1809                                 if (whence == SEEK_HOLE) {
1810                                         done = true;
1811                                         break;
1812                                 }
1813                                 index = indices[i];
1814                         }
1815                         page = pvec.pages[i];
1816                         if (page && !radix_tree_exceptional_entry(page)) {
1817                                 if (!PageUptodate(page))
1818                                         page = NULL;
1819                         }
1820                         if (index >= end ||
1821                             (page && whence == SEEK_DATA) ||
1822                             (!page && whence == SEEK_HOLE)) {
1823                                 done = true;
1824                                 break;
1825                         }
1826                 }
1827                 shmem_deswap_pagevec(&pvec);
1828                 pagevec_release(&pvec);
1829                 pvec.nr = PAGEVEC_SIZE;
1830                 cond_resched();
1831         }
1832         return index;
1833 }
1834
1835 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1836 {
1837         struct address_space *mapping = file->f_mapping;
1838         struct inode *inode = mapping->host;
1839         pgoff_t start, end;
1840         loff_t new_offset;
1841
1842         if (whence != SEEK_DATA && whence != SEEK_HOLE)
1843                 return generic_file_llseek_size(file, offset, whence,
1844                                         MAX_LFS_FILESIZE, i_size_read(inode));
1845         mutex_lock(&inode->i_mutex);
1846         /* We're holding i_mutex so we can access i_size directly */
1847
1848         if (offset < 0)
1849                 offset = -EINVAL;
1850         else if (offset >= inode->i_size)
1851                 offset = -ENXIO;
1852         else {
1853                 start = offset >> PAGE_CACHE_SHIFT;
1854                 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1855                 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1856                 new_offset <<= PAGE_CACHE_SHIFT;
1857                 if (new_offset > offset) {
1858                         if (new_offset < inode->i_size)
1859                                 offset = new_offset;
1860                         else if (whence == SEEK_DATA)
1861                                 offset = -ENXIO;
1862                         else
1863                                 offset = inode->i_size;
1864                 }
1865         }
1866
1867         if (offset >= 0 && offset != file->f_pos) {
1868                 file->f_pos = offset;
1869                 file->f_version = 0;
1870         }
1871         mutex_unlock(&inode->i_mutex);
1872         return offset;
1873 }
1874
1875 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1876                                                          loff_t len)
1877 {
1878         struct inode *inode = file_inode(file);
1879         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1880         struct shmem_falloc shmem_falloc;
1881         pgoff_t start, index, end;
1882         int error;
1883
1884         mutex_lock(&inode->i_mutex);
1885
1886         if (mode & FALLOC_FL_PUNCH_HOLE) {
1887                 struct address_space *mapping = file->f_mapping;
1888                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
1889                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1890                 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
1891
1892                 shmem_falloc.waitq = &shmem_falloc_waitq;
1893                 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
1894                 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
1895                 spin_lock(&inode->i_lock);
1896                 inode->i_private = &shmem_falloc;
1897                 spin_unlock(&inode->i_lock);
1898
1899                 if ((u64)unmap_end > (u64)unmap_start)
1900                         unmap_mapping_range(mapping, unmap_start,
1901                                             1 + unmap_end - unmap_start, 0);
1902                 shmem_truncate_range(inode, offset, offset + len - 1);
1903                 /* No need to unmap again: hole-punching leaves COWed pages */
1904
1905                 spin_lock(&inode->i_lock);
1906                 inode->i_private = NULL;
1907                 wake_up_all(&shmem_falloc_waitq);
1908                 spin_unlock(&inode->i_lock);
1909                 error = 0;
1910                 goto out;
1911         }
1912
1913         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1914         error = inode_newsize_ok(inode, offset + len);
1915         if (error)
1916                 goto out;
1917
1918         start = offset >> PAGE_CACHE_SHIFT;
1919         end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1920         /* Try to avoid a swapstorm if len is impossible to satisfy */
1921         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1922                 error = -ENOSPC;
1923                 goto out;
1924         }
1925
1926         shmem_falloc.waitq = NULL;
1927         shmem_falloc.start = start;
1928         shmem_falloc.next  = start;
1929         shmem_falloc.nr_falloced = 0;
1930         shmem_falloc.nr_unswapped = 0;
1931         spin_lock(&inode->i_lock);
1932         inode->i_private = &shmem_falloc;
1933         spin_unlock(&inode->i_lock);
1934
1935         for (index = start; index < end; index++) {
1936                 struct page *page;
1937
1938                 /*
1939                  * Good, the fallocate(2) manpage permits EINTR: we may have
1940                  * been interrupted because we are using up too much memory.
1941                  */
1942                 if (signal_pending(current))
1943                         error = -EINTR;
1944                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1945                         error = -ENOMEM;
1946                 else
1947                         error = shmem_getpage(inode, index, &page, SGP_FALLOC,
1948                                                                         NULL);
1949                 if (error) {
1950                         /* Remove the !PageUptodate pages we added */
1951                         shmem_undo_range(inode,
1952                                 (loff_t)start << PAGE_CACHE_SHIFT,
1953                                 (loff_t)index << PAGE_CACHE_SHIFT, true);
1954                         goto undone;
1955                 }
1956
1957                 /*
1958                  * Inform shmem_writepage() how far we have reached.
1959                  * No need for lock or barrier: we have the page lock.
1960                  */
1961                 shmem_falloc.next++;
1962                 if (!PageUptodate(page))
1963                         shmem_falloc.nr_falloced++;
1964
1965                 /*
1966                  * If !PageUptodate, leave it that way so that freeable pages
1967                  * can be recognized if we need to rollback on error later.
1968                  * But set_page_dirty so that memory pressure will swap rather
1969                  * than free the pages we are allocating (and SGP_CACHE pages
1970                  * might still be clean: we now need to mark those dirty too).
1971                  */
1972                 set_page_dirty(page);
1973                 unlock_page(page);
1974                 page_cache_release(page);
1975                 cond_resched();
1976         }
1977
1978         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1979                 i_size_write(inode, offset + len);
1980         inode->i_ctime = CURRENT_TIME;
1981 undone:
1982         spin_lock(&inode->i_lock);
1983         inode->i_private = NULL;
1984         spin_unlock(&inode->i_lock);
1985 out:
1986         mutex_unlock(&inode->i_mutex);
1987         return error;
1988 }
1989
1990 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1991 {
1992         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1993
1994         buf->f_type = TMPFS_MAGIC;
1995         buf->f_bsize = PAGE_CACHE_SIZE;
1996         buf->f_namelen = NAME_MAX;
1997         if (sbinfo->max_blocks) {
1998                 buf->f_blocks = sbinfo->max_blocks;
1999                 buf->f_bavail =
2000                 buf->f_bfree  = sbinfo->max_blocks -
2001                                 percpu_counter_sum(&sbinfo->used_blocks);
2002         }
2003         if (sbinfo->max_inodes) {
2004                 buf->f_files = sbinfo->max_inodes;
2005                 buf->f_ffree = sbinfo->free_inodes;
2006         }
2007         /* else leave those fields 0 like simple_statfs */
2008         return 0;
2009 }
2010
2011 /*
2012  * File creation. Allocate an inode, and we're done..
2013  */
2014 static int
2015 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2016 {
2017         struct inode *inode;
2018         int error = -ENOSPC;
2019
2020         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2021         if (inode) {
2022                 error = security_inode_init_security(inode, dir,
2023                                                      &dentry->d_name,
2024                                                      shmem_initxattrs, NULL);
2025                 if (error) {
2026                         if (error != -EOPNOTSUPP) {
2027                                 iput(inode);
2028                                 return error;
2029                         }
2030                 }
2031 #ifdef CONFIG_TMPFS_POSIX_ACL
2032                 error = generic_acl_init(inode, dir);
2033                 if (error) {
2034                         iput(inode);
2035                         return error;
2036                 }
2037 #else
2038                 error = 0;
2039 #endif
2040                 dir->i_size += BOGO_DIRENT_SIZE;
2041                 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2042                 d_instantiate(dentry, inode);
2043                 dget(dentry); /* Extra count - pin the dentry in core */
2044         }
2045         return error;
2046 }
2047
2048 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2049 {
2050         int error;
2051
2052         if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2053                 return error;
2054         inc_nlink(dir);
2055         return 0;
2056 }
2057
2058 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2059                 bool excl)
2060 {
2061         return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2062 }
2063
2064 /*
2065  * Link a file..
2066  */
2067 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2068 {
2069         struct inode *inode = old_dentry->d_inode;
2070         int ret;
2071
2072         /*
2073          * No ordinary (disk based) filesystem counts links as inodes;
2074          * but each new link needs a new dentry, pinning lowmem, and
2075          * tmpfs dentries cannot be pruned until they are unlinked.
2076          */
2077         ret = shmem_reserve_inode(inode->i_sb);
2078         if (ret)
2079                 goto out;
2080
2081         dir->i_size += BOGO_DIRENT_SIZE;
2082         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2083         inc_nlink(inode);
2084         ihold(inode);   /* New dentry reference */
2085         dget(dentry);           /* Extra pinning count for the created dentry */
2086         d_instantiate(dentry, inode);
2087 out:
2088         return ret;
2089 }
2090
2091 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2092 {
2093         struct inode *inode = dentry->d_inode;
2094
2095         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2096                 shmem_free_inode(inode->i_sb);
2097
2098         dir->i_size -= BOGO_DIRENT_SIZE;
2099         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2100         drop_nlink(inode);
2101         dput(dentry);   /* Undo the count from "create" - this does all the work */
2102         return 0;
2103 }
2104
2105 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2106 {
2107         if (!simple_empty(dentry))
2108                 return -ENOTEMPTY;
2109
2110         drop_nlink(dentry->d_inode);
2111         drop_nlink(dir);
2112         return shmem_unlink(dir, dentry);
2113 }
2114
2115 /*
2116  * The VFS layer already does all the dentry stuff for rename,
2117  * we just have to decrement the usage count for the target if
2118  * it exists so that the VFS layer correctly free's it when it
2119  * gets overwritten.
2120  */
2121 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2122 {
2123         struct inode *inode = old_dentry->d_inode;
2124         int they_are_dirs = S_ISDIR(inode->i_mode);
2125
2126         if (!simple_empty(new_dentry))
2127                 return -ENOTEMPTY;
2128
2129         if (new_dentry->d_inode) {
2130                 (void) shmem_unlink(new_dir, new_dentry);
2131                 if (they_are_dirs)
2132                         drop_nlink(old_dir);
2133         } else if (they_are_dirs) {
2134                 drop_nlink(old_dir);
2135                 inc_nlink(new_dir);
2136         }
2137
2138         old_dir->i_size -= BOGO_DIRENT_SIZE;
2139         new_dir->i_size += BOGO_DIRENT_SIZE;
2140         old_dir->i_ctime = old_dir->i_mtime =
2141         new_dir->i_ctime = new_dir->i_mtime =
2142         inode->i_ctime = CURRENT_TIME;
2143         return 0;
2144 }
2145
2146 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2147 {
2148         int error;
2149         int len;
2150         struct inode *inode;
2151         struct page *page;
2152         char *kaddr;
2153         struct shmem_inode_info *info;
2154
2155         len = strlen(symname) + 1;
2156         if (len > PAGE_CACHE_SIZE)
2157                 return -ENAMETOOLONG;
2158
2159         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2160         if (!inode)
2161                 return -ENOSPC;
2162
2163         error = security_inode_init_security(inode, dir, &dentry->d_name,
2164                                              shmem_initxattrs, NULL);
2165         if (error) {
2166                 if (error != -EOPNOTSUPP) {
2167                         iput(inode);
2168                         return error;
2169                 }
2170                 error = 0;
2171         }
2172
2173         info = SHMEM_I(inode);
2174         inode->i_size = len-1;
2175         if (len <= SHORT_SYMLINK_LEN) {
2176                 info->symlink = kmemdup(symname, len, GFP_KERNEL);
2177                 if (!info->symlink) {
2178                         iput(inode);
2179                         return -ENOMEM;
2180                 }
2181                 inode->i_op = &shmem_short_symlink_operations;
2182         } else {
2183                 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2184                 if (error) {
2185                         iput(inode);
2186                         return error;
2187                 }
2188                 inode->i_mapping->a_ops = &shmem_aops;
2189                 inode->i_op = &shmem_symlink_inode_operations;
2190                 kaddr = kmap_atomic(page);
2191                 memcpy(kaddr, symname, len);
2192                 kunmap_atomic(kaddr);
2193                 SetPageUptodate(page);
2194                 set_page_dirty(page);
2195                 unlock_page(page);
2196                 page_cache_release(page);
2197         }
2198         dir->i_size += BOGO_DIRENT_SIZE;
2199         dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2200         d_instantiate(dentry, inode);
2201         dget(dentry);
2202         return 0;
2203 }
2204
2205 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2206 {
2207         nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2208         return NULL;
2209 }
2210
2211 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2212 {
2213         struct page *page = NULL;
2214         int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2215         nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2216         if (page)
2217                 unlock_page(page);
2218         return page;
2219 }
2220
2221 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2222 {
2223         if (!IS_ERR(nd_get_link(nd))) {
2224                 struct page *page = cookie;
2225                 kunmap(page);
2226                 mark_page_accessed(page);
2227                 page_cache_release(page);
2228         }
2229 }
2230
2231 #ifdef CONFIG_TMPFS_XATTR
2232 /*
2233  * Superblocks without xattr inode operations may get some security.* xattr
2234  * support from the LSM "for free". As soon as we have any other xattrs
2235  * like ACLs, we also need to implement the security.* handlers at
2236  * filesystem level, though.
2237  */
2238
2239 /*
2240  * Callback for security_inode_init_security() for acquiring xattrs.
2241  */
2242 static int shmem_initxattrs(struct inode *inode,
2243                             const struct xattr *xattr_array,
2244                             void *fs_info)
2245 {
2246         struct shmem_inode_info *info = SHMEM_I(inode);
2247         const struct xattr *xattr;
2248         struct simple_xattr *new_xattr;
2249         size_t len;
2250
2251         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2252                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2253                 if (!new_xattr)
2254                         return -ENOMEM;
2255
2256                 len = strlen(xattr->name) + 1;
2257                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2258                                           GFP_KERNEL);
2259                 if (!new_xattr->name) {
2260                         kfree(new_xattr);
2261                         return -ENOMEM;
2262                 }
2263
2264                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2265                        XATTR_SECURITY_PREFIX_LEN);
2266                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2267                        xattr->name, len);
2268
2269                 simple_xattr_list_add(&info->xattrs, new_xattr);
2270         }
2271
2272         return 0;
2273 }
2274
2275 static const struct xattr_handler *shmem_xattr_handlers[] = {
2276 #ifdef CONFIG_TMPFS_POSIX_ACL
2277         &generic_acl_access_handler,
2278         &generic_acl_default_handler,
2279 #endif
2280         NULL
2281 };
2282
2283 static int shmem_xattr_validate(const char *name)
2284 {
2285         struct { const char *prefix; size_t len; } arr[] = {
2286                 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2287                 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2288         };
2289         int i;
2290
2291         for (i = 0; i < ARRAY_SIZE(arr); i++) {
2292                 size_t preflen = arr[i].len;
2293                 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2294                         if (!name[preflen])
2295                                 return -EINVAL;
2296                         return 0;
2297                 }
2298         }
2299         return -EOPNOTSUPP;
2300 }
2301
2302 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2303                               void *buffer, size_t size)
2304 {
2305         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2306         int err;
2307
2308         /*
2309          * If this is a request for a synthetic attribute in the system.*
2310          * namespace use the generic infrastructure to resolve a handler
2311          * for it via sb->s_xattr.
2312          */
2313         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2314                 return generic_getxattr(dentry, name, buffer, size);
2315
2316         err = shmem_xattr_validate(name);
2317         if (err)
2318                 return err;
2319
2320         return simple_xattr_get(&info->xattrs, name, buffer, size);
2321 }
2322
2323 static int shmem_setxattr(struct dentry *dentry, const char *name,
2324                           const void *value, size_t size, int flags)
2325 {
2326         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2327         int err;
2328
2329         /*
2330          * If this is a request for a synthetic attribute in the system.*
2331          * namespace use the generic infrastructure to resolve a handler
2332          * for it via sb->s_xattr.
2333          */
2334         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2335                 return generic_setxattr(dentry, name, value, size, flags);
2336
2337         err = shmem_xattr_validate(name);
2338         if (err)
2339                 return err;
2340
2341         return simple_xattr_set(&info->xattrs, name, value, size, flags);
2342 }
2343
2344 static int shmem_removexattr(struct dentry *dentry, const char *name)
2345 {
2346         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2347         int err;
2348
2349         /*
2350          * If this is a request for a synthetic attribute in the system.*
2351          * namespace use the generic infrastructure to resolve a handler
2352          * for it via sb->s_xattr.
2353          */
2354         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2355                 return generic_removexattr(dentry, name);
2356
2357         err = shmem_xattr_validate(name);
2358         if (err)
2359                 return err;
2360
2361         return simple_xattr_remove(&info->xattrs, name);
2362 }
2363
2364 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2365 {
2366         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2367         return simple_xattr_list(&info->xattrs, buffer, size);
2368 }
2369 #endif /* CONFIG_TMPFS_XATTR */
2370
2371 static const struct inode_operations shmem_short_symlink_operations = {
2372         .readlink       = generic_readlink,
2373         .follow_link    = shmem_follow_short_symlink,
2374 #ifdef CONFIG_TMPFS_XATTR
2375         .setxattr       = shmem_setxattr,
2376         .getxattr       = shmem_getxattr,
2377         .listxattr      = shmem_listxattr,
2378         .removexattr    = shmem_removexattr,
2379 #endif
2380 };
2381
2382 static const struct inode_operations shmem_symlink_inode_operations = {
2383         .readlink       = generic_readlink,
2384         .follow_link    = shmem_follow_link,
2385         .put_link       = shmem_put_link,
2386 #ifdef CONFIG_TMPFS_XATTR
2387         .setxattr       = shmem_setxattr,
2388         .getxattr       = shmem_getxattr,
2389         .listxattr      = shmem_listxattr,
2390         .removexattr    = shmem_removexattr,
2391 #endif
2392 };
2393
2394 static struct dentry *shmem_get_parent(struct dentry *child)
2395 {
2396         return ERR_PTR(-ESTALE);
2397 }
2398
2399 static int shmem_match(struct inode *ino, void *vfh)
2400 {
2401         __u32 *fh = vfh;
2402         __u64 inum = fh[2];
2403         inum = (inum << 32) | fh[1];
2404         return ino->i_ino == inum && fh[0] == ino->i_generation;
2405 }
2406
2407 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2408                 struct fid *fid, int fh_len, int fh_type)
2409 {
2410         struct inode *inode;
2411         struct dentry *dentry = NULL;
2412         u64 inum;
2413
2414         if (fh_len < 3)
2415                 return NULL;
2416
2417         inum = fid->raw[2];
2418         inum = (inum << 32) | fid->raw[1];
2419
2420         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2421                         shmem_match, fid->raw);
2422         if (inode) {
2423                 dentry = d_find_alias(inode);
2424                 iput(inode);
2425         }
2426
2427         return dentry;
2428 }
2429
2430 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2431                                 struct inode *parent)
2432 {
2433         if (*len < 3) {
2434                 *len = 3;
2435                 return FILEID_INVALID;
2436         }
2437
2438         if (inode_unhashed(inode)) {
2439                 /* Unfortunately insert_inode_hash is not idempotent,
2440                  * so as we hash inodes here rather than at creation
2441                  * time, we need a lock to ensure we only try
2442                  * to do it once
2443                  */
2444                 static DEFINE_SPINLOCK(lock);
2445                 spin_lock(&lock);
2446                 if (inode_unhashed(inode))
2447                         __insert_inode_hash(inode,
2448                                             inode->i_ino + inode->i_generation);
2449                 spin_unlock(&lock);
2450         }
2451
2452         fh[0] = inode->i_generation;
2453         fh[1] = inode->i_ino;
2454         fh[2] = ((__u64)inode->i_ino) >> 32;
2455
2456         *len = 3;
2457         return 1;
2458 }
2459
2460 static const struct export_operations shmem_export_ops = {
2461         .get_parent     = shmem_get_parent,
2462         .encode_fh      = shmem_encode_fh,
2463         .fh_to_dentry   = shmem_fh_to_dentry,
2464 };
2465
2466 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2467                                bool remount)
2468 {
2469         char *this_char, *value, *rest;
2470         struct mempolicy *mpol = NULL;
2471         uid_t uid;
2472         gid_t gid;
2473
2474         while (options != NULL) {
2475                 this_char = options;
2476                 for (;;) {
2477                         /*
2478                          * NUL-terminate this option: unfortunately,
2479                          * mount options form a comma-separated list,
2480                          * but mpol's nodelist may also contain commas.
2481                          */
2482                         options = strchr(options, ',');
2483                         if (options == NULL)
2484                                 break;
2485                         options++;
2486                         if (!isdigit(*options)) {
2487                                 options[-1] = '\0';
2488                                 break;
2489                         }
2490                 }
2491                 if (!*this_char)
2492                         continue;
2493                 if ((value = strchr(this_char,'=')) != NULL) {
2494                         *value++ = 0;
2495                 } else {
2496                         printk(KERN_ERR
2497                             "tmpfs: No value for mount option '%s'\n",
2498                             this_char);
2499                         goto error;
2500                 }
2501
2502                 if (!strcmp(this_char,"size")) {
2503                         unsigned long long size;
2504                         size = memparse(value,&rest);
2505                         if (*rest == '%') {
2506                                 size <<= PAGE_SHIFT;
2507                                 size *= totalram_pages;
2508                                 do_div(size, 100);
2509                                 rest++;
2510                         }
2511                         if (*rest)
2512                                 goto bad_val;
2513                         sbinfo->max_blocks =
2514                                 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2515                 } else if (!strcmp(this_char,"nr_blocks")) {
2516                         sbinfo->max_blocks = memparse(value, &rest);
2517                         if (*rest)
2518                                 goto bad_val;
2519                 } else if (!strcmp(this_char,"nr_inodes")) {
2520                         sbinfo->max_inodes = memparse(value, &rest);
2521                         if (*rest)
2522                                 goto bad_val;
2523                 } else if (!strcmp(this_char,"mode")) {
2524                         if (remount)
2525                                 continue;
2526                         sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2527                         if (*rest)
2528                                 goto bad_val;
2529                 } else if (!strcmp(this_char,"uid")) {
2530                         if (remount)
2531                                 continue;
2532                         uid = simple_strtoul(value, &rest, 0);
2533                         if (*rest)
2534                                 goto bad_val;
2535                         sbinfo->uid = make_kuid(current_user_ns(), uid);
2536                         if (!uid_valid(sbinfo->uid))
2537                                 goto bad_val;
2538                 } else if (!strcmp(this_char,"gid")) {
2539                         if (remount)
2540                                 continue;
2541                         gid = simple_strtoul(value, &rest, 0);
2542                         if (*rest)
2543                                 goto bad_val;
2544                         sbinfo->gid = make_kgid(current_user_ns(), gid);
2545                         if (!gid_valid(sbinfo->gid))
2546                                 goto bad_val;
2547                 } else if (!strcmp(this_char,"mpol")) {
2548                         mpol_put(mpol);
2549                         mpol = NULL;
2550                         if (mpol_parse_str(value, &mpol))
2551                                 goto bad_val;
2552                 } else {
2553                         printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2554                                this_char);
2555                         goto error;
2556                 }
2557         }
2558         sbinfo->mpol = mpol;
2559         return 0;
2560
2561 bad_val:
2562         printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2563                value, this_char);
2564 error:
2565         mpol_put(mpol);
2566         return 1;
2567
2568 }
2569
2570 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2571 {
2572         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2573         struct shmem_sb_info config = *sbinfo;
2574         unsigned long inodes;
2575         int error = -EINVAL;
2576
2577         config.mpol = NULL;
2578         if (shmem_parse_options(data, &config, true))
2579                 return error;
2580
2581         spin_lock(&sbinfo->stat_lock);
2582         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2583         if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2584                 goto out;
2585         if (config.max_inodes < inodes)
2586                 goto out;
2587         /*
2588          * Those tests disallow limited->unlimited while any are in use;
2589          * but we must separately disallow unlimited->limited, because
2590          * in that case we have no record of how much is already in use.
2591          */
2592         if (config.max_blocks && !sbinfo->max_blocks)
2593                 goto out;
2594         if (config.max_inodes && !sbinfo->max_inodes)
2595                 goto out;
2596
2597         error = 0;
2598         sbinfo->max_blocks  = config.max_blocks;
2599         sbinfo->max_inodes  = config.max_inodes;
2600         sbinfo->free_inodes = config.max_inodes - inodes;
2601
2602         /*
2603          * Preserve previous mempolicy unless mpol remount option was specified.
2604          */
2605         if (config.mpol) {
2606                 mpol_put(sbinfo->mpol);
2607                 sbinfo->mpol = config.mpol;     /* transfers initial ref */
2608         }
2609 out:
2610         spin_unlock(&sbinfo->stat_lock);
2611         return error;
2612 }
2613
2614 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2615 {
2616         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2617
2618         if (sbinfo->max_blocks != shmem_default_max_blocks())
2619                 seq_printf(seq, ",size=%luk",
2620                         sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2621         if (sbinfo->max_inodes != shmem_default_max_inodes())
2622                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2623         if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2624                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2625         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2626                 seq_printf(seq, ",uid=%u",
2627                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
2628         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2629                 seq_printf(seq, ",gid=%u",
2630                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
2631         shmem_show_mpol(seq, sbinfo->mpol);
2632         return 0;
2633 }
2634 #endif /* CONFIG_TMPFS */
2635
2636 static void shmem_put_super(struct super_block *sb)
2637 {
2638         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2639
2640         percpu_counter_destroy(&sbinfo->used_blocks);
2641         mpol_put(sbinfo->mpol);
2642         kfree(sbinfo);
2643         sb->s_fs_info = NULL;
2644 }
2645
2646 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2647 {
2648         struct inode *inode;
2649         struct shmem_sb_info *sbinfo;
2650         int err = -ENOMEM;
2651
2652         /* Round up to L1_CACHE_BYTES to resist false sharing */
2653         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2654                                 L1_CACHE_BYTES), GFP_KERNEL);
2655         if (!sbinfo)
2656                 return -ENOMEM;
2657
2658         sbinfo->mode = S_IRWXUGO | S_ISVTX;
2659         sbinfo->uid = current_fsuid();
2660         sbinfo->gid = current_fsgid();
2661         sb->s_fs_info = sbinfo;
2662
2663 #ifdef CONFIG_TMPFS
2664         /*
2665          * Per default we only allow half of the physical ram per
2666          * tmpfs instance, limiting inodes to one per page of lowmem;
2667          * but the internal instance is left unlimited.
2668          */
2669         if (!(sb->s_flags & MS_NOUSER)) {
2670                 sbinfo->max_blocks = shmem_default_max_blocks();
2671                 sbinfo->max_inodes = shmem_default_max_inodes();
2672                 if (shmem_parse_options(data, sbinfo, false)) {
2673                         err = -EINVAL;
2674                         goto failed;
2675                 }
2676         }
2677         sb->s_export_op = &shmem_export_ops;
2678         sb->s_flags |= MS_NOSEC;
2679 #else
2680         sb->s_flags |= MS_NOUSER;
2681 #endif
2682
2683         spin_lock_init(&sbinfo->stat_lock);
2684         if (percpu_counter_init(&sbinfo->used_blocks, 0))
2685                 goto failed;
2686         sbinfo->free_inodes = sbinfo->max_inodes;
2687
2688         sb->s_maxbytes = MAX_LFS_FILESIZE;
2689         sb->s_blocksize = PAGE_CACHE_SIZE;
2690         sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2691         sb->s_magic = TMPFS_MAGIC;
2692         sb->s_op = &shmem_ops;
2693         sb->s_time_gran = 1;
2694 #ifdef CONFIG_TMPFS_XATTR
2695         sb->s_xattr = shmem_xattr_handlers;
2696 #endif
2697 #ifdef CONFIG_TMPFS_POSIX_ACL
2698         sb->s_flags |= MS_POSIXACL;
2699 #endif
2700
2701         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2702         if (!inode)
2703                 goto failed;
2704         inode->i_uid = sbinfo->uid;
2705         inode->i_gid = sbinfo->gid;
2706         sb->s_root = d_make_root(inode);
2707         if (!sb->s_root)
2708                 goto failed;
2709         return 0;
2710
2711 failed:
2712         shmem_put_super(sb);
2713         return err;
2714 }
2715
2716 static struct kmem_cache *shmem_inode_cachep;
2717
2718 static struct inode *shmem_alloc_inode(struct super_block *sb)
2719 {
2720         struct shmem_inode_info *info;
2721         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2722         if (!info)
2723                 return NULL;
2724         return &info->vfs_inode;
2725 }
2726
2727 static void shmem_destroy_callback(struct rcu_head *head)
2728 {
2729         struct inode *inode = container_of(head, struct inode, i_rcu);
2730         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2731 }
2732
2733 static void shmem_destroy_inode(struct inode *inode)
2734 {
2735         if (S_ISREG(inode->i_mode))
2736                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2737         call_rcu(&inode->i_rcu, shmem_destroy_callback);
2738 }
2739
2740 static void shmem_init_inode(void *foo)
2741 {
2742         struct shmem_inode_info *info = foo;
2743         inode_init_once(&info->vfs_inode);
2744 }
2745
2746 static int shmem_init_inodecache(void)
2747 {
2748         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2749                                 sizeof(struct shmem_inode_info),
2750                                 0, SLAB_PANIC, shmem_init_inode);
2751         return 0;
2752 }
2753
2754 static void shmem_destroy_inodecache(void)
2755 {
2756         kmem_cache_destroy(shmem_inode_cachep);
2757 }
2758
2759 static const struct address_space_operations shmem_aops = {
2760         .writepage      = shmem_writepage,
2761         .set_page_dirty = __set_page_dirty_no_writeback,
2762 #ifdef CONFIG_TMPFS
2763         .write_begin    = shmem_write_begin,
2764         .write_end      = shmem_write_end,
2765 #endif
2766         .migratepage    = migrate_page,
2767         .error_remove_page = generic_error_remove_page,
2768 };
2769
2770 static const struct file_operations shmem_file_operations = {
2771         .mmap           = shmem_mmap,
2772 #ifdef CONFIG_TMPFS
2773         .llseek         = shmem_file_llseek,
2774         .read           = do_sync_read,
2775         .write          = do_sync_write,
2776         .aio_read       = shmem_file_aio_read,
2777         .aio_write      = generic_file_aio_write,
2778         .fsync          = noop_fsync,
2779         .splice_read    = shmem_file_splice_read,
2780         .splice_write   = generic_file_splice_write,
2781         .fallocate      = shmem_fallocate,
2782 #endif
2783 };
2784
2785 static const struct inode_operations shmem_inode_operations = {
2786         .setattr        = shmem_setattr,
2787 #ifdef CONFIG_TMPFS_XATTR
2788         .setxattr       = shmem_setxattr,
2789         .getxattr       = shmem_getxattr,
2790         .listxattr      = shmem_listxattr,
2791         .removexattr    = shmem_removexattr,
2792 #endif
2793 };
2794
2795 static const struct inode_operations shmem_dir_inode_operations = {
2796 #ifdef CONFIG_TMPFS
2797         .create         = shmem_create,
2798         .lookup         = simple_lookup,
2799         .link           = shmem_link,
2800         .unlink         = shmem_unlink,
2801         .symlink        = shmem_symlink,
2802         .mkdir          = shmem_mkdir,
2803         .rmdir          = shmem_rmdir,
2804         .mknod          = shmem_mknod,
2805         .rename         = shmem_rename,
2806 #endif
2807 #ifdef CONFIG_TMPFS_XATTR
2808         .setxattr       = shmem_setxattr,
2809         .getxattr       = shmem_getxattr,
2810         .listxattr      = shmem_listxattr,
2811         .removexattr    = shmem_removexattr,
2812 #endif
2813 #ifdef CONFIG_TMPFS_POSIX_ACL
2814         .setattr        = shmem_setattr,
2815 #endif
2816 };
2817
2818 static const struct inode_operations shmem_special_inode_operations = {
2819 #ifdef CONFIG_TMPFS_XATTR
2820         .setxattr       = shmem_setxattr,
2821         .getxattr       = shmem_getxattr,
2822         .listxattr      = shmem_listxattr,
2823         .removexattr    = shmem_removexattr,
2824 #endif
2825 #ifdef CONFIG_TMPFS_POSIX_ACL
2826         .setattr        = shmem_setattr,
2827 #endif
2828 };
2829
2830 static const struct super_operations shmem_ops = {
2831         .alloc_inode    = shmem_alloc_inode,
2832         .destroy_inode  = shmem_destroy_inode,
2833 #ifdef CONFIG_TMPFS
2834         .statfs         = shmem_statfs,
2835         .remount_fs     = shmem_remount_fs,
2836         .show_options   = shmem_show_options,
2837 #endif
2838         .evict_inode    = shmem_evict_inode,
2839         .drop_inode     = generic_delete_inode,
2840         .put_super      = shmem_put_super,
2841 };
2842
2843 static const struct vm_operations_struct shmem_vm_ops = {
2844         .fault          = shmem_fault,
2845 #ifdef CONFIG_NUMA
2846         .set_policy     = shmem_set_policy,
2847         .get_policy     = shmem_get_policy,
2848 #endif
2849         .remap_pages    = generic_file_remap_pages,
2850 };
2851
2852 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2853         int flags, const char *dev_name, void *data)
2854 {
2855         return mount_nodev(fs_type, flags, data, shmem_fill_super);
2856 }
2857
2858 static struct file_system_type shmem_fs_type = {
2859         .owner          = THIS_MODULE,
2860         .name           = "tmpfs",
2861         .mount          = shmem_mount,
2862         .kill_sb        = kill_litter_super,
2863         .fs_flags       = FS_USERNS_MOUNT,
2864 };
2865
2866 int __init shmem_init(void)
2867 {
2868         int error;
2869
2870         error = bdi_init(&shmem_backing_dev_info);
2871         if (error)
2872                 goto out4;
2873
2874         error = shmem_init_inodecache();
2875         if (error)
2876                 goto out3;
2877
2878         error = register_filesystem(&shmem_fs_type);
2879         if (error) {
2880                 printk(KERN_ERR "Could not register tmpfs\n");
2881                 goto out2;
2882         }
2883
2884         shm_mnt = vfs_kern_mount(&shmem_fs_type, MS_NOUSER,
2885                                  shmem_fs_type.name, NULL);
2886         if (IS_ERR(shm_mnt)) {
2887                 error = PTR_ERR(shm_mnt);
2888                 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2889                 goto out1;
2890         }
2891         return 0;
2892
2893 out1:
2894         unregister_filesystem(&shmem_fs_type);
2895 out2:
2896         shmem_destroy_inodecache();
2897 out3:
2898         bdi_destroy(&shmem_backing_dev_info);
2899 out4:
2900         shm_mnt = ERR_PTR(error);
2901         return error;
2902 }
2903
2904 #else /* !CONFIG_SHMEM */
2905
2906 /*
2907  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2908  *
2909  * This is intended for small system where the benefits of the full
2910  * shmem code (swap-backed and resource-limited) are outweighed by
2911  * their complexity. On systems without swap this code should be
2912  * effectively equivalent, but much lighter weight.
2913  */
2914
2915 static struct file_system_type shmem_fs_type = {
2916         .name           = "tmpfs",
2917         .mount          = ramfs_mount,
2918         .kill_sb        = kill_litter_super,
2919         .fs_flags       = FS_USERNS_MOUNT,
2920 };
2921
2922 int __init shmem_init(void)
2923 {
2924         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2925
2926         shm_mnt = kern_mount(&shmem_fs_type);
2927         BUG_ON(IS_ERR(shm_mnt));
2928
2929         return 0;
2930 }
2931
2932 int shmem_unuse(swp_entry_t swap, struct page *page)
2933 {
2934         return 0;
2935 }
2936
2937 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2938 {
2939         return 0;
2940 }
2941
2942 void shmem_unlock_mapping(struct address_space *mapping)
2943 {
2944 }
2945
2946 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2947 {
2948         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2949 }
2950 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2951
2952 #define shmem_vm_ops                            generic_file_vm_ops
2953 #define shmem_file_operations                   ramfs_file_operations
2954 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
2955 #define shmem_acct_size(flags, size)            0
2956 #define shmem_unacct_size(flags, size)          do {} while (0)
2957
2958 #endif /* CONFIG_SHMEM */
2959
2960 /* common code */
2961
2962 static struct dentry_operations anon_ops = {
2963         .d_dname = simple_dname
2964 };
2965
2966 /**
2967  * shmem_file_setup - get an unlinked file living in tmpfs
2968  * @name: name for dentry (to be seen in /proc/<pid>/maps
2969  * @size: size to be set for the file
2970  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2971  */
2972 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2973 {
2974         struct file *res;
2975         struct inode *inode;
2976         struct path path;
2977         struct super_block *sb;
2978         struct qstr this;
2979
2980         if (IS_ERR(shm_mnt))
2981                 return ERR_CAST(shm_mnt);
2982
2983         if (size < 0 || size > MAX_LFS_FILESIZE)
2984                 return ERR_PTR(-EINVAL);
2985
2986         if (shmem_acct_size(flags, size))
2987                 return ERR_PTR(-ENOMEM);
2988
2989         res = ERR_PTR(-ENOMEM);
2990         this.name = name;
2991         this.len = strlen(name);
2992         this.hash = 0; /* will go */
2993         sb = shm_mnt->mnt_sb;
2994         path.dentry = d_alloc_pseudo(sb, &this);
2995         if (!path.dentry)
2996                 goto put_memory;
2997         d_set_d_op(path.dentry, &anon_ops);
2998         path.mnt = mntget(shm_mnt);
2999
3000         res = ERR_PTR(-ENOSPC);
3001         inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
3002         if (!inode)
3003                 goto put_dentry;
3004
3005         d_instantiate(path.dentry, inode);
3006         inode->i_size = size;
3007         clear_nlink(inode);     /* It is unlinked */
3008         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3009         if (IS_ERR(res))
3010                 goto put_dentry;
3011
3012         res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3013                   &shmem_file_operations);
3014         if (IS_ERR(res))
3015                 goto put_dentry;
3016
3017         return res;
3018
3019 put_dentry:
3020         path_put(&path);
3021 put_memory:
3022         shmem_unacct_size(flags, size);
3023         return res;
3024 }
3025 EXPORT_SYMBOL_GPL(shmem_file_setup);
3026
3027 /**
3028  * shmem_zero_setup - setup a shared anonymous mapping
3029  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3030  */
3031 int shmem_zero_setup(struct vm_area_struct *vma)
3032 {
3033         struct file *file;
3034         loff_t size = vma->vm_end - vma->vm_start;
3035
3036         file = shmem_file_setup("dev/zero", size, vma->vm_flags);
3037         if (IS_ERR(file))
3038                 return PTR_ERR(file);
3039
3040         if (vma->vm_file)
3041                 fput(vma->vm_file);
3042         vma->vm_file = file;
3043         vma->vm_ops = &shmem_vm_ops;
3044         return 0;
3045 }
3046
3047 /**
3048  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3049  * @mapping:    the page's address_space
3050  * @index:      the page index
3051  * @gfp:        the page allocator flags to use if allocating
3052  *
3053  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3054  * with any new page allocations done using the specified allocation flags.
3055  * But read_cache_page_gfp() uses the ->readpage() method: which does not
3056  * suit tmpfs, since it may have pages in swapcache, and needs to find those
3057  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3058  *
3059  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3060  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3061  */
3062 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3063                                          pgoff_t index, gfp_t gfp)
3064 {
3065 #ifdef CONFIG_SHMEM
3066         struct inode *inode = mapping->host;
3067         struct page *page;
3068         int error;
3069
3070         BUG_ON(mapping->a_ops != &shmem_aops);
3071         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3072         if (error)
3073                 page = ERR_PTR(error);
3074         else
3075                 unlock_page(page);
3076         return page;
3077 #else
3078         /*
3079          * The tiny !SHMEM case uses ramfs without swap
3080          */
3081         return read_cache_page_gfp(mapping, index, gfp);
3082 #endif
3083 }
3084 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);